5 research outputs found

    Dynamic Backtracking

    Full text link
    Because of their occasional need to return to shallow points in a search tree, existing backtracking methods can sometimes erase meaningful progress toward solving a search problem. In this paper, we present a method by which backtrack points can be moved deeper in the search space, thereby avoiding this difficulty. The technique developed is a variant of dependency-directed backtracking that uses only polynomial space while still providing useful control information and retaining the completeness guarantees provided by earlier approaches.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Multi-objective optimization in graphical models

    Get PDF
    Many real-life optimization problems are combinatorial, i.e. they concern a choice of the best solution from a finite but exponentially large set of alternatives. Besides, the solution quality of many of these problems can often be evaluated from several points of view (a.k.a. criteria). In that case, each criterion may be described by a different objective function. Some important and well-known multicriteria scenarios are: 路 In investment optimization one wants to minimize risk and maximize benefits. 路 In travel scheduling one wants to minimize time and cost. 路 In circuit design one wants to minimize circuit area, energy consumption and maximize speed. 路 In knapsack problems one wants to minimize load weight and/or volume and maximize its economical value. The previous examples illustrate that, in many cases, these multiple criteria are incommensurate (i.e., it is difficult or impossible to combine them into a single criterion) and conflicting (i.e., solutions that are good with respect one criterion are likely to be bad with respect to another). Taking into account simultaneously the different criteria is not trivial and several notions of optimality have been proposed. Independently of the chosen notion of optimality, computing optimal solutions represents an important current research challenge. Graphical models are a knowledge representation tool widely used in the Artificial Intelligence field. They seem to be specially suitable for combinatorial problems. Roughly, graphical models are graphs in which nodes represent variables and the (lack of) arcs represent conditional independence assumptions. In addition to the graph structure, it is necessary to specify its micro-structure which tells how particular combinations of instantiations of interdependent variables interact. The graphical model framework provides a unifying way to model a broad spectrum of systems and a collection of general algorithms to efficiently solve them. In this Thesis we integrate multi-objective optimization problems into the graphical model paradigm and study how algorithmic techniques developed in the graphical model context can be extended to multi-objective optimization problems. As we show, multiobjective optimization problems can be formalized as a particular case of graphical models using the semiring-based framework. It is, to the best of our knowledge, the first time that graphical models in general, and semiring-based problems in particular are used to model an optimization problem in which the objective function is partially ordered. Moreover, we show that most of the solving techniques for mono-objective optimization problems can be naturally extended to the multi-objective context. The result of our work is the mathematical formalization of multi-objective optimization problems and the development of a set of multiobjective solving algorithms that have been proved to be efficient in a number of benchmarks.Muchos problemas reales de optimizaci贸n son combinatorios, es decir, requieren de la elecci贸n de la mejor soluci贸n (o soluci贸n 贸ptima) dentro de un conjunto finito pero exponencialmente grande de alternativas. Adem谩s, la mejor soluci贸n de muchos de estos problemas es, a menudo, evaluada desde varios puntos de vista (tambi茅n llamados criterios). Es este caso, cada criterio puede ser descrito por una funci贸n objetivo. Algunos escenarios multi-objetivo importantes y bien conocidos son los siguientes: 路 En optimizaci贸n de inversiones se pretende minimizar los riesgos y maximizar los beneficios. 路 En la programaci贸n de viajes se quiere reducir el tiempo de viaje y los costes. 路 En el dise帽o de circuitos se quiere reducir al m铆nimo la zona ocupada del circuito, el consumo de energ铆a y maximizar la velocidad. 路 En los problemas de la mochila se quiere minimizar el peso de la carga y/o el volumen y maximizar su valor econ贸mico. Los ejemplos anteriores muestran que, en muchos casos, estos criterios son inconmensurables (es decir, es dif铆cil o imposible combinar todos ellos en un 煤nico criterio) y est谩n en conflicto (es decir, soluciones que son buenas con respecto a un criterio es probable que sean malas con respecto a otra). Tener en cuenta de forma simult谩nea todos estos criterios no es trivial y para ello se han propuesto diferentes nociones de optimalidad. Independientemente del concepto de optimalidad elegido, el c贸mputo de soluciones 贸ptimas representa un importante desaf铆o para la investigaci贸n actual. Los modelos gr谩ficos son una herramienta para la represetanci贸n del conocimiento ampliamente utilizados en el campo de la Inteligencia Artificial que parecen especialmente indicados en problemas combinatorios. A grandes rasgos, los modelos gr谩ficos son grafos en los que los nodos representan variables y la (falta de) arcos representa la interdepencia entre variables. Adem谩s de la estructura gr谩fica, es necesario especificar su (micro-estructura) que indica c贸mo interact煤an instanciaciones concretas de variables interdependientes. Los modelos gr谩ficos proporcionan un marco capaz de unificar el modelado de un espectro amplio de sistemas y un conjunto de algoritmos generales capaces de resolverlos eficientemente. En esta tesis integramos problemas de optimizaci贸n multi-objetivo en el contexto de los modelos gr谩ficos y estudiamos c贸mo diversas t茅cnicas algor铆tmicas desarrolladas dentro del marco de los modelos gr谩ficos se pueden extender a problemas de optimizaci贸n multi-objetivo. Como mostramos, este tipo de problemas se pueden formalizar como un caso particular de modelo gr谩fico usando el paradigma basado en semi-anillos (SCSP). Desde nuestro conocimiento, 茅sta es la primera vez que los modelos gr谩ficos en general, y el paradigma basado en semi-anillos en particular, se usan para modelar un problema de optimizaci贸n cuya funci贸n objetivo est谩 parcialmente ordenada. Adem谩s, mostramos que la mayor铆a de t茅cnicas para resolver problemas monoobjetivo se pueden extender de forma natural al contexto multi-objetivo. El resultado de nuestro trabajo es la formalizaci贸n matem谩tica de problemas de optimizaci贸n multi-objetivo y el desarrollo de un conjunto de algoritmos capaces de resolver este tipo de problemas. Adem谩s, demostramos que estos algoritmos son eficientes en un conjunto determinado de benchmarks
    corecore