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Summary

In this thesis, we consider probabilistic models for linear and quadratic combina-

torial optimization problems under uncertainty. Firstly, we propose a new proba-

bilistic model for minimizing the anticipated regret in combinatorial optimization

problems with distributional uncertainty in the objective coefficients. The inter-

val uncertainty representation of data is supplemented with information on the

marginal distributions. As a decision criterion, we minimize the worst-case condi-

tional value-at-risk of regret. For the class of combinatorial optimization problems

with a compact convex hull representation, polynomial sized mixed integer linear

programs (MILP) and mixed integer second order cone programs (MISOCP) are

formulated. Secondly, for the subset selection problem of choosing K elements

of maximum total weight out of a set of N elements, we show that the proposed

probabilistic regret model is solvable in polynomial time under some specific dis-

tributional models. This extends the current known polynomial complexity result

for minmax regret subset selection with range information only. A similar idea

is used to find a polynomial time algorithm for the distributionally robust k-sum

optimization problem. Finally, we develop a preprocessing technique to solve para-

metric quadratic unconstrained binary optimization problems where the uncertain

parameter are described by probabilistic information.
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Notations

• <,<N ,<N×N denote the set of real numbers, N dimensional Euclidean space

and N ×N dimensional matrix space, respectively.

• Bold lower case letters such as x represents vectors and the upper case letters

such as A denotes matrices.

• The tilde sign is used to denote random variables and random vectors, e.g.,

r̃, c̃.

• For a real number x, x+ denotes max{x, 0}.

• [N ] denotes the set {1, 2, . . . , N}, where N is a positive integer.

• ‖ · ‖2 denotes the L2 norm of a vector.

• � denotes the partial order partial relative to positive semidefinite cone, e.g.,

A � 0 means A is positive semidefinite.

• rand(N, 1) denotes a function which returns an N-by-1 matrix containing

pseudo random values drawn from the standard uniform distribution.

• randn(N, 1) denotes a function which returns an N-by-1 matrix containing

pseudo random values drawn from the standard normal distribution.
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Chapter 1
Introduction

In this thesis, we focus on probabilistic models for combinatorial optimization with

uncertainty. First, we consider the linear combinatorial optimization problem

max
x∈X

c̃Tx, (1.1)

where X ⊆ {0, 1}N . The uncertainty lies in the random objective coefficients c̃. By

assuming partial distributional information on c̃, we propose a new probabilistic

regret model that incorporates partial distributional information such as the mean

and variance of the random coefficients.

Besides the linear combinatorial optimization problem, we also consider the

quadratic unconstrained binary optimization (QUBO) problem

max
x∈{0,1}N

xTQx+ c̃Tx, (1.2)

where Q is a fixed N × N symmetric real matrix, and the parameter vector c̃ is

random. By assuming partial distributional information on c̃, we propose a new

preprocessing technique to solve a parametrical set of QUBO problems.

Structure of the chapter: In section 1.1, we introduce the motivation of the

proposed probabilistic models and review the related literature. In section 1.2, we

outline the organization and main contributions of this thesis.

1



1.1 Motivation and Literature Review 2

1.1 Motivation and Literature Review

Data uncertainty is present in many real-world optimization problems. For exam-

ple, we do not know the exact completion time of a job in a project management

problem. Similarly, we do not know the precise time spent on a road if we want to

travel to a destination. Uncertainty is incorporated into such optimization models

with a goal of formulating this kind of problem to a tractable optimization problem

which can be solved analytically or numerically in order to help the decision-maker

to make good decisions.

Stochastic programming is a classical uncertainty model which was proposed in

the 1950s by Dantzig [41]. It is a framework for modeling optimization problems

that involve random uncertainty. In stochastic programming, the probabilistic

distribution of the uncertain data is assumed to be known or can be estimated.

The goal of this model is to find a policy that is feasible for all (or almost all) the

possible data instances and minimizes or maximizes the expectation of a utility

function of the decisions and the random variables. For example, the stochastic

programming model for problem (1.1) is

max
x∈X

EP [U(c̃Tx)],

where U is a utility function of the profit c̃Tx. Stochastic programming has been

widely used in the applications of portfolio selection, project management and

so on in the past few decades, and many efficient numerical methods have been

addressed to deal with this model. While this model can deal with uncertain data

with given distributions, there are some fundamental difficulties with it. First, it is

often difficult to obtain the actual distributions of the uncertain parameters from

data. Moreover, even if we know the distributions, it still can be computationally

challenging to evaluate the expected utility.

When the parameters are uncertain and known to lie in a deterministic set,

robust optimization is used to tackle the optimization problem. The origins of

robust optimization date back to the establishment of modern decision theory in
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the 1950s and the use of worst case analysis and Wald’s maxmin model as a tool

for the treatment of severe uncertainty [118, 119]. A simple robust optimization

model for problem (1.1) is

max
x∈X

min
c∈Ω

cTx,

where Ω represent the set of possible scenario vectors for c̃. Robust optimization

became a field of its own in the 1970s with parallel developments in fields such as

operations research, control theory, statistics, economics, and more [24, 112, 80,

46, 123, 19, 36]. In traditional robust optimization, only the worst case scenario is

considered. Hence this model is often considered to be very conservative since it

may lose additional information of the uncertain parameters.

To use additional probabilistic information of the random data, distributionally

robust optimization models have been developed to make decisions when partial

distributional information (e.g. mean , variance and so on) of the random data

is given [58, 42]. The objective of this model is to maximize (or minimize) the

expected utility (or disutility) for a worst case distribution with the given prob-

abilistic information. For the random linear combinatorial optimization problem

(1.1), by considering its equivalent minimization form minx∈X −c̃Tx, the distribu-

tionally robust optimization model is written as

min
x∈X

sup
P∈P

EP [D(−c̃Tx)],

where P is the set of all the possible distributions for the random vector c̃ described

by the given partial distributional information, and D is a disutility function of

the cost −c̃Tx. Distributionally robust optimization can be viewed as being more

conservative than stochastic programming and less conservative than robust opti-

mization. Hence it can be an effective model to make good decisions when some

partial distributional information of the uncertain data is given.

Besides the above models, another probabilistic model that will be considered

in this thesis to is to find an optimal decision to minimize a risk measure of the

random objective. For (1.1), the problem of minimizing the risk measure of the
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random cost is as follows:

min
x∈X

ρ(−c̃Tx), (1.3)

where ρ is a risk measure which is an increasing function of the cost −c̃Tx. We

consider the model by choosing a proper ρ which has all the good properties of

coherent risk measures. The definition of convex and coherent risk measures that

is commonly used will be reviewed in the following subsection.

1.1.1 Convex and Coherent Risk Measures

In this subsection, we briefly review the definition of the convex and coherent risk

measures. One of the basic tasks in finance is to quantify the risk associated with

a given financial position, which is subject to uncertainty. Let Ω be a determin-

istic uncertainty set that captures all the possible realizations. Because of the

uncertainty, the profit and loss of such a financial position is a random variable

r̃(ω) : Ω → <, where r̃(ω) is the loss of the position at the end of the trading

period if the scenario ω ∈ Ω is realized. The goal is to determine a real number

ρ(r̃) which quantifies the risk and can be used as a decision criterion. For example,

in the classical Markowitz model the portfolio return variance is used to be a quan-

tification of the risk. In the last two decades, the theory of risk measures has been

developed extensively. The following axiomatic approach to risk measures was ini-

tiated in the coherent case by Artzner et al. [8] and later independently extended

to the class of convex risk measures by Föllmer and Schied [47], and Fritelli and

Gianin [48].

Definition 1.1. Consider a set X of random variables. A mapping ρ : X → < is

called a convex risk measure if it satisfies the following conditions for all x̃, ỹ ∈ X.

1. Monotonicity: If x̃ ≤ ỹ , i.e. x̃ dominates ỹ for each outcome, then ρ(x̃) ≤

ρ(ỹ).

2. Translation invariance: If c ∈ <, then ρ(x̃+ c) = ρ(x̃) + c.
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3. Convexity: If λ ∈ [0, 1], then ρ(λx̃+ (1− λ)ỹ) ≤ λρ(x̃) + (1− λ)ρ(ỹ).

The convex risk measure ρ is called a coherent risk measure if it satisfies the addi-

tional condition

4. Positive homogeneity: If λ ≥ 0, then ρ(λx̃) = λρ(x̃).

A well-known example of coherent risk measures is the conditional value-at-

risk (CVaR). Conditional value-at-risk is also referred to as average value-at-risk or

expected shortfall in the risk management literature. We briefly review this concept

here. Consider a random variable r̃ defined on a probability space (Π,F , Q), i.e.

a real valued function r̃(ω) : Π → <, with finite second moment E[r̃2] < ∞. This

ensures that the conditional value-at-risk is finite. For example, the finiteness of

the second moment is guaranteed if the random variables are assumed to lie within

a finite range. For a given α ∈ (0, 1), the value-at-risk is defined as the lower α

quantile of the random variable r̃:

VaRα(r̃) = inf {v | Q(r̃ ≤ v) ≥ α} . (1.4)

The definition of conditional value-at-risk is provided next.

Definition 1.2 (Rockafellar and Uryasev [103, 104], Acerbi and Tasche [1]). For

α ∈ (0, 1), the conditional value-at-risk (CVaR) at level α of a random variable

r̃(ω) : Π→ < is the average of the highest 1− α of the outcomes:

CVaRα(r̃) =
1

1− α

∫ 1

α

VaRβ(r̃)dβ. (1.5)

An equivalent representation for CVaR is:

CVaRα(r̃) = inf
v∈<

(
v +

1

1− α
EQ [̃r− v]+

)
. (1.6)

From the above definition, we can easily check that ρ(r̃) = CVaRα(r̃) is an

example of coherent risk measures which satisfies all the four axioms in Definition

1.1. Furthermore, CVaR is an attractive risk measure for stochastic optimization
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since it is convexity preserving unlike the VaR measure. However the computa-

tion of CVaR might still be intractable (see Ben-Tal et. al. [15] for a detailed

discussion on this). An instance when the computation of CVaR is tractable is for

discrete distributions with a polynomial number of scenarios. Optimization with

the CVaR measure has been used in portfolio optimization [103] and inventory con-

trol [3] among other stochastic optimization problems. Combinatorial optimization

problems under the CVaR measure has been studied by So et. al. [114]:

min
x∈X

CVaRα

(
−c̃Tx

)
. (1.7)

The negative sign in Formulation (1.7) capture the feature that higher values of

cTx are preferred to lower values. Using a sample average approximation method,

So et. al. [114] propose approximation algorithms to solve (1.7) for covering,

facility location and Steiner tree problems. In the distributional uncertainty rep-

resentation, the concept of conditional value-at-risk is extended to the concept of

worst-case conditional value-at-risk through the following definition.

Definition 1.3. [Zhu and Fukushima [125], Natarajan et. al. [90]] Suppose the

distribution of the random variable r̃ lies in a set Q. For α ∈ (0, 1), the worst-case

conditional value-at-risk (WCVaR) at level α of a random variable r̃ with respect

to Q is defined as:

WCVaRα(r̃) = sup
Q∈Q

inf
v∈<

(
v +

1

1− α
EQ[r̃ − v]+

)
. (1.8)

From an axiomatic perspective, WCVaR has also been shown to be a coherent

risk measure under mild assumptions on the set of distributions (see the discussions

in Zhu and Fukushima [125] and Natarajan et. al. [90]). WCVaR has been used as

a risk measure in distributionally robust portfolio optimization [125, 90] and joint

chance constrained optimization problems [35, 127]. Zhu and Fukushima [125] and

Natarajan et. al. [90] also provide examples of sets of distributions Q where the

position of sup and inf can be exchanged in formula (1.8). Since the objective

is linear in the probability measure (possibly infinite-dimensional) over which it
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is maximized and convex in the variable v over which it is minimized, the saddle

point theorem from Rockafellar [105] is applicable. Applying Theorem 6 in [105]

implies the following lemma:

Lemma 1.4. Let α ∈ (0, 1), and the distribution of the random variable r̃ lies in

a set Q. If Q is a convex set of the probability distributions defined on a closed

convex support set Ω ⊆ <n, then

WCVaRα(r̃) = inf
v∈<

(
v +

1

1− α
sup
Q∈Q

EQ[r̃ − v]+
)
. (1.9)

The above lemma tell us that we can exchange the position of inf and sup in

the definition of WCVaR. We use (1.9) to compute WCVaR for random variables

with partial distributional information in the following sections. Throughtout this

thesis, the distribution set we consider is always assumed to satisfy the condition

in Lemma 1.4.

1.1.2 Minmax Regret and Distributional Models

The regret model was first proposed by Savage (1951) [107] to deal with opti-

mization problems with uncertainty. In decision theory, regret is defined as the

difference between the actual payoff and the payoff that would have been obtained

if a different course of action had been chosen. The main difference between the

regret model and cost (or profit) models is that we minimize the regret of the

decision-maker in the regret model, while we optimize the cost (or profit) in the

second class of models.

Let Z(c) denote the optimal value to a linear combinatorial optimization prob-

lem over a feasible region X ⊆ {0, 1}N for a given objective coefficient vector c:

Z(c) = max{cTx | x ∈ X ⊆ {0, 1}N}. (1.10)

Consider a decision-maker who needs to decide on a feasible solution x ∈ X before

knowing the actual value of the objective coefficients. This decision-maker expe-

riences an ex-post regret of possibly not choosing the optimal solution, and the
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value of his regret is given by:

R(x, c) = Z(c)− cTx = max
y∈X

cTy − cTx. (1.11)

Let Ω represent the set of possible scenario vectors for c. The maximum regret for

the decision x corresponding to the uncertainty set Ω is:

max
c∈Ω

R(x, c). (1.12)

Under a minmax regret approach, x is chosen such that it minimizes the maximum

regret over all possible realizations of the objective coefficients, i.e.,

min
x∈X

max
c∈Ω

R(x, c). (1.13)

One of the early references on the minmax regret model for combinatorial optimiza-

tion problems is Kouvelis and Yu [83] which discusses the complexity of solving this

class of problems. The computational complexity of the regret problem has been

extensively studied under the following two representations of Ω [83, 9, 76, 77, 37].

(a) Scenario uncertainty: The vector c lies in a finite set of M possible discrete

scenarios:

Ω = {c1, c2, . . . , cM} . (1.14)

(b) Interval uncertainty: Each component ci of the vector c takes a value between

a lower bound ci and upper bound ci. Let Ωi = [ci, ci] for i = 1, . . . , N . The

uncertainty set is the Cartesian product of the sets of intervals:

Ω = Ω1 × Ω2 × . . .× ΩN . (1.15)

For the discrete scenario uncertainty, the minmax regret counterpart of prob-

lems such as the shortest path, minimum assignment and minimum spanning tree

problems are NP-hard even when the scenario set contains only two scenarios (see

Kouvelis and Yu [83]). This indicates the difficulty of solving regret problems to

optimality since the original deterministic optimization problems are solvable in
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polynomial time in these instances. These problems are weakly NP-hard for a con-

stant number of scenarios while they become strongly NP-hard when the number

of scenarios is non-constant.

In the interval uncertainty case, for deterministic combinatorial optimization

problems with a compact convex hull representation, a mixed integer linear pro-

gramming formulation for the minmax regret problem (1.13) was proposed by Ya-

man et. al. [121]. As in the scenario uncertainty case, the minmax regret counter-

part is NP-hard under interval uncertainty for most classical polynomial time solv-

able combinatorial optimization problems. Averbakh and Lebedev [10] proved that

the minmax regret shortest path and minmax regret minimum spanning tree prob-

lems are strongly NP-hard with interval uncertainty. Under the assumption that

the deterministic problem is polynomial time solvable, a 2-approximation algorithm

for minmax regret was designed by Kasperski and Zieliński [77]. Their algorithm is

based on a mid-point scenario approach where the deterministic combinatorial opti-

mization problem is solved with an objective coefficient vector (c+c)/2. Kasperski

and Zieliński [78] developed a fully polynomial time approximation scheme under

the assumption that a pseudopolynomial algorithm is available for the deterministic

problem. A special case where the minmax regret problem is solvable in polynomial

time is the subset selection problem. The deterministic subset selection problem is:

Given a set of elements [N ] := {1, . . . , N} with weights {c1, . . . , cN}, select a subset

of K elements of maximum total weight. The deterministic problem can be solved

by a simple sorting algorithm. With an interval uncertainty representation of the

weights, Averbakh [9] designed a polynomial time algorithm to solve the minmax

regret problem to optimality with a running time of O(N min(K,N−K)2). Subse-

quently, Conde [37] designed a faster algorithm to solve this problem with running

time O(N min(K,N −K)).

A related model that has been analyzed in discrete optimization is the absolute

robust approach (see Kouvelis and Yu [83] and Bertsimas and Sim [23]) where the

decision-maker chooses a decision x that maximizes the minimum objective over
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all possible realizations of the uncertainty:

max
x∈X

min
c∈Ω

cTx. (1.16)

Problem (1.16) is referred to as the absolute robust counterpart of the determin-

istic optimization problem. The formulation for the absolute robust counterpart

should be contrasted with the minmax regret formulation which can be viewed as

the relative robust counterpart of the deterministic optimization problem. For the

discrete scenario uncertainty, the absolute robust counterpart of the shortest path

problem is NP-hard as in the regret setting (see Kouvelis and Yu [83]). However

for the interval uncertainty case, the absolute robust counterpart retains the com-

plexity of the deterministic problem unlike the minmax regret counterpart. This

follows from the observation that the worst case realization of the uncertainty in

absolute terms is to set the objective coefficient vector to the lower bound c irre-

spective of the solution x. The minmax regret version in contrast is more difficult

to solve since the worst case realization depends on the solution x. However this

also implies that the minmax regret solution is less conservative as it considers both

the best and worst case. For illustration, consider the binary decision problem of

deciding whether to invest or not in a single project with payoff c:

Z(c) = max {cy | y ∈ {0, 1}} .

The payoff is uncertain and takes a value in the range c ∈ [c, c] where c < 0 and

c > 0. The absolute robust solution is to not invest in the project since in the

worst case the payoff is negative. On the other hand, the minmax regret solution

is to invest in the project if c > −c (the best payoff is more than the magnitude of

the worst loss) and not invest in the project otherwise. Since the regret criterion

evaluates the performance with respect to the best decision, it is not as conservative

as the absolute robust solution. However the computation of the minmax regret

solution is more difficult than the absolute robust solution.

In the minmax regret model, other than the supports of the random param-

eters, no information on the probability distribution is considered. Our goal is
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to develop a model which incorporates probabilistic information and the decision-

maker’s attitude to regret. We use worst-case conditional value at risk (WCVaR)

to incorporate the distributional information and the regret aversion attitude. The

problem of interest is to minimize the WCVaR at probability level α of the regret

for some random combinatorial optimization problems:

min
x∈X

WCVaRα(R(x, c̃)). (1.17)

By the definition of WCVaR and Lemma 1.4, the central problem (1.17) is written

as

min
x∈X ,v∈<

{
v +

1

1− α
sup
P∈P

EP [R(x, c̃)− v]+
}
. (1.18)

To generalize the interval uncertainty model supplemental marginal distribu-

tional information of the random vector c̃ is assumed to be given. The random

variables are however not assumed to be independent. Throughout this thesis, the

following two models for the distribution set P are considered:

(a) Marginal distribution model: For each i ∈ [N ], the marginal probability

distribution Pi of c̃i with support Ωi = [ci, ci] is assumed to be given. Let

P(P1, . . . , PN) denote the set of joint distributions with the fixed marginals.

(b) Marginal moment model: For each i ∈ [N ], the probability distribution

Pi of c̃i with support Ωi = [ci, ci] is assumed to belong to a set of probability

measures Pi. The set Pi is defined through moment equality constraints on

real-valued functions of the form EPi [fik(c̃i)] = mik, k ∈ [Ki]. If fik(ci) = cki ,

this reduces to knowing the first Ki moments of c̃i. Let P(P1, . . . ,PN) denote

the set of multivariate joint distributions compatible with the marginal prob-

ability distributions Pi ∈ Pi. Throughout the paper, we assume that mild

Slater type conditions hold on the moment information to guarantee that

strong duality is applicable for moment problems. One such simple sufficient

condition is that the moment vector is in the interior of the set of feasible

moments (see Isii [72]). With the marginal moment specification, the multi-

variate moment space is the product of univariate moment spaces. Ensuring
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that Slater type conditions hold in this case is relatively straightforward since

it reduces to Slater conditions for univariate moment spaces. The reader is

referred to Bertsimas et. al. [21] and Lasserre [84] for a detailed description

on this topic.

The above two distributional models only capture the marginal information

and they are commonly referred to as the Fréchet class of distributions in prob-

ability [40, 39]. In the thesis, we extend several existing results for the minmax

regret model to the proposed probabilistic regret model under the Fréchet class of

distributions. Moreover, some of the results obtained can be directly used to the

problem of minimizing the WCVaR of cost:

min
x∈X

WCVaRα(−c̃Tx). (1.19)

Formulation (1.19) can be viewed as a regret minimization problem where the

regret is defined with respect to an absolute benchmark of zero.

1.1.3 Quadratic Unconstrained Binary Optimization

Besides the linear combinatorial optimization with uncertainty, we also consider

the quadratic unconstrained binary optimization problem. Define the quadratic

function:

q(x; c,Q) = xTQx+ cTx

and the corresponding quadratic unconstrained binary optimization:

(QUBO) max
x∈{0,1}N

q(x; c,Q), (1.20)

where Q is a N ×N real symmetric matrix (not necessarily negative semidefinite),

and c ∈ <N .

Quadratic unconstrained binary optimization (QUBO) has applications in a

number of diverse areas including computer-aided design (Boros and Hammer [31],

Jünger et. al. [74]), solid-state physics (Barahona [12], Simone et. al. [113]), and
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machine scheduling (Alidaee et. al. [5]). Several graph problems, such as the max-

cut and the maximum clique problems can be reformulated as QUBO problems.

As a result, QUBO is known to be NP-hard (see Garey and Johnson [51]). A

variety of heuristics and exact methods that run in exponential time have been

proposed to solve QUBO problems. When all the off-diagonal components of Q

are nonnegative, QUBO is solvable in polynomial time (see Picard and Ratliff [97]).

In this case, QUBO is equivalent to the following linear programming relaxation:

max
x,X

N∑
i=1

N∑
j=1

QijXij +
N∑
i=1

cixi

s.t. Xij ≤ xi, Xij ≤ xj, i, j ∈ [N ], i ≤ j

xi ∈ [0, 1], Xij ∈ [0, 1], i, j ∈ [N ], i ≤ j.

Two other instances of QUBO that are solvable in polynomial time are when: (a)

The graph defined by Q is series-parallel (Barahona [11]) and, (b) Q is positive

semidefinite and of fixed rank (Allemand et. al. [6]). For an in-depth discussion

on polynomial time solvable instances of quadratic binary optimization problems,

the reader is referred to the paper of Duan et. al. [45]. For general Q matrices,

branch and bound algorithms to solve QUBO problems were proposed by Carter

[34] and Pardalos and Rodgers [95]. Beasley [14] developed two heuristic algo-

rithms based on tabu search and simulated annealing while Glover, Kochenberger

and Alidaee [55] developed an adaptive memory search heuristic to solve binary

quadratic programs. Helmberg and Rendl [69] combined a semidefinite relaxation

with a cutting plane technique, and applied it in a branch and bound setting. More

recently, second order cone programming has been used to solve QUBO problems

(see Kim and Kojima [81], Muramatsu and Suzuki [89], Ghaddar et. al. [53]).

Furthermore, the optimization software package CPLEX can efficiently solve prob-

lem (1.20) when the objective function in (1.20) is concave, that is the matrix Q

is negative semidefinite.

In order to make the quadratic term in (1.20) concave, we make use of the fact

that xTdiag(u)x = uTx for any u ∈ <N , if xi ∈ {0, 1}. A simple idea then is to
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find a vector u ∈ <N , such that Q− diag(u) is negative semidefinite. Define

qu(x; c,Q) = xT (Q− diag(u))x+ (c+ u)Tx.

Then (1.20) is equivalent to the convex 0-1 quadratic programming problem

max
x∈{0,1}N

qu(x; c,Q). (1.21)

We can use the mixed integer quadratic programming solver in CPLEX to solve

(1.21) for any u ∈ <N such that diag(u) − Q � 0. However, the CPU time of

solving (1.21) can be very different by choosing different u. Then the goal is to

find a good preprocessing parameter u such that diag(u)−Q � 0.

Billionnet and Elloumi [25] proposed a Quadratic Convex Reformulation (QCR)

method to find an “optimal” choice of the parameter u inspired by the semidef-

inite programming relaxations developed in Körner [82], Shor [111] and Poljak,

Rendl and Wolkowicz [98]. In the QCR method of Billionnet and Elloumi [25], the

“optimal” preprocessing parameter u was determined by a given matrix Q and a

given vector c. Notice that the purpose is to find a good parameter u such that

diag(u)−Q � 0. A straightforward question is that: when the matrix Q is fixed,

and the vector c is random with scenarios lies in the set C, can we still find a com-

mon preprocessing parameter u such that problem (1.21) is solved is a reasonable

time for all vector c ∈ C?

In this thesis, we extend the QCR method to solve parametric quadratic un-

constrained binary optimization problems:

max
x∈{0,1}N

{
q(x; c,Q) := xTQx+ cTx

}
, ∀c ∈ C, (1.22)

where Q is a fixed N×N symmetric real matrix, and the parameter vector c varies

in a set C. We use a Penalized QCR method to find a good common preprocessing

parameter u which is “optimal” in certain sense.

1.2 Organization and Contributions

The organization and contributions of this thesis are summarized as follows:
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• In Chapter 2, a new probabilistic model for regret in combinatorial optimiza-

tion is proposed, that is to minimize the WCVaR of regret (1.17). The pro-

posed model incorporates limited probabilistic information on the uncertainty

such as the knowledge of the mean, mean absolute deviation or standard de-

viation while also providing flexibility to model the decision-maker’s attitude

to regret. In special cases, the probabilistic regret criterion reduces to the

traditional minmax regret criterion and the expected objective criterion re-

spectively. To compare with the probabilistic regret model, the problem to

minimize the WCVaR of cost is also considered in this chapter.

We develop tractable formulations to compute the WCVaR of regret and cost

for a fixed solution x ∈ X . The WCVaR of regret is shown to be computable

in polynomial time if the deterministic optimization problem is solvable in

polynomial time. This generalizes a known result for the interval uncertainty

model, where the worst-case regret for a fixed solution x ∈ X is known to be

computable in polynomial time when the deterministic optimization problem

is solvable in polynomial time.

Then we show that the problem of minimizing the WCVaR of cost can be

efficiently solved to optimality as the deterministic linear combinatorial op-

timization problem. However, since the minmax regret problem is NP-hard,

the central problem to minimize the WCVaR of regret is at least NP-hard.

To solve it to optimality, mixed integer linear program (MILP) and mixed in-

teger second order cone program (MISOCP) approaches are developed when

some partial distributional information for c̃ is given.

• In Chapter 3, we focus on the probabilistic regret model for a problem called

the subset selection problem. The polynomial complexity of the minmax

regret counterpart of subsect selection in the interval uncertainty has been

proved by Averbakh [9] and Conde [37]. We extend the polynomial time

result for the minmax regret model to the probabilistic regret model (1.17)

and design an efficient polynomial algorithm. The idea behind the algorithm
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is furthermore used to solve the distributionally robust k-sum optimization

problem.

• In Chapter 4, we generalize the QCR method for a single deterministic QUBO

problem to the QUBO problem which has randomness in the linear term of

the objective function. We develop a Penalized QCR method to solve this

class of problems where the objective function in the dual semidefinite pro-

gram for the deterministic problem is penalized with a separable term to ac-

count for the randomness in the objective. Our computational results indicate

that the Penalized QCR method provides a useful preprocessing technique

to solve random instances of quadratic unconstrained binary optimization

problems.

• In Chapter 6, we finish this thesis with a final conclusion and an overview of

possible future work.



Chapter 2
A Probabilistic Regret Model for Linear

Combinatorial Optimization

In this chapter, we propose a new probabilistic model for minimizing the antic-

ipated regret in combinatorial optimization problems with distributional uncer-

tainty in the objective coefficients. As a decision criterion, we minimize the worst-

case conditional value-at-risk of regret. The proposed model includes the interval

data minmax regret as a special case. For the class of combinatorial optimization

problems with a compact convex hull representation, a polynomial sized mixed

integer linear program (MILP) is formulated when (a) the range and mean are

known, and (b) the range, mean and mean absolute deviation are known while a

mixed integer second order cone program (MISOCP) is formulated when (c) the

range, mean and standard deviation are known.

Structure of the chapter: In Section 2.1, we provide a background on the

minmax regret model and motivation for the probabilistic regret model. In Section

2.2, a new probabilistic model for minmax regret in combinatorial optimization

is proposed. In Section 2.3, we develop a tractable formulation to compute the

WCVaR of regret for a fixed solution x ∈ X , and show that the WCVaR of regret is

computable in polynomial time if the deterministic optimization problem is solvable

in polynomial time. In Section 2.4, we formulate conic mixed integer programs to

17
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solve the proposed probabilistic regret model. In Section 2.5, numerical examples

for the shortest path problem are provided.

2.1 Background and Motivation

Let Z(c) denote the optimal value to a linear combinatorial optimization problem

over a feasible region X ⊆ {0, 1}N for the objective coefficient vector c:

Z(c) = max
{
cTy | y ∈ X ⊆ {0, 1}N

}
. (2.1)

Assume the vector c is uncertain and let Ω represent a deterministic uncertainty

set that captures all the possible realizations of the vector c. The value of regret

in absolute terms is given by:

R(x, c) = Z(c)− cTx. (2.2)

The maximum value of regret for a decision x corresponding to the uncertainty set

Ω is given as:

max
c∈Ω

R(x, c). (2.3)

Savage [107] proposed the use of the following minmax regret model, where the

decision x is chosen to minimize the maximum regret over all possible realizations

of the uncertainty:

min
x∈X

max
c∈Ω

R(x, c). (2.4)

The aim of this model is to perform as closely as possible to the optimal course.

Since the minmax criterion applied here is to the regret rather than to the cost

itself, it is not as pessimistic as the ordinary minmax (absolute robust) approach.

In this chapter, we always assume the vector c lies in an interval uncertainty

set Ω, that is each component ci of the vector c takes a value between a lower

bound ci and upper bound ci. Let Ωi = [ci, ci] for i = 1, . . . , N . The uncertainty

set is the Cartesian product of the sets of intervals:

Ω = Ω1 × Ω2 × . . .× ΩN .
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In the above interval uncertainty case, for any x ∈ X , let S+
x denote the

scenario in which ci = ci if xi = 0, and ci = ci if xi = 1. It is straightforward to see

that the scenario S+
x is the worst-case scenario that maximizes the regret in (3.18)

for a fixed x ∈ X . For a deterministic combinatorial optimization problem which

is equivalent to its convex hull relaxation, this worst-case scenario can be used to

develop compact MILP formulations for the minmax regret problem (2.4) (refer to

Yaman et. al. [121] and Kasperski [76]).

The minmax regret models handle support information and assumes that the

decision-maker uses the worst-case scenario (in terms of regret) to make the deci-

sion. However if additional probabilistic information is known or can be estimated

from data, it is natural to incorporate this information into the regret model. To

quantify the impact of probabilistic information on regret, consider the graph in

Figure 2.1. In this graph, c1, c2, . . . , c5 are the possible traveling time on roads

1, 2, . . . , 5. There are three paths connecting node A to node D: 1 − 4, 2 − 5 and

1− 3− 5. Consider a decision-maker who wants to go from node A to node D in

the shortest possible time by choosing among the three paths. The mean µi and

1 1[2,5],  3c  

22 [5,9],  7.5c  

33 [3,7],  4c  

44 [5,11],  7.5c  

5 5[3, 4],  3.5c  

Figure 2.1: Find a Shortest Path from Node A to Node D

range [ci, ci] for each edge i in Figure 2.1 denotes the average time and the range

of possible times in hours to traverse the edge. The comparison of the different

paths are shown in the following table:
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Table 2.1: Comparison of paths

Criterion Regret Absolute Robust Average

Path (c1, c2, c3, c4, c5) Best Path Max Regret (c1, c2, c3, c4, c5) Max Time Expected Time

1− 4 (5, 5, 3, 11, 3) 2− 5 8 (5, 9, 7, 11, 4) 16 10.5

1− 3− 5 (5, 5, 7, 5, 4) 2− 5 7 (5, 9, 7, 11, 4) 16 10.5

2− 5 (2, 9, 3, 5, 4) 1− 4 6 (5, 9, 7, 11, 4) 13 11

In the minmax regret model, the optimal decision is the path 2−5 with regret

of 6 hours. However, on average this path takes 0.5 hours more than the other

two paths. In terms of expected cost, the optimal decision is either of the paths

1 − 4 or 1 − 3 − 5. Note that only the range information is used in the minmax

regret model, and only mean information is used to minimize the expected cost.

Clearly, the choice of an “optimal” path is based on the decision criterion and

the available data that guides the decision process. In this chapter, we propose a

new probabilistic regret model in combinatorial optimization with uncertainty that

incorporates partial distributional information such as the mean and variability of

the random coefficients and provides flexibility in modeling the decision-maker’s

aversion to regret.

2.2 A Probabilistic Regret Model

Let c̃ denote the random objective coefficient vector with a probability distribution

P that is itself unknown. P is assumed to lie in the set of distributions P(Ω) where

Ω is the support of the random vector. In the simplest model, the decision-maker

minimizes the anticipated regret in an expected sense:

min
x∈X

sup
P∈P(Ω)

EP [R(x, c̃)]. (2.5)

Model (2.5) includes two important subcases: (a) P(Ω) is the set of all probability

distributions with support Ω. In this case (2.5) reduces to the standard minmax

regret model (2.4). And (b) The complete distribution is given with P = {P}. In
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this case (2.5) reduces to solving the deterministic optimization problem where the

random objective is replaced with the mean vector µ, since

argmin
x∈X

EP [Z(c̃)− c̃Tx] = argmin
x∈X

(
EP [Z(c̃)]− µTx

)
= argmax

x∈X
µTx.

Formulation (2.5) however does not capture the degree of regret aversion. Fur-

thermore, as long as the mean vector is fixed, the optimal decision in (2.5) is the

optimal solution to the deterministic problem with the mean objective. Thus the

solution is insensitive to other distributional information such as variability. To

address this, we propose use of the conditional value-at-risk measure that has been

gaining popularity in the risk management literature. We propose the WCVaR

of regret as a decision criterion in combinatorial optimization problems. By the

definition 1.3 of WCVaR and Lemma 1.4, the central problem of interest to solve

in this chapter is:

min
x∈X

WCVaRα(R(x, c̃)) = min
x∈X

inf
v∈<

(
v +

1

1− α
sup

P∈P(Ω)

EP [R(x, c̃)− v]+
)
. (2.6)

2.2.1 Differences between the Proposed Regret Model and

the Existing Newsvendor Regret Model

As introduced in Chapter 1, we consider the distribution set P(Ω) in the marginal

distribution model and the marginal moment model. The moment representation

of uncertainty in distributions has been used in the minmax regret newsvendor

problem [124, 96]. A newsvendor needs to choose an order quantity q of a product

before the exact value of demand is known by balancing the costs of under-ordering

and over-ordering. The random demand is represented by d̃ with a probability

distribution P . The unit selling price is p, the unit cost is c and the salvage value

for any unsold product is 0. A risk neutral firm chooses its quantity to maximize

its expected profit:

max
q≥0

(
pEP [min(q, d̃)]− cq

)
,

where min(q, d̃) is the actual quantity of units sold which depends on the demand

realization. In the minmax regret version of this problem studied in [124, 96], the
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newsvendor chooses the order quantity where the demand distribution is not ex-

actly known. The demand distribution is assumed to belong to a set of probability

measures P ∈ P typically characterized with moment information. The objective

is to minimize the maximum loss in profit from not knowing the full distribution:

min
q≥0

max
P∈P

[
max
s≥0

(
pEP [min(s, d̃)]− cs

)
−
(
pEP [min(q, d̃)]− cq

)]
.

Yue et. al. [124] solved this model analytically where only the mean and variance

of demand are known. Roels and Perakis [96] generalized this model to incorporate

additional moments and information on the shape of the demand. On the other

hand, if the demand is known with certainty, the optimal order quantity is exactly

the demand. The maximum profit would be (p − c)d̃ and the regret model as

proposed in this chapter is:

min
q≥0

inf
v∈<

(
v +

1

1− α
sup

P∈P(Ω)

EP
[
(p− c)d̃−

(
pmin(q, d̃)− cq

)
− v
]+
)
,

where α is the parameter that captures aversion to regret. There are two major dif-

ferences between the minmax regret newsvendor model in [124, 96] and the regret

model proposed in this chapter. The first difference is that in [124, 96] the newsven-

dor minimizes the maximum ex-ante regret (with respect to distributions) of not

knowing the right distribution, while in this chapter, the decision-maker minimizes

the ex-post regret (with respect to cost coefficient realizations) of not knowing the

right objective coefficients. The second difference is that the newsvendor problem

deals with a single demand variable. However in the multi-dimensional case, the

marginal model forms the natural extension and is a more tractable formulation.

2.2.2 Relation to the Standard Minmax Regret Model

The new probabilistic regret model can be related to the standard minmax regret

model. In the marginal moment model, if only the range information of each

random variable c̃i is given, then the WCVaR of regret reduces to the maximum

regret. Consider the random vector whose distribution is a Dirac measure δĉ(x)
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with ĉi(x) = ci(1− xi) + cixi for i ∈ [N ]. Then WCVaR of the regret satisfies:

inf
v∈<

(
v +

1

1− α
sup

P∈P(Ω)

EP [R(x, c̃)− v]+
)
≥ inf

v∈<

(
v +

1

1− α
Eδĉ [R(x, c̃)− v]+

)
= inf

v∈<

(
v +

1

1− α
[R(x, ĉ)− v]+

)
= R(x, ĉ)

= max
c∈Ω

R(x, c).

The last equality is valid since ĉ(x) is the worst-case scenario for a given x ∈ X .

Moreover, the WCVaR of the regret cannot be larger than the maximum value of

regret. Hence, they are equal in this case. When α = 0, problem (2.6) reduces to

minimizing the worst-case expected regret,

min
x∈X

sup
P∈P(Ω)

EP [R(x, c̃)].

On the other hand, as α converges to 1, WCVaRα(R(x, c̃)) converges to the max-

imum regret maxc∈Ω R(x, c), and problem (2.6) reduces to the traditional interval

uncertainty minmax regret model. This implies that the problem of minimizing

the WCVaR of the regret in this probabilistic model is NP-hard since the minmax

regret problem is NP-hard [10]. The parameter α allows for the flexibility to vary

the degree of regret aversion.

If a decision x1 is preferred to decision x2 for each realization of the uncertainty,

it is natural to conjecture that x1 is preferred to x2 in the regret model. The

following lemma validates this monotonicity property for the chosen criterion.

Lemma 2.1. For two decisions x1,x2 ∈ X , if x1 dominates x2 in each realization

of the uncertainty, i.e. cTx1 ≥ cTx2 for all c ∈ Ω, then the decision x1 is preferred

to x2, i.e. WCVaRα(R(x1, c̃)) ≤WCVaRα(R(x2, c̃)).

Proof. Since cTx1 ≥ cTx2 for all c ∈ Ω,

R(x1, c) = max
y∈X

cTy − cTx1 ≤ max
y∈X

cTy − cTx2 = R(x2, c), ∀c ∈ Ω.

Thus [R(x1, c)− v]+ ≤ [R(x2, c)− v]+, ∀c ∈ Ω, v ∈ <. Hence for any distribution

P ∈ P, EP [R(x1, c̃)− v]+ ≤ EP [R(x2, c̃)− v]+. This implies that

sup
P∈P

EP [R(x1, c̃)− v]+ ≤ sup
P∈P

EP [R(x2, c̃)− v]+.
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Therefore,

inf
v∈<

(
v +

1

1− α
sup
P∈P

EP [R(x1, c̃)− v]+
)
≤ inf

v∈<

(
v +

1

1− α
sup
P∈P

EP [R(x2, c̃)− v]+
)
,

that is WCVaRα(R(x1, c̃)) ≤WCVaRα(R(x2, c̃)). �

2.3 Computation of the WCVaR of Regret and

Cost

In this section, we compute the WCVaR of regret for a fixed x ∈ X in the marginal

distribution and marginal moment model. This is motivated by bounds in the

Project Evaluation and Review Technique (PERT) networks that were proposed

by Meilijson and Nadas [88] and later extended in the works of Klein Haneveld [66],

Weiss [120], Birge and Maddox [30] and Bertsimas et. al. [21]. In a PERT network,

let [N ] represent the set of activities. Each activity i ∈ [N ] is associated with a

random activity time c̃i and marginal distribution Pi. Meilijson and Nadas [88]

computed the worst-case expected project tardiness supP∈P(P1,...,PN ) EP [Z(c̃)− v]+

where Z(c) denotes the time to complete the project and v denotes a deadline for

the project. Their approach can be summarized as follows. For all d ∈ <N and

c ∈ Ω:

[Z(c)− v]+ =

[
max
y∈X

(d+ c− d)Ty − v
]+

≤
[
max
y∈X

dTy − v
]+

+

[
max
y∈X

(c− d)Ty

]+

≤ [Z(d)− v]+ +
N∑
i=1

[ci − di]+.

Taking expectation with respect to a distribution P ∈ P(P1, . . . , PN) and minimiz-

ing over d ∈ <N gives the bound:

EP [Z(c̃)− v]+ ≤ inf
d∈<N

(
[Z(d)− v]+ +

N∑
i=1

EPi [c̃i − di]+
)
, ∀P ∈ P(P1, . . . , PN).

Meilijson and Nadas [88] constructed a multivariate probability distribution that is

consistent with the marginal distributions such that the upper bound is attained.
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This leads to their main observation that the worst-case expected project tardiness

is obtained by solving the following convex minimization problem:

sup
P∈P(P1,...,PN )

EP [Z(c̃)− v]+ = inf
d∈<N

(
[Z(d)− v]+ +

N∑
i=1

EPi [c̃i − di]+
)
. (2.7)

With partial marginal distribution information, Klein Haneveld [66], Birge and

Maddox [30] and Bertsimas et al. [21] extended the convex formulation of the

worst-case expected project tardiness to:

sup
P∈P(P1,...,PN )

EP [Z(c̃)− v]+ = inf
d∈<N

(
[Z(d)− v]+ +

N∑
i=1

sup
Pi∈Pi

EPi [c̃i − di]+
)
. (2.8)

Klein Haneveld [66] estimated a project deadline v that balances the expected

project tardiness with respect to the most unfavorable distribution and the cost

of choosing the deadline for the project. This can be formulated as a two stage

recourse problem:

inf
v∈<

(
v +

1

1− α
sup

P∈P(P1,...,PN )

EP [Z(c̃)− v]+
)
. (2.9)

where α ∈ (0, 1) is the tradeoff parameter between the two costs. Formulation

(2.9) is clearly equivalent to estimating the worst-case conditional value-at-risk of

the project completion time. We extend these results to the regret framework in

the following section.

2.3.1 WCVaR of Regret

To compute the WCVaR of regret, we first consider the subproblem

sup
P∈P(Ω)

EP
[
Z(c̃)− c̃Tx− v

]+
in the central problem (2.6). The proof of Theorem 2.2 is inspired from proof

techniques in Doan and Natarajan [44] and Natarajan et. al. [91].

Theorem 2.2. For each i ∈ [N ], assume that the marginal distribution Pi of the

continuously distributed random variable c̃i with support Ωi = [ci, ci] is given. For
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x ∈ X ⊆ {0, 1}N and v ≥ 0, define

φ(x, v) := sup
P∈P(P1,...,PN )

EP
[
Z(c̃)− c̃Tx− v

]+
,

and

φ̄(x, v) := min
d∈Ω

( [
Z(d)− dTx− v

]+
+ (d− µ)Tx+

N∑
i=1

EPi [c̃i − di]+
)
.

Then φ(x, v) = φ̄(x, v).

Proof. Define

φ0(x, v) := sup
P∈P(P1,...,PN )

EP
[
max

(
Z(c̃), c̃Tx+ v

)]
φ̄0(x, v) := min

d∈Ω

(
max

(
Z(d),dTx+ v

)
+

N∑
i=1

EPi [c̃i − di]+
)
.

Since max
(
Z(c), cTx+ v

)
= [Z(c)−cTx−v]++cTx+v, to prove φ(x, v) = φ̄(x, v)

is equivalent to proving that φ0(x, v) = φ̄0(x, v).

Step 1: Prove that φ0(x, v) ≤ φ̄0(x, v).

For any c ∈ Ω = Ω1 × Ω2 × . . .× ΩN , the following holds:

max
(
Z(c), cTx+ v

)
= max

(
max
y∈X

(c− d+ d)Ty, (c− d+ d)Tx+ v

)
≤ max

(
max
y∈X

dTy + max
y∈X

(c− d)Ty,dTx+ v + (c− d)Tx

)
≤ max

(
Z(d) +

n∑
i=1

[ci − di]+,dTx+ v +
n∑
i=1

[ci − di]+
)

= max
(
Z(d),dTx+ v

)
+

n∑
i=1

[ci − di]+.

Taking expectation with respect to the probability measure P ∈ P(P1, . . . , PN) and

minimum with respect to d ∈ Ω, we get

EP
[
max

(
Z(c̃), c̃Tx+ v

)]
≤ φ̄0(x, v), ∀ P ∈ P(P1, . . . , PN).

Taking supremum with respect to P ∈ P(P1, . . . , PN), implies φ0(x, v) ≤ φ̄0(x).
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Step 2: Prove that φ0(x, v) ≥ φ̄0(x, v).

First, we claim that

φ̄0(x, v) = min
d∈<N

(
max

(
Z(d),dTx+ v

)
+

N∑
i=1

EPi [c̃i − di]+
)
. (2.10)

Since for all d ∈ <N \ Ω, we can choose d∗ ∈ Ω:

d∗i =


di, if di ∈ [ci, ci],

ci, if di > ci,

ci, if di < ci.

such that the objective value will be lesser than or equal to the objective value

at d. The reason is that if di > ci, by setting d∗i = ci, the second term of the

objective function in (2.10) will not change while the first term will decrease or

stay constant. If di < ci, by setting d∗i = ci, the second term will decrease by

ci − di, and the first term will increase by at most ci − di. Hence φ̄0(x, v) can be

expressed as:

φ̄0(x, v) = min
d,t

t+
N∑
i=1

EPi [c̃i − di]+

s.t. t ≥ dTy, ∀ y ∈ X (2.11)

t ≥ dTx+ v.

For a fixed x ∈ X , (2.11) is a convex programming problem in decision variables d

and t. The Karush-Kuhn-Tucker (KKT) conditions for (2.11) are given as follows:

λ(y) ≥ 0, t ≥ dTy, ∀y ∈ X , and s ≥ 0, t ≥ dTx+ v (2.12a)∑
y∈X

λ(y) + s = 1 (2.12b)

λ(y)
(

max
(
Z(d),dTx+ v

)
− dTy

)
= 0, ∀ y ∈ X (2.12c)

s
(

max
(
Z(d),dTx+ v

)
− dTx− v

)
= 0 (2.12d)

P (c̃i ≥ di) =
∑

y∈X :yi=1

λ(y) + sxi. (2.12e)
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There exists an optimal d in the compact set Ω and optimal t = max
(
Z(d),dTx+ v

)
to problem (2.11). Under the standard Slater’s conditions for strong duality in

convex optimization, there exist dual variables s, λ(y) such that these optimal

d, t, s, λ(y) satisfy the KKT conditions. For the rest of the proof, we let d, t, s, λ(y)

denote the optimal solution that satisfy the KKT conditions. Let fi(·) be the

probability density function associated with Pi. We construct a distribution P̄ as

follows:

(a) Generate a random vector ỹ which takes the value y ∈ X with probability

λ(y) if y 6= x, and takes the value x ∈ X with probability s. Note that

λ(x) = 0 from the KKT condition (2.12c).

(b) Define the set I1 = {i ∈ [N ] : ci < di < ci} and I2 = [N ] \ I1. For i ∈

I1, generate the random variable c̃i with the conditional probability density

function

f̄i(ci|ỹ = y) =

{
1

P (c̃i≥di)I[di,ci](ci)fi(ci) if yi = 1,

1
P (c̃i<di)

I[ci,di)
(ci)fi(ci) if yi = 0,

and for i ∈ I2 generate the random variable c̃i with the conditional probability

density function f̄i(ci|ỹ = y) = fi(ci).

For i ∈ I2, the probability density function for each c̃i under P̄ is f̄i(ci) = fi(ci).

For i ∈ I1, the probability density function is:

f̄i(ci) =
∑
y∈X

λ(y)f̄i(ci|ỹ = y) + s · f̄i(ci|ỹ = x)

=
∑

y∈X :yi=1

λ(y)

P (c̃i ≥ di)
I[di,ci](ci)fi(ci) +

sxi
P (c̃i ≥ di)

I[di,ci](ci)fi(ci)

+
∑

y∈X :yi=0

λ(y)

P (c̃i < di)
I[ci,di)

(ci)fi(ci) +
s(1− xi)
P (c̃i < di)

I[ci,di)
(ci)fi(ci)

=I[di,ci](ci)fi(ci) + I[ci,di)
(ci)fi(ci)

=fi(ci).
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The probability density function constructed hence belongs to P(P1, . . . , Pn). There-

fore,

φ0(x, v) ≥EP̄
[
max

(
Z(c̃), c̃Tx+ v

)]
=
∑
y∈X

λ(y)EP̄
[
max

(
Z(c̃), c̃Tx+ v

)
| ỹ = y

]
+ sEP̄

[
max

(
Z(c̃), c̃Tx+ v

)
| ỹ = x

]
≥
∑
y∈X

λ(y)EP̄ [Z(c̃) | ỹ = y] + sEP̄
[
c̃Tx+ v | ỹ = x

]
≥
∑
y∈X

λ(y)EP̄
[
c̃Ty | ỹ = y

]
+ sEP̄

[
c̃Tx+ v | ỹ = x

]
=

∑
y∈X :yi=1

λ(y)
(∑
i∈I1

∫
ci

1

P (c̃i ≥ di)
I[di,ci](ci)fi(ci)dci +

∑
i∈I2

∫
cifi(ci)dci

)
+ s
(∑
i∈I1

∫
cixi

1

P (c̃i ≥ di)
I[di,ci](ci)fi(ci)dci +

∑
i∈I2

∫
cixifi(ci)dci

)
+ sv

=
∑
i∈I1

∫
ciI[di,ci](ci)fi(ci)dci +

∑
i∈I2

∫
P (c̃i ≥ di)cifi(ci)dci + sv. (by (2.12e))

Since P (c̃i ≥ di) = 1 or 0 for i ∈ I2, hence∫
P (c̃i ≥ di)cifi(ci)dci =

∫
ciI[di,ci](ci)fi(ci)dci,∀i ∈ I2.

Then, we obtain

φ0(x, v) ≥
N∑
i=1

∫
ciI[di,ci](ci)fi(ci)dci + sv

=
N∑
i=1

∫
(ci − di)I[di,ci](ci)fi(ci)dci +

N∑
i=1

di

∫
I[di,ci](ci)fi(ci)dci+sv

=
N∑
i=1

EPi [c̃i − di]+ +
N∑
i=1

di

( ∑
y∈X :yi=1

λ(y) + sxi

)
+ sv (by (2.12e))

=
N∑
i=1

EPi [c̃i − di]+ +
∑
y∈X

λ(y)dTy + s(dTx+ v)

=
N∑
i=1

EPi [c̃i − di]+ +
∑
y∈X

λ(y) max
(
Z(d),dTx+ v

)
+ s(dTx+ v) (by (2.12c))
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=
N∑
i=1

EPi [c̃i − di]+ + (1− s) max
(
Z(d),dTx+ v

)
+ s(dTx+ v) (by (2.12b))

=
N∑
i=1

EPi [c̃i − di]+ + max
(
Z(d),dTx+ v

)
(by (2.12d))

=φ̄0(x, v).

�

It is useful to contrast the regret bound in Theorem 2.2 with the earlier bound

of Meilijson and Nadas [88] in (2.7). In Theorem 2.2, the worst-case joint dis-

tribution depends on the solution x ∈ X and the scalar v. The worst-case joint

distribution in Formulation (2.7) however depends on the scalar v only. The proof

of Theorem 2.2 can be extended directly to discrete marginal distributions by re-

placing the integrals with summations and using linear programming duality. This

result generalizes to the marginal moment model and piecewise linear convex func-

tions as illustrated in the next theorem. The proof of Theorem 2.3 is inspired from

proof techniques in Bertsimas et. al. [21] and Natarajan et. al. [91].

Theorem 2.3. For x ∈ X ⊆ {0, 1}N , consider the marginal moment model:

Pi = {Pi | EPi [fik(c̃i)] = mik, k ∈ [Ki],EPi [I[ci,ci]
(c̃i)] = 1},

where I[ci,ci]
(ci) = 1 if ci ≤ ci ≤ ci and 0 otherwise. Assume that the moments lie

interior to the set of feasible moment vectors. Define

φ(x,a, b) := sup
P∈P(P1,...,PN )

EP
[
g
(
Z(c̃)− c̃Tx

)]
(2.13)

where g(·) is a non-decreasing piecewise linear convex function defined by

g(z) = max
j∈[J ]

(ajz + bj) ,

with 0 ≤ a1 < a2 < . . . < aJ . Let

φ̄(x,a, b) (2.14)

= min
d1,...,dJ∈Ω

{
g
(
Z(dj)− dTj x

)
+

N∑
i=1

sup
Pi∈Pi

EPi
[
max
j∈[J ]

aj
(
[c̃i − dji]+ − [c̃i − dji]xi

)]}
.

Then φ(x,a, b) = φ̄(x,a, b).
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Proof. Step 1: Prove that φ(x,a, b) ≤ φ̄(x,a, b).

For any c ∈ Ω, and d1, . . . ,dJ ∈ Ω, the following holds:

g(Z(c)− cTx) = max
j∈[J ]

[
aj

(
max
y∈X

(c− dj + dj)
Ty − cTx+ dTj x− dTj x

)
+ bj

]
≤ max

j∈[J ]

[
aj(max

y∈X
dTj y − dTj x) + bj

]
+ max

j∈[J ]
aj
[
maxy∈X (c− dj)Ty − (c− dj)Tx

]
≤ g(Z(dj)− djTx) + max

j∈[J ]
aj

N∑
i=1

[
(ci − dji)+ − (ci − dji)xi

]
.

The first inequality is due to the subadditivity of Z(·), and the second one follows

from the fact that maxy∈X (c− dj)Ty ≤
∑N

i=1(ci− dji)+ and aj ≥ 0 for all j ∈ [J ].

For any distribution P , taking expectation on both sides of the above inequality

gives

EP [g(Z(c)− cTx)]

≤ g(Z(dj)− djTx) + EP

(
max
j∈[J ]

aj

N∑
i=1

[(c̃i − dji)+ − (c̃i − dji)xi]

)

≤ g(Z(dj)− djTx) +
N∑
i=1

EPi
(

max
j∈[J ]

aj[(c̃i − dji)+ − (c̃i − dji)xi]
)
.

Note that the last inequality follows from the fact that

max
j∈[J ]

(aj

N∑
i=1

[(c̃i − dji)+ − (c̃i − dji)xi]) ≤
N∑
i=1

max
j∈[J ]

(aj[(c̃i − dji)+ − (c̃i − dji)xi]).

The above inequality holds for any distribution P ∈ P(P1, . . . ,PN) and d1, . . . ,dJ ∈

Ω. Taking supremum with respect to P ∈ P(P1, . . . ,PN), and taking minimum with

respect to d1, . . . ,dJ ∈ Ω, we get

φ(x,a, b) = sup
P∈P(P1,...,PN )

EP [g(Z(c)− cTx)]

≤ min
d1,...,dJ∈Ω

{
max
j∈[J ]

[aj(Z(dj)− dTj x) + bj]

+
N∑
i=1

sup
Pi∈Pi

EPi
[
max
j∈[J ]

aj
(
[c̃i − dji]+ − [c̃i − dji]xi

)]}
= φ̄(x,a, b).
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Step 2: Prove that φ(x,a, b) ≥ φ̄(x,a, b).

Consider the dual problem of (2.13) and the dual of the supremum problem in

(2.14). Since the moments lie interior to the set of feasible moment vectors, strong

duality holds (see Isii [72]). Hence

φ(x,a, b) = min

{
y00 +

N∑
i=1

Ki∑
k=1

yikmik

}

s.t. y00 +
N∑
i=1

Ki∑
k=1

yikfik(ci)− [aj(c
Ty − cTx) + bj] ≥ 0, (2.15)

∀c ∈ Ω,y ∈ X , j ∈ [J ].

φ̄(x,a, b) = min

{
max
j∈[J ]

[aj(Z(dj)− dTj x) + bj] +
N∑
i=1

ȳi0 +
N∑
i=1

Ki∑
k=1

ȳikmik

}

s.t. p̄i1(ci) := ȳi0 +

Ki∑
k=1

ȳikfik(ci)− aj(ci − dji)(1− xi) ≥ 0,

∀ci ∈ Ωi, i ∈ [N ], j ∈ [J ], (2.16)

p̄i2(ci) := ȳi0 +

Ki∑
k=1

ȳikfik(ci) + aj(ci − dji)xi ≥ 0,

∀ci ∈ Ωi, i ∈ [N ], j ∈ [J ].

Let y∗00, y
∗
ik, k ∈ [Ki], i ∈ [N ] be the optimal solution to (2.15). Now generate a

feasible solution to (2.16) as follows. Set ȳik = y∗ik, k ∈ [Ki], i ∈ [N ]. Having fixed

ȳik, choose ȳi0 and dji based on the value xi = 1 or 0 in the following manner:

1. If xi = 1, we choose ȳ∗i0 to be the minimal value such that p̄i1(ci) is non-

negative over Ωi. Namely, there exists some c∗i ∈ Ωi such that p̄i1(c∗i ) = 0.

Then for all j ∈ [J ], choose d∗ji to be the maximal value such that p̄i2(ci) is

nonnegative over Ωi. This value can be chosen such that d∗ji ∈ Ωi. To verify

this observe that since xi = 1, p̄i2(ci) = p̄i1(ci) + aj(ci − dji). If aj = 0 the

result is obvious; if aj > 0 then dji = ci is feasible since p̄i1(ci) ≥ 0,∀ci ∈ Ωi.

Hence d∗ji ≥ ci since it is chosen as the maximal value such that p̄i2(ci) is

nonnegative over Ωi. Moreover, d∗ji ≤ ci or else pi2(c∗i ) = aj(c
∗
i − dji) < 0.

Hence d∗ji ∈ Ωi.
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2. If xi = 0, we choose ȳ∗i0 to be the minimal value such that p̄i2(ci) is nonneg-

ative over Ωi. Then for all j ∈ [J ], choose d∗ji to be the minimal value such

that p̄i1(ci) is nonnegative over Ωi. A similar argument to the previous case

shows that d∗ji can be restricted to the set Ωi.

Now, for any j ∈ [J ], and any y ∈ X , from the constraints of (2.16), we obtain

that

ȳ∗i0 +

Ki∑
k=1

y∗ikfik(ci)− aj(ci − d∗ji)(yi − xi) ≥ 0, ∀ci ∈ Ωi, i ∈ [N ]. (2.17)

By the choice of ȳ∗i0 and d∗ji, the value ȳ∗i0 + ajd
∗
ji(yi−xi) is the minimal value such

that the above inequality holds over Ωi for all i ∈ [N ]. Take the summation of

these n inequalities:

N∑
i=1

ȳ∗i0 +
N∑
i=1

Ki∑
k=1

y∗ikfik(ci)−aj(c−d∗j)T (y−x) ≥ 0, ∀c ∈ Ω,y ∈ X , j ∈ [J ]. (2.18)

Note that in general, given N univariate functions p̄i(ci) =
∑Ki

k=1 aikfik(ci) + ai0

such that ai0 is the minimal value for p̄i(ci) to be nonnegative over Ωi, the minimal

value of a00 for the multivariate function p̄(c) =
∑N

i=1

∑Ki
k=1 aikfik(ci) + a00 to be

nonnegative over Ω is
∑N

i=1 ai0. By setting ai0 = ȳ∗i0 +ajd
∗
ji(yi−xi) , a00 = y∗00− bj,

and comparing (2.18) with the constraint of (2.15):

y∗00 +
N∑
i=1

Ki∑
k=1

y∗ikfik(ci)− [aj(c
Ty − cTx) + bj] ≥ 0, ∀c ∈ Ω,y ∈ X , j ∈ [J ].

This leads to the following result

y∗00 − bj ≥
N∑
i=1

ȳ∗i0 + ajd
∗
j
T (y − x), ∀y ∈ X , j ∈ [J ],

which is equivalent to

y∗00 ≥
N∑
i=1

ȳ∗i0 + g(Z(d∗j)− d∗j
Tx).

Therefore

φ̄(x,a, b) ≤ g(Z(d∗j)− d∗j
Tx) +

N∑
i=1

ȳ∗i0 +
N∑
i=1

Ki∑
k=1

y∗ikmik
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≤ y∗00 +
N∑
i=1

Ki∑
k=1

y∗ikmik = φ(x,a, b).

�

The next proposition provides an extension of the results in Meilijson and

Nadas [88] and Bertsimas et al. [21] to the WCVaR of regret.

Proposition 2.4. Consider the marginal distribution model with Pi = {Pi}, i ∈

[N ] or the marginal moment model with Pi = {Pi : EPi [fik(c̃i)] = mik, k ∈

[Ki],EPi [I[ci,ci]
(c̃i)] = 1}, i ∈ [N ]. For x ∈ X ⊆ {0, 1}N , the worst-case CVaR

of regret can be computed as

WCVaRα(R(x, c̃)) = min
d∈Ω

(
Z(d) +

α

1− α
dTx+

1

1− α

N∑
i=1

sup
Pi∈Pi

EPi([c̃i − di]+ − c̃ixi)

)
.

(2.19)

Proof. From the definition of WCVaR in (1.3):

WCVaRα(R(x, c̃)) = inf
v∈<

(
v +

1

1− α
sup

P∈P(P1,...,PN )

EP
[
Z(c̃)− c̃Tx− v

]+)
.

Applying Theorems 2.2 and 2.3, we have:

sup
P∈P(P1,...,PN )

EP
[
Z(c̃)− c̃Tx− v

]+
(2.20)

= min
d∈Ω

([
Z(d)− dTx− v

]+
+

N∑
i=1

sup
Pi∈Pi

EPi
(
[c̃i − di]+ − [c̃i − di]xi

))
.

The worst-case CVaR of regret is thus computed as:

min
d∈Ω,v∈<

{
v +

1

1− α
[Z(d)− dTx− v]+ +

1

1− α

N∑
i=1

sup
Pi∈Pi

EPi([c̃i − di]+ − [c̃i − di]xi)

}
.

(2.21)

In formulation (2.21), the optimal decision variable is v∗ = Z(d) − dTx which

results in the desired formulation. �

This formulation is appealing computationally since it exploits the marginal

distributional representation of the uncertainty. The next result identifies condi-

tions under which the WCVaR of regret is computable in polynomial time for a

fixed solution x ∈ X .
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Theorem 2.5. Assume the following two conditions hold:

(a) The deterministic combinatorial optimization is solvable in polynomial time,

and

(b) For each i ∈ [N ], Gi(di) : = supPi∈Pi EPi([c̃i − di]
+ − c̃ixi) and its subgradient

with respect to di are computable in polynomial time for a fixed di ∈ Ωi and

xi.

Then for a given solution x ∈ X , the worst-case CVaR of regret under the marginal

distribution or marginal moment models is computable in polynomial time.

Proof. From Proposition 2.4, the WCVaR of regret is computed as:

WCVaRα(R(x, c̃)) = min
d,t,s

(
t+

α

1− α
dTx+

1

1− α

N∑
i=1

si

)
s.t. t ≥ Z(d),

si ≥ sup
Pi∈Pi

EPi([c̃i − di]+ − c̃ixi), i ∈ [N ], (2.22)

d ∈ Ω.

Denote the feasible set of (2.22) by K. We consider the separation problem of

(2.22): given (d∗, t∗, s∗), decide if (d∗, t∗, s∗) ∈ K, and if not, find a hyperplane

which separates (d∗, t∗, s∗) from K. Under assumption (a) and (b), we can check

if (d∗, t∗, s∗) ∈ K in polynomial time, and if not we consider the following two

situations.

1. If t∗ < Z(d∗), we can find y∗ ∈ X such that Z(d∗) = d∗Ty∗ in polyno-

mial time. It follows that the hyperplane {(d, t, s) : y∗Td = t} separates

(d∗, t∗, s∗) from K.

2. If s∗i < Gi(d
∗
i ) for some i ∈ [N ], then we can find the separating hyperplane in

polynomial time, since the subgradient of Gi(di) is computable in polynomial

time. The remaining constraints d ∈ Ω are 2N linear constraints that are

easy to enforce. Hence, the separation problem of (2.22) can be solved in
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polynomial time. It follows that the WCVaR of regret under the marginal

model is computable in polynomial time.

�

Many combinatorial optimization problems satisfy the assumption (a) in The-

orem 2.5. Examples include the longest path problem on a directed acyclic graph,

spanning tree problems and assignment problems. Moreover, in the marginal dis-

tribution model and several instances of the marginal moment model, Assumption

(b) in Theorem 2.5 is easy to verify. For both the continuous and discrete marginal

distribution model, Gi(di) is a convex function of di and a subgradient of the func-

tion is given by −P (c̃i ≥ di). For the marginal moment model when (a) the range

and mean are given, or (b) the range, mean and mean absolute deviation are

given, Gi(di) is a piecewise linear convex function that is efficiently computable

(see Madansky [87] and Ben-Tal and Hochman [16]). If P ∗i ∈ Pi denotes the ex-

tremal distribution that attains the bound supPi∈Pi EPi([c̃i − di]
+ − c̃ixi) in these

instances, then a subgradient of the function is given by −P ∗i (c̃i ≥ di).

2.3.2 WCVaR of Cost

In this subsection, we apply the previous results to combinatorial optimization

problems with an objective of minimizing the WCVaR of cost:

min
x∈X

WCVaRα

(
−c̃Tx

)
. (2.23)

Applying similar arguments as the regret framework, we obtain the following propo-

sition for the WCVaR of cost under the marginal models.

Proposition 2.6. Consider the marginal distribution model with Pi = {Pi}, i ∈

[N ] or the marginal moment model with Pi = {Pi : EPi [fik(c̃i)] = mik, k ∈

[Ki],EPi [I[ci,ci]
(c̃i)] = 1}, i ∈ [N ]. For x ∈ X ⊆ {0, 1}N , the WCVaR of cost

can be computed as

WCVaRα(−c̃Tx) = min
d∈Ω

{
−dTx+

1

1− α

N∑
i=1

sup
Pi∈Pi

EPi([di − c̃i]+)

}
. (2.24)
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Now we consider the problem of minimizing the WCVaR of cost. Since the

objective function in (2.24) is separable in di, it can be expressed as:

WCVaRα(−c̃Tx) =
N∑
i=1

ĥi(xi), (2.25)

where the function ĥi(xi) is defined as:

ĥi(xi) = min
di∈Ωi

{
−dixi +

1

1− α
sup
Pi∈Pi

EPi([di − c̃i]+)

}
.

Define the parameter hi as the optimal value to a univariate convex programming

problem:

hi = min
di∈Ωi

{
−di +

1

1− α
sup
Pi∈Pi

EPi([di − c̃i]+)

}
. (2.26)

Then the worst-case CVaR of the cost can be expressed as

WCVaRα(−c̃Tx) =
N∑
i=1

hixi. (2.27)

To see why this is true observe that if xi = 1, then ĥi(1) = hixi and if xi = 0, then

ĥi(0) = 0. By using the above analysis, we can easily obtain the following theorem

which gives the main method to solve the problem of minimizing the WCVaR of

cost.

Theorem 2.7. In the marginal distribution model with Pi = {Pi}, i ∈ [N ] or the

marginal moment model with Pi = {Pi : EPi [fik(c̃i)] = mik, k ∈ [Ki],EPi [I[ci,ci]
(c̃i)] =

1}, i ∈ [N ], the problem of minimizing the WCVaR of cost can be formulated as

the deterministic combinatorial optimization problem:

min
x∈X

WCVaRα(−c̃Tx) = min
x∈X

N∑
i=1

hixi, (2.28)

where hi is the optimal value of (2.26),i.e.

hi = min
di∈Ωi

{
−di +

1

1− α
sup
Pi∈Pi

EPi([di − c̃i]+)

}
. (2.29)

In (2.29), hi can be easily obtained by solving a univariable convex optimiza-

tion problem. Hence if the deterministic combinatorial optimization problem is
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polynomially solvable, the problem of minimizing the WCVaR of cost is also poly-

nomially solvable under the marginal distribution and marginal moment models.

The problem of minimizing the WCVaR of cost is still tractable in this case. How-

ever, the problem of minimizing the WCVaR of regret is a difficult problem and

NP-hard in general. In the next section, we provide conic mixed integer programs

to minimize the WCVaR of regret.

2.4 Mixed Integer Programming Formulations

From Proposition 2.4, the problem of minimizing the WCVaR of regret is formu-

lated as:

min
x∈X

WCVaRα(R(x, c̃)) = min
x∈X ,d∈Ω

(
Z(d) +

α

1− α
dTx+

1

1− α
H(x,d)

)
,

(2.30)

where

H(x,d) :=
N∑
i=1

sup
Pi∈Pi

EPi([c̃i − di]+ − c̃ixi). (2.31)

Formulation (2.30) is a stochastic nonconvex mixed integer programming problem

where the nonconvexity appears in the term dTx. For bilinear terms, several

linearization techniques have been proposed in the literature by Glover [54], Glover

and Woolsey [56, 57], Sherali and Alameddine [110] and Adams and Sherali [2]

among others. These alternative linearization techniques vary significantly in terms

of their computational performance. We adopt the simplest linearization technique

from Glover [54] to handle the bilinear terms where one set of variables is restricted

to be binary. For all i ∈ [N ], and x ∈ X ⊆ {0, 1}N ,

zi = dixi ⇔

{
cixi ≥ zi ≥ cixi

di − ci(1− xi) ≥ zi ≥ di − ci(1− xi).
(2.32)

By applying the linearization technique, (2.30) is reformulated as the following

stochastic convex mixed integer program:

min
x,d,z

(
Z(d) +

α

1− α

N∑
i=1

zi +
1

1− α
H(x,d)

)
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s.t. cixi ≥ zi ≥ cixi, i ∈ [N ],

di − ci(1− xi) ≥ zi ≥ di − ci(1− xi), i ∈ [N ], (2.33)

d ∈ Ω, x ∈ X .

The objective function in (2.33) is convex with respect to x,d, z since convexity

is preserved under the expectation and maximization operation.

Assume that the feasible region X is described in the compact form:

X =
{
y ∈ {0, 1}N | Ay = b

}
,

where A is a given integer matrix and b is a given integer vector. For the rest of

this section, we assume that matrix A is totally unimodular, namely each square

submatrix of A has determinant equal to 0, +1, or -1. Under this assumption the

deterministic combinatorial optimization problem is solvable in polynomial time

as a compact linear program (see Schrijver [109]):

Z(d) = max
{
dTy | Ay = b, 0 ≤ yi ≤ 1, i ∈ [N ]

}
. (2.34)

Many polynomially solvable 0-1 optimization problems fall under this category

including subset selection, longest path on a directed acyclic graph and linear

assignment problems. Let (λ1,λ2) be the vectors of dual variables associated with

the constraints of (2.34). The dual linear program of (2.34) is given by

Z(d) = min
{
bTλ1 + eTλ2 | ATλ1 + λ2 ≥ d, λ2 ≥ 0

}
, (2.35)

where e is the vector of all ones. By solving the dual formulation of Z(d) in (2.33),

we get:

min
x,d,z,λ1,λ2

(
bTλ1 + eTλ2 +

α

1− α

N∑
i=1

zi +
1

1− α
H(x,d)

)
(2.36)

s.t. cixi ≥ zi ≥ cixi, i ∈ [N ], (2.36a)

di − ci(1− xi) ≥ zi ≥ di − ci(1− xi), i ∈ [N ], (2.36b)

d ∈ Ω, ATλ1 + λ2 ≥ d, λ2 ≥ 0, x ∈ X . (2.36c)
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The constraints in problem (2.36) are all linear except for the integrality restric-

tions in the description of X . To convert this to a conic mixed integer program, we

apply standard conic programming methods to evaluate H(x,d) in the objective

function.

2.4.1 Marginal Discrete Distribution Model

Assume that the marginal distributions of c̃ are discrete:

c̃i ∼ cij with probability pij, j ∈ [Ji], i ∈ [N ]

where
∑

j∈[Ji]
pij = 1 and

∑
j∈[Ji]

cijpij = µi for each i ∈ [N ]. The input spec-

ification for the marginal discrete distribution model needs J1 + J2 + . . . + JN

probabilities which is typically much smaller than the size of the input needed to

specify the joint distribution that needs up to J1 × J2 × . . .× JN probabilities. In

this case:

H(x,d) =
N∑
i=1

Ji∑
j=1

(cij − di)+pij − µTx = min
tij≥cij−di,tij≥0

N∑
i=1

Ji∑
j=1

tijpij − µTx,

The problem of minimizing WCVaR is thus formulated as the compact MILP:

min
x,d,z,λ1,λ2,t

{
bTλ1 + eTλ2 +

α

1− α

N∑
i=1

zi +
1

1− α

(
N∑
i=1

Ji∑
j=1

tijpij − µTx

)}
s.t. tij ≥ cij − di, tij ≥ 0, j ∈ [Ji], i ∈ [N ], (2.37)

(2.36a), (2.36b) and (2.36c).

2.4.2 Marginal Moment Model

In the standard representation of the marginal moment model, H(x,d) is evaluated

through conic optimization. This is based on the well-known duality theory of

moments and nonnegative polynomials for univariate models. The reader is referred

to Nesterov [94] and Bertsimas and Popescu [22] for details. We restrict attention

to instances of the marginal moment model where (2.36) can be solved as a MILP
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or MISOCP. The advantage of these formulations is that the probabilistic regret

model can be solved with standard off-the-shelf solvers such as CPLEX. The details

are listed next:

(a) Range and Mean are Known:

Assume the interval range and mean of the random vector c̃ are given:

Pi = {Pi : EPi [c̃i] = µi,EPi [I[ci,ci]
(c̃i)] = 1}.

In this case, the optimal distribution to the problem sup
Pi∈Pi

EPi [(c̃i − di)+ − c̃ixi] is

known explicitly (see Madansky [87] and Ben-Tal and Hochman [16]):

c̃i =

 ci, with probability
µi−ci
ci−ci

,

ci, with probability ci−µi
ci−ci

.

The worst-case marginal distribution is a two point distribution and can be treated

as a special case of the discrete marginal distribution. The probabilistic regret

model is solved with the MILP (2.37).

(b) Range, Mean and Mean Absolute Deviation are Known:

Assume the interval range, mean and the mean absolute deviation of the random

vector c̃ are given:

Pi = {Pi : EPi(c̃i) = µi,EPi(|c̃i − µi|) = δi,EPi [I[ci,ci]
(c̃i)] = 1}.

For feasibility the mean absolute deviation satisfies δi ≤ 2(ci−µi)(µi−ci)
ci−ci

. The opti-

mal distribution for sup
Pi∈Pi

EPi [(c̃i − di)+ − c̃ixi] has been identified by Ben-Tal and

Hochman [16]:

c̃i =


ci, with probability δi

2(µi−ci)
=: pi,

ci, with probability δi
2(ci−µi) =: qi,

µi, with probability 1− pi − qi.

This is a three point distribution and the MILP reformulation (2.37) can be used.

(c) Range, Mean and Standard Deviation are Known:

Assume the range, mean and the standard deviation of the random vector c̃ are

given:

Pi = {Pi : EPi(c̃i) = µi,EPi(c̃2
i ) = µ2

i + σ2
i ,EPi [I[ci,ci]

(c̃i)] = 1}.
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By using duality theory, we have:

sup
Pi∈Pi

EPi
[
(c̃i − di)+ − c̃ixi

]
= min yi0 + µiyi1 + (µ2

i + σ2
i )yi2 − µixi (2.38)

s.t. yi0 + yi1ci + yi2c
2
i − (ci − di) ≥ 0, ∀ci ∈ [ci, ci],

yi0 + yi1ci + yi2c
2
i ≥ 0, ∀ci ∈ [ci, ci].

By applying the S-lemma to the constraints of the above problem, problem (2.38)

can be formulated as

min yi0 + µiyi1 + (µ2
i + σ2

i )yi2 − µixi

s.t. τi1 ≥ 0, yi0 + di + ciciτi1 ≥ 0, yi2 + τi1 ≥ 0,

τi2 ≥ 0, yi0 + ciciτi2 ≥ 0, yi2 + τi2 ≥ 0, (2.39)∥∥∥∥∥ yi1 − 1− (ci + ci)τi1

yi0 + di + (cici − 1)τi1 − yi2

∥∥∥∥∥
2

≤ yi0 + di + (cici + 1)τi1 + yi2,∥∥∥∥∥ yi1 − (ci + ci)τi2

yi0 + (cici − 1)τi2 − yi2

∥∥∥∥∥
2

≤ yi0 + (cici + 1)τi2 + yi2.

The problem of minimizing WCVaR of regret can be formulated in this case as the

mixed integer SOCP:

min
x,d,z,λ1,λ2y,τ

{
bTλ1 + eTλ2 +

1

1− α

(
N∑
i=1

[
αzi + yi0 + µiyi1 + (µ2

i + σ2
i )yi2

]
− µTx

)}

s.t. τi1 ≥ 0, yi0 + di + ciciτi1 ≥ 0, yi2 + τi1 ≥ 0, ∀ i ∈ [N ],

τi2 ≥ 0, yi0 + ciciτi2 ≥ 0, yi2 + τi2 ≥ 0, ∀ i ∈ [N ], (2.40)∥∥∥∥∥∥ yi1 − 1− (ci + ci)τi1

yi0 + di + (cici − 1)τi1 − yi2

∥∥∥∥∥∥
2

≤ yi0 + di + (cici + 1)τi1 + yi2, ∀ i ∈ [N ],

∥∥∥∥∥∥ yi1 − (ci + ci)τi2

yi0 + (cici − 1)τi2 − yi2

∥∥∥∥∥∥
2

≤ yi0 + (cici + 1)τi2 + yi2, ∀ i ∈ [N ],

(2.36a), (2.36b) and (2.36c).

The regret formulations identified in this section are compact size mixed inte-

ger conic programs and generalize to higher order moments using mixed integer

semidefinite programs.
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2.5 Numerical Examples

Consider a directed, acyclic network G = (V,A) with a finite set of vertices V and

a finite set of arcs A. Associated with each arc, is the duration (length) of that

arc. The goal is to find the shortest path from a fixed source node to the sink

node. When the arc lengths are deterministic, the shortest path problem can be

solved efficiently. However, when the arc lengths are random, the definition of a

“shortest path” has to be suitably modified.

Shortest paths under a stochastic setting is a well studied problem [75, 126,

10, 77, 101]. Some of the possible approaches to determine the “shortest path” in

the stochastic framework are discussed next.

1. Expected Shortest Path: The classical approach chooses the path with

the shortest length in an expected sense.

2. Most Likely Path: Kamburowski [75] defined the optimality index of a

path to be the probability that it is the shortest path. The “shortest path”

in this case is defined as the path with the greatest optimality index and is

termed as the most likely path. Unlike the expected shortest path, computing

the most likely path is highly challenging even for moderate size networks.

3. Absolute Robust Path: An absolute robust path is defined as the path

that is the shortest under the worst-case scenario. In the interval uncertainty

model, this path is found by solving the shortest path problem on the graph

when the arc lengths are replaced by the largest length for each arc.

4. Minmax Regret Path: In recent years, the shortest path with the minmax

regret criterion has been proposed as an alternative decision criterion. In

the interval uncertainty case, Zieliński [126] showed that the minmax regret

shortest path problem is NP-hard even when the graph is restricted to be

directed, acyclic and planar with vertex degrees at most three. Mixed integer

linear programs to solve the interval uncertainty minmax regret path have
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been developed in Yaman et. al. [121].

5. Minimum WCVaR Cost Path: Choose the path by minimizing the

WCVaR of the cost.

6. Minimum WCVaR Regret Path: Choose the path by minimizing the

WCVaR of regret.

s tu1 ~ (0,1)c U

2 ~ (0,3)c U

3 ~ (0,1)c U

4 ~ (0,1)c U

5 ~ (0,1)c U

6 ~ (0,1)c U

7 ~ (0,1)c U

8 ~ (0,1)c U

Figure 2.2: Network for Example 2.1

Example 2.1. In figure 2.2, arc length c̃2 ∼ uniform(0, 3), and the other arc

length c̃i ∼ uniform(0, 1), i 6= 2. The goal is to find a shortest path from s to t.

This example is from Reich and Lopes [101].

The choices of paths passing through the intermediate node u have expected length

1, worst-case length 2, and maximum regret 2, while the path consisting of c̃2 has

expected length 1.5, worst-case length 3, and maximum regret 3. In the sense of

(1) Expected shortest path, (3) Absolute robust path, (4) Minmax regret path, and

(5) Minimum WCVaR cost Path, the “shortest path” is any path passing through

the intermediate node u. In the sense of (2) Most likely path, the “shortest path”

consists of c̃2 (see Reich and Lopes[101]). To solve the probabilistic regret model,

we use only the marginal moment information. Consider the following three cases

(a) known range and mean, (b) known range, mean and mean absolute deviation

and (c) known range, mean and variance. In all the three cases, by choosing the

probability level α ∈ [0, 0.99) the optimal decision (6) Min WCVaR Regret Path
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is always one of the paths passing through the intermediate node u, which is the

same as the decision of (1), (3), (4) and (5). This result is in agreement with the

intuition that while the path consisting of arc c̃2 is the most likely shortest path,

in terms of worst-case value and regret it is not the best one.

Example 2.2. Reconsider the example shown in Figure 2.1 in Section 1 with a

network that consists of four nodes and five arcs. All the lengths of the arcs are

known to lie in interval ranges with the means and standard deviations of the

lengths given.

1 1 1[2,5],  3,  1c    

22 2[5,9],  7.5,  1.5c    

33 3[3,7],  4,  1.2c    

44 4[5,11],  7.5,  0.2c    

5 5 5[3,4],  3.5,  0.4c    

Figure 2.3: Network for Example 2.2

The network in Example 2.2 is the Wheatstone bridge network with the objec-

tive of finding the shortest path from node A to node D. The solutions identified

from the Expected shortest path, Absolute robust shortest path, Minmax regret

path, Minimum WCVaR cost path and Minimum WCVaR regret path are provided

in Table 2.2.

The expected shortest path uses only the mean information, and the absolute

robust and minmax regret approaches use only range information. However, the

model of minimizing the WCVaR of cost and regret can deal with more proba-

bilistic information. As the probability level α is varied, the minimum WCVaR

regret decision changes. This is consistent with the observation that α captures

the decision-maker’s aversion to regret where a larger α implies higher aversion

to regret. If the decision-maker is regret neutral, by setting α = 0, the method

reduces to the expected shortest path method where the mean is specified for each
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Table 2.2: The stochastic “shortest path”

Methods “Shortest path” Information

Expected shortest path 1− 4 or 1− 3− 5 Mean

Absolute robust path 2− 5 Range

Minmax regret path 2− 5 Range

Min WCVaR cost path
2− 5 if 0.5001 ≤ α < 1

1− 3− 5 if 0 < α ≤ 0.5000
Range and mean

Min WCVaR cost path
2− 5 if 0.8261 ≤ α < 1

1− 4 if 0 < α ≤ 0.8260
Range, mean and standard deviation

Min WCVaR regret path
2− 5 if 0.6667 ≤ α < 1

1− 3− 5 if 0 < α ≤ 0.6666
Range and mean

Min WCVaR regret path
2− 5 if 0.6883 ≤ α < 1

1− 4 if 0 < α ≤ 0.6882
Range, mean and standard deviation

arc. Moreover, the choice of the solution is sensitive to the probability informa-

tion available. If we only use the range and mean information, path 1-3-5 always

dominates path 2-5 if α ≤ 0.6666, although they have the same expected traveling

time. This should correspond to our intuition since the range of the edge c4 is

significantly larger than the range of edge c3 and c5, and there are more edges in

path 1-3-5 which can spread more risk than path 1-4. However, when the standard

deviation information is also involved, the standard deviation of edge c4 is much

smaller than the standard deviation of c3 and c5, which means that the risk of c4 is

smaller. Hence in this case, it is intuitive to expect that path 1-4 dominates path

1-3-5 as indicated in Table 2.2. The optimal decision of minimizing the WCVaR of

cost is similar to the decision of minimizing the WCVaR of regret. In this example,

this can be partly explained by the observation that the absolute robust path and

minmax regret path are the same. When α is close to 0, Min WCVaR cost path

and Min WCVaR regret path reduce to the expected shortest path, and when α

goes to 1, the solutions reduce to the absolute robust path and minmax regret path

which are the same in this example.

Example 2.3. The previous two examples used small-sized networks. We now

create a fictitious network in the form of a square grid graph with width and height

both equal to H as in Figure 2.4. There are H2 nodes and 2H(H − 1) arcs in the
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graph. The start node is at the left bottom corner and the end node is at the right

upper corner. Each arc on the graph proceeds either towards the right node or the

upper node.

1 2 3 4 5 6

1

2

3

4

5

6

width

he
ig

ht

Grid Graph with Width=Heigt

end

start

Figure 2.4: Grid Graph with H = 6

We evaluate the CPU times needed to minimize the WCVaR of regret and cost

with randomly generated data. In this experiment, the interval range for each arc

length [ci, ci] is randomly generated with ci = min{ai, bi}, ci = max{ai, bi}, where

ai, bi are chosen from the uniform distribution U [1, 10]. The mean is randomly

generated as µi ∼ U [ci, ci]. Define δ̄i = 2
(ci−µi)(µi−ci)

ci−ci
as the largest mean absolute

deviation when the mean and range of c̃i are given. Let the mean absolute deviation

of c̃i be randomly generated by δi ∼ U [0, δ̄i]. We report the CPU time taken to

minimize the WCVaR of regret and cost for the following two cases of the marginal

moment model: (a) range [ci, ci] and mean µi are given and (b) range [ci, ci], mean

µi and mean absolute deviation δi are given. The results are shown in Table 2.3.

The computational studies were implemented in Matlab R2012a on an Intel

Core 2 Duo CPU 2.8GHz laptop with 4 GB of RAM. In Table 2.3, the CPU time

(in the format of seconds) is the average execution time for 10 randomly generated

instances, and “∗∗” indicates that the instances ran out of memory. The CPU

time taken to minimize the WCVaR of cost is very small (< 0.03 seconds), since

this problem is solvable as a linear programming problem (see Theorem 2.7). To
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Table 2.3: Average CPU time to minimize the WCVaR of cost and regret, α = 0.8

H Nodes Arcs
minx∈X WCVaRα(−c̃Tx) minx∈X WCVaRα(Z(c̃)− c̃Tx)

[ci, ci], µi are given [ci, ci], µi, δi are given [ci, ci], µi are given [ci, ci], µi, δi are given

10 100 180 3.10e-03 0.00e+00 2.95e-01 3.62e-01

12 144 264 1.50e-03 4.70e-03 6.52e-01 8.11e-01

14 196 364 3.00e-03 3.20e-03 6.24e-01 9.63e-01

16 256 480 9.60e-03 3.20e-03 9.95e-01 1.07e+00

18 324 612 1.09e-02 1.60e-03 1.29e+00 1.86e+00

20 400 760 8.00e-03 9.30e-03 1.24e+00 1.96e+00

21 441 840 9.60e-03 1.26e-02 1.86e+00 2.41e+00

22 484 924 1.11e-02 1.40e-02 2.74e+00 3.68e+00

23 529 1012 1.59e-02 1.39e-02 3.31e+00 4.46e+00

24 576 1104 1.57e-02 1.40e-02 3.34e+00 **

25 625 1200 2.05e-02 1.69e-02 3.68e+00 **

26 676 1300 1.99e-02 2.07e-02 ** **

minimize the WCVaR of regret, we use CPLEX to solve the binary integer linear

programming problem. When (a) range and mean information are given, we can

solve the regret problem to optimality for H = 25 (i.e. 625 nodes and 1200 edges)

in around 4 seconds; when (b) range, mean and mean absolute deviation are given,

we can solve the regret problem to optimality for H = 23 (i.e. 529 nodes and 1012

edges) in around 5 seconds.

Next we compare the optimal paths obtained from minimizing the WCVaR

of cost and regret at different probability levels α. Let H = 10, and assume

ci, ci, µi, δi, i = 1, 2, . . . , 2H(H − 1) are given. The optimal paths that minimize

the WCVaR of cost and regret with (a) the range and mean information, and

(b) the range, mean and mean absolute deviation information are provided in

Figure 2.5. From Figure 2.5, we see that when α = 0, the optimal paths that

minimize the WCVaR of cost and regret are the same regardless of whether (a)

range and mean information are given or (b) range, mean and mean absolute

deviation are given. In this case, the two models reduce to the deterministic

shortest path problem where every edge length equals to its mean. When α is close

to 1, the Min-WCVaR-cost path approaches the absolute robust path, and the Min-

WCVaR-regret path approaches the minmax regret path. For intermediate values
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(a) [ci, ci] and µi are given, α = 0
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(b) [ci, ci], µi and δi are given, α = 0
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(c) [ci, ci] and µi are given, α = 0.5
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(d) [ci, ci], µi and δi are given, α = 0.5
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(e) [ci, ci] and µi are given, α = 0.8
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(f) [ci, ci], µi and δi are given, α = 0.8
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(g) [ci, ci] and µi are given, α = 0.99
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(h) [ci, ci], µi and δi are given, α = 0.99

Figure 2.5: Optimal paths that minimize the WCVaR of cost and regret
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of α, the Min-WCVaR-cost path and the Min-WCVaR-regret path are different.

The optimal paths also differ based on whether information on the mean absolute

deviation is available or not.



Chapter 3
Polynomially Solvable Instances

In this chapter, we design a polynomial time algorithm to solve the problem of

minimizing the the WCVaR of regret for the subset selection problem. This ex-

tends a known polynomial complexity result for the minmax regret subset selection

problem with range information only. The idea in the design of this algorithm is

also used to the distributionally robust k-sum optimization problem.

Structure of the chapter: In Section 3.1, we review the existing polynomial

time algorithms for the minmax regret subset selection problem. In Section 3.2, a

polynomial time algorithm for the problem of minimizing the WCVaR of regret for

the subset selection problem is developed. In Section 3.3, some numerical results

are given to compare the proposed polynomial algorithm with the commercial

solver CPLEX for solving the corresponding mixed integer linear programming

problem. In Section 3.4, we generalize this polynomial time algorithm to the

distributionally robust k-sum optimization problem with uncertainty.

51
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3.1 Polynomial Time Algorithm of the Minmax

Regret Subsect Selection Problem

In this section, we review the polynomial time algorithm to solve the minmax

regret subset selection problem. The deterministic subset selection problem is to

choose a subset of K items of maximum total weight. Let ci denote the weight of

item i, i ∈ [N ], the problem is

Z(c) = max
x∈X

cTx, (3.1)

where

X = {x ∈ {0, 1}N |
N∑
i=1

xi = K}. (3.2)

This problem can also be viewed as a special case of 0-1 knapsack in which the

capacities of all items are equal to 1. The optimal solution to the deterministic

subset selection problem can be obtained in O(N) time by first selecting K-th

largest weighted item and by selecting thenK−1 items of the weight greater than or

equal to the weight of theK-th largest weighted item. Assume the parameter vector

c is uncertain and lies in an interval uncertainty set Ω, that is Ω = Ω1×Ω2×· · ·×ΩN ,

where Ωi = [ci, ci] for all i ∈ [N ]. The minmax regret subset selection problem is

min
x∈X

max
c∈Ω

(Z(c)− cTx), (3.3)

where X is defined as in (3.2).

Up to present, the minmax regret subset selection problem is one of the few

polynomially solvable minmax regret combinatorial optimization problems. With

the interval uncertainty representation of the weights, Averbakh [9] first designed a

polynomial algorithm to solve the minmax regret subsection problem to optimality

with a running time of O(N min(K,N −K)2). Subsequently, Conde [37] designed

an improved algorithm to solve this problem with running time O(N min(K,N −

K)). Next, we discuss the polynomial algorithm with faster running time, which is

due to Conde [37].
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First the number of selected items K can be assumed to be no larger than N/2

without loss of generality. Otherwise the problem can be transformed in O(N)

time to an equivalent problem by selecting N −K items from N with weight −ci,

i ∈ [N ]. Since in the interval uncertainty case, the worst-case scenario is

ci = cixi + ci(1− xi), i ∈ [N ]

the minmax regret problem (3.3) can be formulated as

min
x∈X

{
max
y∈X

N∑
i=1

(
[cixi + ci(1− xi)]yi − cixi

)}
. (3.4)

The subproblem maxy∈X
∑N

i=1[cixi + ci(1−xi)]yi is equivalent to its LP relaxation

max

{
N∑
i=1

[cixi + ci(1− xi)]yi :
N∑
i=1

yi = K, 0 ≤ yi ≤ 1, i ∈ [N ]

}
. (3.5)

By considering the dual problem of (3.5), the minmax regret problem (3.3) can be

formulated as the following mixed integer linear programming problem

min
N∑
i=1

λi +Kλ0 −
N∑
i=1

cixi

s.t. λi ≥ cixi + ci(1− xi)− λ0, i ∈ [N ], (3.6)

λi ≥ 0, i ∈ [N ],

x ∈ X .

Observe that the objective of (3.6) is an increasing function of all λi, i ∈ [N ]. Thus

every optimal solution to (3.6) must satisfy

λi = [cixi + ci(1− xi)− λ0]+, i ∈ [N ].

Hence (3.6) is equivalent to

min
λ0∈<,x∈X

{
N∑
i=1

[cixi + ci(1− xi)− λ0]+ +Kλ0 −
N∑
i=1

cixi.

}
(3.7)

Conde [37] proved that the optimal λ0 can be chosen from a set which has 2K + 1

elements.
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Proposition 3.1 (Conde [37]). Consider the sorted sequences of the bounds of the

interval weights

c[1] ≥ c[2] ≥ · · · ≥ c[N ]

c[1] ≥ c[2] ≥ · · · ≥ c[N ],

the objective function of (3.7) attains minimum for

λ0 ∈ Λ := {c[1], . . . , c[K]} ∪ {c[K], . . . , c[2K]}.

Let us now additionally transform problem (3.7). Since K =
∑N

i=1 xi, (3.7)

can be written as

min
λ0∈Λ,x∈X

N∑
i=1

(
[cixi + ci(1− xi)− λ0]+ + (λ0 − ci)xi

)
= min

λ0∈Λ,x∈X

N∑
i=1

[
(ci − λ0)+xi − (ci − λ0)xi + (ci − λ0)+(1− xi)

]
= min

λ0∈Λ,x∈X

N∑
i=1

[
[(λ0 − ci)+ − (ci − λ0)+]xi + (ci − λ0)+

]
.

Let ai(λ0) = (λ0− ci)+− (ci−λ0)+ and bi(λ0) = (ci−λ0)+ for all i ∈ [N ]. Finally,

problem (3.7) can be written as

min
λ0∈Λ
{f(λ0) := min

x∈X

N∑
i=1

[ai(λ0)xi + bi(λ0)]}. (3.8)

Based on the above formulation, the algorithm in Conde [37] is quite straight-

forward. For every λ0 in the set Λ := {c[1], . . . , c[K]} ∪ {c[K], . . . , c[2K]}, we solve

a deterministic subset selection problem minx∈X
∑N

i=1 ai(λ0)xi. Then choose the

smallest one from {f(λ0) | λ0 ∈ Λ}. The complexity of this algorithm is O(NK).

In the above algorithm, we assumed K ≤ N/2. If K > N/2, we should first trans-

form the problem to an equivalent subset selection problem by selecting N − K

items. The complexity of this transformation is O(N). Finally, a polynomial algo-

rithm with complexity O(N min(K,N−K)) for the minmax regret subset selection

problem is obtained.
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3.2 Polynomial Solvability for the Probabilistic

Regret Model in Subset Selection

In this section, we identify a polynomial time algorithm to solve the probabilistic

regret model for subset selection. Assume that the weight vector c̃ for a set of

items {1, . . . , N} is random. The marginal distribution of each c̃i is given as Pi. In

the deterministic subset selection problem, the objective is to choose a subset of

K items of maximum total weight. In the probabilistic regret model, the objective

is to minimize the WCVaR of regret. This problem is formulated as

min
x∈X

WCVaRα

(
Z(c̃)− c̃Tx

)
, (3.9)

where the feasible region is:

X =

{
x ∈ {0, 1}N :

N∑
i=1

xi = K

}
.

For the subset selection problem, Z(·) is computed as the optimal objective value

to the linear program:

Z(c) = max
{
cTy | eTy = K, 0 ≤ y ≤ e

}
.

Strong duality of linear programming implies that it can be reformulated as:

Z(c) = min
{
eTλ+Kλ0 | λ ≥ c− λ0e,λ ≥ 0

}
= min

λ0

N∑
i=1

(ci − λ0)+ +Kλ0.

When the marginal distributions Pi, i ∈ [N ] for the random vector c̃ are given,

using Proposition 2.4, the probabilistic regret model (3.9) for subset selection is

formulated as:

min
λ0,x∈X ,d∈Ω

(
N∑
i=1

[di − λ0]+ +Kλ0 +
α

1− α
dTx− 1

1− α
µTx+

1

1− α

N∑
i=1

EPi [c̃i − di]+
)
.

(3.10)

Observe that for a fixed λ0, the objective function of (3.10) is separable in di.

Define

Fi(di, xi, λ0) = [di − λ0]+ +
α

1− α
dixi +

1

1− α
EPi [c̃i − di]+ −

1

1− α
µixi.
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Then problem (3.10) is expressed as:

min
λ0,x∈X ,d∈Ω

N∑
i=1

Fi(di, xi, λ0) +Kλ0. (3.11)

For fixed λ0 and xi, Fi(di, xi, λ0) is a convex function of di. Denote a minimizer of

this function as d∗i (xi, λ0) = argmindi∈Ωi
Fi(di, xi, λ0). Define the minimizers:

ai(λ0) = argmin
di∈Ωi

Fi(di, 1, λ0), bi(λ0) = argmin
di∈Ωi

Fi(di, 0, λ0).

Since xi ∈ {0, 1}, this implies:

d∗i (xi, λ0) = ai(λ0)xi + bi(λ0)(1− xi).

For simplicity, we will denote ai(λ0), bi(λ0) and d∗i (xi, λ0) by ai, bi and d∗i by drop-

ping the explicit dependence on the parameters. By substituting in the expression

for d∗i with the observation that xi ∈ {0, 1}, we have

Fi(d
∗
i , xi, λ0)

=(ai − λ0)+xi + (bi − λ0)+(1− xi) +
α

1− α
aixi

+
1

1− α
EPi
[
(c̃i − ai)+xi + (c̃i − bi)+(1− xi)

]
− 1

1− α
µixi

=
(

(ai − λ0)+ − (bi − λ0)+ +
α

1− α
ai +

1

1− α
EPi [(c̃i − ai)+ − (c̃i − bi)+]− 1

1− α
µi

)
xi

+ (bi − λ0)+ +
1

1− α
EPi [c̃i − bi]+.

Define an N dimensional vector h(λ0) and a scalar h0(λ0) with

hi(λ0) =(ai − λ0)+ − (bi − λ0)+ +
α

1− α
ai +

1

1− α
EPi [(c̃i − ai)+ − (c̃i − bi)+]

− 1

1− α
µi, i ∈ [N ],

h0(λ0) =
N∑
i=1

(bi − λ0)+ +
1

1− α

N∑
i=1

EPi [c̃i − bi]+ +Kλ0.

Problem (3.10) is thus reformulated as:

min
λ0

min
x∈X

h(λ0)Tx+ h0(λ0). (3.12)
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For a fixed λ0, the inner optimization problem of picking K smallest items from N

can be done efficiently in O(N) time. The next proposition shows that for discrete

marginal distributions, the search for the optimal value of λ0 can be restricted to

a finite set.

Proposition 3.2. Assume that the marginal distribution of c̃i is discrete and

c̃i ∼ cij with probability pij, j ∈ [Ji], i ∈ [N ].

The objective function of (3.12) attains its minimum in the finite set:

λ0 ∈ {cij | j ∈ [Ji], i ∈ [N ]} .

Proof. For discrete marginal distributions, problem (3.10) is formulated as:

min
λ0,x∈X ,d∈Ω

(
N∑
i=1

[di − λ0]+ +Kλ0 +
α

1− α
dTx+

1

1− α

[ N∑
i=1

Ji∑
j=1

(cij − di)+pij − µTx
])

.

(3.13)

For a fixed vector d, sort the components of the vector such that d(1) ≥ d(2) ≥

. . . d(N). Let λ∗0 = d(K) be the K-th largest component of d. Then

min
λ0

(
N∑
i=1

[di − λ0]+ +Kλ0

)
= max

{
dTy :

N∑
i=1

yi = K, 0 ≤ yi ≤ 1, i ∈ [N ]

}

=
K∑
i=1

d(i)

=
N∑
i=1

[di − λ∗0]+ +Kλ∗0,

where the first equality comes from linear programming duality. Hence the min-

imizer λ0 can be chosen as the K-th largest component of d. We claim that for

each i ∈ [N ], the i-th component of all the optimal d can be chosen in the set

{cij | j ∈ [Ji]}. To prove this claim, the problem of minimizing the WCVaR of

regret is formulated as:

min
x∈X

min
d∈Ω

max
y∈conv(X )

(
dTy +

α

1− α
dTx− 1

1− α
µTx+

1

1− α

N∑
i=1

Ji∑
j=1

pij[cij − di]+
)
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= min
x∈X

max
y∈conv(X )

min
d∈Ω

(
dTy +

α

1− α
dTx− 1

1− α
µTx+

1

1− α

N∑
i=1

Ji∑
j=1

pij[cij − di]+
)

= min
x∈X

max
y∈conv(X )

N∑
i=1

[
min
di∈Ωi

(
di

(
yi +

α

1− α
xi

)
+

1

1− α

Ji∑
j=1

pij[cij − di]+
)
− 1

1− α
µixi

]
,

(3.14)

where conv(X ) is the convex hull of the set X . For fixed x and y, the function

di(yi + α
1−αxi) + 1

1−α
∑Ji

j=1 pij[cij − di]+ is a piecewise linear function in di, and its

minimum value over di ∈ Ωi occurs at one of the break points {cij | j ∈ [Ji]}. Since

the optimal λ0 is the K-th largest component of the optimal d, the result holds.

�

By combining Proposition 3.2 and formulation (3.12), we provide a polynomial

time algorithm to minimize the WCVaR of regret for the subset selection problem.
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The algorithm is described as follows:

Algorithm 1: Minimization of the WCVaR of regret for subset selection.

Input: K, probability level α, discrete marginal distribution

cij, pij, j ∈ [Ji], i ∈ [N ].

Output: Optimal decision x, the minimum WCVaR of regret obj.

1 Sort {cij}j∈[Ji],i∈[N ] as an increasing sequence in the set Λ.

2 Delete the repeated numbers in Λ to get a new set Λ0.

3 x = 0, obj =∞

4 for λ0 ∈ Λ0 do

5 for i = 1, . . . , N do

6 ai = argmindi∈Ωi
F (di, 1, λ0), bi = argmindi∈Ωi

F (di, 0, λ0),

7 hi = (ai − λ0)+ − (bi − λ0)+ + α
1−αai + 1

1−α
∑Ji

j=1[(cij − ai)+ − (cij −

bi)
+]pij − 1

1−αµi,

8 end

9 h0 =
∑N

i=1(bi − λ0)+ + 1
1−α

∑N
i=1

∑Ji
j=1(cij − bi)+pij +Kλ0.

10 y = argminx∈X h
Tx, val = hTy + h0.

11 if val < obj then

12 x = y, obj = val.

13 end

14 end

Proposition 3.3. The running time of Algorithm 1 is O(N2J2
max) where Jmax =

maxi∈[N ] Ji. The algorithm solves formulation (3.9) to optimality.

Proof. Sorting in step 1 can be done in O(NJmax log(NJmax)). The function

F (di, 1, λ0) is a piecewise linear function with respect to di. To get the optimal di,

the values of F (di, 1, λ0) are evaluated at the break points cij, j ∈ [Ji] and λ0. The

complexity of computing ai is thus O(Ji). Likewise for bi. The complexity of com-

puting the vector h(λ0) and the scalar h0(λ0) in steps 5 to 9 is thus O(NJmax).

For subset selection, the complexity of finding argminx∈X h
Tx is O(N). More-

over, |Λ0| ≤ NJmax, hence the total computational complexity for Algorithm 1 is
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O(N2J2
max). �

In the marginal moment model, if (a) the mean and range are given, the worst-

case marginal distribution is a two-point discrete distribution; and (b) the mean,

range and mean absolute deviation are given, the worst-case distribution is a three-

point discrete distribution. These worst-case marginal distributions are fixed and

can hence be treated as a special case of the discrete marginal distribution model.

Thus in these two cases, Algorithm 1 solves the problem to optimality which brings

us to the following result.

Theorem 3.4. The problem of minimizing the WCVaR of regret for the subset

selection problem is solvable in polynomial time with complexity O(N2) when (a)

the range and mean, and (b) the range, mean and mean absolute deviation are

given.

This extends the polynomial complexity result when only the range is given

(see Averbakh [9] and Conde [37]). Algorithm 1 is related to the earlier algorithms

of Averbakh [9] and Conde [37] for the range case. When only the [ci, ci], i ∈ [N ]

of each c̃i is known, the problem of minimizing the WCVaR of the regret reduces

to the interval uncertainty minmax regret problem. In this case, the worst-case

marginal distribution is the Dirac measure δĉ(x), where ĉi(x) = cixi + ci(1 − xi).

It is easy to check that the variables in Algorithm 1 are then ai = ci, bi = ci,

hi = [ci − λ0]+ − [ci − λ0]+ − ci, i ∈ [N ], and h0 =
∑N

i=1[ci − λ0]+ + Kλ0. The

running time of Algorithm 1 is O(N2) in this case. Since the optimal λ0 is the

Kth largest value of the optimal d∗i (xi) = ci(xi) + ci(xi), the feasible set Λ0 can be

further reduced to a smaller set with cardinality 2K+1 (see the discussion in Conde

[37]). Furthermore, if K > N/2 the problem can be transformed in O(N) time

to an equivalent problem with K ′ ≤ N/2 (see Averbakh [9]). Hence by reducing

the size of the feasible set Λ0, the complexity of Algorithm 1 can be reduced to

O(N min(K,N − K) ) when only the range of c̃i is given, i ∈ [N ]. Algorithm 1

is thus a generalization of the algorithms for the minmax regret subset selection



3.3 Numerical Examples 61

problem.

3.3 Numerical Examples

In this section, we compare the proposed polynomial algorithm with the commercial

solver CPLEX to solve the problem of minimizing the WCVaR of regret for the

subset selection problem.

Example 3.1. In this experiment, the interval range for each item [ci, ci] are ran-

domly generated with ci = min{ai, bi}, ci = max{ai, bi}, with ai, bi generated from

the uniform distribution U [0, 100]. The mean for each item is randomly generated

as µi ∼ U [ci, ci]. Define δ̄i = 2
(ci−µi)(µi−ci)

ci−ci
as the largest mean absolute deviation

when the mean and range of c̃i are given. Let the mean absolute deviation of c̃i be

randomly generated by δi ∼ U [0, δ̄i]. We test Algorithm 1 for the following two

cases of the marginal moment model: (a) range [ci, ci] and mean µi are given and

(b) range [ci, ci], mean µi and mean absolute deviation δi are given.

The algorithm was implemented in Matlab R2012a on an Intel Core 2 Duo

CPU 2.8G Hz laptop with 4 GB of RAM. To compare the efficiency of Algorithm

1 with CPLEX’s MIP solver (version 12.4), randomly generated instances were

tested for different α’s and K’s. For the CPLEX optional parameters, the default

values are used. We compare the CPU times of the two methods in the following

tables. First, we fix the value of α and K, and compare the CPU time for different

N. Then, we fix the value of the dimension N , and tested the sensitivity of the

running time of Algorithm 1 to the parameters α and K. In the tables, the CPU

time (in seconds) taken by Algorithm 1 to solve (3.10) and CPLEX’s MIP solver

to solve (2.37) are denoted by “time Alg1” and “time Cplex”, respectively. The

CPU time in the tables was the average execution time of 10 randomly generated

instances. The instances with ”∗∗” indicates that CPLEX ran out of memory.

From Table 3.1, it is clear that the CPU time taken by Algorithm 1 is significantly

smaller than that taken by CPLEX’s MIP solver. Even for extremely large values
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of N , Algorithm 1 was able to solve the problem to optimality in a reasonable

amount of time (see Table 3.2). From Figure 3.1, the running time of CPLEX

increases dramatically as certain values of K. This has to be expected because the

number of feasible combinations increases when K is close to N/2. The running

time of CPLEX also increases as α increases. However, the running of Algorithm

1 is quite stable and insensitive to the parameters K and α. Other examples with

different dimensions have been tested, and similar results holds. Hence, Algorithm

1 is very robust and efficient.

Table 3.1: Computational results for α = 0.3,K = 0.4N.

(a) [ci, ci], µi are given (b) [ci, ci], µi, δi are given

N time Alg1 time Cplex time Alg1 time Cplex

50 7.80e-003 2.06e-001 1.23e-002 1.89e-001

100 1.72e-002 2.76e-001 3.73e-002 2.42e-001

200 5.65e-002 5.76e-001 9.52e-002 3.42e-001

400 1.58e-001 1.53e+000 2.98e-001 7.04e-001

800 5.23e-001 ∗∗ 9.98e-001 ∗∗
Table 3.2: CPU time of Algorithm 1 for solving large instances (α = 0.9,K = 0.3N).

N (a) [ci, ci], µi are given (b) [ci, ci], µi, δi are given

5000 1.79e+001 3.55e+001

10000 7.02e+001 1.40e+002

20000 2.56e+002 5.25e+002

40000 1.02e+003 2.28e+003

80000 4.91e+003 1.07e+004

3.4 Distributionally Robust k-sum Optimization

The k-sum optimization problem is the combinatorial problem of finding a solution

such that the sum of the k largest weighted elements of the solution is as small as

possible,

min
x∈X

max
y∈Y

{ N∑
i=1

cixiyi

}
(3.15)
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Figure 3.1: Sensitivity to the parameters K and α

where X ⊆ {0, 1}N is the feasible set of the optimization problem and Y = {y :∑N
i=1 yi = k, yi ∈ {0, 1},∀i ∈ [N ]}. Notice that when k = N , (3.15) reduces to

the standard linear sum optimization problem minx∈X c
Tx. When k = 1, (3.15)

reduces to the bottleneck optimization problem

min
x∈X

max
i∈[N ]
{cixi}. (3.16)

Several efficient algorithms for the bottleneck and k-sum optimization prob-

lems have been developed. Gupta and Punnen [63] showed that the k-sum problem

can be solved by solving O(N) linear sum problems. Hence the k-sum optimiza-

tion problem can be solved in polynomial time whenever the associated linear

sum problem can be solved in polynomial time. Furthermore, Punnen and Aneja

[100] showed that if the linear sum problem is solved by a polynomial time ε-

approximation scheme then the k-sum problem can also be solved by a polynomial

time ε-approximation scheme. As a special case of the k-sum optimization prob-

lem, the bottleneck optimization problem has been studied by several authors. A

bottleneck location problem was considered in Hsu and Nemhauser [70], and an

efficient algorithm was proposed. Gabow and Tarjan [49] developed two polyno-

mial time for the bottleneck spanning tree problem in a directed graph and the

the bottleneck maximum cardinality matching problem. With data uncertainty,

stochastic bottleneck assignment, transportation and spanning tree problems have
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been considered in [122, 52, 71]. With partial distributional information under the

marginal distribution and marginal moment models, we consider the distribution-

ally robust k-sum optimization problem in this section.

Assume the cost vector c is random and denoted by c̃, and its distribution lies

in a distribution set P. The distributionally robust k-sum optimization problem is

as follows:

Z∗ = min
x∈X

sup
P∈P

EP
[

max
y∈Y

N∑
i=1

c̃ixiyi

]
. (3.17)

If the marginal distributions of c̃ are given, let P(P1, . . . , PN) denote the set of

joint distributions with the fixed marginals. Then problem (3.17) can be written

as

Z∗ = min
x∈X

sup
P∈P(P1,...,PN )

EP
[

max
y∈Y

N∑
i=1

c̃ixiyi

]
= min

x∈X
min
d∈<N

(
max
y∈Y

dTy +
N∑
i=1

EPi [c̃ixi − di]+
)

= min
x∈X

min
d∈<N ,λ0∈<

( N∑
i=1

[di − λ0]+ + kλ0 +
N∑
i=1

EPi [c̃ixi − di]+
)

(3.18)

= min
x∈X

min
λ0

(
kλ0 +

N∑
i=1

EPi [c̃ixi − λ0]+
)
.

In the above formula, the optimal λ0 is the kth largest value of di. For di ≤ λ0,

we can increase these di to the value λ0, and for di ≥ λ0, we can decrease these di

to λ0. By this modification, the objective value will not increase. Hence the last

equality of (3.18) holds.

If k = N , the optimal λ0 in (3.18) can be chosen as small as possible, and the

distributionally robust k-sum optimization problem reduces to

min
x∈X

sup
P∈P(P1,...,PN )

EP [c̃Tx] = min
x∈X

µTx,

where µi = EPi(c̃i), i ∈ [N ], which is a deterministic linear sum optimization

problem. We focus on 1 ≤ k < N . As λ0 →∞, the objective value →∞, and as

λ0 → −∞ the objective value → ∞ if k < N . Hence the optimal λ0 exists. Next
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we show that if the given marginal distributions are discrete, then the optimal λ0

can be restricted to a finite set.

Proposition 3.5. Assume that the marginal distribution of c̃i is discrete and

c̃i ∼ cij with probability pij, j ∈ [Ji], i ∈ [N ].

the objective function for (3.18) attains its minimum in the finite set:

λ0 ∈ {0} ∪ {cij | j ∈ [Ji], i ∈ [N ]}.

Proof. In the discrete marginal distribution case, problem (3.18) can be written

as

Z∗ = min
x∈X

min
λ0

(
kλ0 +

N∑
i=1

Ji∑
j=1

[cijxi − λ0]+pij

)
= min
x∈X

min
λ0

(
kλ0 +

N∑
i=1

Ji∑
j=1

{
[cij − λ0]+pijxi + [−λ0]+pij(1− xi)

})
(3.19)

For fixed x ∈ X the objective function in (3.19) is a piece-wise linear convex

function in λ0. Since the objective value goes to infinity as λ0 goes to infinity

or negative infinity, hence its minimum value occurs at one of the break points

{0} ∪ {cij | j ∈ [Ji], i ∈ [N ]}. �

Let Λ0 = {0} ∪ {cij | j ∈ [Ji], i ∈ [N ]}, and

hi(λ0) =

Ji∑
j=1

([cij − λ0]+ − [−λ0]+)pij, i ∈ [N ], (3.20)

h0(λ0) = N [−λ0]+ + kλ0. (3.21)

Then problem (3.19) can be written as

min
λ0∈Λ0

min
x∈X

N∑
i=1

h(λ0)xi + h0(λ0). (3.22)

Hence we can solve the distributionally robust k-sum optimization problem as

follows: For all λ0 ∈ Λ0, solve the deterministic linear sum optimization problem

g(λ0) := min
x∈X

∑N
i=1 hi(λ0)xi where hi(λ0) is defined as in (3.20). Then select the

smallest value from {g(λ0)+h0(λ0) | λ0 ∈ Λ0}, where h0(λ0) is defined as in (3.21).

Therefore, we have the following theorem:



3.4 Distributionally Robust k-sum Optimization 66

Theorem 3.6. If the deterministic linear sum optimization problem minx∈X c
Tx

is polynomially solvable, then under the discrete marginal distribution model, the

distributionally robust k-sum optimization problem

min
x∈X

sup
P∈P(P1,...,PN )

EP

[
max

{ N∑
i=1

c̃ixiyi |
N∑
i=1

yi = k, yi ∈ {0, 1}, ∀i ∈ [N ]
}]

(3.23)

is also polynomially solvable.

Remark 3.1. In the marginal moment model, if (a) range and mean are given, or

(b) range mean and mean absolute deviation are given, the worst case marginal dis-

tributions are two points or three points discrete distributions, respectively. Hence,

the result of Theorem 3.6 also holds for the distributionally robust k-sum optimiza-

tion problem in these two marginal moment models.

Remark 3.2. The deterministic k-sum optimization problem (3.15) can be viewed

as a special case of the distributionally robust k-sum optimization problem with uni-

variate support discrete marginal distributions. Hence if the linear combinatorial

optimization problem minx∈X c
Tx is polynomially solvable, the k-sum optimization

problem (3.15) is also polynomially solvable.



Chapter 4
A Preprocessing Method for Random

Quadratic Unconstrained Binary

Optimization

The Quadratic Convex Reformulation (QCR) method proposed by Billionnet and

Elloumi (2007) can be used to solve quadratic unconstrained binary optimization

problems using a preprocessing technique. In this method, the semidefinite re-

laxation is used to reformulate it to a convex binary quadratic program which is

solved using mixed integer quadratic programming solvers. We extend this method

to random quadratic unconstrained binary optimization problems, and develop a

Penalized QCR method where the objective function in the semidefinite program

is penalized with a separable term to account for the randomness in the objective.

Structure of the chapter:

1. In Section 4.1, we review the quadratic convex reformulation method to

solve the deterministic quadratic unconstrained binary optimization (QUBO)

problems. Then we propose the central problem of the chapter which is to

solve a set of QUBO problems where uncertainty lies in the linear term of

the objective function.

67
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2. In Section 4.2, we develop an equivalent but computationally implementable

reformulation to find the tight upper bound β∗ that exploits the structure of

the Fréchet class of distributions. This reformulation is used in developing

the Penalized QCR method.

3. In Section 4.3, we develop a SDP relaxation using the continuous relax-

ation of the reformulation to find a weaker upper bound on the optimal ex-

pected value. The SDP relaxation has a natural interpretation as a Penalized

Quadratic Convex Reformulation for QUBO problems with a random objec-

tive for the Fréchet class of distributions. Using this semidefinite program, we

identify an “optimal” preprocessing vector u for this class of random QUBO

problems.

4. In Section 4.4, we provide an extensive comparison between different ap-

proaches to solve QUBO problems with random objective coefficients. We

demonstrate that for problems with up to 100 variables, the Penalized QCR

method developed in this paper has computational advantages over alternate

preprocessing approaches in terms of computational times and the quality of

the bounds.

4.1 Introduction

Consider the quadratic function:

q(x; c,Q) = xTQx+ cTx

and the corresponding quadratic unconstrained binary optimization:

(QUBO) β(c,Q) = max
x∈{0,1}N

q(x; c,Q), (4.1)

where Q is a N ×N real symmetric matrix (not necessarily negative semidefinite),

and c ∈ <N .
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For a binary variable xi ∈ {0, 1}, we have x2
i = xi and hence xTdiag(u)x =

uTx for any u ∈ <N , where diag(u) is the diagonal matrix obtained from the

vector u. A simple perturbation idea is to choose a vector u ∈ <N , such that

Q− diag(u) is negative semidefinite. Define:

qu(x; c,Q) = xT (Q− diag(u))x+ (c+ u)Tx, (4.2)

and the associated quadratic unconstrained binary maximization problem with a

concave quadratic objective:

β(u; c,Q) = max
x∈{0,1}N

qu(x; c,Q). (4.3)

Then, β(c,Q) = β(u; c,Q). Since the objective function in (4.3) is concave, it

is possible to use off-the-shelf mixed integer quadratic programming solvers such

as CPLEX to solve it. This gives an exact solution method to solve the QUBO

problem where in the preprocessing step, a perturbation vector u is chosen such

that Q−diag(u) is negative semidefinite and then in the solution step, the convex

binary quadratic programming problem is solved.

The simplest possible choice of the perturbation vector u is to use:

ueig = λmax(Q)e, (4.4)

where λmax(Q) is the largest eigenvalue of the matrix Q and e is an N dimensional

vector with all entries equal to 1. Clearly, Q − diag(ueig) is negative semidefinite

and the function queig
(x; c,Q) is concave with respect to the decision variables.

Such an eigenvalue based preprocessing method was first proposed by Hammer

and Rubin [65].

The work most closely related to the method developed in this chapter is

the Quadratic Convex Reformulation (QCR) method proposed by Billionnet and

Elloumi [25] that we discuss in detail next.
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4.1.1 Quadratic Convex Reformulation

One approach to solve the QUBO problem is QCR method proposed by Billionnet

and Elloumi [25]. Their method is inspired from the semidefinite programming

relaxations for discrete optimization problems developed in Körner [82], Shor [111]

and Poljak, Rendl and Wolkowicz [98] among others. Billionnet and Elloumi [25]

developed a preprocessing phase where the “optimal” choice of the parameter vec-

tor u was found by solving a semidefinite program (SDP). Their approach is based

on evaluating the upper bound β̄(u; c,Q) of the optimal value of the QUBO prob-

lem obtained by solving the convex relaxation of problem (4.3):

β̄(u; c,Q) = max
x∈[0,1]N

qu(x; c,Q). (4.5)

The “optimal” vector uopt is chosen such that it minimizes the upper bound

β̄(u; c,Q) subject to the constraint diag(u)−Q � 0. Let

uopt = argmin
{
β̄(u; c,Q) | diag(u)−Q � 0

}
. (4.6)

Using standard duality arguments, it was shown in [25] that uopt is the optimal u

vector in the following SDP:

β̄(uopt; c,Q) = min
r,u

r

s.t.

[
r −(c+ u)T/2

−(c+ u)/2 diag(u)−Q

]
� 0,

(4.7)

where the positive semidefiniteness constraint is for a matrix of size (N+1)×(N+1).

The semidefinite program (4.7) is the dual to the classic semidefinite programming

relaxation of the QUBO problem:

β̄(uopt; c,Q) = max
x,X

N∑
i=1

N∑
j=1

QijXij +
N∑
i=1

cixi

s.t.

[
1 xT

x X

]
� 0

Xii = xi, i ∈ [N ],

(4.8)
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where uopt is the optimal dual variables to the equality constraints Xii = xi, i ∈

[N ]. The SDP relaxation in (4.8) has been considered by several authors includ-

ing Körner [82], Shor [111] and Poljak, Rendl and Wolkowicz [98] among others.

Billionnet and Elloumi [25] proposed the use of this semidefinite program as a

preprocessing phase to find the optimal perturbation vector before applying an

exact branch and bound method to solve the QUBO problem based on solving

convex relaxations. In the numerical experiments, they showed that the relative

gap between the optimum value of the QUBO problem and the continuous relax-

ation β̄(uopt; c,Q) is about half the relative gap between the optimum value and

β̄(ueig; c,Q). Solving the QUBO problem with the CPLEX solver is also faster

using the SDP based preprocessing step as compared to the eigenvalue based pre-

processing step. Subsequently, Billionnet et. al. ([29]) extended the QCR method

to 0-1 quadratic programming problem with linear constraints and to more gen-

eral mixed-integer programs in [28, 27, 26]. Galli and Letchford [50] extended this

approach to mixed-integer quadratically constrained quadratic programs.

4.1.2 The Main Problem

In this chapter, we extend the QCR method to solve parametric quadratic uncon-

strained binary optimization problems:

max
x∈{0,1}N

{
q(x; c,Q) := xTQx+ cTx

}
, ∀c ∈ C, (4.9)

where Q is a fixed N×N symmetric real matrix, and the parameter vector c varies

in a set C. Our main purpose is to find a common preprocessing vector u such

that diag(u) − Q � 0, and the preprocessing vector is “optimal” in some sense.

Moreover, using this common preprocessing vector, we hope that we can efficiently

compute the solutions of the QUBO problems. To find such a preprocessing vector

u for all c ∈ C, we assume that the parameter vector c̃ is random with a probability

distribution denoted by P . The expected optimal objective value for the QUBO
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problem (4.9) averaged over the possible realizations of c̃ is expressed as:

EP [β(c̃,Q)] =

∫
C

max
x∈{0,1}N

q(x; c,Q)dP (c). (4.10)

Evaluating EP [β(c̃,Q)] is clearly challenging since we need to solve a set of NP-

hard QUBO problems for each realization of c.

To facilitate the analysis, we assume that the probability distribution P for the

random vector c̃ is not completely specified. Rather, the joint distribution P lies

in a Fréchet class of multivariate joint distributions that consists of all multivariate

joint distributions with fixed marginal distributions Pi for each component c̃i; for

more details, see for example [40]. We denote the Fréchet class of distributions as

P(P1, . . . , PN). Distributions in the Fréchet class differ with respect to the depen-

dency structures between the fixed marginal distributions. Since the probability

distribution is incompletely specified, we focus on the extremal multivariate joint

distribution of the random parameter vector c̃ that maximizes the expected opti-

mal objective value of the quadratic unconstrained binary optimization problem

over all distributions in the Fréchet class. The problem of interest is defined as:

β∗ = sup
P∈P(P1,...,PN )

EP [β(c̃,Q)]

= sup
P∈P(P1,...,PN )

∫
C

max
x∈{0,1}N

q(x; c,Q)dP (c).
(4.11)

4.2 A Tight Upper Bound on the Expected Op-

timal Value

In this section, we develop a reformulation for (4.11) to evaluate the tight upper

bound on the expected optimal value of QUBO problem. Our approach is based

on the results in Meilijson and Nadas [88] who developed a convex majorization

approach to compute the tightest upper bound on the expected length of a critical

path in a project network for the Fréchet class of distributions. Weiss [120] general-

ized this bound to linear combinatorial optimization problems such as the shortest

path, maximum flow, and the reliability problem. The main result in these papers
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is outlined as

sup
P∈P(P1,...,PN )

EP
[

max
x∈X⊆{0,1}N

c̃Tx

]
= min
d∈<N

(
max

x∈X⊆{0,1}N
dTx+

N∑
i=1

EPi [c̃i − di]+
)
.

(4.12)

Extensions of this approach to limited information on the marginal distributions

have been proposed in Klein Haneveld [66], Birge and Maddox [30], Bertsimas,

Natarajan and Teo [24, 20] and Natarajan, Song and Teo [91] among others. Us-

ing a similar approach, we develop a reformulation for the expected optimal ob-

jective value of QUBO problems for the Fréchet class of distributions in the next

proposition.

Proposition 4.1. For each i ∈ [N ], assume that the marginal distribution Pi of

the continuously distributed random variable c̃i is given. Define

β∗ = sup
P∈P(P1,...,PN )

EP
[

max
x∈{0,1}N

(
xTQx+ c̃Tx

)]
, (4.13)

and

β∗∗ = min
d∈<N

(
max

x∈{0,1}N

(
xTQx+ dTx

)
+

N∑
i=1

EPi [c̃i − di]+
)
. (4.14)

Then the optimal objective values of the two formulations are equal, β∗ = β∗∗.

Proof. For any c and d ∈ <N , the following holds:

max
x∈{0,1}N

(
xTQx+ cTx

)
= max

x∈{0,1}N

(
xTQx+ dTx+ (c− d)Tx

)
≤ max

x∈{0,1}N

(
xTQx+ dTx

)
+

N∑
i=1

[ci − di]+.

Taking expectation with respect to the probability measure P ∈ P(P1, . . . , PN) and

the minimum with respect to d ∈ <N , we obtain

EP
[

max
x∈{0,1}N

(
xTQx+ cTx

)]
≤ β∗∗, ∀P ∈ P(P1, . . . , PN).

Taking supremum with respect to P ∈ P(P1, . . . , PN), implies β∗ ≤ β∗∗.

Next we show β∗∗ ≤ β∗. Notice that β∗∗ can be evaluated as the optimal

objective to the following convex programming problem with decision variables d
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and t:

β∗∗ = min
d,t

t+
N∑
i=1

EPi [c̃i − di]+

s.t. t ≥ xTQx+ dTx, ∀x ∈ {0, 1}N .
(4.15)

The Karush-Kuhn-Tucker (KKT) conditions for (4.15) are:

λ(x) ≥ 0, t ≥ xTQx+ dTx, ∀x ∈ {0, 1}N , (4.16a)∑
x∈{0,1}N

λ(x) = 1, (4.16b)

λ(x)(t− xTQx− dTx) = 0, ∀x ∈ {0, 1}N , (4.16c)

P (c̃i ≥ di) =
∑

x∈{0,1}N :xi=1

λ(x). (4.16d)

The Slater’s condition for (4.15) is satisfied. Hence there exist dual variables λ(x)

and primal variables d, t satisfying the KKT conditions. In the rest of the proof,

we let d, t, λ(x) denote the solutions to the KKT conditions (4.16a)-(4.16d). Let

fi(·) be the probability density function associated with Pi. Next we construct a

distribution P̄ as follows.

(a) Generate a random vector x̃ which takes the value x ∈ {0, 1}N with probability

λ(x).

(b) Define the set I1 = {i ∈ [N ] : 0 < P (c̃i ≥ di) < 1} and I2 = [N ] \ I1.

For i ∈ I1, generate the random variable c̃i with the conditional probability

density function

f̄i(ci | x̃ = x) =


1

P (c̃i ≥ di)
I[di,∞)(ci)fi(ci), if xi = 1,

1

P (c̃i < di)
I(−∞,di)(ci)fi(ci), if xi = 0.

For i ∈ I2, generate the random variable c̃i with the conditional probability

density function f̄i(ci | x̃ = x) = fi(ci).

For i ∈ I1, the marginal probability density function under P̄ is

f̄i(ci) =
∑

x∈{0,1}N
λ(x)f̄i(ci | x̃ = x)
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=
∑

x∈{0,1}N :xi=1

λ(x)
1

P (c̃i ≥ di)
I[di,∞)(ci)fi(ci)

+
∑

x∈{0,1}N :xi=0

λ(x)
1

P (c̃i < di)
I(−∞,di)(ci)fi(ci)

= I[di,∞)(ci)fi(ci) + I[−∞,di)(ci)fi(ci) (by (4.16d))

= fi(ci).

For i ∈ I2, it is easy to see that f̄i(ci) = fi(ci). Hence, the constructed probability

distribution P̄ ∈ P(P1, . . . , PN). Therefore

β∗ ≥ EP̄
[

max
y∈{0,1}N

yTQy + c̃Ty

]
≥

∑
x∈{0,1}N

λ(x)EP̄
[

max
y∈{0,1}N

yTQy + c̃Ty | x̃ = x

]
≥

∑
x∈{0,1}N

λ(x)EP̄
[
xTQx+ c̃Tx | x̃ = x

]
=

∑
x∈{0,1}N

λ(x)xTQx

+
∑

x∈{0,1}N :xi=1

λ(x)

(∑
i∈I1

∫
ci

1

P (c̃i ≥ di)
I[di,∞)(ci)fi(ci)dci +

∑
i∈I2

∫
cifi(ci)dci

)

=
∑

x∈{0,1}N
λ(x)xTQx+

∑
i∈I1

∫
ciI[di,∞)(ci)fi(ci)dci +

∑
i∈I2

∫
ciP (c̃i ≥ di)fi(ci)dci.

Since P (c̃i ≥ di) = 1 or 0 for i ∈ I2, hence∫
ciP (c̃i ≥ di)fi(ci)dci =

∫
ciI[di,∞)(ci)fi(ci)dci,∀i ∈ I2.

As a result

β∗ ≥
∑

x∈{0,1}N
λ(x)xTQx+

N∑
i=1

∫
ciI[di,∞)(ci)fi(ci)dci

=
∑

x∈{0,1}N
λ(x)xTQx+

N∑
i=1

di

∫
I[di,∞)(ci)fi(ci)dci

+
N∑
i=1

∫
(ci − di)I[di,∞)(ci)fi(ci)dci

=
∑

x∈{0,1}N
λ(x)xTQx+

N∑
i=1

di
∑

x∈{0,1}N
λ(x)xi +

N∑
i=1

EPi [c̃i − di]+ (by (4.16d))
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=
∑

x∈{0,1}N
λ(x)(xTQx+ dTx) +

N∑
i=1

Ei[c̃i − di]+

=
∑

x∈{0,1}N
λ(x)t+

N∑
i=1

Ei[c̃i − di]+ (by (4.16c))

= t+
N∑
i=1

Ei[c̃i − di]+ (by (4.16b))

= β∗∗.

�

Formulation (4.14) exploits the marginal specification of the joint distribution

to provide a convex formulation in the d variables. The objective function in

(4.14) consists of two parts: (a) A deterministic QUBO problem with an objective

of maximizing xTQx + dTx for a fixed d and (b) a sum of N univariate convex

penalty terms, each of the form EPi [c̃i − di]+. The reformulation in (4.14) is NP-

hard to solve since computing the first term in the objective for a fixed vector d is

equivalent to solving a QUBO problem. A simple interpretation of this formulation

is to find the balance between a deterministic approximation of the random QUBO

problem based on the chosen d and a penalty term for choosing the vector d

differently from the random vector c̃. This result extends to discrete marginal

distributions where in the proof, we need to replace the integrals with summations

and use linear programming duality. It is also possible to extend the result of

Proposition 4.1 to the case where only the mean and variance of each random

variable is known. The result is stated in the next proposition.

Proposition 4.2. Assume that the mean and variance for each c̃i are given , i.e.

Pi = {Pi : EPi(c̃i) = µi, EPi(c̃2
i ) = µ2

i + σ2
i }, i ∈ [N ].

Define

β∗ := sup
P∈P(P1,...,PN )

EP
[

max
x∈{0,1}N

(
xTQx+ c̃Tx

)]
, (4.17)

and

β∗∗ = min
d∈<N

{
max

x∈{0,1}N
(xTQx+ dTx) +

N∑
i=1

sup
Pi∈Pi

EPi [c̃i − di]+
}
. (4.18)
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Then the optimal objective values of the formulations are equal, β∗ = β∗∗.

Proof. First from Proposition 4.1, we know that

β∗ = sup
Pi∈Pi,i∈[N ]

sup
P∈P(P1,...,PN )

EP
[

max
x∈{0,1}N

xTQx+ c̃Tx

]

= sup
Pi∈Pi,i∈[N ]

min
d∈<N

{
max

x∈{0,1}N
(xTQx+ dTx) +

N∑
i=1

EPi [c̃i − di]+
}
.

Notice that in the above formula, the objective function is convex with respect to

the variable d ∈ <N , and linear with respect to the distribution Pi ∈ Pi,∀i ∈ [N ].

Moreover, every probability density function in the distribution set Pi is bounded

in the L1 space. Hence by Theorem 6 and its corollary in Rockafellar [105], we can

exchange the position of sup and min in the above formula. That is

β∗ = min
d∈<N

sup
Pi∈Pi,i∈[N ]

{
max

x∈{0,1}N
(xTQx+ dTx) +

N∑
i=1

EPi [c̃i − di]+
}

= min
d∈<N

{
max

x∈{0,1}N
(xTQx+ dTx) +

N∑
i=1

sup
Pi∈Pi

EPi [c̃i − di]+
}

= β∗∗.

�

4.3 The “Optimal” Preprocessing Vector

Our goal in this section is to find a preprocessing vector u such that the matrix

Q−diag(u) is negative semidefinite and it is an “optimal” choice for the extremal

probability distribution of the random parameter vector c̃ that attains the upper

bound. Note that the “optimal” choice for u has to carefully defined for random

QUBO problems since we are solving multiple instances of deterministic QUBO

problems drawn from the extremal distribution.

Let Pi denote the set of possible marginal distributions for the random variable

c̃i. Assume that either the marginal distribution Pi of the random variable c̃i is

given in which case the set Pi = {Pi} consists of a singleton or the mean and
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variance of c̃i is given in which case Pi = {Pi : EPi(c̃i) = µi, EPi(c̃2
i ) = µ2

i + σ2
i }.

Perturbing the objective function for the inner deterministic QUBO problem in

the reformulations (4.14) or (4.18), we define:

β∗u = min
d∈<N

{
max

x∈{0,1}N

[
xT (Q− diag(u))x+ (d+ u)Tx

]
+

N∑
i=1

sup
Pi∈Pi

EPi [c̃i − di]+
}
,

(4.19)

From Propositions 4.1 and 4.2 and the observation that xTdiag(u)x = uTx for

x ∈ {0, 1}N , the tight upper bound β∗ is exactly equal to β∗u, namely:

β∗ = β∗u ∀u ∈ <N , (4.20)

Define an upper bound β̄∗u on the optimal value β∗ by using the continuous relax-

ation for the binary variables in the deterministic QUBO problem in (4.19):

β̄∗u = min
d∈<N

{
max
x∈[0,1]N

[
xT (Q− diag(u))x+ (d+ u)Tx

]
+

N∑
i=1

sup
Pi∈Pi

EPi [c̃i − di]+
}
.

(4.21)

Then, clearly:

β∗ ≤ β̄∗u ∀u ∈ <N . (4.22)

For a fixed perturbation vector u such that the matrix Q − diag(u) is negative

semidefinite, the objective function in β̄∗u is efficiently computable. This brings us

to the definition of an “optimal” preprocessing vector for random QUBO problems.

Definition 4.3. The “optimal” choice of the preprocessing vector for the random

QUBO problem is defined as the vector u∗opt such that Q − diag(u∗opt) is nega-

tive semidefinite and it minimizes the upper bound β̄∗u in (4.21) obtained from the

continuous relaxation.

In other words, u∗opt is chosen to minimize the efficiently computable upper

bound on the expectation for the random 0-1 quadratic programming problem

obtained from the continuous relaxation. It is the optimal solution to the following

minimization problem:

min
diag(u)−Q�0

min
d∈<N

{
max
x∈[0,1]N

[
xT (Q− diag(u))x+ (d+ u)Tx

]
+

N∑
i=1

sup
Pi∈Pi

EPi [c̃i−di]+
}
.

(4.23)
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Define the smallest upper bound obtained from the continuous relaxation as:

β̄∗ = β̄∗u∗opt .

Then β∗ ≤ β̄∗ ≤ β̄∗u for any u. Changing the order of the minimization in the

outer problems in (4.23), we get

β̄∗ = min
d∈<N

{
min

diag(u)−Q�0
max
x∈[0,1]N

[
xT (Q− diag(u))x+ (d+ u)Tx

]
+

N∑
i=1

sup
Pi∈Pi

EPi [c̃i−di]+
}
.

(4.24)

For a fixed vector d, the inner subproblem:

min
diag(u)−Q�0

max
x∈[0,1]N

[xT (Q− diag(u))x+ (d+ u)Tx],

is solvable as a SDP using the same approach as for the deterministic QUBO (4.7).

This brings us to the main result of the paper.

Proposition 4.4. The upper bound β̄∗ on the expected optimal objective value of a

QUBO problem obtained from its convex relaxation in (4.24) is equal to the optimal

value of the following SDP:

β̄∗ = min
d,r,u

r +
N∑
i=1

sup
Pi∈Pi

EPi [c̃i − di]+

s.t.

[
r −(d+ u)T/2

−(d+ u)/2 diag(u)−Q

]
� 0.

(4.25)

Furthermore the optimal decision vector u is u∗opt which satisfies diag(u∗opt)−Q � 0

and β̄∗ = β̄∗u∗opt.

An alternate way to express formulation (4.25) is using the classical semidefi-

nite relaxation of the deterministic QUBO problem as follows:

β̄∗ = min
d∈<N

max
x,X

N∑
i=1

N∑
j=1

QijXij +
N∑
i=1

dixi +
N∑
i=1

sup
Pi∈Pi

EPi [c̃i − di]+

s.t.

[
1 xT

x X

]
� 0

Xii = xi, i ∈ [N ],

(4.26)
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where u∗opt is the optimal dual variables to the equality constraintsXii = xi, i ∈ [N ].

The main difference between (4.26) and (4.8) is that the vector d is a decision

variable with an additional penalty term that is separable across i ∈ [N ]. The

convex SDP formulation in (4.25) is a penalized version of the SDP in (4.7) where

the penalty term is the sum of N univariate convex functions supPi∈Pi EPi [c̃i−di]
+.

Hence (4.25) can be interpreted as a Penalized QCR.

Consider a deterministic vector where c̃ = c with probability 1. We show

that in this case, (4.25) reduces to (4.7). For a deterministic instance, formulation

(4.25) reduces to

β̄∗ = min
d,r,u

r +
N∑
i=1

[ci − di]+

s.t.

[
r −(d+ u)T/2

−(d+ u)/2 diag(u)−Q

]
� 0.

(4.27)

It is straightforward to verify that d = c is optimal for (4.27). Notice that β̄∗ is

the optimal objective value to the problem:

β̄∗ = min
diag(u)−Q�0

min
d∈<N

{
max
x∈[0,1]N

[xT (Q− diag(u))x+ (d+ u)Tx] +
N∑
i=1

[ci − di]+
}
.

(4.28)

Let d∗ be the optimal vector in (4.28). If there exists some index i such that

d∗i > ci, by setting di = ci the second term
∑N

i=1[ci − di]
+ in (4.28) will remain

unchanged, while the first term maxx∈[0,1]N [xT (Q−diag(u))x+(d+u)Tx] will not

increase. Similarly, if there exists some index i such that d∗i < ci, by setting di = ci

the second term
∑N

i=1[ci − di]+ in (4.28) will decrease by ci − d∗i , while the first

term maxx∈[0,1]N [xT (Q− diag(u))x+ (d+ u)Tx] will increase by at most ci − d∗i .

Hence d = c is optimal for (4.27). Thus, the SDP reduces to the deterministic

formulation (4.7). That means the proposed Penalized QCR method reduces to

the QCR method in Billionnet and Elloumi [25].

Proposition 4.5. Consider a deterministic vector where c̃ = c with probability 1.

Then the SDP in (4.25) is equivalent to the SDP in (4.7).
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4.4 Computational Results

In this section, we apply the Penalized QCR method to solve a set of K quadratic

unconstrained binary optimization problems where the instances are generated

randomly from a probability distribution:

β(c(k),Q) = max
x∈{0,1}N

{
q
(
x; c(k)

)
:= xTQx+ c(k)Tx

}
, k ∈ [K]. (4.29)

We solve the K instances of problem (4.29) using four different preprocessing ap-

proaches:

(a) Eigenvalue based method: In this method, we choose a common prepro-

cessing vector by computing the maximum eigenvalue: ueig = λmax(Q)e.

(b) Sample based method: In this method, we choose an optimal preprocessing

vector u
(k)
opt for each instance c = c(k) by solving the semidefinite program

(4.7). Thus we solve a total of K SDP problems.

(c) Mean based method: In this method, we choose a common preprocessing

vector uµ for c = µ by solving the semidefinite program (4.7). Thus we solve

a single SDP.

(d) Mean and standard deviation based method: In this method, we choose

a common preprocessing vector by solving a single semidefinite program for

the Fréchet class of distributions. In our numerical experiments, we assume

that only the mean µi and the standard deviation σi for each random variable

is known. In this case, the penalty term supPi∈Pi E[c̃i−di]+ in the SDP (4.25)

has a simple closed form expression based on the Cauchy-Schwarz inequality

(see Scarf [108]):

sup
Pi∈Pi

EPi [c̃i − di]+ =
1

2

[
(µi − di) +

√
(µi − di)2 + σ2

i

]
.
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Thus the preprocessing parameter uµ,σ is obtained by solving the SDP:

min
d,r,u

r +
1

2

N∑
i=1

[
(µi − di) +

√
(µi − di)2 + σ2

i

]
s.t.

[
r −(d+ u)T/2

−(d+ u)/2 diag(u)−Q

]
� 0.

(4.30)

This is equivalent to the following SDP with one positive semidefinite matrix

of size (N + 1) × (N + 1) and N second order conic programming (SOCP)

constraints:

min
d,r,u,t

r + 1
2

[
eT (µ− d) + eT t

]
s.t.

[
r −(d+ u)T/2

−(d+ u)/2 diag(u)−Q

]
� 0,∥∥∥∥∥

[
µi − di
σi

]∥∥∥∥∥ ≤ ti, i ∈ [N ].

(4.31)

Define the value objk(c
(k),Q) as follows:

objk(c
(k),Q) =

{
β(c(k),Q), if the QUBO problem is solvable within T minutes,

Best lower bound found, otherwise.

In our computational experiments, we set T = 10 minutes. We define gapk(u)

as the relative difference between the objective function of the convex relax-

ation for a given preprocessing vector u and the value objk(c
(k),Q):

gapk(u) =
β̄(u; c(k),Q)− objk(c

(k),Q)

objk(c
(k),Q)

.

Since the running time of the branch-and-bound method to solve the binary

quadratic program depends on the strength of its convex relaxation, we say

that a vector u is preferable to u′ for the kth instance if gapk(u) < gapk(u
′).

The computational study was performed in Matlab R2012a on an Intel Core

2 Duo CPU (2.8 GHz) laptop with 4 GB of RAM. The SDP problems were

solved with CVX ([60, 59]) and SDPT3 ([116, 117]), and the 0-1 quadratic

programming problems were solved with CPLEX 12.4 using the Matlab in-

terface.
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4.4.1 Randomly Generated Instances

Given the mean µ and the covariance matrix Σ, we generate the scenarios c(k), k ∈

[K] from a multivariate normal distribution N(µ,Σ). The parameters are chosen

in the following manner:

1. Q is a symmetric random matrix with density d ∈ (0, 1]. The density refers

to the probability that an entry of Q is nonzero. Each nonzero entry is the

sum of one or more normally distributed random variables.

2. Each component of the mean vector µ is randomly generated from the stan-

dard normal distribution.

3. Each component of the vector of standard deviations σ is randomly generated

from the uniform distribution U(0,M), where M is a given positive number.

The covariance matrix Σ is obtained from a randomly generated correlation

matrix and the standard deviation vector σ.

For a given pair of parameters (N, d) we generate the symmetric matrix Q of size

N × N with density d and K = 100 instances of c(k) from a normal distribution

N(µ,Σ). We compare the quality of the bounds and the CPU times to solve

these instances with the four different choices of preprocessing vectors u. In our

computations, we allow for a maximum CPU time of 10 minutes to solve the

binary quadratic program. The numerical results are shown in the Tables 4.1 and

4.2 where we set M = 1 and M = 20 respectively. In these Tables, we report the

following values for the four different choices of preprocessing vectors u = ueig,

u = u
(k)
opt, u = uµ and u = uµ,σ:

1. The average gap over the 100 instances given as gap =
100∑
k=1

gapk(u)/100.

2. The CPU time taken to compute the preprocessing parameter u denoted by

“t u”. For the sample based method, “t u” is the total CPU time taken to

solve the 100 SDPs. For the mean based and mean and standard deviation
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based methods, “t u” is the CPU time taken to solve a single SDP. For

the eigenvalue based method, “t u” is the CPU time taken to compute the

largest eigenvalue.

3. The total CPU time taken to compute all the QUBO problems solvable by

CPLEX within 10 minutes for a given preprocessing parameter u. This is

denoted by “t 01QP”. If we solve every instance within 10 minutes, we report

the total CPU time. If there are m < 100 instances that are solvable within

10 minutes each, we report the total CPU time to solve these m instances

and report the average time for the m solved instances in the parentheses.

4. The number of instances (out of 100) which are solved within 10 minutes is

denoted by “solved”.

From Table 4.1, we observe that when the standard deviation is small (σ =

rand(N, 1)), the relative gaps for uµ and uµ,σ are much smaller than the relative

gap for ueig, and very close to the relative gap for the sample based method. Al-

though the preprocessing parameter ueig can be computed very efficiently, solving

the QUBO problem is much slower than the other three methods. Since the stan-

dard deviation is of a similar magnitude as the mean, uµ and uµ,σ have similar

relative gaps. These two methods are also much faster than finding the prepro-

cessing step for the sample based method that involves solving 100 SDP instances.

From Table 4.2, we observe that when the standard deviation is larger (σ =

20 ∗ rand(N, 1)), the relative gap from the sample based method is much smaller

than the gaps generated from the other three methods. In these cases, we have

gap(u
(k)
opt) < gap(uµ,σ) < gap(uµ) < gap(ueig). The CPU time taken to solve the

QUBO problem by choosing uµ,σ is smaller than that by choosing ueig and uµ

in most cases, and it is close to the CPU time taken by usin g u
(k)
opt. Lastly, the

computational time needed for the preprocessing step for the mean and standard

deviation based method is much smaller than that for the preprocessing step of the

sample based method. As a result, the total CPU time needed to solve all the 100
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QUBO problems to optimality using the preprocessing vector uµ,σ is substantially

smaller than that needed by the sample based preprocessing method.

4.4.2 Instances from Billionnet and Elloumi [25] and Parda-

los and Rodgers [95]

We use the set of randomly generated instances as in Billionnet and Elloumi [25]

and Pardalos and Rodgers [95]. We choose the parameters as follows:

1. The linear coefficients ci are chosen uniformly and independently in the range

[−100, 100].

2. The diagonal entries of Q ∈ <N×N are all 0, and the off-diagonal coefficients

of the symmetric matrix Q are in the range [−50, 50].

3. The matrix Q has density d. The density refers to the probability that a

nonzero will occur in any off-diagonal entry.

In this example, the data c(k) for K = 100 samples are given. We use the sample

mean and the sample standard deviation to compute the preprocessing parameters

uµ and uµ,σ. Again, we use the four different preprocessing methods to solve the

QUBO problems, and the maximum CPU time taken to solve the QUBO problem is

set to be 10 minutes. The results are listed in Table 4.3. In addition to the average

gap, we plot the distributions of the relative gaps for the 100 scenarios using the

boxplot in Figure 4.1. From the results, we observe that the average relative gap

of using uµ,σ is always smaller than using ueig and uµ. In addition to the average

value, from Figure 4.1 we observe that the relative gap of using uµ,σ has a smaller

sample minimum, lower quartile (25th percentile), median, upper quartile (75th

percentile), and sample maximum than using ueig and uµ. The relative gap using

the sample based method is the smallest as should be expected. Hence, in terms of

the relative gap between the optimal value of the QUBO problem and its convex
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Figure 4.1: Boxplot of the Relative Gaps for all the 100 scenarios

relaxation, parameter uµ,σ is better than ueig and uµ and closest to the sample

based method.

We also plot the CPU time taken to solve the QUBO problem for every scenario

c(k), k ∈ [K]. In Figure 4.2, “t 01QPk(u)”, denotes the CPU time taken to solve the

convex QUBO problem with the preprocessing parameter u for scenario c(k). Since

the CPU time taken to solve the QUBO problem by using ueig is much larger than

the other three methods, we only focus on three methods excluding the eigenvalue

based method. Since uµ and uµ,σ are common preprocessing parameters for all the

100 instances, and we can compute them quickly by solving a single SDP problem,

the CPU time of getting uµ and uµ,σ is negligible in Figure 4.2. However, to

use {u(k)
opt, k ∈ [K]} we must solve an SDP problem for every instance. Hence in

the plot of the CPU time to solve the QUBO problem, the time (t u
(k)
opt) taken to

compute u
(k)
opt is added.

From Figure 4.2, we see that for the small size instances (subfigure (a)) and the

medium size instances (subfigure (b)), the mean and standard deviation method
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(b) Medium Size Instances
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(c) Hard to Solve Instances

Figure 4.2: Boxplot of the CPU Time: (for the instances which can not be solved
in 10 minutes, we just plot its CPU time as 600 seconds in the figure)
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is better than the sample based and mean based method. The CPU time of us-

ing uµ,σ to solve the QUBO problem have the smallest sample minimum, lower

quartile (25th percentile), median, upper quartile (75th percentile), and sample

maximum. For the hard to solve instances (subfigure (c)), the three methods look

more similar in Figure 4.2. From Table 4.3, we can see that using uµ,σ, we need

the smallest CPU time to solve all the 100 instances when N = 90, d = 0.6. For

the largest and most difficult set of instances with N = 120, d = 0.2, very few

instances can be solved to optimality in 10 minutes. By using uµ,σ, we solve 16

instances to optimality which is the same as using the sample based method.

Robustness Tests using Permutations

Next, we test the robustness of the mean and standard deviation based method

using permutation experiments. The Penalized QCR method in this paper is de-

veloped for the Fréchet class of distributions with fixed marginal distributions.

However no assumption is made on the dependency structure between random

variables. To test the robustness of the solutions, we generate other feasible distri-

butions in this set by permuting the individual components of the randomly gen-

erated samples in the following manner. Given the sample data c(1), . . . , c(100), we

compute the sample mean µ and the sample standard deviation σ. For i ∈ [N ], we

randomly permute the ith component sequence of the vectors c
(1)
i , c

(2)
i , . . . , c

(100)
i .

By performing this permutation independently for each i ∈ [N ], we generate a

new set of samples {c̄(k), k ∈ [K]}. See [91] for a similar set of experiments

in the context of stochastic knapsack problems. Note that the sample mean µ

and the standard deviation σ will not change after these permutations. Hence

the preprocessing parameter uµ and uµ,σ will not change. However clearly, u
(k)
opt

might change since the samples have changed. As a control, we also use the av-

erage sample based preprocessing vector defined as uave :=
∑100

k=1 u
(k)
opt/100. Since

Q− diag(u
(k)
opt) � 0,∀k ∈ [K], we have Q− diag(uave) � 0.

For the tests, we use two sets of parameters ((N, d) = (50, 0.6) and (N, d) =

(70, 0.3)) from Table 4.3 and perform numerical tests for the samples after the



4.4 Computational Results 91

random permutations. For each set of data, we test the results across 15 permu-

tations. The preprocessing vectors uave, uµ and uµ,σ are obtained one time only

and hence the CPU time of computing these preprocessing parameters is ignored.

However, u
(k)
opt, k ∈ [K] must be recalculated for every permutation. The numerical

results are shown in Table 4.4 and 4.5.

Table 4.4: Gap and CPU time with 15 permutations: N = 50, d = 0.6

No.
u = u

(k)
opt, k ∈ [K] u = uave u = uµ u = uµ,σ

gap| t u |t 01QP|solved gap |t 01QP|solved gap |t 01QP|solved gap|t 01QP|solved

1 6.6 |47.78| 22.6 | 100 10.5| 22.1 | 100 10.0| 19.7 | 100 8.9 | 15.2 | 100

2 6.5 |55.79| 27.9 | 100 10.4| 25.3 | 100 9.9 | 23.9 | 100 8.8 | 18.7 | 100

3 6.7 |56.25| 29.6 | 100 10.6| 27.7 | 100 10.1| 25.8 | 100 9.0 | 19.8 | 100

4 6.7 |58.73| 27.7 | 100 10.7| 26.5 | 100 10.1| 24.5 | 100 9.0 | 19.1 | 100

5 6.5 |53.95| 27.8 | 100 10.4| 26.3 | 100 9.9 | 24.2 | 100 8.8 | 19.0 | 100

6 6.5 |54.24| 27.3 | 100 10.4| 25.6 | 100 9.9 | 23.8 | 100 8.8 | 18.8 | 100

7 6.7 |56.78| 28.4 | 100 10.9| 27.8 | 100 10.4| 25.7 | 100 9.1 | 19.5 | 100

8 6.6 |54.65| 27.2 | 100 10.5| 26.0 | 100 9.9 | 23.8 | 100 8.9 | 18.7 | 100

9 6.5 |55.60| 26.7 | 100 10.4| 24.7 | 100 9.9 | 23.4 | 100 8.8 | 18.3 | 100

10 6.5 |45.54| 26.7 | 100 10.4| 25.0 | 100 9.9 | 23.1 | 100 8.8 | 18.0 | 100

11 6.6 |52.42| 27.4 | 100 10.5| 26.6 | 100 10.0| 24.7 | 100 8.9 | 18.9 | 100

12 6.5 |52.29| 27.4 | 100 10.4| 26.2 | 100 9.8 | 23.5 | 100 8.8 | 18.8 | 100

13 6.7 |54.48| 28.3 | 100 10.6| 26.8 | 100 10.1| 24.9 | 100 9.0 | 19.4 | 100

14 6.6 |53.38| 26.9 | 100 10.5| 25.0 | 100 10.0| 22.8 | 100 8.9 | 18.3 | 100

15 6.4 |56.66| 24.5 | 100 10.3| 22.8 | 100 9.8 | 21.5 | 100 8.7 | 17.0 | 100

Table 4.5: Gap and CPU time with 15 permutations: N = 70, d = 0.3

No.
u = u

(k)
opt, k ∈ [K] u = uave u = uµ u = uµ,σ

gap| t u |t 01QP|solved gap |t 01QP|solved gap |t 01QP|solved gap |t 01QP|solved

1 8.3 |62.42| 303.7 | 100 13.1| 500.2 | 100 12.3| 322.9 | 100 11.0| 278.3 | 100

2 8.3 |63.63| 275.1 | 100 13.1| 498.1 | 100 12.2| 300.0 | 100 11.0| 267.7 | 100

3 8.5 |62.99| 340.7 | 100 13.4| 580.9 | 100 12.6| 368.2 | 100 11.3| 328.8 | 100

4 8.3 |62.75| 275.3 | 100 13.1| 481.2 | 100 12.2| 293.1 | 100 11.0| 267.7 | 100

5 8.2 |62.87| 291.5 | 100 13.0| 489.0 | 100 12.2| 301.8 | 100 10.9| 267.4 | 100

6 8.4 |63.07| 339.4 | 100 13.1| 600.4 | 100 12.2| 350.8 | 100 11.0| 321.6 | 100

7 8.2 |62.71| 278.8 | 100 13.1| 453.9 | 100 12.3| 288.4 | 100 11.0| 265.8 | 100

8 8.2 |62.96| 271.5 | 100 13.0| 471.8 | 100 12.2| 286.9 | 100 10.9| 258.2 | 100

9 8.2 |62.95| 274.4 | 100 13.1| 493.4 | 100 12.2| 307.3 | 100 10.9| 264.0 | 100

10 8.1 |62.76| 246.7 | 100 12.9| 423.5 | 100 12.0| 264.0 | 100 10.8| 237.4 | 100

11 8.3 |63.12| 276.3 | 100 13.2| 471.6 | 100 12.4| 297.0 | 100 11.0| 261.6 | 100

12 8.2 |63.09| 279.6 | 100 13.1| 501.2 | 100 12.2| 302.1 | 100 10.9| 266.1 | 100

13 8.2 |63.15| 282.8 | 100 13.0| 485.3 | 100 12.2| 302.2 | 100 10.9| 266.5 | 100

14 8.5 |63.37| 330.5 | 100 13.4| 579.2 | 100 12.6| 350.0 | 100 11.2| 311.7 | 100

15 8.2 |66.04| 293.7 | 100 13.0| 497.6 | 100 12.2| 311.1 | 100 10.9| 274.0 | 100
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From Tables 4.4 and 4.5, we see that by using uµ,σ the average gap is smaller

than using uµ and uave. Moreover the total CPU time taken to solve the QUBO

problem is always the smallest for all the permutations by using uµ,σ. This shows

that the mean and standard deviation based penalized QCR method is robust for

the small and medium size instances.



Chapter 5
Conclusions and Future Work

5.1 Conclusions

For the linear combinatorial optimization problem maxx∈X⊆{0,1}N c̃
Tx with uncer-

tainty in the random vector c̃, two probabilistic models were considered in this

thesis. The simpler model is to minimize the WCVaR of cost:

min
x∈X

WCVaRα(−c̃Tx). (5.1)

With a fixed x ∈ X , we developed a tractable convex optimization reformulation

for the subproblem WCVaRα(−c̃Tx) under the marginal distribution and marginal

moment models. Furthermore, we showed that problem (5.1) can be solved to

optimality as a deterministic linear combinatorial optimization problem.

The other model we proposed was to minimize the WCVaR of regret for the

random linear combinatorial optimization problem:

min
x∈X

WCVaRα(max
y∈X

c̃Ty − c̃Tx). (5.2)

This generalized the interval uncertainty minmax regret model by incorporating

additional marginal distribution information on the data. By generalizing the ear-

lier bounds of Meilijson and Nadas [88] to the regret framework, we proved a convex

optimization formulation for WCVaRα(maxy∈X c̃
Ty − c̃Tx) when x is fixed, and

93
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showed the WCVaR of regret is computable in polynomial time if the deterministic

combinatorial optimization problem is solvable in polynomial time. For the class

of combinatorial optimization problems with a compact convex hull representa-

tion, a polynomial sized mixed integer linear program (MILP) is formulated under

the discrete marginal distribution model. We also developed MILP formulations

for the marginal moment model when (a) the range and mean are given and (b)

the range, mean and mean absolute deviation are given. In the case (c) the range,

mean and standard deviation are given, a mixed integer second order cone program

was formulated.

For the subset selection problem of choosing a subset of K items from N

randomly weighted items, we designed a polynomial time algorithm to solve the

problem of minimizing the WCVaR of regret with complexity O(N2J2
max) under

the discrete marginal distribution model, where Jmax is the maximum among the

numbers of the supporting points for the N random weights. This complexity

is reduced to O(N2) under the marginal moment model when (a) the range and

mean are given, or (b) the range, mean and mean absolute deviation are given.

This polynomial time algorithm can be regarded as a generalization of the poly-

nomial time algorithms designed by Conde [37] and Averbakh [9] for the minmax

regret subset selection problem with range information only. The numerical results

showed the proposed polynomial time algorithm is fast and stable in comparison

with the general purpose mixed integer linear programming solver in CPLEX. This

approach was also used to develop the polynomial algorithm for the distribution-

ally robust k-sum optimization problem. It can also be used to show that when

the linear sum combinatorial optimization problem is polynomially solvable, the

k-sum optimization problem is also polynomially solvable.

Finally, we designed a Penalized QCR method to find the “optimal” prepro-

cessing parameter for the quadratic unconstrained binary optimization problem

with random linear coefficients. The SDP formulation for the random version of

the problem can be viewed as a penalized version of the SDP used for deterministic
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QUBO problems. Using this SDP formulation, we found a common preprocessing

parameter for a set of instances which differs only in the linear term of the objec-

tive. Computationally, we showed that by using limited probabilistic information

such as the mean and variance and solving a single SDP across random instances of

the problem, we can obtain significant computational advantages over alternative

preprocessing methods.

5.2 Future Work

5.2.1 Linear Programming Reformulation and Polynomial

Time Algorithm

In this thesis, we have designed a polynomial time algorithm for the problem

of minimizing the WCVaR of regret for the subset selection problem under the

discrete marginal distribution model. Furthermore this polynomial time algorithm

also solves the problem to optimality in the marginal moment model when (a) the

range and mean are given, or (b) the range, mean and mean absolute deviation

are given. Since most of the polynomially solvable integer linear programming

problems have equivalent linear programming (LP) reformulations, a natural open

question is:

Question 5.1. Can we find an equivalent LP reformulation for the problem of

minimizing the WCVaR of regret under the discrete marginal moment model for

the subset selection problem?

To consider Question 5.1, we can first try to to find an equivalent LP reformulation

for the minmax regret subset selection problem in the interval uncertainty case.

In the marginal moment model, when (c) the range, mean and standard devi-

ation are given, we do not know the computational complexity of the probabilistic

regret problem for the subset selection problem. An open question is:
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Question 5.2. What is the complexity of minimizing the WCVaR of regret for the

subset selection problem in the marginal moment model when the range, mean and

standard deviation are given?

Recall the probabilistic regret model for the subset selection problem

min
x∈X

WCVaRα(Z(c̃)− c̃Tx), (5.3)

where X =
{
x ∈ {0, 1}N :

∑N
i=1 xi = K

}
, and Z(c̃) = maxx∈X c̃

Tx. In Chapter 3,

we showed that under the marginal moment model, problem (5.3) is formulated as

min
λ0,x∈X ,d∈Ω

N∑
i=1

Fi(di, xi, λ0) +Kλ0, (5.4)

where

Fi(di, xi, λ0) = [di − λ0]+ +
α

1− α
dixi +

1

1− α
sup
Pi∈Pi

EPi [c̃i − di]+ −
1

1− α
µixi.

In the cases (a) and (b), the worst-case distribution for the item supPi∈Pi EPi [c̃i−di]
+

are two-point and three-point discrete distributions which are independent of the

variable di, see Ben-Tal and Hochman [16]. Hence the same analysis for the discrete

marginal distribution model can be used to the marginal moment model in the cases

(a) and (b). However, in the case (c) the range, mean and standard deviation are

given, the worst-case distribution for the item supPi∈Pi EPi [c̃i − di]
+ is a two-point

discrete distribution, but it depends on the variables di, (see Birdge and Maddox

[30]). Hence the same analysis for the discrete marginal distribution model cannot

be applied to the case (c). In the case (c), finding a polynomial algorithm of the

probabilistic regret model for the subset selection problem or showing it is NP-hard

remains an open question.

5.2.2 WCVaR of Cost and Regret in Cross Moment Model

The distributional model we considered in the thesis is the Fréchet class of distri-

butions, i.e. the marginal distribution model and marginal moment model. How-

ever, no correlation information has been involved in these models. Consider the
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combinatorial optimization problem Z(c̃) := maxx∈X c̃
Tx with uncertainty in the

random vector c̃. To incorporate the correlation information of c̃, the simplest

model to be considered is the cross moment model, that is we assume the mean

and the covariance matrix of the random vector c̃ is given. Let c̃ ∼ (µ,Σ), i.e. the

distribution of c̃ lies in the distributional set with mean equals to µ and covariance

matrix equals to Σ. First we consider the problem of minimizing the WCVaR of

cost:

min
x∈X

WCVaRα(−c̃Tx) = min
x∈X ,v∈<

{
v +

1

1− α
sup

c̃∼(µ,Σ)

E[−c̃Tx− v]+

}
. (5.5)

Using the projection property in Popescu [99], the sup problem in (5.5) can be for-

mulated as a univariate mean-variance distributionally robust optimization prob-

lem, hence we obtain

sup
c̃∼(µ,Σ)

EP [−c̃Tx− v]+ = sup
r̃∼(µTx,xTΣx)

E[−r̃ − v]+

=
1

2

[
(µTx− v) +

√
(µTx+ v)2 + xTΣx

]
= min

t∈<

1

2

[
−µTx− v + t

]
s.t. t ≥

∥∥∥∥∥
(
µTx+ v

Σ1/2x

)∥∥∥∥∥
2

.

Therefore (5.5) can be formulated as the following mixed integer second order cone

program (SOCP)

min
x∈X

WCVaRα(−c̃Tx) = min
x,v,t

{
v +

1

2(1− α)
(−uTx− v + t)

}
s.t. t ≥

∥∥∥∥∥
(
µTx+ v

Σ1/2x

)∥∥∥∥∥
2

x ∈ X .

As in the SOCP formulation of minimizing the WCVaR of cost, it is important

to analyze the WCVaR of regret under correlation information. The question is:
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Question 5.3. To find computationally implementable formulations for the fol-

lowing problem

min
x∈X

WCVaRα(Z(c̃)− c̃Tx) = min
x∈X ,v∈<

{
v +

1

1− α
sup

c̃∼(µ,Σ)

E[Z(c̃)− c̃Tx− v]+

}
.

(5.6)

A problem related to (5.6) is

sup
c̃∼(µ,Σ)

E[Z(c̃)]. (5.7)

(5.7) is NP-hard, and a copositive programming reformulation was proposed in

Natarajan et al. [93]. There is potential for extending the techniques therein to

solve these classes of problems.

5.2.3 Random Quadratic Optimization with Constraints

In the thesis, a Penalized QCR method is designed to solve the random quadratic

unconstrained binary optimization problems. Further research can be done for

more general quadratic programs with constraints. For the deterministic linearly-

constrained binary quadratic program, Billionnet et. al [29] developed the QCR

method by a tight convex reformulation. Similar to the QCR method for uncon-

strained binary quadratic program, the SDP formulation is used to find the “op-

timal” preprocessing parameter. They also extended the QCR method to general

mixed integer programs [28]. It is natural to extend the Penalized QCR method

to more general binary quadratic optimization with constraints. A future research

question is:

Question 5.4. To develop a Penalized QCR method for the random binary quadratic

optimization with linear constraints:

max
{
q(x; c,Q) := xTQx+ cTx | Ax = b,x ∈ {0, 1}N

}
, ∀c ∈ C. (5.8)

Furthermore, it would be interesting to consider the problems with quadratic con-

straints and generalize the method to problems with random Q matrices.
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[17] A. Ben-Tal and Nemirovskĭı. Lectures on modern convex optimization: anal-

ysis, algorithms, and engineering applications.



Bibliography 101

[18] A. Ben-Tal and M. Teboulle. An old-new concept of convex risk measures:

The optimized certainty equivalent. Mathematical Finance, 17(3):449–476,

2007.

[19] Fernando P. Bernardo and Pedro M. Saraiva. Robust optimization framework

for process parameter and tolerance design. AIChE journal, 44(9):2007–2017,

1998.

[20] D. Bertsimas, K. Natarajan, and C. P. Teo. Persistence in discrete optimiza-

tion under data uncertainty. Mathematical Programming, 108(2-3):251–274,

2006.

[21] D. Bertsimas, K. Natarajan, and C.P. Teo. Probabilistic combinatorial op-

timization: Moments, semidefinite programming, and asymptotic bounds.

SIAM Journal on Optimization, 15(1):185–209, 2004.

[22] D. Bertsimas and I. Popescu. Optimal inequalities in probability theory: A

convex optimization approach. SIAM Journal on Optimization, 15(3):780–

804, 2005.

[23] D. Bertsimas and M. Sim. Robust discrete optimization and network flows.

Mathematical Programming, 98:49–71, 2003.

[24] D. Bertsimas and M. Sim. The price of robustness. Operations research,

52(1):35–53, 2004.

[25] A. Billionnet and S. Elloumi. Using a mixed integer quadratic programming

solver for the unconstrained quadratic 0-1 problem. Mathematical Program-

ming, 109(1):55–68, 2007.

[26] A. Billionnet, S. Elloumi, and A. Lambert. A branch and bound algorithm

for general mixed-integer quadratic programs based on quadratic convex re-

laxation. To appear in Journal of Combinatorial Optimization, 2012.



Bibliography 102

[27] A. Billionnet, S. Elloumi, and A. Lambert. An efficient compact quadratic

convex reformulation for general integer quadratic programs. To appear in

Computational Optimization and Applications, 2012.

[28] A. Billionnet, S. Elloumi, and A. Lambert. Extending the QCR method to

general mixed-integer programs. Mathematical Programming, 131(1-2):381–

401, 2012.

[29] A. Billionnet, S. Elloumi, and M-C. Plateau. Improving the performance of

standard solvers for quadratic 0-1 programs by a tight convex reformulation:

The qcr method. Discrete Applied Mathematics, 157(6):1185–1197, 2009.

[30] J. R. Birge and M. J. Maddox. Bounds on expected project tardiness. Op-

erations Research, 43(5):838–850, 1995.

[31] E. Boros and P. L. Hammer. The max-cut problem and quadratic 0-1 opti-

mization; polyhedral aspects, relaxations and bounds. Annals of Operations

Research, 33(3):151–180, 1991.

[32] E. Boros, P. L. Hammer, and G. Tavares. Preprocessing of unconstrained

quadratic binary optimization. Technical Report RRR 10-2006, RUTCOR,

2006.

[33] D.B. Brown. Large deviations bounds for estimating conditional value-at-

risk. Operations Research Letters, 35(6):722–730, 2007.

[34] M. W. Carter. The indefinite zero-one quadratic problem. Discrete Applied

Mathematics, 7(1):23–44, 1984.

[35] W. Chen, M. Sim, J. Sun, and C.P. Teo. From cvar to uncertainty set:

Implications in joint chance-constrained optimization. Operations Research,

58:470–485, 2010.

[36] Millie Chu, Yuriy Zinchenko, Shane G Henderson, and Michael B. Sharpe.

Robust optimization for intensity modulated radiation therapy treatment



Bibliography 103

planning under uncertainty. Physics in Medicine and Biology, 50(23):5463,

2005.

[37] E. Conde. An improved algorithm for selecting p items with uncertain re-

turns according to the minmax-regret criterion. Mathematical Programming,

100(2):345–353, 2004.

[38] E. Conde. A minmax regret approach to the critical path method with task

interval times. European Journal of Operational Research, 197(1):235–242,

2009.

[39] G. Dall’aglio. Fréchet classes: the beginnings. Advances in Probability Dis-

tributions with Given Marginals, G. Dallaglio, S. Kotz, S., and G. Salinetti,

editors, Kluwer Academic Publishers, Dordrecht, pages 1–12.
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