6 research outputs found

    Solving the Traveling Salesperson Problem with Precedence Constraints by Deep Reinforcement Learning

    Full text link
    This work presents solutions to the Traveling Salesperson Problem with precedence constraints (TSPPC) using Deep Reinforcement Learning (DRL) by adapting recent approaches that work well for regular TSPs. Common to these approaches is the use of graph models based on multi-head attention (MHA) layers. One idea for solving the pickup and delivery problem (PDP) is using heterogeneous attentions to embed the different possible roles each node can take. In this work, we generalize this concept of heterogeneous attentions to the TSPPC. Furthermore, we adapt recent ideas to sparsify attentions for better scalability. Overall, we contribute to the research community through the application and evaluation of recent DRL methods in solving the TSPPC.Comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in KI 2022: Advances in Artificial Intelligence, and is available online at https://doi.org/10.1007/978-3-031-15791-2_1

    Atomicity and non-anonymity in population-like games for the energy efficiency of hybrid-power HetNets

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the user–base station (BS) association problem is addressed to reduce grid consumption in heterogeneous cellular networks (HetNets) powered by hybrid energy sources (grid and renewable energy). The paper proposes a novel distributed control scheme inspired by population games and designed considering both atomicity and non-anonymity – i.e., describing the individual decisions of each agent. The controller performance is considered from an energy–efficiency perspective, which requires the guarantee of appropriate qualityof-service (QoS) levels according to renewable energy availability. The efficiency of the proposed scheme is compared with other heuristic and optimal alternatives in two simulation scenarios. Simulation results show that the proposed approach inspired by population games reduces grid consumption by 12% when compared to the traditional best-signal-level association policy.Peer ReviewedPostprint (author's final draft

    Atomicity and non-anonymity in population-like games for the energy efficiency of hybrid-power HetNets

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the user–base station (BS) association problem is addressed to reduce grid consumption in heterogeneous cellular networks (HetNets) powered by hybrid energy sources (grid and renewable energy). The paper proposes a novel distributed control scheme inspired by population games and designed considering both atomicity and non-anonymity – i.e., describing the individual decisions of each agent. The controller performance is considered from an energy–efficiency perspective, which requires the guarantee of appropriate qualityof-service (QoS) levels according to renewable energy availability. The efficiency of the proposed scheme is compared with other heuristic and optimal alternatives in two simulation scenarios. Simulation results show that the proposed approach inspired by population games reduces grid consumption by 12% when compared to the traditional best-signal-level association policy.Peer ReviewedPostprint (author's final draft

    Efficient combinatorial optimization algorithms for logistic problems

    Get PDF
    The field of logistics and combinatorial optimization features a wealth of NP-hard problems that are of great practical importance. For this reason it is important that we have efficient algorithms to provide optimal or near-optimal solutions. In this work, we study, compare and develop Sampling-Based Metaheuristics and Exact Methods for logistic problems that are important for their applications in vehicle routing and scheduling. More specifically, we study two Stochastic Combinatorial Optimization Problems (SCOPs) and finally a Combinatorial Optimization Problem using methods related to the field of Metaheuristics, Monte Carlo Sampling, Experimental Algorithmics and Exact Algorithms. For the SCOPs studied, we emphasize studying the impact of approximating the objective function to the quality of the final solution found. We begin by examining Solution Methods for the Orienteering Problem with Stochastic Travel and Service Times (OPSTS). We introduce the state-of-the-art before our contributions and proceed to examining our suggested improvements. The core of our improvements stem from the approximation of the objective function using a combination of Monte Carlo sampling and Analytical methods. We present four new Evaluators (approximations) and discuss their advantages and disadvantages. We then demonstrate experimentally the advantages of the Evaluators over the previous state-of-the-art and explore their trade- offs. We continue by generating large reference datasets and embedding our Evaluators in two Metaheuristics that we use to find realistic near-optimal solutions to OPSTS. We demonstrate that our results are statistically significantly better than the previous state-of-the-art. In the next chapter, we present the 2-stage Capacitated Vehicle Routing Problem with Stochastic Demands inspired by an environmental use case. We propose four different solution approaches based on different approximations of the objective function and use the Ant Colony Metaheuristic to find solutions for the problem. We discuss the trade-offs of each proposed solution and finally argue about its potentially important environmental application. Finally, focus on exact methods for the Sequential Ordering Problem (SOP). Firstly, we make an extensive experimental comparison of two exact algorithms existing in the literature from different domains (cargo and transportation and the other compilers). From the experimental comparison and application of the algorithms in new contexts we were able to close nine previously open instances in the literature and improve seventeen more. It also led to insights for the improvement of one of the methods (The Branch-and-Bound Approach - B&B). We proceed with the presentation of the improved version that led to the closing of eight more instances and speeding up the previous version of the B&B algorithm by 4%-98%

    Solving the sequential ordering problem using branch and bound

    No full text
    The Sequential Ordering Problem (SOP) is an NP-hard problem with a wide range of applications in the domains of scheduling, logistics and compilers. The development of powerful computers and effective algorithmic techniques has made it possible to devise exact algorithms that can solve larger instances of this problem. In this paper, we present an enhanced exact algorithm for this problem using a branch-and-bound (B&B) approach. The proposed algorithm is based on a new lower-bound technique and a local-search domination technique. The new lower-bound technique uses the dynamic Hungarian algorithm to solve a Minimum-Cost Perfect Matching relaxation of the SOP. The local search domination technique prunes the sub-tree below the current node in the B&B tree if a better partial solution is found. The performance of the proposed algorithm is evaluated experimentally using three different benchmark suites: TSPLIB, SOPLIB and COMPILERS. The results of the experimental evaluation show that the proposed algorithm finds exact solutions considerably faster than previously proposed algorithms. The proposed approach significantly reduces the optimality gap to 0.217, 0.122, and 0.004 for the three respective benchmark sets, and closes five instances that were previously open
    corecore