1,179 research outputs found

    Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation

    Get PDF
    We propose a solution approach for the problem (P) of minimizing an unconstrained binary polynomial optimization problem. We call this method PQCR (Polynomial Quadratic Convex Reformulation). The resolution is based on a 3-phase method. The first phase consists in reformulating (P) into a quadratic program (QP). For this, we recursively reduce the degree of (P) to two, by use of the standard substitution of the product of two variables by a new one. We then obtain a linearly constrained binary program. In the second phase, we rewrite the quadratic objective function into an equivalent and parametrized quadratic function using the equality x 2 i = x i and new valid quadratic equalities. Then, we focus on finding the best parameters to get a quadratic convex program which continuous relaxation's optimal value is maximized. For this, we build a semidefinite relaxation (SDP) of (QP). Then, we prove that the standard linearization inequalities, used for the quadratization step, are redundant in (SDP) in presence of the new quadratic equalities. Next, we deduce our optimal parameters from the dual optimal solution of (SDP). The third phase consists in solving (QP *), the optimal reformulated problem, with a standard solver. In particular, at each node of the branch-and-bound, the solver computes the optimal value of a continuous quadratic convex program. We present computational results on instances of the image restoration problem and of the low autocorrelation binary sequence problem. We compare PQCR with other convexification methods, and with the general solver Baron 17.4.1 [39]. We observe that most of the considered instances can be solved with our approach combined with the use of Cplex [24]

    Regret Models and Preprocessing Techniques for Combinatorial Optimization under Uncertainty

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Semidefinite programming relaxations through quadratic reformulation for box-constrained polynomial optimization problems

    Get PDF
    International audienceIn this paper we introduce new semidefinite programming relaxations to box-constrained polynomial optimization programs (P). For this, we first reformu-late (P) into a quadratic program. More precisely, we recursively reduce the degree of (P) to two by substituting the product of two variables by a new one. We obtain a quadratically constrained quadratic program. We build a first immediate SDP relaxation in the dimension of the total number of variables. We then strengthen the SDP relaxation by use of valid constraints that follow from the quadratization. We finally show the tightness of our relaxations through several experiments on box polynomial instances

    Inexactness of the Hydro-Thermal Coordination Semidefinite Relaxation

    Full text link
    Hydro-thermal coordination is the problem of determining the optimal economic dispatch of hydro and thermal power plants over time. The physics of hydroelectricity generation is commonly simplified in the literature to account for its fundamentally nonlinear nature. Advances in convex relaxation theory have allowed the advent of Shor's semidefinite programming (SDP) relaxations of quadratic models of the problem. This paper shows how a recently published SDP relaxation is only exact if a very strict condition regarding turbine efficiency is observed, failing otherwise. It further proposes the use of a set of convex envelopes as a strategy to successfully obtain a stricter lower bound of the optimal solution. This strategy is combined with a standard iterative convex-concave procedure to recover a stationary point of the original non-convex problem.Comment: Submitted to IEEE PES General Meeting 201
    corecore