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Abstract

The field of logistics and combinatorial optimization features a wealth of NP-hard
problems that are of great practical importance. For this reason it is important
that we have efficient algorithms to provide optimal or near-optimal solutions.
In this work, we study, compare and develop Sampling-Based Metaheuristics and
Exact Methods for logistic problems that are important for their applications in
vehicle routing and scheduling. More specifically, we study two Stochastic Combi-
natorial Optimization Problems (SCOPs) and finally a Combinatorial Optimization
Problem using methods related to the field of Metaheuristics, Monte Carlo Sam-
pling, Experimental Algorithmics and Exact Algorithms. For the SCOPs studied,
we emphasize studying the impact of approximating the objective function to the
quality of the final solution found.

We begin by examining Solution Methods for the Orienteering Problem with
Stochastic Travel and Service Times (OPSTS). We introduce the state-of-the-art
before our contributions and proceed to examining our suggested improvements.
The core of our improvements stem from the approximation of the objective func-
tion using a combination of Monte Carlo sampling and Analytical methods. We
present four new Evaluators (approximations) and discuss their advantages and
disadvantages. We then demonstrate experimentally the advantages of the Eval-
uators over the previous state-of-the-art and explore their trade-offs. We con-
tinue by generating large reference datasets and embedding our Evaluators in
two Metaheuristics that we use to find realistic near-optimal solutions to OPSTS.
We demonstrate that our results are statistically significantly better than the pre-
vious state-of-the-art.

In the next chapter, we present the 2-stage Capacitated Vehicle Routing Prob-
lem with Stochastic Demands inspired by an environmental use case. We propose
four different solution approaches based on different approximations of the ob-
jective function and use the Ant Colony Metaheuristic to find solutions for the
problem. We discuss the trade-offs of each proposed solution and finally argue
about its potentially important environmental application.

Finally, focus on exact methods for the Sequential Ordering Problem (SOP).
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Firstly, we make an extensive experimental comparison of two exact algorithms
existing in the literature from different domains (cargo and transportation and
the other compilers). From the experimental comparison and application of the
algorithms in new contexts we were able to close nine previously open instances
in the literature and improve seventeen more. It also led to insights for the im-
provement of one of the methods (The Branch-and-Bound Approach - B&B). We
proceed with the presentation of the improved version that led to the closing of
eight more instances and speeding up the previous version of the B&B algorithm
by 4%-98%.
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Chapter 1

Introduction

In this chapter, we introduce the research areas relevant to the thesis, the prob-
lems studied and the prerequisite knowledge for the remaining part of the thesis.

1.1 Classification of the Research Area

In recent years, there has been an increasing interest for Stochastic Combina-
torial Optimization Problems (SCOPs). In contrast to the traditional approach
of Combinatorial Optimization Problems [Papadimitriou and Steiglitz, 1982; Lo-
vasz, 1998], that consist of finding an optimal object from a finite set of ob-
jects given a deterministic objective and deterministic constraints, such as Vehicle
Routing [Toth and Vigo, 2001], SCOPs encompass stochastic information about
the problem. This results to more realistic models as in the reality many events
or quantities can be approximated probabilistically more accurately (e.g. travel
times) due to unpredictable factors such as traffic or weather conditions.

One of the classes of problems of SCOPs that is central to the thesis is the
Stochastic Vehicle Routing Problems. Vehicle Routing Problems deal with the trans-
port of goods between depots and customers by a fleet of vehicles. The overall
goal is to fulfill the transportation requirements in the most efficient way regard-
ing objectives as e.g. costs or travel times, while respecting the operational con-
straints, such as capacities of vehicles, time window constraints, working time
constraints and maximum route lengths. While in the classic scenario the model
contains only precise information, Stochastic Vehicle Routing Problems are mod-
eled using stochastic data. A common way to model these stochastic informa-
tion is to use probability distributions, which are either known or estimated from
historical data. Widely used stochastic elements in the context of Vehicle Rout-
ing Problems are the presence of customers, demands of customers and travel

1



2 1.1 Classification of the Research Area

times. Typically the objective function is a stochastic variable, e.g. the expected
travel time or the expected costs. It is also possible to formulate constraints us-
ing stochastic data, which leads to so called chance-constrained problems. For
example, one constrained could assure that each customer is visited within a pre-
defined time window with a certain probability. Examples of Stochastic Vehicle
Routing Problems are the Orienteering Problem with Stochastic Travel and Service
Times[Campbell et al., 2011] and the Probabilistic Travelling Salesman Problem
[Bertsimas and Howell, 1993]. While Stochastic Vehicle Routing Problems can
be used to obtain more realistic models for real world problems, they are usu-
ally harder to solve than their non-stochastic counterparts. One reason for this
inherent hardness is that Stochastic Vehicle Routing Problems are structurally
different from classic Vehicle Routing Problems and therefore well established
methods cannot be used in this context. The other reason is that the objective
function for many Stochastic Vehicle Routing Problems is computationally very
expensive. In some cases no polynomial time algorithms for the evaluation of
a solution are known and sometimes there is even no closed form expression
for the objective function available. Additionally, most of the Stochastic Vehicle
Routing Problems are NP-hard and exact mathematical approaches can only be
applied to very small instances. Therefore heuristics and metaheuristics are of
great interest for obtaining good or even optimal solutions for those problems.
In the cases where the objective function is computationally very expensive or
not available as a closed form expression, the combination of metaheuristics with
Monte Carlo Sampling for the evaluation of solutions, currently belongs to the
most promising approaches. Subsequently we discuss this concept more in detail.

One of the widely used concepts used in the thesis is the concept of meta-
heuristics. Metaheuristics are general purpose methods for solving hard opti-
mization problems. They operate on the solution space using a single solution
or a population of solutions. The quality of a solution is measured by an objec-
tive function. Iteratively, new solutions are generated and replace the current
solution or solutions in the current population according to a specific procedure
and considering the qualities of the solutions involved in this process. Although
metaheuristics obtain good solutions efficiently for a wide variety of problems,
usually no a-priori guarantees for the quality of the solutions are given. Many of
those methods are exploiting analogies, e.g. from the nature or physical systems,
for the optimization process. Examples of the most successful metaheuristics in-
clude Local Search, Tabu Search, Simulated Annealing, Ant Colony Optimization,
Evolutionary Algorithms and Particle Swarm Optimization. For an extended re-
view and a detailed comparison of various metaheuristics, we refer to [Bianchi
et al., 2009; Blum and Roli, 2003; Gendreau and Potvin, 2005; Talbi, 2009; Luke,
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2013].
The main metaheuristics used in this thesis are the Random Search Meta-

heuristic, the Variable Neighborhood Search Metaheuristic and the Ant Colony Op-
timization Metaheuristic. Useful resources for the Random Search Metaheuristic
are: [Spall, 2005], [Solis and Wets, 1981], [Brownlee, 2011], for the Variable
Neighborhood Search Metaheuristic: [Mladenović and Hansen, 1997], [Sevkli and
Sevilgen, 2006] and [Campbell et al., 2011] and for the Ant Colony Optimiza-
tion Metaheuristic: [Dorigo, 1992], [Dorigo et al., 1991] and [Gambardella and
Dorigo, 1999].

Now let us examine how those metaheuristics could be used in combination
with Monte Carlo Sampling to solve Stochastic Vehicle Routing Problems. In
the standard case, we have given a problem with stochastic input data, non-
stochastic constraints and an objective function which is the expectation of a
certain random variable. We then distinguish three different scenarios regarding
the complexity of the objective function.

1. A closed-form expression for the objective function is available and can be
computed efficiently.

2. A closed-form expression for the objective function is available, but the
evaluation of a solution is computationally too expensive.

3. There is no closed-form expression for the objective function available.

It will be shown how Monte Carlo sampling is useful in all of the above cases.
But first let us define Monte Carlo Sampling. Let X be the solution space and
assume that the stochastic data are given by the probability space (Ω,Σ, P). Let
x be a solution and letω be a random variable according to the given probability
space. F : X×Ω→ R represents the solution costs for a given solution and a given
realization of the random variable. Now we can define the objective function
f : X → R as f (x) = E(F(x ,ω)). Now, if we were to take an n-sample of the
sample space (n realizations of the random variable ω: ω1,ω2, . . . ,ωn) and we
computed over the sample, then we would have the Monte Carlo approximation
efn : X → R of E( f (x ,ω)) :

efn(x) =
1
n

n
∑

i=1

F(x ,ωi)

We can see that for arbitrarily large values of n:

E(efn(x)) = E(
1
n

n
∑

i=1

F(x ,ωi)) =
1
n

n
∑

i=1

E(F(x ,ωi)) = E(F(x ,ω)) = f (x)



4 1.1 Classification of the Research Area

Since the expected value of the Monte Carlo approximation of f is f itself,
then this approximation is an unbiased estimator of f .

For problems belonging to problem class (1) we have the following situa-
tion. A closed-form expression for the objective function is available and can be
computed efficiently. This means that we can apply metaheuritics in a straight-
forward way using the exact objective function. Although this leads to efficient
heuristics, metaheuristics using the Monte Carlo Sampling approximation of the
objective function can lead to significant improvements. In this thesis, the Orien-
teering Problem with Stochastic Travel and Service Times, presented in Chapter
2, belongs in this class. There is a closed-form approximation of the objective
function that can be computed in polynomial time. However, as it will be shown
in the relevant chapter, Monte Carlo sampling methods alone or in combination
with deterministic and analytical methods when embedded in metaheuristics can
obtain same quality solutions with significantly less computational time or signif-
icantly better solutions in the same time. A similar situation is true for the Prob-
abilistic Traveling Salesman Problem (PTSP) [Weyland, Bianchi and Gambardella,
2009], [Weyland, Montemanni and Gambardella, 2009].

For problems belonging to problem class (2) a closed-form expression for the
exact objective function is available but cannot be computed efficiently. Apply-
ing metaheuristics for those problems using the exact objective function is not
feasible, since the overall computational time is too large. In contrast to the ex-
act objective function, the Monte Carlo Sampling approximation of the objective
function can be computed efficiently in this case. Metaheuristics using this ap-
proximation can be used to solve those problems efficiently. A recent example in
this problem class is the Probabilistic Traveling Salesman Problem with Deadlines
(PTSPD). There is no efficient method for the computation of the objective func-
tion available and heuristics using the best known method for the computation
of the objective function lead to non feasible computational times. On the other
hand, metaheuristics based on the Monte Carlo Sampling approximation require
only a fraction of the computational time and lead to high quality solutions in a
reasonable amount of runtime [Weyland et al., 2013].

In the third problem class there is no closed-form expression for the exact
objective function available. That means we cannot use heuristics to solve those
kind of problems in a straightforward way. Fortunately, it is possible to approxi-
mate the objective function using Monte Carlo Sampling. In this way metaheuris-
tics based on the Monte Carlo Sampling approximation can be used to tackle this
problem and in many cases this is the only existing alternative for tackling prob-
lems belonging to this class. The 2-stage Capacitated Vehicle Routing Problem with
Stochastic Demands that we explore in Chapter 3 belongs in this class.
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Another example belonging to the third class that deals with complex con-
straints on delivery timeframe, accessibilities and stop frequency by applying
a methodology combining Artificial Intelligence and Discrete event Stochastic
Simulation can be found on [Bruzzone and Longo, 2014]. The paper provides
an application methodology called MARLIN that consists of defining constraints,
defining scenarios and factors and finally analyzing and comparing the results
from the simulation of the scenarios. The MARLIN methodology has been used
in real-world supply chains e.g. for delivering fresh fish to super markets in
Northern Italy.

For the analysis of the performance of our approaches we borrow methods
from Statistics such as hypothesis testing [Tanis, 2008] and Experimental Algo-
rithmics

Finally, we explore and improve Exact Algorithms[Woeginger, 2003] using
techniques such as Branch-and-Bound [Jamal et al., 2017] and Mixed-Integer
Linear Programming for the Sequential Ordering Problem [Montemanni et al.,
2013]

1.2 Main Optimization Problems in the Thesis

1.2.1 Introduction

In this section we introduce formally the logistic problems that are discussed
in the thesis, namely the Orienteering Problem with Stochastic Travel and Ser-
vice Times, the 2-stage Capacitated Vehicle Routing Problem with Stochastic De-
mands and the Sequential Ordering Problem. The same notation may be used
with different meaning in each problem according to the definitions given in the
corresponding sections.

1.2.2 The Orienteering Problem with Stochastic Travel and Ser-
vice Times

The OPSTS was first introduced in [Campbell et al., 2011]. In this problem there
is a starting point that we call the depot. A vehicle goes out of that depot and has
to serve some customers. The vehicle will end its route at a destination node and
does not have to return to the depot. There is a global deadline and in most cases
it is such that it is not possible to visit all the customers before the deadline. For
this reason, a subset of customers has to be selected to be served. After selecting
this subset, the vehicle tries to serve the customers in the subset. For each service



6 1.2 Main Optimization Problems in the Thesis

before the deadline it earns a reward, otherwise a penalty is incurred. What
makes the OPSTS different than the traditional Orienteering Problem is the fact
that the travel and service times are stochastic and we know beforehand their
probability distribution. For example in figure 1.1, the company (visualized by a
truck) will visit the customers 1, 4,3, 7 and leave out customers 5,2, 6 because of
the global deadline, 10 in this case. The deterministic travel times can be seen on
each arc and in parentheses we can see the actual travel times for this instance.
Because of the stochasticity of the travel times, the total travel time exceeds the
deadline and the company will have to pay a penalty. As it will be obvious from
subsequent sections the deadline is an important component of the structure of
the problem.

1 2

4

3

5
7

6

0
(Starting Point)

Selected subset

2 (1
.75)

1 (1.5)

4 (4.25)

3 
(3

.1
)

D = 10
Base Time

Stochastic Time

+R

+R

+R

-P

+R
-P

Reward
Penalty

Figure 1.1. In this instance of OPSTS the truck will visit nodes 1,4,3,7. The
deadline is 10. The deterministic times are in black and the actual travel times
are in the parentheses

1.2.2.1 Literature Review

The Orienteering problem originates from the sports game of orienteering where
players begin from a certain point and they have a deadline before which they
collect different rewards from different checkpoints and return to the starting
point [Tsiligirides, 1984],[Chao et al., 1996]. Therefore, the Orienteering Prob-
lem combines vertices selection and finding a path that connects all the vertices
exactly once apart from the starting vertex which is visited twice (this is also
called a Hamiltonian tour). In order to get as much reward as possible the cor-
rect selection of vertices and the shortest Hamiltonian tour between them have to
be found. Please note that in the variant examined in this thesis (OPSTS) apart
from the stochasticity in travel and service times we do not consider the arc from
the last vertex to the depot. For more information, please see Section 1.2.2.2.
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The Orienteering problem is also called the bank robber problem [Arkin et al.,
1998], the selective travelling salesman problem [Gendreau et al., 1998; Laporte
and Martello, 1990; Thomadsen and Stidsen, 2003] and the maximum collection
problem [Butt and Cavalier, 1994; Kataoka and Morito, 1988]. Another related
problem is the Travelling Salesman Problem (TSP) with profits [Feillet et al.,
2005].

In the deterministic version of the orienteering problem we have a set of N
vertices i and fixed starting and ending vertices (1 and N). There is a deadline
Tmax before which a path between the starting and ending vertices has to be
determined. The vertices can be visited at most once and the scores are additive.
The problem can be defined on a graph G = (V, A) with V = {v1, . . . , vN} being
the vertex set and A the arc set. Each vertex has non-negative score (reward)
Si, and each arc ai j ∈ A has a travel time t i j. A Hamiltonian path G′(⊂ G) is a
set containing the vertices selected to be visited (starts from v1 and ends at vN

and has length less than or equal to D). The objective is to find the Hamiltonian
path over G′ ⊂ G which is the set that respects the aforementioned constraints so
that the reward collected is maximized. In the case that we want a tour instead
of a path, we can add a dummy arc between the start and end vertex. If we
let x i j ∈ {0,1}∀i ∈ 1, . . . , N indicate if a visit to i is followed by a visit to j (0
means no, 1 means yes) and ui the position of the vertex in the path, then the
orienteering problem can be formulated as a mathematical program as follows:

maximize

� N−1
∑

i=2

N
∑

j=2

Si x i j

�

(1.1)

subject to
N
∑

j=2

x1 j =
N−1
∑

i=1

x iN = 1, (1.2)

N−1
∑

i=1

x ik =
N
∑

j=2

xk j ≤ 1,∀k = 2, . . . , N − 1 (1.3)

N−1
∑

i=1

N
∑

j=2

(t i j x i j)≤ Tmax (1.4)

2≤ ui ≤ N ;∀i = 2, . . . , N , (1.5)

ui − u j + 1≤ (N − 1)(1− x i j);∀i, j = 2, . . . , N , (1.6)

x i j ∈ {0, 1};∀i, j = 1, . . . , N (1.7)

The objective stated in Equation (1.1) is to maximize the total score from
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the visited nodes while guaranteeing that the path starts at vertex 1 and ends
at vertex N (1.2). Constraints (1.3) ensure the connectivity of the path while
constraint (1.4) ensures that the time budget is not violated. Inequalities (1.5),
(1.6) eliminate subtours according the the Miller-Tucker-Zemlin (MTZ) Travel-
ling Salesman formulation found in [Miller et al., 1960]. It must be noted that
the greatest differences of this formulation from a TSP one is in (1.3) where the
sums must be ≤ 1 implying that not all nodes are selected and similarly the MTZ
constraint in (1.6) is modified to account for nodes not selected in the Orienteer-
ing Problem.

A very good overview of the deterministic orienteering problem and its
variants as well as the mathematical formulation presented can be found in
[Vansteenwegen et al., 2011].

In the thesis, we examine a variant of the orienteering problem where the
travel and service times are stochastic, for a detailed definition Section 1.2.2.2.
To the best of our knowledge, apart from [Campbell et al., 2011] and our work
[Papapanagiotou et al., 2013],[Papapanagiotou et al., 2014], [Papapanagiotou
et al., 2016c], [Papapanagiotou et al., 2015b], [Papapanagiotou et al., 2015a],
[Papapanagiotou et al., 2016a] and [Papapanagiotou et al., 2016b] there is lim-
ited other literature on the topic. Stochastic variants of the travelling salesman
problem are closely related to the Orienteering Problem with Stochastic Travel
and Service Times. One of the most closely related problems is the probabilis-
tic traveling salesman problem with stochastic travel and service times (TCTSP).
[Teng et al., 2004] introduce and solve TCTSP with discrete travel and service
time distributions. They use an L-shaped algorithm and they manage to solve
problems with up to 35 customers.

In [Gambardella et al., 2011] an ant colony approach coupled with local
searches is presented for solving the Probabilistic Travelling Salesman Problem
(PTSP) and in [Montemanni and Gambardella, 2009] an Ant Colony System is
developed for the team orienteering problem with time windows; both papers
have similarities with the OPSTS.

Another related problem to OPSTS is the Selective Travelling Salesperson
Problem (SSTP) first presented in [Tang and Miller-Hooks, 2005]. The differ-
ence with OPSTS is that SSTP has chance constraints for the deadlines instead
of imposing penalties for unfulfilled ones. The focus of the experiments in that
paper is the performance of the algorithms, and only tight deadlines are taken
into account. Another stochastic version of the orienteering problem that has
been considered is the orienteering problem with stochastic profits for each cus-
tomer. In this problem the objective is to maximize the probability to reach a
certain level of profit before the deadline. An exact algorithm is proposed in
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[̇Ilhan et al., 2008].
Additionally, there are papers dealing with various vehicle routing problems

with random travel times and time constraints. These papers have significant
differences in their objectives with OPSTS and their methods cannot be directly
applied to OPSTS. An example is the Capacitated Vehicle Routing Problem with
stochastic travel times where the objective is to maximize the probability that
all vehicle tours are completed before a strict deadline. In [Kenyon and Morton,
2003] the problem is tackled using a Monte Carlo procedure to create solutions
and select the best. [Jula et al., 2006] consider a vehicle routing problem with
stochastic travel times and time windows. They show how to compute the first
and second moments of the arrival time distributions and propose a dynamic
programming approach that solves up to 80 customers with tight time windows.
[Russell and Urban, 2008] consider a vehicle routing problem with stochastic
travel times with soft time windows. The travel times follow the Erlang distri-
bution and the Taguchi loss function is used to compute the penalties for time
windows violation.

1.2.2.2 Problem Definition

In the rest of this section we give the formal definition of the Orienteering Prob-
lem with Stochastic Travel and Service Times. Let N = {1, . . . , n} be a set of n
customers and 1 being the depot. We define a subset M ⊆ N as the set of cus-
tomers selected to be served. The customers in M have to be served before a
global deadline D, otherwise the server gets a penalty from each customer in M
served after the deadline D. The graph of the customers is assumed to be fully
connected and therefore there is an arc (i, j) for all i, j ∈ M . The server gets
a reward ri for each customer i ∈ M served before the deadline, and for each
customer j ∈ M served after the deadline a penalty ei is incurred. To represent
the travel time we define a X i, j as a non-negative random variable from node
i to node j and for the service time we define a non-negative random variable
Si for each customer i. We make the assumption that the probability distribu-
tions of both X i, j and X i are known ∀i, j and they are the same. In [Campbell
et al., 2011], the probability distribution of the random variables follow a Γ dis-
tribution. Let the random variable Ai be the arrival time at customer i and Āi

a realization of Ai. We now represent the reward earned at customer i when
arriving to i at time Āi as R(Āi). According to the previous definitions R(Āi) = ri

for Āi ≤ D, otherwise R(Āi) = −ei (for Āi).
Let τ be a tour of the customers, defined as a sequence of customers of M .

The objective function of the problem is defined as the expected reward of the
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tour τ:
maxυ(τ) =

∑

i∈τ

[P(Ai ≤ D)ri − (1− P(Ai ≤ D))ei] (1.8)

1.2.2.3 Computing the objective function for the Γ distribution

Equation (1.8) can be computed easily if we can compute the cumulative distri-
bution function (CDF) of all the Ai. In statistics, we call the cumulative distri-
bution function FX (x) of a real-valued random variable X the probability that X
will take a value less than or equal to some x (P(X ≤ x)). Therefore P(Ai ≤ D)
in terms of a CDF can be computed as FAi

(D). Thus, the important thing is to
know the CDF of Ai. Ai is the arrival time in node i and therefore it is the sum

of all the travel times till node i. Then Ai =
i
∑

k=0
X i. It is known that if Yi fol-

lows a Γ (ki,θ ) distribution for i = 1, 2, · · · , N and all Yi are independent then
N
∑

i=1
(Yi)∼ Γ (

N
∑

i=1
(ki,θ ) and since the CDF of the Γ function is known, we can com-

pute the CDF of Ai, see also [Johnson et al., 2002]. If we assume that the CDF of
Γ with scale parameter ki is Fki

then the objective function (1.8) can be computed
as
∑

i∈τ[Fki
(D)ri − (1− Fki

(D))ei].

1.2.2.4 A mathematical formulation for OPSTS

In this section we show a mathematical formulation for OPSTS. The formulation
is based on the combination of the deterministic and stochastic versions of the
problem, see [Campbell et al., 2011] and [Vansteenwegen et al., 2011]. The
formulation for OPSTS differs from the one presented in (1.1) - (1.7) in the fol-
lowing points. Firstly, the objective function is the Equation (1.8). Additionally,
the violation of the deadline in Inequality (1.4) does not exist since in the OP-
STS formulation the constraint is soft and is penalized for its violation (which is
obvious in the objective function).

1.2.2.5 Exact Solution approach with Dynamic Programming

For certain time distributions an exact solution of the OPSTS can be obtained
using dynamic programming. The approach is motivated by [Kao, 1978] and it
is fully developed in [Campbell et al., 2011]. This solution method works only
when the travel and service time distributions differ in a single parameter and
the sum of this parameter can characterize the convolution of the arrival time
distributions. Such functions, for example, are the Γ (as discussed in Section
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1.2.2.3) and the Poisson (with common scale parameter), the normal (if the vari-
ance is a constant multiple of the mean) and the binomial and negative binomial
(with common parameter p), for more information see [Johnson et al., 2002].
Let us name the parameter ki j as the characterizing parameter (e.g. scale) for
each arc (i, j) and ki as the service time parameter. For the distributions explic-
itly mentioned earlier the convolution of travel and service time distributions is
characterized by the sum of the characterizing parameters.

Let us assume that the travel and service time distributions are independent
and identically distributed and differ in their parameters as noted above. We
denote with i ∈ N the last visited node and with K the nodes visited from the
depot up to i. Let m be the value of the characterizing parameter for the arrival
time distribution at i. The tuple (i, K , m) can fully characterize the state of the
algorithm. The actions from any state are to travel to a not-yet visited node
∈ N\K or to the end node. Traveling from node i with parameter k to node j
results in a new state ( j, K ∪ j, k + ki j + k j). As noted previously the expected
reward for the j state is R(i, K , m, j) =

∑

i∈τ[Fm′(D)ri− (1− Fm′(D))ei], Fm′ is the
cumulative distribution function with m′ = k+ki j+ki. Ending the tour yields no
reward.

The possible (i, K , m) states do not repeat and are acyclic and thus we can
obtain the following functional equation:

f ( j, K ′, m′) = max
(i,K ,m):K=K ′\ j,m′=k+ki j+ki

{ f (i, K , m) + R(i, K , m, j)} (1.9)

In [Denardo and Fox, 1979] it is shown how (1.9) can be solved recursively.
For further acceleration, pruning techniques can be applied using the reaching
algorithm described in [Denardo, 2012]. As initialization of the algorithm we
set the value of each state f (i, K , m) is set to −∞ and the initial (i, K , m) state
is set to (0,;, 0). When node j /∈ K is visited from node i, the state changes to
f ( j, K ∪ j, k+ ki j + ki) =max{ f ( j, K ∪ j, k+ ki j + ki), R(i, K , m, j)}.

Here we can make some observations for the implementation of the dynamic
programming solution. Firstly, for any 2 states (i, K , m) and (i, K , m′) such that
(m ≤ m′) (the total distance of m′ is longer but the tour τ is the same), we
have that P(A j ≤ D) ≥ P(A′j ≤ D) ∀ j ∈ τ. Therefore E[R(A j)] ≥ E[R(A′j)]
∀ j ∈ τ see [Puterman, 2014]. Thus, in this case f (i, K , m) ≥ f (i, K , m′) and
so (i, K , m) dominates (i, K , m′) and we prune (i, K , m′) from the states needed
to be considered. For further enhancements in the implementation see [Feillet
et al., 2004].
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1.2.3 The 2-stage Capacitated Vehicle Routing Problem with
Stochastic Demands

In this section we define a Capacitated Vehicle Routing Problem with Probabilistic
Demand Increases inspired by realistic cases. This problem was motivated by and
also helped in the study and mitigation of the “Green Bullwhip Effect (GBWE)”
which is a kind of “Bullwhip Effect”. The description is based on our published
work [Toklu et al., 2013], [Toklu et al., 2014] and [Klumpp et al., 2014].

This problem is motivated by the case of a company that needs to serve multi-
ple different customers with uncertain demands and has to decide the routes and
number of vehicles needed to serve the customers. The objective is to minimize
the total distance of the routes chosen.

The solutions proposed because of the differences in the distances traveled
and the number of vehicles used, they have different environmental and financial
impacts.

Furthermore, this problem considers only probabilistic increases in the de-
mands of the customers. In reality, increases in the demand are many times
caused by what is known as the “bullwhip effect”.

The “bullwhip effect” has been documented many times in the literature,
some representative references are [Forrester, 1961], [Lee et al., 1997]. In short,
the “bullwhip effect” also known as the “Forrester effect” refers to the fact that
even small increases in demand can cause larger and larger swings in inventory
as one examines further back the supply chain.

The problem of serving a number of transportation requests with a fleet of
vehicles is known as the Vehicle Routing Problem (VRP). The objective is to find a
way to satisfy all the transportation requests by using the given fleet of vehicles
at minimum cost. The proposed solution should define which vehicle handles
which request and in which sequence so that all the transportation requests can
be feasibly satisfied.

One of the most famous variants of VRP is the Capacitated Vehicle Routing
Problem (CVRP). In the classical version of the problem of CVRP, we have one
depot and a fleet with identical vehicles and capacity constraints. The objective is
to find routes of vehicles with minimal travel costs. We assume that the capacity
of one (single) vehicle is always greater than the demand of a single customer.

A related problem to the one presented in this paper is the Capacitated Vehi-
cle Routing Problem with Stochastic Demands (VRPSD). In VRPSD, instead of a
constant demand, a probability distribution is specified for the demand of each
customer and the assumption is that the demands are independent. Before the
beginning of the tour, a feasible solution is found called a priori tour. In the clas-
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sical version of VRPSD each vehicle of the fleet while executing the a priori tour,
has to choose whether to proceed to the next customer or return to the depot for
restocking.

In our work, a variant of VRPSD is considered. In this variant, demands can
be increased with some probability. Furthermore, the vehicles are filled to their
capacity and always proceed to serve the customers without deviating from their
a priori tour. If a vehicle gets empty without having served the demands of the
customers in their entirety, then a new vehicle begins from the depot to serve the
remaining demands of the customers, by following a newly computed tour. This
procedure can be repeated until all the demands of the customers are met.

1.2.3.1 Literature Review
The Vehicle Routing Problem with Stochastic Demands has been researched be-
fore in a number of papers but to the extend of our knowledge with different
assumptions from our variant. Whenever not mentioned in the related work
below, it is assumed that the VRPSD solved is the classical one.

In [Bertsimas, 1992], the difference in assumptions is that the vehicle returns
periodically to the depot to empty its current load. Uncertainty is handled by
building an a priori sequence among all customers of minimal expected length.
Also simple heuristics are proposed and theoretical investigations are performed.
In [Teodorović and Pavković, 1992] simulated annealing is used to solve VRPSD.
In [Gendreau et al., 1995] an exact algorithm for the VRPSD is proposed by for-
mulating it as a two stage problem and solving the second stochastic integer pro-
gram using an integer L-shaped method. In [Bianchi et al., 2006] different hybrid
metaheuristics are analyzed in terms of performance and compared to state of the
art algorithms. This paper also uses the notion of ‘preventive restocking’. Preven-
tive restocking means that the vehicle chooses to go to the depot for restocking
even though it is not empty and can satisfy the next customer. In [Tripathi et al.,
2009] an Ant Colony Optimization is proposed called “neighborhood-search em-
bedded Adaptive Ant Algorithm (ns-AAA)” in order to solve VRPSD. The VRPSD
solved in this paper has the assumptions of the classical VRPSD and also uses
preventive restocking. In [Tan et al., 2007] a multiobjective version of VRPSD is
solved by means of evolutionary methods. The algorithm finds tradeoff solutions
of complete routing schedules with minimum travel distance, driver remunera-
tion and number of vehicles, with constraints such as time windows and vehicle
capacity. In [Erera et al., 2010] duration constraints are imposed on the expected
delivery costs and this affects the structure of the set of a priori tours.

Part of the work was intended to be used in Green Logistics. In [Klumpp,
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2011], the existing knowledge about the bullwhip effect and green logistics is de-
scribed and a volatility simulation analysis of specific and relevant green logistics
instruments is performed to the whole supply chain. For a more comprehensive
coverage of logistics trends one can consult [Klumpp et al., 2013]. Concerning
the “bullwhip effect”, its impact, quantification and simulation, one car refer to
[Forrester, 1961], [Metters, 1997] or more recent sources like [Özelkan and Lim,
2008] and [Jaksic and Rusjan, 2008].

1.2.3.2 Problem definition

Let G = (L, A) be a graph, L a set of locations and A a set of arcs connecting the
L vertices. It is assumed that the depot is always number 0 in the set of locations
and the graph is complete. Also V is the set of vehicles available and ci j is the
cost of traveling from location i to location j.

To deal with probabilistic increases in the demands, we generate various sce-
narios and in each of them the demands are perturbed in many different ways.
The probability distributions used to perturb the demands are described in Chap-
ter 3. S is the set of scenarios considered, that are sampled using Monte Carlo
sampling, and d s

i the demand in location i in scenario s ∈ S.

The objective of this problem is to find a feasible solution x that minimizes
the total travel distance of the routes performed by the fleet and therefore the
total carbon dioxide emission. We let x v be the route decided for vehicle v ∈ V
in x , |x v| the length of the route x v, and x v

k the k-th visited place of the vehicle
v in x . d x v

k
is the actual demand revealed in location k visited by the vehicle v

using the route x v and Q is the capacity of the vehicle.

In case a vehicle runs out of capacity, a new one begins from the depot to
satisfy the remaining demands of the clients.

For the computation of the final cost we first evaluate the “base cost” which
is the cost ignoring uncertainty. Then we simulate the route for all scenarios
generated, which take into account uncertainty and return the average of the
cost computed. We call this procedure the “fix function” and it is computed in
the objective function by the term

∑

s∈S(
Fs(x)
|S| ). Fs(x) represents the additional

cost in scenario s, due to stochasticity.

To sum up, our problem can be informally expressed as:
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minimize

�

∑

v∈V

|x v |−1
∑

k=1

cx v
k ,x v

k+1
+
∑

s∈S

(
Fz(x)
|S|
)

�

(1.10)

subject to x v
1 = x v

|x v | = 0 ∀v ∈ V (1.11)

x v
k 6= x v′

x ′ ∀v, v′ ∈ V

∀k, k′ ∈ {2, ..., |x v| − 1}
k 6= k′ if v = v′ (1.12)

x v
k ∈ (L\{0}) ∀v ∈ V,∀k ∈ {2, ..., |x v| − 1} (1.13)
∑

k∈{2,...,|x v |−1}

d x v
k
≤Q ∀V ∈ V (1.14)

x v is a route (1.15)

where (1.11) says that the starting and ending location of a tour is the depot;
(1.12) says that the same customer must not be visited twice; (1.13) says that the
non-depot locations visited by a vehicle must be valid customers; (1.14) says that
the total demands on a route of a vehicle must not exceed the vehicle capacity.

The fix function Fz(x), as a part of a very accurate objective function, can be
explained as simulating the solution x over scenario s, getting a list of unsatisfied
customers, finding tours for the extra vehicle(s) by using an exact method to
revisit the unsatisfied customers, and finally returning the total cost of these
tours. However, in our case for reasons that will be explained in Section 3.2.4,
to solve the SubVRP we use the Nearest Neighbor Heuristic (NNH).

The algorithmic representation can be seen in Algorithm 1. The nested loop
finds any customers that are still unserved with complexity O(V · |x v|). Then the
unserved customers are served by using either Nearest Neighbourhood Search
(NNH) with complexity O(n2) where n the number of unsatisfied customers, or
using an exact method with complexity that depends on the solver.

1.2.4 The Sequential Ordering Problem

The Sequential Ordering Problem (SOP) is a combinatorial optimization problem
that may be briefly described as follows. Given a weighted directed graph, a set of
precedence constraints between vertex pairs and a starting vertex, the objective
is to find a minimum-cost Hamiltonian path. A path is feasible if it fulfills the
precedence constraints. For example, in Figure 1.2, we see an instance of SOP.
It is a fully connected directed graph and the coloured edges mark a feasible
solution. They form a Hamiltonian path that respects the precedents constraints.
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Algorithm 1 The algorithmic representation of the function Fz(x)

function Fz(x) is:
unsatis f ied_customers← []
for all v ∈ V do

serving_capaci t y ← vehicle_capaci t y
for all k ∈ {2, ..., |x v| − 1} do

if serving_capaci t y ≥ d s
i then

serving_capaci t y ← serving_capaci t y − d s
i

else
add k to unsatis f ied_customers
missingk← d s

i − serving_capaci t y
serving_capaci t y ← 0

end if
end for

end for
SubGraph← {0} ∪ unsatis f ied_customers
SubVRP ← VRP problem on SubGraph where

the demands are given by missingk ∀k ∈ SubGraph
y ← solve SubVRP using an exact method (in our case NNH)
return travel cost of y

Here the precedence constraints are marked with dotted arrows and dictate that
node 3 should be visited before node 2 (but it does not matter if it is exactly
before) and node 2 should be visited before node 4.

A SOP without precedence constraints is equivalent to an Asymmetric Trav-
elling Salesman Problem (ATSP), and when the latter has symmetric costs, it is
referred to as the Travelling Salesman Problem (TSP). Therefore, the SOP is a
generalization of the TSP, and since the TSP is a well-known NP-hard problem,
the SOP must be NP-hard. In Section 1.2.4.1, literature review and some existing
applications will be discussed.

1.2.4.1 Literature Review

The problem has been initially formulated by [Escudero, 1988] as the underly-
ing model for a production planning system. Escudero also presents an inexact
algorithm that exploits the properties of the ATSP poly-tope. A similar approach
is taken by [Ascheuer et al., 1993], who show how to generate valid cuts using
a polynomial-time separation algorithm. Another cutting-plane approach based



17 1.2 Main Optimization Problems in the Thesis

Formal problem description

I Given: set of cities + asymmetric distances + precedence set
I Required: shortest tour that fulfills the precedences

1

2 3

4

5

TSP ATSP SOP

Coincise problem description

Sequential Ordering Problem (SOP)
Find a minimum cost Hamiltonian path on a directed graph,
subject to precedence constraints among the nodes.

Figure 1.2. The colored edges represent a feasible solution for this instance of
SOP, it is a Hamiltonian path in the fully connected graph that respects the
precedence constraints marked with the dotted arrows

on a Lagrangian relaxation was presented by [Escudero et al., 1994]. [Hernàd-
völgyi, 2003], [Hernàdvölgyi, 2004] generated good lower bounds using a tech-
nique that reduces the instance size. [Balas et al., 1995] presents a deeper anal-
ysis of the impact of precedence constraints on the ATSP convex hull.

Metaheuristic methods have also been proposed for solving the SOP. [Chen
and Smith, 1996] and [Moon et al., 2002] propose genetic algorithms. [Pulley-
blank and Timlin, 1991] use a Voronoi quantized crossover that adopts a com-
plete graph representation. [Gambardella and Dorigo, 2000] describe the HAS-
SOP algorithm, which couples an ant-colony system with a 3-opt local search.
The effectiveness of this algorithm appears to be dependent on the density of the
precedence constraints. [Montemanni et al., 2007], [Montemanni et al., 2008],
[Montemanni et al., 2009] show how to exploit this property by artificially ma-
nipulating the density of precedence constraints. Experiments comparing the
previous two algorithms on a set of real problems arising in quay crane assign-
ment have been reported by [Montemanni et al., 2008b]. [Anghinolfi et al.,
2009], [Anghinolfi et al., n.d.] propose a Particle Swarm Optimization (PSO)
approach to solving the SOP. A meta-heuristic approach combining a Mixed In-
teger Linear Programming (MILP) solver and an Ant System has been described
by [Mojana et al., to appear].
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Figure 1.3. An example a SOP instance, cost graph (left), precedence graph
(right)

1.2.4.2 Problem Definition

In this section we provide the formal definition of the Sequential Ordering Prob-
lem (SOP). Let D = (V, A) be a complete weighted directed graph where V is
the set of vertices and A = (i, j)|i, j ∈ V the set of arcs. All the arcs (i, j) ∈ A
have an associated cost ci j ∈ N+0 . We denote as v1 ∈ V , the first and last vertex
of the solution path. Moreover, a precedence digraph P = (V, R) is also defined
with the same vertex set V as D. A precedence constraint is defined as an arc
(i, j) ∈ R where vertex i has to precede vertex j in any feasible path and P must
be acyclic. A feasible solution to SOP is a Hamiltonian path (a path that includes
each vertex exactly once) and respects the precedence constraints. The cost C
of path S is defined as C(S) =

∑

(i, j)∈S ci j. Note that the precedence constraints
satisfy the transitivity property, that is if (i, j) ∈ R and ( j, k) ∈ R then (i, k) ∈ R.
The objective is to find a feasible solution with minimal cost.

Figure 1.3 shows an example of a SOP instance. The graph on the left is the
cost graph, while the graph on the right is the precedence graph. The start vertex
is u1 and the end vertex u5. For example, edge (u1, u3) in the precedence graph
imposes the constraint that u1 must be visited before u3. Transitive precedence
constraints are shown using dashed lines in the figure.

An alternative definition that is useful sometimes is to tackle the problem as
a scheduling problem with precedences, also known as open ATSP with prece-
dences. The difference is that the starting vertex is cloned to a dummy vertex
|V |+1 and precedence constraints are imposed between each existing vertex and
the new dummy vertex and the feasible solutions have to start at the start vertex
and end at the dummy vertex, respecting the previous constraints as well i.e.
visiting all the vertices and fulfilling precedence constraints.
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1.3 Outline

In this section, we give a brief outline of the content of the rest of the thesis and
its main results.

All in all, the main work of the thesis consists of Chapters 2, 3, 4. Each chapter
presents our study and results of one problem, namely the Orienteering Problem
with Stochastic Travel and Service Times, the 2-stage Capacitated Vehicle Routing
Problem with Stochastic Demands and the Sequential Ordering Problem.

In Chapter 2 we study the Orienteering Problem with Stochastic Travel and
Service Times problem and the benefits of improving the state-of-the-art. We
then proceed by presenting our contributions. Firstly, we introduce four new
evaluators that approximate the objective function. Then we study experimen-
tally the performance and accuracy of the evaluators from many different per-
spectives and find the trade-offs of each one as well as make recommendations for
their use. All the new evaluators improve the initial state-of-the-art in the exist-
ing datasets of the literature. Additionally, we create and propose larger datasets
that we use for further experiments. The experiments concern the behaviour of
metaheuristics (Random Search Metaheuristic, Variable Neighborhood Search
Metaheuristic) when we embed the different evaluators. We demonstrate the
benefits of using the new proposed evaluators and give recommendations about
their usage in the context of metaheuristics and also compare and contrast the
metaheuristics.

In Chapter 3 we study the 2-stage Capacitated Vehicle Routing Problem with
Stochastic Demands, a problem that we introduced inspired by an environmental
application. We propose four different solution approaches that we analyze and
discuss experimentally. The metaheuristic used is the Ant Colony Metaheuristic.
Subsequently, we discuss the results and the potential environmental application
of the problem.

In Chapter 4 we study exact algorithms for the Sequential Ordering Problem.
We begin by testing two different existing algorithms. One was targeting applica-
tions in cargo and transportation problems and the other minimizing instruction
power switching in compilers. We test them in all domains. From the compari-
son many improvements in the existing literature came about including closing
9 new instances previously open. Furthermore, the comparison gave insights for
an improved algorithm that we developed and present in the rest of the chapter.
We validated our results with datasets in the literature.

Please note that this thesis is based on the following publications. Chapter 2
is based on the journal publications: [Papapanagiotou et al., 2014], [Papapana-
giotou et al., 2015a] and the conference publications: [Papapanagiotou et al.,
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2013], [Papapanagiotou et al., 2016c], [Papapanagiotou et al., 2015b], [Papa-
panagiotou et al., 2016a], [Papapanagiotou et al., 2016b]. Chapter 3 on the
journal publication: [Toklu et al., 2014] and the conference publications: [Toklu
et al., 2013] and [Klumpp et al., 2014]. Chapter 4 is based on the conference
publications: [Papapanagiotou et al., 2015b], [Jamal et al., 2017]. For all the
publications in Chapter 2 and the first in Chapter 4 the author is the main con-
tributor under the guidance and supervision of the corresponding co-authors,
while for the publications of Chapter 3 and the second publication of Chapter 4
the author offered substantial contribution.



Chapter 2

Solution Methods for the Orienteering
Problem with Stochastic Travel and
Service Times

2.1 Introduction

In Stochastic Combinatorial Optimization Problems (SCOPs) the computation of
the objective function is often the bottleneck of the computation. This happens
because the objective function evaluator is called very frequently by the opti-
mizing functions. This is especially true for metaheuristics, which are our focus.
Additionally, the objective function of SCOPs is usually computationally expen-
sive, or even NP-hard to compute as in the case of the Probabilistic Travelling
Salesman Problem with Deadlines [Weyland et al., 2012]. Therefore, the study
of good approximation methods for the objective function values are essential for
obtaining good results especially for bigger datasets. In this section we begin the
study of sampling for approximating the objective function of the OPSTS. Firstly,
we will study an analytical approximation to the objective function (The Analyt-
ical Evaluator) and then we will present a Monte Carlo sampling approximation.
The material of this chapter is based on our work published in [Papapanagiotou
et al., 2013],[Papapanagiotou et al., 2014], [Papapanagiotou et al., 2016c], [Pa-
papanagiotou et al., 2015b], [Papapanagiotou et al., 2015a], [Papapanagiotou
et al., 2016a] and [Papapanagiotou et al., 2016b].

21
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2.2 Objective Function Evaluators

2.2.1 The Analytical Evaluator

The evaluator that is used as a reference evaluator for the objective function of
OPSTS is derived analytically from the expression of the objective function (1.8)
and it is the one used in [Campbell et al., 2011].

In Section 1.2.2.3 we made the same assumptions as in [Campbell et al.,
2011], namely that the travel and service time distributions only differ in a single
parameter and the sum of this parameter can characterize the convolution of the
arrival time distributions. Also, we assume that the arrival random variables are
independently and identically distributed and that the sum of the arrival random
variables can be approximated with the same distribution. Furthermore, as in
[Campbell et al., 2011] we assume that the distribution of arrival and service
times is Γ . The reason for that is because the Γ distribution arises naturally in
processes where the waiting times are relevant and it can be conceptualized as a
waiting time between Poisson distributed events. Such distribution respects all
the previous assumptions mentioned (for more information see [Tanis, 2008]).
As shown in Section 1.2.2.3, for the Γ distribution the objective function u of the
tour of customers τ becomes:

maxυ(τ) =
∑

i∈τ

[Fki
(D)ri − (1− Fki

(D))ei] (2.1)

Algorithm 2 shows in detail the implementation of the Analytical Evaluator.
The variable solut ion is a vector representing the indexes of the proposed path of
the solution e.g. [0,2, 5, . . . , N]T ; |solut ion| represents the size of the solution;
D the deadline of the our current instance; k is the shape parameter of the Γ
[Tanis, 2008] random variable and also represents the deterministic arrival time;
distance is the distance; ri, ei, the reward and penalties at node i and υ the final
objective value. The complexity of the algorithm is O(|solut ion|) with Fk having
a high running time cost.

2.2.2 The Monte Carlo Evaluator (MC)

The Monte Carlo Evaluator is based on Monte Carlo sampling which is essen-
tially a sampling methodology that uses the sample means to estimate the actual
population means. In simple terms and in its simplest form we run an experi-
ment that returns success (one) or failure (zero) n times (number of histories or
trials). We then take the ratio of successes |s| to the number of trials p ( |s|p ). If
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Algorithm 2 The algorithmic representation of the function Anal y t ical

1: function Anal y t ical(solut ion, D):

2: k← 0
3: υ← 0
4: for all i ∈ [2, · · · , |solut ion|] do
5: k← k+ distance(solut ion[i − 1], solut ion[i])
6: υ← υ+ Fk(D)ri − (1− Fk(D))ei]
7: end for

8: return υ

p is sufficiently large then |s|
p gives a good approximation of the expected value

of our experiment (the population means). For more information we refer the
reader to [Dunn and Shultis, 2011].

The crucial quantity we need to compute the objective function of the OPSTS
as seen in Equation (1.8) is P(Ai ≤ D). This evaluator achieves it by using Monte
Carlo sampling. Firstly, we generate many different fully connected graphs with
different arrival times (Āi) for every node, generated according to the probability
distribution that the edge follows. When a solution is given the Monte Carlo Eval-
uator computes the deterministic objective value of the solution for each scenario
and then takes the average value of all the computations. The bottleneck of MC
is the generation of random numbers from a specific distribution. To accelerate
the procedure the Monte Carlo Evaluator, many samples of travel times from ev-
ery node to every other node are precomputed. Once we generate these samples
we reuse them any time an objective function evaluation is required. Each sam-
ple in the precomputation is a matrix with cells that represent a realization of a
random variable X i, j that represents the travel time. Such a precomputation ma-
trix can be seen in Figure 2.1. After the precomputation phase, we compute the
objective function as described previously. Algorithm 3 shows in detail how sam-
ples are precomputed. RandomΓ (k,θ ) is a function that returns a value from a
Γ distribution with parameters k,θ . distance returns the distance between two
solution nodes (in this example euclidean). The complexity of the precomputa-
tion is O(n2s) where n is the number of nodes and s the number of samples. The
most time consuming function is RandomΓ . Additionally, Algorithm 4 shows in
detail how the Monte Carlo sampling is performed after having precomputed
samples. The complexity is O(|solut ion| · |samples|) where |solut ion| is the
length of the solution and |samples| the number of samples which is a constant
number. Let us name P(Ai ≤ D) = pi. A small optimization that we do in Al-
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gorithm 4 is that we compute the sum of all penalties which is a negative value
and then we add it back. This is equivalent to our objective function because
∑

i∈τ[pi ri−(1−pi)ei] =
∑

i∈τ pi ri−
∑

i∈τ ei+
∑

i∈τ piei =
∑

i∈τ[pi(ri+ei)]−
∑

i∈τ ei.
This provides an additional speed benefit because we can precompute the sum of
penalties and rewards (ri+ ei) for every node and avoid a branch in the loop (for
the nodes that are served after the deadline) and not examine at all the solution
nodes that are after the deadline.

Algorithm 3 The algorithmic representation of the function
precomputeDistances

1: function precomputeDistances(samples, solut ion)

2: for all sample ∈ [1, . . . , samples] do
3: for all i ∈ [1, . . . , |solut ion|] do
4: for all j ∈ [1, . . . , |solut ion|] do
5: k← distance(solut ion[i], solut ion[ j])
6: matrix[sample][i][ j]← RandomΓ (k,θ )
7: end for
8: end for
9: end for

10: return matrix

Figure 2.1. Precomputed Samples. Each sample is a fully connected graph
with realizations of the arrival times according to their distribution
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Algorithm 4 The algorithmic representation of the function MC

1: function MC(solut ion, samples, D):

2: for all i ∈ [1, . . . , samples] do
3: i← 0
4: υ←

∑

i∈τ(ei)
5: curT ime← 0

6: while curT ime ≤ D and i < |S| do
7: curT ime+ = vector[sample][solut ion[i]][solut ion[i + 1]]
8: υ← υ+ ri+1 + ei+1

9: i← i + 1
10: end while
11: end for
12: υ← υ

|samples|

13: return u

2.2.2.1 Experimental Results

In this section, we present experiments to assess the usefulness of the Monte
Carlo Evaluator (MC) in comparison with the Analytical Evaluator. In order for
Monte Carlo sampling to be useful, it must be shown that it can provide an ap-
proximation with a reasonable amount of error in a fraction of the time of the
Analytical and that the time gains increase over time or size so that our solution
method is more scalable.

The implementation was done in C++ and instances ran on a 4-core Intel
Core I7-3615QM 2.3GHz using Mac OSX 10.8 but only 1 core was used at a
time. The available memory was 16 GB RAM. For the experiments presented in
this section, we use the benchmark instances originally introduced in [Campbell
et al., 2011]. Two of the datasets are based on the sets first appearing in [Tsili-
girides, 1984]. For all the datasets it is assumed that the graph of the customers
is fully connected and travel and service times are computed as described in Sec-
tion 1.2.2.2. The penalty values, are generated as 10% of the corresponding
reward so that they match exactly the ones used in [Campbell et al., 2011]. In
these experiments, for distances, the Euclidean distance is used and for proba-
bility distribution for the travel and service times, the Γ distribution is used. The
Γ distribution is computed using the boost math library, which uses Lanczos ap-
proximation for the computation [Boost, 2013]. The datasets represent 21, 32,
66 and 64 customers and they are named 221, 432, 566 and 664 respectively.
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2.2.2.2 Number of samples in relation to error

To demonstrate the utility of the Monte Carlo Evaluator for evaluating the objec-
tive function of the OPSTS, first it needs to be shown that it produces a reasonably
low error and consequently we can choose the number of samples that produce
such an acceptable error value. For this reason, we run experiments where we
measure the relative error of the Monte Carlo Evaluator in relation to the Ana-
lytical Evaluator, and we present this value in relation to the number of samples
used in Monte Carlo sampling. We vary the number of samples from 100 to 1000
with step 100. The solutions evaluated are generated randomly and then they are
optimized by a simple greedy algorithm. Optimization is used because random
solutions can be of such a low quality that not even one client can be served with-
out surpassing the deadline. Such cases would bias the comparison between the
Monte Carlo approach and Analytical Evaluator when only reasonable solutions
are encountered. The greedy algorithm optimizes the order of visiting nodes in
a given solution using essentially a nearest neighbour heuristic (see Algorithm
5). The intuition behind this heuristic is that nodes that are closer and have the
highest ratio ri

pi
are better. The complexity is O(|solut ion|2). The results of the

experiments can be seen in Figures 2.2 and 2.3. The error is evaluated in com-
parison to the Analytical Evaluator. Solution Size is the number of nodes of each
solution given for evaluation. It can be observed that as we use more samples,
the error decreases. Furthermore, for the same number of samples, for larger so-
lution sizes the higher relative error is obtained. This can be justified by the fact
that the a small error in estimating the distance travelled can decide whether a
reward or penalty is given and a wrong decision propagates to subsequent nodes
(detailed explanation will follow in the Section 2.2.2.5). Additionally, in both
figures it can be seen that the error is constantly below 1.4% even with only 100
samples. Therefore, since the algorithm gives a reasonable approximation of the
objective function, it is worth it investigating it further.

2.2.2.3 When the Monte Carlo Evaluator is beneficial

In this section we examine why MC yields bigger time gains the more time it
is running. MC sampling as it was described has an overhead which is the pre-
computation phase. The mean time for executing one evaluation in the course
of a number of evaluations #Evaluations where SetupT ime is the precompu-
tation overhead and MC Time the running time of the MC evaluator (as seen in
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Algorithm 5 The algorithmic representation of the function Greed yOptimize

1: function Greed yOptimize(solut ion):

2: for all i ∈ [0, . . . , size(solut ion)− 1 do
3: max ←−1
4: index ← i + 1
5: for all j ∈ [i + 1, . . . , size(solut ion)] do
6: curDistance← distance(solut ioni, solut ion j)
7: curValue← solut ion j.reward
8: if solut ion j.penal t y > 0 then
9: curValue← curValue

curDistance·solut ion j .penal t y

10: else
11: curValue← curValue

curDistance
12: end if
13: if curValue > max then
14: index ← j
15: max ← curValue
16: end if
17: end for
18: swap(i + 1, index)
19: end for
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Figure 2.2. Monte Carlo Evaluator Error vs Number of Samples. Different
sizes of solutions are considered. The deadline in this set is 50. The size of the
dataset is 32 nodes (432 dataset)
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Figure 2.3. Monte Carlo Evaluator Error vs Number of Samples. Different
sizes of solutions are considered. The deadline in this set is 50. The size of the
dataset is 64 nodes (664 dataset)
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Algorithm 4) is:

avg_mc_running_t ime =
mean(SetupT ime)

#Evaluations
+mean(MC Time) (2.2)

We can observe that in the Equation (2.2) as the number of evaluations gets
very large (#Evaluations →∞), the fraction mean(SetupT ime)

#Evaluations tends to 0, which
means that the mean(SetupT ime) is no longer a significant term in the running
time. In order to gain intuition in a realistic context, in Figure 2.4 we can see a
plot of MC Time

Anal y t icalT ime versus the number of Evaluations for solution sizes 30 and 60
using 100 and 200 samples for the Monte Carlo Evaluator respectively. MC Time
includes the precomputation time and obviously if the fraction is lower than 1,
then the mean time for doing one evaluation with the Monte Carlo Evaluator
is less than that for the Analytical Evaluator. In the figure we can observe that
for solution size 30, if we run the objective function 2000 or more times we
start having speed gains and for solution size 60 we need to run it more than
4000 times. Taking into account that in a typical run of a metaheuristic method
(in which the Monte Carlo Evaluator will be embedded), performing more than
100000 evaluations is intuitively very common, the Monte Carlo Evaluator has
the potential for a considerable speed gain.
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2.2.2.4 Running Time Comparison

In Table 2.1 we present a running time comparison between the Analytical and
MC evaluators. Times are measured in seconds and are taken as an average after
running the respective evaluator 100 times. In the first column the number of
samples used in the Monte Carlo Evaluator is reported and in the second all the
relevant times of our experiment. More specifically Anal y t icalT ime the aver-
age running time of the Analytical Evaluator, SetupT ime indicates the running
time of creating the precomputation matrix and MC Time the time of an average
execution of the MC Evaluator.

The last column contains the result of a ratio. When it is smaller than 1, then
the MC evaluator -without taking into account precomputation costs- is faster
than the Analytical Evaluator. According to Equation (2.2) when the number of
evaluations is large (#Evaluations→ +∞), only the cost from the Monte Carlo
Evaluator (MC) is important. From the column MC Time/Anal y t icalT ime, we
can observe that the time consumed for computing the objective function using
MC is a small fraction of the time of the Analytical cost until a certain number of
samples. Additionally, the error is in most cases sufficiently small even by using
only 100 samples.

2.2.2.5 Monte Carlo Evaluator performance and implications

In the datasets, tested before MC sampling performs well and by tuning the num-
ber of samples, the error can be reduced to negligible levels. However, for some
of the bigger instances, the errors produced would not reduce to negligible levels
with the expected rate, because of unusually bigger errors. This happens because
small estimation errors in travel times can decide whether a reward is awarded
or a penalty is incurred. A wrong penalty given, will propagate until the node
where the deadline really happened. All the intermediate nodes are estimated
with a wrong value. If for example an evaluator considers falsely that a node is
not visited on time on average then this node will contribute a penalty instead of
a reward and the same is true for all the subsequent nodes until the first that is
visited after the deadline on average in reality. In Figure 2.5 we can see how the
error propagates. In this example “MC Deadline Node” is the node where the MC
estimates the deadline will occur while it occurs on the “Deadline Node”. For the
nodes from “MC Deadline Node” to “Deadline Node”, the evaluator wrongly as-
signs a penalty, resulting in computing an objective value of 0 in the end instead
of 16.

To alleviate this problem, we examined where in the evaluation the error
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Table 2.1. Comparison of running times of the Anal y t ical and MC for Solution
Size 64 and 100 evaluations

Average

#Samples Anal y t icalT ime SetupT ime MC Time
MC Time

Anal y t icalT ime
Solution Size = 30

100 2.974e-05 0.0760 5.062e-06 0.170
150 3.112e-05 0.113 6.546e-06 0.210
200 2.990e-05 0.152 1.663e-05 0.556
250 3.161e-05 0.190 1.796e-05 0.568
300 3.207e-05 0.226 2.148e-05 0.670
350 3.169e-05 0.264 1.998e-05 0.630
400 3.139e-05 0.302 2.778e-05 0.885
450 3.188e-05 0.339 2.934e-05 0.920
500 2.765e-05 0.377 4.131e-05 1.494

Solution Size = 60
100 5.344e-05 0.076 6.564e-06 0.123
150 4.949e-05 0.114 7.657e-06 0.154
200 5.084e-05 0.152 1.487e-05 0.292
250 5.061e-05 0.190 1.595e-05 0.315
300 4.963e-05 0.229 2.454e-05 0.494
350 5.064e-05 0.265 1.981e-05 0.391
400 5.060e-05 0.304 2.664e-05 0.526
450 5.226e-05 0.340 3.400e-05 0.650
500 5.135e-05 0.387 4.684e-05 0.912
550 5.102e-05 0.420 6.412e-05 1.257

Monte Carlo Problem

R: 3,  
P: 2
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P: 2
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2(3) 1(1.1)
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P: 13(3.1) 1(1.2)
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Figure 2.5. Example of propagation of errors when using Monte Carlo sampling.
Monte Carlo Evaluator (MC) estimates wrongly the deadline node resulting in
wrong objective value estimation
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originates most frequently and started using more precise evaluators for these
parts. The first such evaluator is examined in the next section.

2.2.3 The MC-Analytical-MC Evaluator (M-A-M)

As it was mentioned in the Sections 2.2.1 - 2.2.2, the Analytical Evaluator can be
slow for big datasets and MC while it is faster than Analytical, for bigger datasets
it may produce big errors. For that reason, we looked for ways to combine the
advantages of both methods.

The Analytical Evaluator can be accelerated while keeping the error low by
dividing the solution in parts and evaluating them with different evaluators of a
solution. We consider that a subset of the nodes of the solution where the dead-
line is more likely to occur as critical nodes. We call the subset of these nodes
“the Deadline Area (DA)”. These nodes are visited on time in some scenarios and
too late in others. This may cause propagation of errors. In Section 2.2.2.5, we
discussed how using MC can result in big errors in certain datasets. In order to
avoid these errors that can be big, we evaluate these nodes using the Analytical
Evaluator. To define the DA we select a parameterα(0< α < 1) and then we in-
clude all the nodes with deterministic travel times between [(1−α)D, (1+α)D].
The remaining nodes are evaluated using MC. We noticed that when this eval-
uator is used inside an optimizer, there are usually very few nodes if any af-
ter the DA, since optimisers avoid generating solutions with many “penalized”
nodes. A graphical representation of M-A-M can be seen in Figure 2.6. The im-
plementation of the M-A-M evaluation can be seen in Algorithm 6. This algorithm
combines the previous algorithms of Analytical and MC and has a complexity of
O(|samples| · |solut ion|).

MCANALYTICAL MCMC

Deadline Node

Deadline Area

Figure 2.6. The evaluator M-A-M as applied in a solution

2.2.3.1 Samples vs Error for M-A-M

To demonstrate the usefulness of M-A-M, we first show that it produces a rea-
sonably low error and then we choose the number of samples that produce an
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Algorithm 6 The algorithmic representation of the function M-A-M

1: function M-A-M (solut ion, samples, D,α,ρ):

2: DA_star t ← (1−α) · D
3: DA_end ← (1+α) · D
4: υ← υ+MC(solut ion[0..DA_star t], samples, D)
5: υ← υ+ Anal y t ical(solut ion[DA_star t + 1..DA_end], D)
6: υ← υ+MC(solut ion[DA_end + 1..|solut ion|], samples, D)

7: return υ

acceptable error value. For this reason, we run experiments where we test both
the MC and M-A-M against the Analytical Evaluator. We use 1000 random solu-
tions that we evaluate with different number of samples starting from 1 sample
to 300 samples with step 20. In practice, the solutions provided to the evalua-
tion methods tested are of better quality yielding a smaller error. This is because
in random solutions it can happen that not even one client can be served with-
out surpassing the deadline. In this experiment, we chose the deadline to be
15 which is small even for our smallest dataset (21 customers) to demonstrate
the usefulness of the method even with small deadlines, which tend to be error-
prone. With small deadlines we tend to have more errors because of the stochas-
ticity of travel times and the few nodes that can be visited before the deadline.
An approximation error can make our objective function consider that the dead-
line happened before or after the node where it really happened causing errors
as explained in Section 2.2.2.5. Taking into account that with small deadlines
the solution size tends to be small, every error tends to have bigger impact in the
final solution. The random solutions generated are based on the datasets intro-
duced in Section 2.2.2.1 with 21, 32 and 64 clients respectively. The results of
the experiments can be seen in Figure 2.7, Figure 2.8 and Figure 2.9. The error
is the relative error in comparison with the Analytical Evaluator and it is in per-
centages. Different line shades and shapes show different evaluators or different
configuration of the same evaluator. Because the Monte Carlo Evaluator has very
different results in comparison with M-A-M, the y-axis is in logarithmic scale. Let
us now give an example of what the percentages of deadline areas mean. For a
deadline equal to 10 and a 10% DA, all the nodes with arrival times from 9 to 11
are included in the DA. As we will see in later sections, we try to minimize the DA
because it requires more accurate and consequently time-consuming evaluators.
We observe that the M-A-M evaluator has significantly lower error than MC for
the same number of samples even with a small DA (e.g. 1%). Additionally the



34 2.2 Objective Function Evaluators

error rate of M-A-M decreases roughly at the same pace as MC as we increase
the number of samples and we can further decrease the error significantly by
increasing the DA. In Figure 2.7 where there are only twenty one customers with
a strict deadline (15) results can be noisy (see line for 5% DA) because a small
calculation error can make the objective function assign the wrong penalty or
reward and in this case even one wrong node can make a difference.
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Figure 2.7. Error vs Number of Samples, 21 customers, Deadline = 15

2.2.3.2 When M-A-M is beneficial

The experiment here is analogous to the one in Section 2.2.2.3. When the y-axis
is lower than 1 then the mean time for one M-A-M evaluation is less than when
using the Analytical Evaluator. In Figure 2.10, Figure 2.11 we can observe that
for 21 and 32 customers we have time gains even if we execute the objective
function only 500 times. In Figure 2.12 we can observe that for 64 customers,
we have time gains for more than 1000 evaluations.

2.2.3.3 Time Gains of M-A-M

In this experiment we examine the time gains that M-A-M and MC evaluators
for different number of samples with respect to the Analytical Evaluator. Two
different experiments are proposed. In the first we show the time gains according
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Figure 2.8. Error vs Number of Samples, 32 customers, Deadline = 15
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Figure 2.12. Benefit vs #Evaluations, 64 customers, 30 samples

to the number of samples (Figure 2.13, Figure 2.14, Figure 2.15). As in Section
2.2.3.2 different line shades and shapes show different evaluators or different
configuration of the same evaluator. For this experiment the deadline is equal
to 15 which is restricted for these datasets. For this restricted deadline we can
observe from the Figures 2.13, 2.14, 2.15 that we have time gain until using 50
samples in almost all cases. From the Figures 2.7, 2.8, 2.9 we can see that for M-
A-M the error is less than 1% (about 0.5%) for 50 samples. By using 30 samples
we see that there is time gain in all cases and error less than 1% for 21 and 32
customers and less than 2% for 64 customers.

The next experiment for running time shows the time gain according to the
deadline of the problem (Figures 2.16, 2.17, 2.18). As the deadline gets bigger
we have larger time gains. This happens because as the deadline gets bigger it
becomes less likely to reach the deadline in the proposed solutions and therefore
the performance of M-A-M tends to the performance of MC. For this experiment
30 samples were used for the evaluation. The number of samples was selected
taking into account the previous experiments in this section that show the efficacy
of 30 samples both in terms of time gain and small error. It must be noted that the
solutions examined are random and the performance of M-A-M and MC is worse
than it would normally be when used within an optimization method as in the
random solutions, some very bad solutions are included that make the algorithm
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Figure 2.15. Time Gain vs #Samples, 64 customers, Deadline = 15

run slower and be more error prone. However, even under these circumstances
we can observe that the M-A-M manages to keep the error rates low enough while
still having competitive time gains with MC. From the experiments, we observe
that a DA of 5% performs very well in terms of time gain while keeping the error
very low, in all cases less than 2% and in most cases less than 1% and therefore
it is the suggested evaluation configuration.

Error Thresholds 1% 2% 3% 4%
Time Gains 27.29% 30.94% 32.18% 33.05%
DA Ratio (α) 21% 13% 9% 5%

Table 2.2. Time Gains and DA ratios for different error thresholds for M-A-M.
Errors are measured with reference to the Analytical Evaluator for the dataset
of 66 customers used in the paper

2.2.3.4 Tuning the Deadline Area of M-A-M

In the previous Section by combining the knowledge from Sections 2.2.3.1,
2.2.3.2 and 2.2.3.3 we came to a reasonable recommendation for tuning the
DA (parameter α) of M-A-M. In this Section we apply a more rigorous procedure
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Figure 2.18. Time Gain vs Deadline, 64 customers, Deadline = 15

for tuning the deadline in more realistic situations, more specifically inside the
VNS metaheuristic that will be explained in Section 2.4.2. We have shown that
the Monte Carlo Evaluator (MC) is faster than the Analytical one and because the
DA is evaluated by the Analytical Evaluator we want it to be as small as possible.
Therefore, we want to find the minimum DA (value of parameter α) such that for
every deadline it gives us a guaranteed threshold for the average error. In Table
2.3, we can see the results for the M-A-M method on a representative instance for
different error thresholds. For example, if we want an error below 2% we would
select a DA ratio of 13% and it would be 30.94% faster in the evaluation. Time
gains and errors are measured with reference to the ‘Analytical Evaluator’. Time
gains and errors are averages over all the evaluations done in 30 runs of the VNS
metaheuristic. The specific metaheuristic is explained in detail in Section 2.4.2.

By using the concept of the DA ratio we can influence the relative error per
evaluation and the time gains of our algorithm. In Figure 2.19, we can see two
graphs depicting DA ratio vs relative error and DA ratio vs time gains, respec-
tively (dataset with 66 customers). We can observe that the error is decreasing
with a higher rate than time gain as we increase the DA ratio. This fact adds to
the usefulness of the pursuit for further improvement of hybrid methods of eval-
uation (like M-A-M). To confirm our observations, we fitted exponential curves
(ek·x+β) to model the error curves and lines to model the time gain curves. The
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Figure 2.19. Influence of area ratio α to relative error and time gain for deadline
40, for method M-A-M, dataset with 66 customers. Errors and time gains
are measured with reference to the Analytical Evaluator. The trend lines (in
black) are the fitted curves and model the trend. The fitted exponential curve
is y = e−3.56·x−6.77 and the fitted line is y = −0.57 · x + 0.45

average residual standard error for the error curves was 0.0025 and multiple R2

for the time gain curves was 0.99. This means that in the first case that there
exist exponential curves that approximate the actual error curves with negligible
error and in the second case, lines can replace the time gain curves and they
would explain 99% of the variance of time gains. The implication of that is that
by increasing the DA we can trade-off a small loss of time gain (linear) for a large
decrease in error (exponential).

Error Thresholds 1% 2% 3% 4%
Time Gains 27.29% 30.94% 32.18% 33.05%
DA Ratio (α) 21% 13% 9% 5%

Table 2.3. Time Gains and DA ratios for different error thresholds for M-A-M.
Errors are measured with reference to the Analytical Evaluator for the dataset
of 66 customers used in the paper
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2.2.4 Reward-MC-Analytical-MC-Penalty Evaluator (R-M-A-M-
P)

The R-M-A-M-P has been designed to enhance the speed of M-A-M (introduced
in Section 2.2.3) further by assuming that nodes very far from the DA with very
high probability either receive a reward or induce penalty. Therefore, in a simi-
lar manner with the DA, we define the Reward Area and penalty area where the
nodes get reward and penalty respectively without any computation. To define
the R-M-A-M-P areas we need as in M-A-M, the α and ρ(α≤ ρ ≤ 1). The nodes
with expected visit time in the interval [0, (1−ρ)D) are in the Reward Area and
get an automatic reward, the nodes in [(1+ ρ)D,+∞] (where +∞ is the last
node of the solution) are in the PENALTY area and automatically get a penalty.
As in M-A-M the nodes with expected visit time in [(1 − α)D, (1 + α)D] which
we name as DA are evaluated using the Analytical Evaluator and the rest of the
nodes are evaluated using Monte Carlo sampling. Inside an external algorithm
this method tends to have a very small to non-existent second MC and PENALTY
areas. R-M-A-M-P provides us with fine-grained control and in the majority of the
times can perform better than M-A-M. In Algorithm 7 we see the implementation
of R-M-A-M-P in pseudocode. This algorithm combines the previous algorithms
of Analytical and MC as well as RewardCost and Penal t yCost and has a com-
plexity of O(|samples| · |solut ion|).

A graphical representation of R-M-A-M-P can be seen in Figure 2.20.

REWARD MCANALYTICAL PENALTYMC MC

Deadline Node 

Deadline Area

[(1 � ↵) · D, (1 + ↵) · D]

[0, (1 � ⇢)D) [(1 + ⇢)D, +1]

Figure 2.20. The evaluator Reward − MC − Anal y t ical − MC −
Penal t yEvaluator as applied in a solution

2.2.5 The Reward-Analytical-Penalty Evaluator (R-A-P)

This evaluator can act as a baseline evaluator as no stochasticity is involved.
Similarly to M-A-M we define a parameter α(0 ≤ α ≤ 1) and the nodes visited
at expected time in [(1−α)D, (1+α)D] of the solution under consideration are
evaluated using the Analytical Evaluator. Before the DA the nodes of the solution
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Algorithm 7 The algorithmic representation of the function R-M-A-M-P

1: function R-M-A-M-P(solut ion, samples, D,α,ρ):

2: DA_star t ← (1−α) · D
3: DA_end ← (1+α) · D
4: MCAreaBe f ore← (1−ρ) · D
5: MCAreaAf ter ← (1+ρ) · D
6: υ← RewardCost(solut ion[0..MCAreaBe f ore], D)
7: υ← υ+MC(solut ion[MCAreaBe f ore..DA_star t], samples, D)
8: υ← υ+ Anal y t ical(solut ion[DA_star t..DA_end], D)
9: υ← υ+MC(solut ion[deadlineAreaAf ter..MCAreaBe f ore], samples, D)

10: υ← υ+ Penal t yCost(solut ion[MCAreaAf ter..|solut ion|], D)

11: return υ

are in the Reward Area and the ones after the deadline are in the penalty area.
Although this evaluator was defined as a baseline evaluator for experimental
reasons, it was found that it performs surprisingly well in the cases where the
deadline occurs rarely and a small Analytical part is enough to keep the error
low (see Section 2.3.1). The implementation of its building blocks can be seen
in Algorithms 8 and 9 and the actual R-A-P method is formalized in Algorithm
10. A graphical representation of the R− A− P can be seen in Figure 2.21. R-
A-P algorithm combines Analytical, RewardCost and Penal t yCost and has a
complexity of O(|samples| · |solut ion|).

REWARD MCANALYTICAL PENALTY

Deadline Node

Deadline Area

Figure 2.21. The evaluator R− A− P as applied in a solution

2.3 Performance of the Evaluators

In the following Section we will examine the performance of the defined evalua-
tors in datasets of 21, 32 and 64 customers as introduced in the previous sections.
In order to compare the usefulness and the performance of the evaluators, we



45 2.3 Performance of the Evaluators

Algorithm 8 The algorithmic representation of the function RewardCost

1: function RewardCost(solut ion, D):

2: υ← 0
3: for all i ∈ [1, · · · , |solut ion|] do
4: υ← υ+ ri

5: end for

6: return υ

Algorithm 9 The algorithmic representation of the function Penal t yCost

1: function PenaltyCost (solut ion, D):

2: υ← 0
3: for all i ∈ [1, · · · , |solut ion|] do
4: υ← υ− ei

5: end for

6: return υ

use two main metrics: speedup and relative error. Both metrics relate to the
performance of the evaluator relatively to the Analytical Evaluator. We define
speedup as follows:

Speedup =
tAnal y t ical

tEvaluator
(2.3)

where tAnal y t ical is the total runtime of the Analytical Evaluator and tEvaluator the
runtime of the evaluator examined respectively.

If for example the result of speedup is 1.5, it means that the evaluator we
examine is 1.5 times faster than the Analytical Evaluator while evaluating the
same solution. We define the relative error as follows:

Reler ror =
�

�

�

uAnal y t ical − uEvaluator

uAnal y t ical

�

�

� (2.4)

where uAnal y t ical is the value from the analytical objective function evaluator
and uEvaluator is the value returned by the examined objective function evaluator.

2.3.1 Tuning and comparison

We get measurements for different parameter configurations. First we specify the
DA ratio range (DA range) and the Reward-Penalty area ratio range (RP range).
Here the DA range is [0.1,0.7] with step 0.1 and RP range is [0.7725, 0.99] with
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Algorithm 10 The algorithmic representation of the function R-A-P

1: function R-A-P(solut ion, samples, D,α,ρ):

2: DA_star t ← (1−α) · D
3: DA_end ← (1+α) · D
4: υ← υ+ RewardCost(solut ion[0..DA_star t], samples, D)
5: υ← υ+ Anal y t ical(solut ion[DA_star t..DA_end], D)
6: υ← υ+ Penal t yCost(solut ion[DA_end..|solut ion|], samples, D)

7: return υ

step 0.0725. These intervals are considered safe and should cover all the mean-
ingful configurations. Then we run the Variable Neighborhood Search Meta-
heuristic (see Section 2.4.2) which will be using the Analytical Evaluator and
take 15000 different solutions produced. Each of these solutions is then evalu-
ated by each evaluator 30 times and we obtain the mean value of the two metrics
Speedup and Relerror for each evaluator. We repeat this evaluation procedure
for each combination (configuration) of DA ratio and reward-penalty ratio in
the DA and RP range. For each method we select the configuration with the best
average speedup with the constraint that the average relative error over all dead-
lines is below a reasonable threshold (best avg methodology); or for each method
we eliminate all entries that do not comply with a given error threshold and
for each deadline we select the configuration that yields the best speedup (best
methodology). Both methodologies will be explained in more details in below.

In our experiments, we use the same datasets introduced in Section 2.2.2.1.
Here we present only the most interesting results. To see the full results of these
and other 3 datasets please visit [Papapanagiotou, 2016]. In the experiments that
follow, we want to compare the performance of the different hybrid evaluators.
As it was discussed in Section 2.3 the metrics that are of importance are speedup
and relative error (Equation (2.4) and Equation (2.3)). The desirable outcome
is to select an evaluator with minimum relative error and maximum speedup.
Optimizing for the two objectives simultaneously can be difficult since to reduce
the relative error some speed is usually traded-off. However, considering that
we want the objective function to be used inside a metaheuristic optimizer, it is
often more important to have a faster metaheuristic so that more comparisons
can be made for a given unit of time than having the minimum error possible.
Some evidence of this phenomenon can be found in Section 2.2.3.4. Thus, in
our experiments we fix a threshold for error and then compare which evaluator
reaches the best speedup for this threshold. We use two ways of fixing the thresh-
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old for the error. The first method is called best avg in the graphs and selects the
configuration of which the average speedup over all examined deadlines is max-
imum and the average relative error over all examined deadlines is less than the
error threshold. The second method is named best in the graphs and selects the
best speedup by deadline with the constraint that the relative error is less than
the error threshold. We present two types of graphs, one that shows the best
performance of the method (speedup) given the above by deadline and a box-
plot that shows the speedup performance of each method over all deadlines. For
four error thresholds (0.5%, 1%, 2%, 5%) we plot both types of graphs for both
methodologies (best avg and best) and present the best results for each thresh-
old. In general, presenting best avg should be preferred if the results are not
much different than best, since it imposes smaller overhead in its computation.
As it is clarified in a previous section, both metrics are relative to the Analyti-
cal Evaluator and one useful observation is that all the methods are statistically
significantly faster than the Analytical even with the strictest error thresholds.

2.3.1.1 Dataset 221

The DA range and RP range is the one defined in Section 2.3.1. For an error
threshold of 0.5% (Figure 2.22) for the best methodology we can observe that the
R-A-P method is more performant than the others for every deadline. For an error
of 1% (Figure 2.23), R-M-A-M-P is best on average for the best methodology. For
an error of 2% (Figure 2.24) and the best avg methodology, the MC-Analytical-
MC Evaluator is has the best speedup on average. For an error of 5% (Figure
2.25) MC is significantly better than the other methods but an error of 5% usually
is too high and can impact the metaheuristic in many negative ways. For small
datasets such as this one R-M-A-M-P is the best for 1% error and performs close
to the best in the other cases except for the case where we accept large errors
(5%)

2.3.1.2 Dataset 432

In this dataset,we observe that for error thresholds of 0.5% and 2% R-M-A-M-P
is better on average (Figure 2.26 and Figure 2.28). For 2% error threshold both
M-A-M and R-M-A-M-P are significantly better than R-A-P (Figure 2.28. For error
threshold of 1% M-A-M is better on average and significantly faster than R-A-P
(Figure 2.27). For error threshold of 5% MC is statistically significantly better
than any other method (Figure 2.29) Again, for this small dataset for small error
tolerance R-M-A-M-P is the best or close to the best evaluator but for higher error



48 2.3 Performance of the Evaluators

1.5

2.0

2.5

3.0

20 30 40

Deadline

S
p

e
e

d
u

p

Method MAM RAP RMAMP

Error threshold: 0.5%

Figure 2.22. Deadline vs Speedup for dataset 221 (21 customers), tuning by
each deadline separately (best). Error threshold 0.5%
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Figure 2.23. Deadline vs Speedup for dataset 221 (21 customers), tuning by
each deadline separately (best). Error threshold 1%
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Figure 2.24. Deadline vs Speedup for dataset 221 (21 customers), tuning by
according to average relative error and speedup (best avg). Error threshold 2%
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Figure 2.25. Deadline vs Speedup for dataset 221 (21 customers), tuning by
each deadline separately (best). Error threshold 5%
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tolerance the overhead of splitting the solution and using different evaluators for
each part makes it relatively slower.
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Figure 2.26. Method vs Speedup for dataset 432 (32 customers), tuning by
according to average relative error and speedup (best avg). Error threshold
0.5%

2.3.1.3 Dataset 664

We observe that from a certain deadline onwards, R-A-P is much faster than the
other methods. This occurs because in this instance, the Analytical part of R-A-P
is enough to keep the error very low and from a certain deadline upwards, the
deadline is rarely occurring needing a very small Analytical part to achieve good
results. This dataset is a good use case for the utility of a method like R-A-P
which does not include any sampling. We also observe that in some graphs the
Monte Carlo Evaluator is present but with missing points (Figure 2.30, Figure
2.31, Figure 2.32, Figure 2.33). This means that for the specific deadlines there
was no result below the selected error threshold. Therefore, when the deadline
and the structure of the solution (travel time X i, j between nodes) is such that
most of the time the selected clients are served without the deadline occurring,
R− A− P outperforms other evaluators.
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Figure 2.27. Method vs Speedup for dataset 432 (32 customers), tuning by
according to average relative error and speedup (best avg). Error threshold
1%
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Figure 2.28. Method vs Speedup for dataset 432 (32 customers), tuning by
according to average relative error and speedup (best avg). Error threshold
2%
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Figure 2.29. Deadline vs Speedup for dataset 221 (21 customers), tuning by
each deadline separately (best). Error threshold 5%
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Figure 2.30. Deadline vs Speedup for dataset 664 (64 customers), tuning by
each deadline separately (best). Error threshold 0.5%
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Figure 2.31. Deadline vs Speedup for dataset 664 (64 customers), tuning by
each deadline separately (best). Error threshold 1%
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Figure 2.32. Deadline vs Speedup for dataset 664 (64 customers), tuning by
each deadline separately (best). Error threshold 2%
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Figure 2.33. Deadline vs Speedup for dataset 664 (64 customers), tuning by
each deadline separately (best). Error threshold 5%

2.3.1.4 General Remarks and Guidelines on Tuning

Using the representative results presented and also the full results [Papapana-
giotou, 2016], one can see that all methods are useful and significantly faster
than the Analytical Evaluator. According to the needs of the application we
showed two methodologies on how to select the best-suited method. R-M-A-
M-P usually yields consistent results and because it provides fine-grained control
for balancing error and speedup, it is in many cases the method of choice for
high performance with low error. M-A-M is more accurate but slower than MC
and it beats R-M-A-M-P in limited cases where the M-A-M part of the solution
is enough to yield good results and the overhead to divide the solution in more
parts (five in the case of R-M-A-M-P, three in the case of M-A-M) makes R-M-A-
M-P less efficient. R-A-P is very efficient when tuned by each deadline separately
in datasets where a small Analytical part is enough to reduce the error of eval-
uation to minimal levels. Usually, this happens in datasets where the deadline
is large enough and occurs rarely, In this case, most of the solution is evaluated
using the deterministic Reward part, which is very fast. MC is usually the method
of choice when large error is acceptable and the deadline occurs often. In most
of these cases MC is significantly better than the other methods, however, usually
the error threshold in these cases is unacceptable for use in a metaheuristic.
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2.3.2 Generation of large datasets

The datasets that have been examined till now were small and it has been quite
trivial to find and evaluate solutions for them. Therefore using these datasets is
difficult to reveal the full potential of the proposed faster evaluators. Addition-
ally, in practice many times the algorithm has to be applied to bigger instances.
The OPSTS occasionally needs to be applied to problems that have potentially
thousands of nodes like production scheduling where we want to use machines
with different operations, to choose their movements to produce as many prod-
ucts as possible while minimizing cost, one example of that is the steel rolling mill
problem [Balas, 1995]. Therefore, it would be worthwhile to test the proposed
algorithms in bigger datasets. To test our methodology we generate four datasets
with thousands of nodes following a procedure similar to the one used to create
the previous datasets that we used, see [Chao et al., 1996]. More specifically,
we generate datasets of 1000, 1800, 2500, 4000 nodes as follows: We assume a
square with a diagonal of 1000, 1000, 2500, 4500 units respectively. This is the
maximum distance between nodes; we generate uniformly in both coordinates
1000, 1800, 2500, 4000 nodes correspondingly, with random rewards from 1 to
100; and finally penalties that are 0.1 of the reward of each node. The datasets
are available in the online addendum [Papapanagiotou, 2016].

2.4 Metaheuristic Algorithms

In this section we present metaheuristics for providing solution for OPSTS.

Global Optimization Algorithms

The general global optimization problem is defined as:

min
x∈S

f (x) (2.5)

where x is a vector of n variables of an n-dimensional feasible region S. We
assume S to be non-empty. f is a real-valued function defined over S and the
objective is to find the value x ∈ S that minimizes f .

To find solutions for f we use optimization algorithms. Here we introduce
the global optimization algorithms.

The characteristic of global optimization algorithms is that if we run them
long enough (mathematically running time t →∞), they will eventually find
the global optimum. This can be guaranteed by ensuring that at the limit, every
location in the search space will be visited.
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Metaheuristics

Metaheuristics represent a family of approximate optimization techniques that
provide “acceptable” solutions in a reasonable time for hard and complex prob-
lems (usually NP-hard). They are a framework or heuristic for selecting or com-
bining heuristics that may provide a sufficiently good solution to an optimization
problem. Metaheuristics in general do not guarantee the optimality of the solu-
tions they find nor define how close are the obtained solutions from the optimal
ones. Some of them are proved to converge at the best solution given a long
enough run (mathematically running time t →∞) and these ones can be con-
sidered as global optimization algorithms.

2.4.1 Random Search Metaheuristic (RS)

The RS is known for its computational efficiency and generality [Spall, 2005].
For the purposes of fair comparison, we devised a Random Search Metaheuristic
for the OPSTS.The idea behind the RS is that we produce many random solutions
and select the best one. RS is a global optimization algorithm

Another advantage of RS for our experiments is that it can be a very fair meta-
heuristic for comparing the evaluators that we embed, especially if we initialize it
with the same random seed and obtain the same sequence of random solutions.
By embedding different evaluators but with the same random solution pool each
time, the fastest evaluator will be able to examine more of the solutions of the
solutions pool. Also, a small error in evaluation counts to avoid picking subop-
timal solutions as best. With a different metaheuristic we could not have this
advantage since the different choices different choices influenced by the evalua-
tors may favour constructing and examining a very different solution pool

In Algorithm 11 we can see that the RStakes as input the search space and
the evaluator to be used and returns the best solution found. We consider that
there exists a function Random_Solution that returns a random solution from
the search space. Additionally, RS is good as a reference to judge the efficiency
of other metaheuristics. Since it is simple and does not use additional complex
heuristics, it is a logical choice for implementing it first and comparing each
subsequent heuristic with it. For more information see [Solis and Wets, 1981],
[Brownlee, 2011]. Finally, by changing the way a solution is generated (e.g. us-
ing local search heuristics) or the acceptance criterion (e.g. stochastically accept
suboptimal solutions as best) we can produce different metaheuristics like the
one presented in Section 2.4.2.
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Algorithm 11 Random Search Metaheuristic

1: function RS (search_space, Evaluator):

2: max ←−∞
3: best_solut ion← Random_Solution(search_space)
4: # Stopping Criterion
5: while there is time available do
6: # Generator
7: candidate_solut ion← Random_Solution(search_space)
8: # Evaluation
9: candidate_value← Evaluator(candidate_solution)

10: # Acceptance Criterion
11: if candidate_value ≥ max then
12: max ← candidate_value
13: best_solut ion← candidate_solut ion
14: end if
15: end while
16: return best_solut ion

2.4.2 Variable Neighborhood Search Metaheuristic (VNS)

We use the VNS as a metaheuristic to compare it with the seminal paper of OP-
STS [Campbell et al., 2011]. In [Campbell et al., 2011], the VNS metaheuristic
used only the Analytical Evaluator and here for the first time, we present its
performance when we incorporate other evaluators. VNS was first proposed by
[Mladenović and Hansen, 1997] and an application to the orienteering problem
can be found here [Sevkli and Sevilgen, 2006]. The basic idea is to try to escape
local minima by changing search neighbourhoods.

Algorithm 12 shows our implementation of the VNS algorithm based on the
one presented in [Campbell et al., 2011]. VNS has two phases the shaking phase
and the local search phase. When it is in the shaking phase, a given solution is
perturbed according to the neighborhood given as input. In our implementation
this is done by the Shake function that takes as input the current best solution,
perturbs it according to the k neighborhood and returns the result. In the local
search phase, the solution from the shaking phase is improved contributing to
the exploitation of the search space. For the local search phase Variable Neigh-
borhood Descent (VND) is used which can be seen in Algorithm 13. In VND,
a specific neighbourhood is searched until no improving solution can be found
and then it proceeds to do the same thing with every available neighborhood
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until there are no more improvements while iterating over the neighborhoods.
The Best Improving function finds and returns the best solution in the neigh-
borhood k of a given solution solut ion. The neighborhoods used are the ones
used in [Campbell et al., 2011], first suggested by [Feillet et al., 2005] namely
resequencing the route using 1-shift, replacing a customer on the route with
one not on the route, adding a customer on the route, deleting a customer from
the route and the ruin and recreate neighborhood from [Schrimpf et al., 2000].
More specifically the ruin and recreate heuristic, removes b nk

10c nodes where n is
the number of nodes of the current tour and k is the current iteration of VNS. We
then add random nodes not previously on the tour. For more details one should
consult [Campbell et al., 2011].

Algorithm 12 Variable Neighborhood Search Metaheuristic

1: function VNS (search_space, Evaluator):

2: solut ion← Random_Solution(search_space)
3: # k is the neighborhood number
4: k← 1
5: while there is time available do
6: per tur bed_solut ion← Shake(solut ion, k)
7: V N D_solut ion← V N D(per tur bed_solut ion)
8: if Evaluator(solut ion)> Evaluator(V N D_solut ion, Evaluator) then
9: if k < number_o f _neighborhoods then

10: k← k+ 1
11: else
12: k← 1
13: end if
14: end if
15: end while

2.4.2.1 Performance of R-M-A-M-P in VNS

R-M-A-M-P described in Section 2.2.4 is the most versatile evaluator (in terms
of parameterisation) that we introduced and it seems to achieve very good per-
formance if not the best in most datasets especially under error requirements
lower than 2% and for datasets with more than 21 nodes. Therefore, it is our
hypothesis that it would be the most promising first choice for testing it inside
the metaheuristic that was the state of the art at the time of this study (VNS). To
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Algorithm 13 Variable Neighborhood Descent

1: function VND (solut ion, Evaluator):

2: # k is the neighborhood number
3: k← 1
4: cur rent_solut ion← solut ion
5: # Stop when there has been a local search in all
6: # neighborhoods without any further improvement
7: while cur rent_solut ion<> solut ion do
8: while k < number_o f _neighborhoods do
9: best_improv_solut ion← Best Improving(solut ion, k)

10: if Evaluator(solut ion)> Evaluator(best_improv_solut ion) then
11: k← k+ 1
12: else
13: solut ion← best_improv_solut ion
14: end if
15: end while
16: cur rent_solut ion← solut ion
17: k← 1
18: end while

that end, we designed and executed experiments to assess any gains in perfor-
mance. At a later section where we compare all the evaluators in metaheuristics
(e.g. see Figure 2.40 and 2.41) our hypothesis was shown experimentally to be
true in all the datasets tested.

Below we present a selection of results. The full results can be found at
[Papapanagiotou, 2016].

2.4.2.2 Preliminary test: Speedup Estimation

In the following experiments, we try to answer if and how much better the VNS
metaheuristic described in Section 2.4.2 becomes when we embed the R-M-A-M-
P (VNS-RMAMP) into it, in comparison with the VNS with the original Analytical
Evaluator (VNS-Analytical) used in [Campbell et al., 2011]. Due to space restric-
tions we show in this paper only representative results and the rest can be found
in the online compendium [Papapanagiotou, 2016].

All the experiments have been run on a computer equipped with a Quad-
Core AMD Opteron 2350 processor running at 2.0 GHz with 32GB of RAM. Only
one core was used in each run. The parameters of R-M-A-M-P have been set as
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α= 0.1 and ρ = 0.2 according to some experiments available in the online com-
pendium [Papapanagiotou, 2016]. In this section we study how much faster is
the R-M-A-M-P than Analytical inside VNS. We measure the speed by the number
of solution evaluations achieved in the same amount of time and then we report
the speedup defined as Speedup = #R−M−A−M−P_Evaluations

#Anal y t ical_Evaluations .
We can see the results for the datasets of 1000 and 4000 nodes in Figure 2.34

and Figure 2.35 respectively. We observe that R-M-A-M-P yields a speedup up to
544x. Similar results hold for the remaining datasets. In general, the more nodes
the dataset has, the more speedup is gained. In the next sections, we will analyze
how such a speedup impacts on the performance of a metaheuristic algorithm,
implicitly taking into account also the precision loss of the sampling evaluator.
In Section 2.3.1 it has been shown that by tuning the parameters α and ρ we
can determine the trade-off of speedup and accuracy that we want.

In Section 2.2.3.4, we saw evidence that if error is lower than 2%, there is a
good balance of speed and precision loss. In this thesis, the tuning is such that
the precision loss is approximately 2%.
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Figure 2.34. Here we see the speedup achieved by R-M-A-M-P in the 1000
dataset for a runtime of 2 minutes

2.4.2.3 Solution Quality Comparison

In the experiments we consider the solution quality reached at given runtimes as
the most important performance indicator. For this purpose, the expected profit
of each solution obtained is re-computed according to the Analytical Evaluator, in
order to have fair comparisons. We sample the solution quality every 10 seconds
from 0 minute to 2 minutes. In order to obtain representative results we run
30 times each experiment and we get the average point. Since each point is a
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Figure 2.35. Here we see the speedup achieved by R-M-A-M-P in the 4000
dataset for a runtime of 2 minutes

sample mean and we compare sample means, we can use Student’s t-test [Tanis,
2008] to compare the final values obtained by each method and see if any of
the methods yields statistically significantly better results. In our experiments,
we have the hypothesis that the Analytical is not worse than R-M-A-M-P and we
try to find strong evidence against this hypothesis that is our null hypothesis. To
do that we need to show that the p-value which is the output of a Student’s t
distribution is ≤ 0.05. The p-value is the probability that the result obtained is
actually equal or more extreme than what was observed, assuming our model
is true. A value lower than 0.05 is strong evidence against our null hypothesis
[Tanis, 2008]. The final solutions reached by VNS-RMAMP are reevaluated by
the Analytical Evaluator so that we have a fair comparison of the final values
reached.

We compare the solution quality reached by the VNS metaheuristic when we
have the R-M-A-M-P and Analytical evaluators embedded inside. In Figures 2.36
and 2.37 we see the objective values reached over time for the VNS metaheuristic
over two different datasets, with different objective functions embedded, and
with different deadlines considered. We observe that after 20 seconds (20000
ms) in every case, VNS-RMAMP reaches better values than VNS-Analytical. In
Figure 2.38 we see the distribution of objective values reached after 2 minutes
for the dataset with 4000 nodes. The result is from running it 30 times and each
row represents a different deadline. We see that the mean value of R-M-A-M-P
is better than Analytical in every case. Such a trend is true for all the datasets.

Furthermore, in Table 2.4 we can see the p-values for each deadline for the
null hypothesis that VNS with R-M-A-M-P is not better than VNS with Analytical
for the dataset with 1800 nodes. What we can observe is that the opposite is true
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with statistical significance (p < .05) for all deadlines and for deadlines 1000,
1500 with great statistical significance (p < .01). This means that we have strong
evidence to reject the null hypothesis and therefore we can say that R-M-A-M-P
achieves statistically significantly better results. This is better illustrated in the
boxplot in Figure 2.39 where the low and upper values of the whiskers are within
±1 Standard Error of the Mean (SEM)(see also [Tanis, 2008]). SEM shows with
what precision we know the true mean of our value. Here, the true mean with
approximately 70% chance is included in the whiskers. We can clearly see that
the values reached by the VNS-RMAMP significantly outperform VNS-Analytical.
Again, such a trend is visible for all the datasets considered, and the evidence is
even more clear for larger datasets.

Additionally, in Table 2.5 and Table 2.6 we can see the objective value
achieved in 2 minutes by VNS with Analytical and R-M-A-M-P and the improve-
ment of R-M-A-M-P in percentage. Even for a low runtime of two minutes, VNS
with R-M-A-M-P manages to find a better solution for every deadline from 2% to
128% better.

In Table 2.7 we see in even more detail the results of the methods by deadline.
The statistics that we use in this table is the median and the Interquartile Range
(IQR) (see also [Tanis, 2008]). If we sort the values (here of the objective values),
the median is the value in the middle of the sorted values. If we then split the
sorted values in four equal parts, we call these parts the quartiles. The difference
between the third and the first quartiles is called the Interquartile Range (IQR).
It is used to show how close are the values from the median and to find outliers
that are thought to be points 1.5 IQR away from quartile 1 or 3. We can see the
median and minimum values achieved by VNS with Analytical and R-M-A-M-P
and also the IQR which is the difference between the 3rd and 1st quartiles. We
can observe that the median values achieved by VNS-RMAMP are always better
than VNS-Analytical and also that the minimum values achieved are in all but
one case better. VNS-RMAMP in many cases has larger spread, shown by the IQR
columns.

2.5 Comparison of metaheuristics

Previously, we have presented ways to tune the evaluators in isolation so that they
have a small average error. In most datasets R-M-A-M-P was able to perform the
best under the error constraint, while in one dataset where the deadline was not
reached often, R-A-P performed the best (see Section 2.3).

In the experiments of this Section, we try to answer several questions so that
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Figure 2.36. Objective value over time till 2 minutes for the dataset of 1800
nodes
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Figure 2.37. Objective value over time till 2 minutes for the dataset of 4000
nodes
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Figure 2.38. Comparison of solution quality for the dataset of 4000 nodes

we investigate further the usefulness of our proposed methods. The main ques-
tions we try to answer are about the evaluators’ performance and how different
evaluators with different configurations (area ratio and reward-penalty ratio) af-
fect the final metaheuristics solution found as time progresses. To answer our
questions with a limited number of experiments we conducted full factorial ex-
periments with DA ratio taking values of 0.1, 0.8, Reward-Penalty (RP) ratio
values 0.2, 0.9 (where applicable) evaluator being one of R-M-A-M-P, Analyti-
cal, MC, M-A-M, RAP, metaheuristics being one of RS or VNS. We execute the
metaheuristic for 10 minutes and sample the value found every 10 seconds. We
run our methods for different datasets with 1000, 1800, 2500, 4000 customers
with deadlines 500, 1000, 1500 and 2000. In each sampling we record the in-
stance, metaheuristic, evaluator, deadline, area ratio, RP ratio, runtime, number
of evaluations, final solution found as evaluated by the respective evaluator as
well as evaluated by the Analytical Evaluator. We also record information spe-
cific to each metaheuristic such as which heuristics ran and which one found
better solutions. The results of the RS can be reproduced exactly by providing
the same seed for generating the random solutions. From this information we
are able to analyze several characteristics of our methods and answer multiple
questions. All experiments have been carried out on a Quad-Core AMD Opteron
2350 processor running at 2.0 GHz with 32GB of RAM. Only one core was used
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Deadline p value
1 500 0.0142*
2 1000 0.0072**
3 1500 0.0001**
4 2000 0.0286*

Table 2.4. Null hypothesis: VNS with R-M-A-M-P is not better than VNS
with Analytical for the dataset of 1800 nodes. * means the null hypothesis is
not accepted with p < .05 and ** p < .01

Deadline Analytical R-M-A-M-P Improvement(%)
1 500 111.96 113.86 1.70
2 1000 193.63 246.59 27.35
3 1500 289.68 442.29 52.68
4 2000 395.30 590.14 49.29

Table 2.5. Final average objective values achieved by the VNS with Analytical
and R-M-A-M-P evaluators and the improvement of R-M-A-M-P for a dataset
of 1000 nodes

in each run.

2.5.1 Evaluators Tuning

The performance of the evaluators in the metaheuristics depends on the tuning
of their parameters. The effects of the parameters when the evaluators are tested
in isolation have been studied before in Section 2.3.1. In this section we use a
slightly different method to tune the parameters. In order to see the effects of
Area Ratio and Reward-Penalty area ratio (RP ratio) and select the values for
our application we embed the evaluators in the metaheuristic and we run it for
30 times for each evaluator, deadline and each Area ratio and RP ratio where
it makes sense. The full results for this can be seen in the online addendum
[Papapanagiotou, 2016]. We use these values in our experiments to determine
the best tuning for each deadline. The final tuning that is used in the subsequent
sections can be seen in Table 2.9.
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Figure 2.39. Boxplot for the dataset of 1800 nodes with data in the box being
within ±1 of the standard error

2.5.2 Evaluators Speed

One of the important factors for finding good solutions is to be able to examine
more solutions in a fixed runtime. Notice that in this section we deliberately omit
approximation quality and we only concentrate on pure speed. A complementary
analysis, focusing on approximation quality will be presented in Section 2.5.3.

In Table 2.8 we can see pairwise t-tests for the number of evaluations for
runtimes of 10, 20, 30, 40 seconds for all evaluators for the RS and VNS meta-
heuristic for 1000 and 2500 nodes. The values in bold are p < 0.05 and it means
that the method in the row is statistically significantly faster (achieves more eval-
uations at the same time).

We can observe that in all cases the proposed evaluators are faster than the
conventional Analytical Evaluator and in most of them they are also significantly
faster. Also, R-M-A-M-P is very competitive in speed, being significantly faster
than the others in most cases, being outperformed (in terms of pure speed) only
to R-A-P in some cases. However, speed is not the definitive factor, since accuracy
is also very important. As we will see, R-M-A-M-P tends to outperform the other
evaluators in most cases, despite not being always the fastest one, due to its low
error.
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Deadline Analytical R-M-A-M-P Improvement(%)
1 500 27.87 63.63 128.29
2 1000 55.56 92.92 67.23
3 1500 119.93 157.05 30.95
4 2000 149.53 154.79 3.52

Table 2.6. Final average objective values achieved by VNS with Analytical and
R-M-A-M-P evaluators and the improvement of R-M-A-M-P for a dataset of
2500 nodes

Deadline Evaluator Value range
Median Min IQR

500
Analytical 67.7280 0.0000 70.5716
R-M-A-M-P 79.5000 23.8352 49.5775

1000
Analytical 169.0695 48.0000 78.7230
R-M-A-M-P 210.9990 52.9999 126.6765

1500
Analytical 258.8520 72.7217 90.7275
R-M-A-M-P 374.4665 116.1500 192.6325

2000
Analytical 409.9925 266.0090 132.9370
R-M-A-M-P 483.7065 174.0000 237.7930

Table 2.7. Value ranges for different deadlines for the dataset of 1800 nodes

In Figure 2.40 and Figure 2.41 we can see the evolution of the objective value
reached by the VNS metaheuristic by the datasets of 1000 and 1800 nodes over
the course of 10 minutes with deadline 2000. We can observe that the solution
quality when R-M-A-M-P is in use, is consistently better than that of any other
evaluator. The second better evaluator is M-A-M and the third better R-A-P.
We also observe that R-M-A-M-P, M-A-M and R-A-P continue to improve while
Analytical and MC soon reach a plateau (stagnation).

When VNS uses R-M-A-M-P, R-A-P and M-A-M, the quality of the best solu-
tions is not monotonically increasing. This is due to approximation errors: in the
charts we report the objective value of each solution evaluated with the Analyt-
ical Evaluator. Therefore, when an objective value appears to get worse then a
previous one, this indicates that the respective evaluator made an approximation
error of such a solution and (erroneously) accepted it as a better solution. It is
interesting to notice how such a phenomenon seems to improve the performance
of the VNS, introducing a behaviour apparently useful to exit local minima.

For further results one can consult the online addendum [Papapanagiotou,
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Figure 2.40. Objective Value vs Runtime, 1000 nodes, Deadline: 2000, VNS
metaheuristic

In Table 2.10 we can see a pairwise one-sided t-test (the p-values) for the
final objective values for deadline 2000, reached by VNS for the datasets of 1000
and 1800 nodes when using the respective evaluators. We consider something
statistically significantly better if p < 0.05. The values in bold mean that if we
incorporate in VNS the evaluator in the row we will get a significantly better
objective value than if we incorporate the evaluator in the column. In the 1000
dataset all proposed evaluators reach significantly better values than Analytical
and R-M-A-M-P is significantly better than all the other evaluators. In the same
dataset M-A-M is significantly better than R-A-P and R-A-P is significantly bet-
ter than MC. In the 1800 dataset M-A-M and R-M-A-M-P are significantly better
than Analytical, all evaluators are significantly better than MC and R-M-A-M-P
is significantly better than all the evaluators except M-A-M. Similar patterns are
seen for all other deadlines and datasets in the online addendum [Papapana-
giotou, 2016]. The proposed evaluators have greater impact in non-trivial meta-
heuristics such as VNS because their characteristics and most notably speed and
accuracy drive the metaheuristic in different neighbourhoods.

To conclude, it appears that the proposed objective function evaluators have
great impact on non-trivial metaheuristics such as the VNS we consider, since
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Figure 2.41. Objective Value vs Runtime, 1800 nodes, Deadline: 2000, VNS
metaheuristic

their characteristics and most notably speed and accuracy are useful to drive the
metaheuristic in different neighbourhoods, leading to an overall better explo-
ration of the search space.

2.5.3 VNS as compared to RS

We now compare the 2 metaheuristics by comparing the final objective values
reached when they are coupled with R-M-A-M-P. A tuned R-M-A-M-P is the most
adaptable and in the vast majority of the cases the best performing evaluator as
shown in [Papapanagiotou et al., 2015a] and also in our current results (see also
the online addendum [Papapanagiotou, 2016]). In Table 2.11 we can see for
each instance and deadline the best value obtained by RS and VNS using R-M-A-
M-P with the same tuning (see Table 2.9). In bold we can see the maximum of
the 2 metaheuristics for each instance and deadline. We observe that RS obtains
better solutions in every single case. For completeness we also did hypothesis
testing (Student’s t-tests) to see if RS is statistically significantly better than VNS.

Since each objective value reached is the average of 30 runs, we can use
one-sided paired t-tests to compare if different combinations of “Metaheuristic-
Evaluator” are worse than others (they reach statistically signifant worse re-
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sults). If the p value that the t-tests return is p < .05 we consider that the first
“Metaheuristic-Evaluator” of the comparison is significantly worse than the sec-
ond one. We examined all combinations of metaheuristics and evaluators and we
found that, no matter the evaluator used, VNS reaches statistically significantly
worse objective values. In fact, the p values reached are practically zero. The
results are in the online addendum [Papapanagiotou, 2016].

2.6 Discussion and Conclusions

In this chapter we have shown ways to improve the state-of-the-art for obtaining
solutions to the OPSTS. The first approach was to improve the bottleneck of the
optimization of OPSTS which is the objective function. That was achieved by
developing ways to approximate it with Monte Carlo sampling. We examined
how the number of samples affect the error and performance and showed how
performance scales as the total runtime increases. Because of the nature of the
problem, the Monte Carlo Evaluator (MC) in certain cases examined yields a
significant error.

To alleviate that problem we developed hybrid evaluators that combine evalu-
ators with different accuracy for different parts of the solution in order to speedup
the evaluation with minimal error. We introduced the concepts of Deadline Area
and reward-penalty area representing the parts of the solution with highest and
lowest error respectively. According to our definitions, we developed three new
evaluators namely M-A-M, R-M-A-M-P, R-A-P.

We also presented results comparing and contrasting all the different evalu-
ators in different contexts and discussing their usefulness. We saw that they can
have dramatic effects in the reduction of the error and reduce the need of the
number of samples to achieve the same levels of accuracy and thus making it pos-
sible to increase the speedup we can yield. To achieve that, we presented ways
to tune them for best results in optimizers and more specifically inside meta-
heuristics. In this work, We presented two ways to tune the evaluators before
running the optimization procedure. A further interesting development would
be to auto-tune the parameters during the running time of the metaheuristics.

Initially, we tested them inside the metaheuristic (VNS) that was state-of-
the-art and we saw that all of the evaluators had significant gains in speedup
compared to the one that was state-of-the-art. The small approximation errors
that these evaluators intrinsically introduce, because of the large speedup of the
optimizer, become negligible.

We also generated big datasets with thousands of nodes in order to show the
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utility of our approaches for much larger datasets than the ones used before.
The generation methodology used was similar to the one applied in the existing
datasets in the literature. We then proceeded in conducting experiments using
the generated datasets to demonstrate the usefulness of our approach when we
have more nodes.

We also developed a Random Search Metaheuristic (RS) and compared it
to the state-of-the-art Variable Neighborhood Search Metaheuristic. We argued
that RS is more suitable for comparing the evaluators in an optimizer context
because the evaluators can be tested using the same solution evaluation set and
then designed and made extensive experiments. Finally, we showed that in these
large datasets RS performed significantly better than VNS.
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RS - 1000 nodes
Analytical M-A-M MC RAP

M-A-M 9.04E-01
MC 2.50E-04 2.18E-06

RAP 1.73E-01 1.33E-02 9.96E-01
R-M-A-M-P 1.87E-06 8.89E-09 8.99E-02 6.25E-05

VNS - 1000 nodes
Analytical M-A-M MC RAP

M-A-M 3.25E-62
MC 5.79E-03 1.00E+00

RAP 1.26E-128 6.28E-22 2.34E-110
R-M-A-M-P 0.00E+00 0.00E+00 0.00E+00 3.03E-264

RS - 2500 nodes
Analytical M-A-M MC RAP

M-A-M 1.00E+00
MC 9.93E-01 1.49E-01

RAP 2.70E-02 1.71E-07 1.23E-05
R-M-A-M-P 9.96E-01 2.08E-01 5.90E-01 1.00E+00

VNS - 2500 nodes
Analytical M-A-M MC RAP

M-A-M 6.64E-05
MC 3.31E-01 1.00E+00

RAP 2.00E-176 1.06E-171 6.63E-176
R-M-A-M-P 4.77E-62 1.06E-49 1.07E-60 1.00E+00

Table 2.8. Pairwise one-tailed t-tests p-values for all deadlines. The highlighted
ones mean that the method in the row achieves statistically significantly more
evaluations than the one in the column
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Instance Deadline Area Ratio RP Ratio
1000 500 0.8 0.9
1000 1000 0.1 0.2
1000 1500 0.1 0.2
1000 2000 0.1 0.2
1800 500 0.8 0.9
1800 1000 0.1 0.2
1800 1500 0.1 0.2
1800 2000 0.1 0.2
2500 500 0.8 0.9
2500 1000 0.1 0.2
2500 1500 0.1 0.2
2500 2000 0.1 0.2
4000 500 0.8 0.9
4000 1000 0.1 0.2
4000 1500 0.1 0.2
4000 2000 0.1 0.2

Table 2.9. Final Tuning Table

Table 2.10. Pairwise one-tailed t-test for final objective value reached when
using VNS with each evaluator for deadline 2000. Values p < 0.05 mean that
when we use the evaluator in the row in VNS for 1000 and 1800 nodes, a
statistically significantly better objective value is reached

VNS - 1000 nodes
Analytical M-A-M MC RAP

M-A-M 6.03E-72
MC 6.03E-72 1.00E+00

RAP 1.97E-58 1.00E+00 4.65E-49
R-M-A-M-P 3.51E-89 3.57E-07 9.00E-81 5.61E-17

VNS - 1800 nodes
Analytical M-A-M MC RAP

M-A-M 4.14E-04
MC 1.00E+00 1.00E+00

RAP 1.62E-01 9.93E-01 1.26E-09
R-M-A-M-P 3.91E-04 4.93E-01 9.25E-14 6.62E-03
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Instance Deadline RS VNS
1000 500 360.35 155.98
1000 1000 580.00 289.62
1000 1500 724.00 484.78
1000 2000 766.39 687.04
1800 500 314.00 106.16
1800 1000 474.04 213.60
1800 1500 662.07 377.12
1800 2000 707.46 505.85
2500 500 226.35 63.63
2500 1000 227.00 92.92
2500 1500 355.00 157.05
2500 2000 378.00 180.42
4000 500 191.00 9.27
4000 1000 225.40 38.11
4000 1500 246.71 63.04
4000 2000 250.00 85.29

Table 2.11. Results for all instances and metaheuristics using R-M-A-M-P. In
bold we see the average values found by R-M-A-M-P for each deadline of each
instance (after running the metaheuristics 30 times). Maximum runtime: 10
minutes



Chapter 3

Solution methods for the 2-stage
Capacitated Vehicle Routing Problem
with Stochastic Demands

In this chapter, we are going to discuss our solution approaches for the 2-stage
Capacitated Vehicle Routing Problem with Stochastic Demands, introduced in
Section 1.2.3. Our contribution consists of both defining this new problem and
proposing different approaches. The results mentioned here are based on our
published work [Toklu et al., 2013], [Toklu et al., 2014] and [Klumpp et al.,
2014]. First we will discuss the main metaheuristic used for solving the problem,
which is the Ant Colony Metaheuristic and then we will proceed with examin-
ing our proposed objective functions. Subsequently we will see the experiment
design and results and in section after that an environmental application of this
problem. The final section concludes our findings.

3.1 The Ant Colony Metaheuristic

The Ant Colony Optimization algorithm (ACO) first appeared in [Dorigo, 1992]
and [Dorigo et al., 1991]. It is a metaheuristic for finding solutions to difficult
combinatorial optimization problems which can be reduced to finding near op-
timal paths in graphs like the Vehicle Routing Problem (VRP) or the traveling
salesman problem (TSP).

In ACO we simulate a number of artificial ants that “walk” on the graph
G = (L, A) and each one finds a solution. The ants begin by “walking” randomly
on the graph. When they have found a solution artificial pheromones trails are
used on the arcs they have walked. The quantity of artificial pheromones on

75
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the arcs of a solution, depends on the quality of the generated solution. Over
time, pheromone trails start to "evaporate". In a shorter path there is less evap-
oration because it is marched over more frequently and the amount of artificial
pheromone on it becomes higher. Pheromone evaporation helps avoiding early
convergence to local optima and if it did not exist, the paths chosen by the first
ants would be excessively attractive.

Subsequent ants trying to find new solutions when they encounter a
pheromone trail, they are tempted to follow the arcs with higher amounts of
pheromone left by previous ants. However, there is a smaller probability that
the ant may follow other arcs on the graph too. The procedure is repeated it-
eratively and because the pheromone amount increases in the arcs belonging
to good solutions, we can observe that the ants in the end converge to a near-
optimal solution.

The ant colony system used is an elitist algorithm. In our problem, elitism
means that only ants improving the currently known best solution put new
pheromones on the graph. Elitism also implies that ants mainly apply local
searches around the best solutions.

The implementation of the ant colony system described in this paper is based
on [Gambardella et al., 1999]. Firstly, a solution is generated using the nearest
neighbour heuristic (NNH) (for more details see [Johnson and McGeoch, 1997]).
The best solution of NNH is then saved in a variable called best. Afterwards, a new
ant colony is generated with Ω ants. The cost of the new solution is evaluated
by the objective function. If best is smaller than our current solution, then the
current solution is saved in the variable best. Then, the procedure of generating
new ant colonies and constructing new solutions is repeated until a finishing
criterion is met.

For each vehicle, an artificial ant constructs a solution by picking locations
one by one. At first, always the depot (the location 0) is picked for a vehicle.
After that, other locations are added one by one onto the route, among the vis-
itable locations. A location is considered visitable, if that location is not visited
yet in the current location, and, adding that location does not violate the capacity
constraint of the vehicle which is currently being considered. Now, considering
an ant at the location i (i.e. an ant which added the location i in its most recent
step), for picking the next location j, let us define the following: Nw is the set
of visitable locations for the ant w; ∆i j is the euclidean distance between the
locations i and j; ηi j = 1/∆i j is a heuristic indicator of proximity between the
locations i and j; α is a parameter which configures the balance of importance
between exploitation and exploration; and finally β is a parameter which config-
ures the importance of proximity during the process of picking the next visitable
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location. Further details about exploitation and exploration are as follows: with
probability α the ant colony decides to do exploitation and follows the arc (i, j)
which maximizes τi j · [ηi j]β , and with probability 1 − α decides to explore. In
the case of exploration, the next location j is picked with probability:

pw
i j =











τi j · [ηi j]β
∑

j′∈Nw
τi j′ · [ηi j′]β

if j ∈ Nw

0 otherwise

For more information about the ant colony system algorithm, the reader is
referred to [Gambardella et al., 1999].

3.2 Solution Approaches

In the following section we present the actual objective functions we proposed
in order to approximate the objective function shown in Equation (1.10). For
better reference we repeat here the notation introduced in Section 1.2.3.2. V
is the set of vehicles available and ci j is the cost of traveling from location i to
location j, x v is the route decided for vehicle v ∈ V , |x v| the length of the route
x v, and x v

k is the k-th visited place of the vehicle v in x . S is the set of scenarios
considered, and they are sampled using Monte Carlo sampling, and d s

i is the
demand in location i in scenario s ∈ S. d i is the “base demand”, the one that is
known before visitation of location i and d increase

i is a random variable following
a half normal distribution representing demand increases in each approach.

3.2.1 1-Stage Best-Case approach

This approach treats our problem as a 1-stage regular CVRP. All the demands are
assumed to be fixed and to be equal to their original lowest possible values by
this approach. The objective function is, like in the regular CVRP, the total travel
cost.

min

�

∑

v∈V

|x v |−1
∑

k=1

(ci j|i = x v
k , j = x v

k+1)

�

(3.1)

Demands: di = d i.
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3.2.2 1-Stage Average-Case approach

Like the 1-Stage Best-Case approach, this approach treats our problem as a 1-
stage regular CVRP, except that all the demands are assumed to be equal to the
expected values of their related probability distributions. The objective function
is, like in the regular CVRP and in the previous approach, the total travel cost.

min

�

∑

v∈V

|x v |−1
∑

k=1

(ci j|i = x v
k , j = x v

k+1)

�

(3.2)

Demands: di = d i + E[d increase
i ].

3.2.3 1-Stage Worst-Case approach

Again, this approach treats our problem as a 1-stage regular CVRP. All the de-
mands are assumed to be equal to their original lowest possible values plus two
times the standard deviations of their related probability distributions. Like in
the previous approaches, the objective function is the total travel cost.

min

�

∑

v∈V

|x v |−1
∑

k=1

(ci j|i = x v
k , j = x v

k+1)

�

(3.3)

Demands: di = d i + 2σd increase
i

.

3.2.4 2-Stage Average-Case

In this approach, the artificial ants of the algorithm generates the solutions by
considering the original demands. Later, in the objective function, a solution is
tested against the average scenario z, in which each demand increase is assumed
to be equal to the expected value of its related probability distribution. This cor-
responds to treating the problem as a 2-stage problem: first stage representing
the original scenario, and the second stage representing the scenario revealed
later with increased demands. For testing a solution x against the average sce-
nario z, the accurate objective function would be:

∑

v∈V

|x v |−1
∑

k=1

cx v
k−1,x v

k
+ Fz(x) (3.4)

that is, the cost of the solution in the original base scenario plus the extra costs
for satisfying the customers who are unsatisfied in the average scenario z. The
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problem with using the function Fz(x), however, is that it solves the sub-VRP
problem for satisfying the unsatisfied customers by using an exact method, which
demands too much execution time and therefore becomes unsuitable for being
embedded into the objective function of a metaheuristic. Therefore, we define
another function, F ′z(x), which is the same with Fz(x), except that it uses NNH,
instead of a slower exact method, for solving the sub-VRP problem. The Nearest
Neighbor Heuristic is good enough for small sized problems (see [Johnson and
McGeoch, 1997]) as the ones that F ′z(X ) has to solve. Therefore, the objective
function of this approach becomes:

∑

v∈V

|x v |−1
∑

k=1

cx v
k−1,x v

k
+ F ′z(x) (3.5)

3.3 Experimental Results

In this section, we present the results generated by our approaches: 2-Stage
Average-Case approach, 1-Stage Average-Case approach, 1-Stage Best-Case ap-
proach, and 1-Stage Worst-Case approach. Each approach was implemented in
C, and the results were executed on an Intel Core 2 Duo P9600 @ 2.66GHz com-
puter with 4GBs of RAM, running Ubuntu 12.04.

The instances that we used for the experiments are tai100 {a,b,c,d} and
tai150 {a,b,c,d}, which have 100 and 150 customers, respectively. These in-
stances from the literature fit best the requirements of the company that moti-
vated this research. Due to the scope of this study which is mainly economics
related the provided 8 instances are sufficient and a good fit to provide evidence
for decision making. These instances were originally designed for deterministic
CVRP. To adapt these instances into our problem, we applied the following proce-
dure: for each arc (i, j), the random cost variable is made to behave according to
the half-gaussian distribution for which the lower bound is c′i j, and the standard
deviation is c′i j · (1+ RN D(0,0.2)), where c′i j is the deterministic cost of the arc
(i, j) in the original instance, and RN D(a, b) is a random real number between
a and b.

Let us now see how all these approaches compare to each other. For this pur-
pose, we compare the costs and vehicle requirements of the solutions generated
by each approach on each instance. On each instance, each approach was run
9 times. The reported costs and vehicle requirements are averaged over these
9 runs. Note that, as explained in Section 3.1, each ant colony optimization
approach has its own objective function for evaluating the quality of a solution
during the optimization. However, after the algorithms produce their solutions,
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we evaluate these solutions, according to the evaluation function (1.10) men-
tioned in the problem definition in Section 1.2.3.2, as the minimization of that
function is the true objective of this study. While using the evaluation function
(1.10), we set the number of scenarios as 1000 (i.e. |S| = 1000). The results
are presented in Table 3.1. Under the column groups “Cost” and “Number of
vehicles”, the mean values and the standard deviations (labeled as “StDev”) over
the 9 runs are given. The general comments that we can derive from the table
are as follows:
− The 1-Stage Best-Case approach generates the most expensive results. An ex-
planation for this is that it does not anticipate the extra costs at all by focusing
only on base demands, therefore, it can not foresee which solutions are really
cheap. Another interesting thing to observe is that this approach generates solu-
tions with very low vehicle numbers. This comes at a price though: as it focuses
only on the best-case scenario, in scenarios where there are significant increases
in the demands, the guarantee of visiting a customer only once dissappears eas-
ily, as there will be many unsatisfied customers to be revisited. This results in a
decrease in the quality of service.
− The 1-Stage Worst-Case approach generates the results which require the high-
est number of vehicles. This is caused by the over-conservative nature of the
approach: to make sure that no customer is left unsatisfied, it sends too much
vehicles.
− The 1-Stage Average-Case approach generates the cheapest results. As it fo-
cuses on the expected values of the random variables, it can foresee the actual
costs of the solutions more successfully than the others.
− The 2-Stage Average-Case approach generates the solutions similar to the ones
generated by the 1-Stage Best-Case approach, in the sense that it produces solu-
tions with very low vehicle requirements. However, thanks to its second stage, it
can foresee more successfully, which solutions are actually cheaper. Therefore,
its solutions are cheaper than the solutions of the 1-Stage Best-Case approach.
To sum up, a decision maker who wants stronger guarantees of visiting a cus-
tomer once and/or wants cheaper solutions could go for the 1-Stage Best-Case
approach. On the other hand, if it is more important to minimize the number of
vehicles used, 2-Stage Average-Case approach could be used.

In the objective function (3.5) of the 2-Stage Average-Case approach, on the
average scenario z, F ′z(x) is used instead of Fz(x) for the sake of having a fast
solution evaluation procedure. In more details, an exact integer linear program-
ming formulation could take even minutes on the evaluation of a solution on a
single scenario, rendering a metaheuristic depending on it very slow and useless.
Because of this, the 2-Stage Average-Case approach depends on NNH, instead of
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Cost Number of vehicles
Instance Approach Mean StDev Mean StDev

tai100a.dat 2-Stage Average-Case 2473.29 101.14 12.02 0.01
1-Stage Average-Case 2268.23 29.07 13.45 0.04

1-Stage Best-Case 2558.7 50.77 12.02 0.01
1-Stage Worst-Case 2371.26 39.56 14.04 0.01

tai100b.dat 2-Stage Average-Case 2286.9 55.72 12.0 0.0
1-Stage Average-Case 2182.79 38.61 12.46 0.06

1-Stage Best-Case 2364.22 34.31 12.0 0.0
1-Stage Worst-Case 2175.27 33.83 13.03 0.02

tai100c.dat 2-Stage Average-Case 1575.71 47.88 12.0 0.0
1-Stage Average-Case 1545.82 36.15 12.46 0.05

1-Stage Best-Case 1732.28 54.98 12.0 0.0
1-Stage Worst-Case 1618.44 20.67 13.03 0.01

tai100d.dat 2-Stage Average-Case 1796.25 24.12 12.0 0.0
1-Stage Average-Case 1771.16 37.91 12.5 0.03

1-Stage Best-Case 1916.58 75.24 12.0 0.0
1-Stage Worst-Case 1748.89 20.96 13.02 0.01

tai150a.dat 2-Stage Average-Case 3670.26 56.07 16.17 0.08
1-Stage Average-Case 3612.9 47.28 17.61 0.05

1-Stage Best-Case 3709.71 41.18 16.23 0.04
1-Stage Worst-Case 3697.63 58.51 18.08 0.02

tai150b.dat 2-Stage Average-Case 3437.09 88.02 15.11 0.08
1-Stage Average-Case 3229.12 89.38 16.62 0.02

1-Stage Best-Case 3455.96 67.26 15.16 0.09
1-Stage Worst-Case 3357.25 107.76 17.07 0.01

tai150c.dat 2-Stage Average-Case 3076.15 138.64 15.68 0.01
1-Stage Average-Case 2926.06 99.51 16.72 0.03

1-Stage Best-Case 3150.65 60.71 15.7 0.02
1-Stage Worst-Case 2946.59 94.82 17.29 0.65

tai150d.dat 2-Stage Average-Case 3170.31 56.22 15.12 0.04
1-Stage Average-Case 3063.32 95.69 16.62 0.07

1-Stage Best-Case 3271.07 85.92 15.12 0.05
1-Stage Worst-Case 3061.49 32.42 17.08 0.02

Table 3.1. Comparison of the results of the different ant colony approaches
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an exact method, within its objective function. However, because F ′z(x) uses
NNH to solve a sub-VRP on the graph of unsatisfied customers at the end of the
first stage, it is not able to solve the sub-VRP to optimality, so, it overestimates the
extra cost of the second stage. Let us now compare the functions (3.4) (which
uses exact method) and (3.5) (which is based on NNH and is used within the
2-Stage Average-Case approach) to see if the overestimated costs of the 2-Stage
Average-Case approach are still realistic. For this purpose, we evaluate the final
results provided by the 2-Stage approach first by using (3.4) and then by using
(3.5). The results are presented in Table 3.2. In the table, the mean values and
the standard deviations (“StDev”) of the costs and the vehicle requirements are
given, averaged over 9 runs of the 2-Stage Average-Case approach. The results
of both functions (3.4) and (3.5) are given, and also, in the rows labeled “In-
crease (%)”, the percentage of the overestimation made by the function (3.5)
are reported. In the table, it can be seen that the overestimation percentages in
the costs are tolerable (the highest being 1.71%). Also, there does not seem to
be any change in the number of vehicle requirements.

However, it should also be noted that the standard deviation of the overesti-
mation of function (3.5) over (3.4) (“Increase (%)”) is high. This shows that, in
general, the NNH method is not consistent in performance over different runs.
In turns, the performance of 2-Stage Average-Case, which uses NNH extensively,
is likely to be affected by this.

3.4 Environmental Application

In the paper [Klumpp et al., 2014], the authors examine an environmental ap-
plication of this problem, related to the “Green Bullwhip Effect”.

The bullwhip effect in a distribution channel refers to the fact that shifts in
customer demand propagate in increasing swings in inventory as one moves fur-
ther up the supply chain. It is also known as the “Forrester effect” and has been
described in research since more than fifty years [Forrester, 1961], [Lee et al.,
1997]. Since the first documentation of this effect, a lot of research has been
conducted in transport scheduling and lot sizing in order to mitigate the prob-
lem and support the decision making of logistics managers in different supply
chains [Agrawal et al., 2009], [Chatfield et al., 2004], [Crisan and M., 2012],
[Wright and Yuan, 2008].

Since the field of logistics is responsible of about 5.5% of global climate gas
emissions, several efforts have been made to reduce the environmental impact
[Aronsson et al., 2008], [Murphy and Poist, 2000], [Charter and Tischner, 2001],
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Function used for Cost Number of vehicles
Instance evaluation Mean StDev Mean StDev

tai100a.dat (3.4) 2622.61 142.39 12.0 0.0
(3.5) 2626.89 145.32 12.0 0.0

Increase (%) 0.16 2.06 0.0 0.0
tai100b.dat (3.4) 2383.2 127.3 12.0 0.0

(3.5) 2390.62 129.84 12.0 0.0
Increase (%) 0.31 2.0 0.0 0.0

tai100c.dat (3.4) 1712.17 190.99 12.0 0.0
(3.5) 1728.42 197.15 12.0 0.0

Increase (%) 0.95 3.23 0.0 0.0
tai100d.dat (3.4) 1939.75 126.93 12.0 0.0

(3.5) 1947.05 129.01 12.0 0.0
Increase (%) 0.38 1.64 0.0 0.0

tai150a.dat (3.4) 3922.22 256.61 16.0 0.0
(3.5) 3930.32 260.71 16.0 0.0

Increase (%) 0.21 1.60 0.0 0.0
tai150b.dat (3.4) 3750.23 406.86 15.0 0.0

(3.5) 3774.76 417.04 15.0 0.0
Increase (%) 0.65 2.50 0.0 0.0

tai150c.dat (3.4) 3530.76 402.06 17.11 0.78
(3.5) 3591.22 423.63 17.11 0.78

Increase (%) 1.71 5.36 0.0 0.0
tai150d.dat (3.4) 3485.24 344.57 15.22 0.67

(3.5) 3517.29 355.35 15.22 0.67
Increase (%) 0.92 3.13 0.0 0.0

Table 3.2. The results evaluated by the objective function of the 2-Stage Av-
erage Case approach, by using (3.4) and (3.5)
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[Sundarakani et al., 2010]. The “bullwhip effect” in turn tends to create in-
creased safety stock levels in order to reduce the anticipated flexibility cost in-
creases in case of demand uncertainty and have an environmental impact. The
hypothesis that the bullwhip effect has important consequences on the environ-
ment has been suggested in [Klumpp, 2011] and it has been named “The Green
Bullwhip Effect”. By using the results of this problem’s chapter which is based
on the assumptions of real companies in Germany, one can decide how to sched-
ule the deliveries (e.g. expected shorter distances or less vehicles) in order to
minimize the environmental impact.

3.5 Discussion and Conclusions

In this chapter we examined a 2-Stage vehicle routing problem with probabilistic
demand increases. In the first stage, the vehicles start from the depot and try to
satisfy the base demands of the customers. In the second stage, extra vehicles
are sent to the customers whose demands were not previously met in their en-
tirety because of probabilistic increases. In order to solve the problem, we used
our various ant colony optimization approaches. From the experiments, it can
be concluded that adopting a 1-stage average case approach leads to shortest
overall distances while a 2-stage approach leads to solutions with less vehicles.
The conclusions reached by the methods could serve as a decision supporting
system for logistics managers in order to reduce the environmental impact of gas
emissions and the “green bullwhip effect”.



Chapter 4

Exact Methods for the Sequential
Ordering Problem

In this chapter we are going to discuss exact solution approaches for the Sequen-
tial Ordering Problem introduced in Section 1.2.4. The results mentioned here
are based on our work published in [Papapanagiotou et al., 2015b] and [Jamal
et al., 2017]. First we made a comparison of 2 existing methods in the literature,
namely the Decomposition Based Approach (DEC) presented in [Montemanni
et al., 2013], [Mojana et al., 2012] and the Branch-and-Bound Approach (B&B)
presented in [Shobaki and Jamal, 2015]. The first method was used for ap-
plications in cargo and transportation problems and the second for minimising
instruction power switching in compilers. The insights of the comparison led to
an improved version of the Branch-and-Bound Approach. In Sections 4.1-4.4 we
demonstrate and discuss the experimental comparison of DEC and B&B and in
section 4.5 we discuss an enhanced B&B method to solve the Sequential Ordering
Problem.

4.1 The Decomposition Based Approach (DEC)

The exact method that we call the Decomposition-Based Approach (DEC) was
developed and described in [Mojana, 2011], [Montemanni et al., 2013]. DEC
begins by splitting the original problem in two or more subproblems, solves them
and then merges the solutions. The main idea is to reduce the complexity of
solving it by exploiting substructures that are present in the precedence graph.
An important observation is that the effort to find an exact solution to an instance
is not dependent only on the number of nodes but also on how the precedence
graph is structured. For example, a very dense or very sparse precedence graph
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is usually easier to solve than one with medium complexity. Additionally, the
substructures present in the precedence graph could change its complexity for
finding solutions. The goal of DEC is to find k subproblems such that when
they are solved and recombined, they will be a solution to the original instance.
For example, the structure in Figure 4.1(a) with k = 2 can be decomposed to
substructures as in Figure 4.1(b). We can observe that Vertex 5 is connected
to all other vertices, therefore in this situation we know what will precede or
follow vertex 5. We call such a vertex, a fixed vertex. In Figure 4.1(b) we can
see the structure of a possible feasible solution, starting from node 1, followed
by a permutation of nodes {2,7}, followed by node 5, followed by permutation
of nodes {3, 6,4}, ending with node 8. Therefore the problem is decomposed
in two parts: the first consists of the vertices {1,2, 7,5} and the second consists
of the rest of the vertices, namely {5, 3,6, 4,8}. This decomposition is exploited
by a branch and bound framework. In order to branch, artificial constraints are
imposed on the first new node and its opposite on the second one. The goal is
to have new artificial fixed vertices in the different branches of the search-tree.
The resulting substructures when they get small enough, they are solved using a
mixed integer linear program described in [Montemanni et al., 2013].

Figure 4.1. Fixed node decomposition
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4.2 The Branch-and-Bound Approach (B&B)

The second method tested is called The Branch and Bound Approach (B&B) was
introduced and was first described in detail in [Shobaki and Jamal, 2015]. Us-
ing branch and bound we can enumerate systematically the solution space. The
representation used is a tree which has an empty root, inner nodes that rep-
resent partial solutions and leaves that represent complete solutions. For each
existing partial solution, lower bounds on the optimal solution that can be found
later, are computed. If the lower bound computed is not less than the best so-
lution already found, we stop expanding this branch (we prune the tree), since
it cannot offer something better. The pruning techniques used are very impor-
tant for the efficiency of the algorithm since we want to minimize the number
of explicitly enumerated nodes. In brief, we can compute the lower bound on a
path by observing that there is exactly one incoming and one outgoing edge in
a Hamiltonian path and taking the minimum cost outgoing and incoming edges
and summing them up. For example in Figure 4.2 we can see that the Minimum
Outgoing Edge (MOE) is equal to 11 (7+1+3) and the Minimum Incoming Edge
is 13 (5+6+2) and the result of the heuristic is max(M I E, MOE) = 13. History
utilization consists of storing solutions to previously visited substructures and
reusing them in case these substructures are encountered again. For example in
Figure 4.3 subproblems 9 and 3 are similar because in both of them the nodes
A,C,D have been visited but subproblem 9 has higher lower-bound. Therefore
expanding it cannot find a better solution than 3 and it is pruned. Apart from
these pruning techniques, another one is also used based on minimum-cost per-
fect matching (MCPM). This technique further tightens the edge-based lower
bound. The edge-based lower bound may be too loose since it may use the same
minimum-cost edges multiple times. By formulating the problem as MCPM we
avoid this problem and a solution to the MCPM gives a tighter lower bound.
Pruning using MCPM is defined and examined in Section 4.5.2.

4.3 Experimental comparison of DEC and B&B

Three benchmark libraries that have been used in published work are consid-
ered in this evaluation: TSPLIB [Ascheuer, 1996], SOPLIB06 [Montemanni et al.,
2008] and COMPILERS [Shobaki and Jamal, 2015]. These benchmarks originate
from different domains and have different characteristics, thus making the com-
parison of the two exact algorithms more interesting. All experiments have been
carried out on a Quad-Core AMD Opteron 2350 processor running at 2.0 GHz
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Figure 4.2. Edge-based heuristic: Summing the lowest n − 1 edge weights.
Minimum Outgoing Edge: 7+1+3= 11. Minimum Incoming Edge: 5+6+2=
13. Resul t = max(11,13) = 13

Figure 4.3. History Utilization. Sub-problems 9 and 3 are similar but since
subproblem 9 has higher lower-bound it is pruned
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with 32GB of RAM. Only one core was used in each run. A computation time
limit of 48 hours per instance was used in all experiments. For the DEC method
the MILP solver adopted in the experiments is IBM ILOG CPLEX 12.6.

The experimental results are shown in Tables 4.1, 4.2 and 4.3 (one table for
each benchmark set). For each instance we report the density of (the transitive
closure of) the precedence graph (calculated as 2·|R|

|V |·(|V |−1)), the best known lower
bound (LB) and upper bound (UB) (according to published results), and the
results produced by each of two algorithms under study (DEC and B&B). For
each algorithm, we report the LB and UB obtained, the size of the optimality
gap (calculated as UB−LB

LB ) and the time in seconds required to prove optimality
(a dash is reported if the algorithm does not solve an instance to optimality).
An instance name in italic indicates that the instance has not been solved to
optimality yet. An instance name in boldface highlights an instance that has
been closed for the first time in this work. Similarly, lower or upper bounds in
boldface indicate new best known bounds found in this work. In the last row of
each table, the average optimality gap is reported for each algorithm.

The TSPLIB instances in Table 4.1 are the most studied instances, and the
quality of the bounds available is already extremely high. The DEC algorithm
was able to solve to optimality 14 of the 41 instances, while the B&B algorithm
closed 10 instances. The average optimality gaps are 6.4% for DEC and 34% for
B&B. On these instances, DEC appears to perform better. Examining the time
taken by each algorithm to close an instance leads to an interesting observation.
While DEC needs a relatively long time to close some instances, B&B tends to
prove optimality in a shorter time (on average, shorter than DEC) or to spend
the available time without substantial improvements. It can be said that DEC
exhibits a constant but slow rate of improvement of the bounds.

For approximately half of the SOPLIB06 instances in Table 4.2, no optimal-
ity proof has been provided yet. The DEC algorithm was able to close 18 in-
stances, while B&B closed 21. The evolution of bounds over time for the two
algorithms seems to follow the same pattern that was observed on TSPLIB. While
DEC reaches optimality near the end of the computation time limit on some in-
stances, B&B is typically either fast in closing an instance or fails to prove opti-
mality within the time limit. This characteristic is reflected in the optimality gaps,
which are 22.7% for DEC and 44.3% for B&B. A number of new improved bounds
have been found: 9 lower bounds and 1 upper bound for B&B, 7 lower bounds
for DEC. These improvements led to optimality proofs for 9 new instances: 7 by
B&B and 2 by both the methods. Overall, it may be stated that B&B performs
better than DEC on this benchmark set.

The results for the COMPILERS set are reported in Table 4.3. Optimality is
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known for all but one of the 27 instances in this set [Shobaki and Jamal, 2015].
The B&B algorithm that was originally developed to solve instances in the com-
pilers domain is performing better than DEC on this set. The number of closed
instances is 26 for B&B and only 16 for DEC, with an average gap of 1.8% for
B&B and 3.4% for DEC. It is interesting to observe that for these instances the
bound improvement over time appears to follow a pattern similar to those al-
ready observed for TSPLIB and SOPLIB06 instances. DEC, apart from one case,
tends to either close an instance quickly or fail. Finally, it is interesting to observe
that DEC computed improved lower and upper bounds for the open instance.
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Instances Density Best known DEC B&B
of P LB UB LB UB Gap Sec LB UB Gap Sec

br17.10 0.314 55 55 55 55 0 344.37 55 55 0 1.29
br17.12 0.359 55 55 55 55 0 491.53 55 55 0 181.02
ESC07 0.611 2125 2125 2125 2125 0 0.03 2125 2125 0 0.02
ESC11 0.359 2075 2075 2075 2075 0 0.12 2075 2075 0 0.28
ESC12 0.396 1675 1675 1675 1675 0 0.67 1675 1675 0 0.25
ESC25 0.177 1681 1681 1681 1681 0 23.48 1681 1681 0 46.13
ESC47 0.108 1288 1288 1288 1288 0 8168.49 917 3843 0.761 -
ESC63 0.173 62 62 62 62 0 79.63 55 76 0.276 -
ESC78 0.139 18230 18230 18230 18230 0 3216.3 9360 22600 0.586 -
ft53.1 0.082 7531 7531 7118 7612 0.065 - 5806 10404 0.442 -
ft53.2 0.094 8026 8026 7290 8113 0.101 - 5806 12175 0.523 -
ft53.3 0.225 10262 10262 8760 10310 0.15 - 5818 13435 0.567 -
ft53.4 0.604 14425 14425 13665 14425 0.053 - 14425 14425 0 4988.76
ft70.1 0.063 39313 39313 39033 39514 0.012 - 37603 46060 0.184 -
ft70.2 0.075 40101 40419 39372 40976 0.039 - 37667 48359 0.221 -
ft70.3 0.142 42535 42535 41104 42687 0.037 - 38320 52067 0.264 -
ft70.4 0.589 53530 53530 50527 53629 0.058 - 42193 54645 0.228 -
rbg048a 0.444 351 351 351 351 0 45.74 327 438 0.253 -
rbg050c 0.459 467 467 467 467 0 123.12 436 568 0.232 -
rbg109a 0.909 1038 1038 1038 1038 0 21910.1 1038 1038 0 2669.7
rbg150a 0.927 1750 1750 1747 1750 0.002 2446.44 1629 1999 0.185 -
rbg174a 0.929 2033 2033 2030 2033 0.001 - 1892 2444 0.226 -
rbg253a 0.948 2950 2950 2928 2950 0.007 - 2754 3558 0.226 -
rbg323a 0.928 3140 3140 3131 3146 0.005 - 2933 4032 0.273 -
rbg341a 0.937 2568 2568 2470 2626 0.059 - 2153 3786 0.431 -
rbg358a 0.886 2545 2545 2479 2654 0.066 - 2232 4110 0.457 -
rbg378a 0.894 2809 2816 2693 2922 0.078 - 2260 4109 0.45 -
kro124p.1 0.046 38762 39420 36551 41177 0.112 - 33498 52575 0.363 -
kro124p.2 0.053 39841 41336 36966 43311 0.146 - 33787 57723 0.415 -
kro124p.3 0.092 43904 49499 37814 53016 0.287 - 33872 68962 0.509 -
kro124p.4 0.496 73021 76103 55876 77139 0.276 - 39983 92438 0.567 -
p43.1 0.101 28140 28140 28083 28140 0.002 - 690 28480 0.976 -
p43.2 0.126 28480 28480 28124 28480 0.013 - 690 28795 0.976 -
p43.3 0.191 28835 28835 27309 28835 0.053 - 690 29300 0.976 -
p43.4 0.614 83005 83005 82933 83005 0.001 - 83005 83005 0 938.2
prob.100 0.048 1045 1163 1000 1973 0.493 - 761 2071 0.633 -
prob.42 0.116 243 243 243 243 0 32404.1 159 329 0.517 -
ry48p.1 0.091 15805 15805 14836 15805 0.061 - 12216 20190 0.395 -
ry48p.2 0.103 16074 16666 14974 16741 0.106 - 12216 19424 0.371 -
ry48p.3 0.193 19490 19894 16290 19894 0.181 - 12528 22483 0.443 -
ry48p.4 0.588 31446 31446 27061 31446 0.139 - 31446 31446 0 2471.05
Average Gap 0.064 0.34

Table 4.1. TSPLIB Instances
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Instances Density Best known DEC B&B
of P LB UB LB UB Gap Sec LB UB Gap Sec

R.200.100.1 0.02 61 61 61 61 0 3786.22 61 400 0.848 -
R.200.100.15 0.85 1257 1792 1243 2225 0.441 - 810 4074 0.801 -
R.200.100.30 0.96 4185 4216 4216 4216 0 86869.6 4216 4216 0 741.45
R.200.100.60 0.99 71749 71749 71749 71749 0 0.15 71749 71749 0 32.13
R.200.1000.1 0.02 1404 1404 1403 1404 0.001 - 1392 5022 0.723 -
R.200.1000.15 0.87 14565 20481 14689 24527 0.401 - 10104 40333 0.749 -
R.200.1000.30 0.96 40170 41196 41196 41196 0 170875 41196 41196 0 517.29
R.200.1000.60 0.99 71556 71556 71556 71556 0 0.15 71556 71556 0 35.29
R.300.100.1 0.01 26 26 26 104 0.75 - 26 363 0.928 -
R.300.100.15 0.91 2166 3161 2160 3796 0.431 - 1298 6640 0.805 -
R.300.100.30 0.97 5839 6120 5846 6133 0.047 - 6120 6120 0 3364.72
R.300.100.60 0.99 9726 9726 9726 9726 0 0.18 9726 9726 0 141.47
R.300.1000.1 0.01 1294 1294 1292 2011 0.358 - 1291 6078 0.788 -
R.300.1000.15 0.91 21096 29183 21077 36766 0.427 - 14352 57296 0.75 -
R.300.1000.30 0.96 51495 54147 51789 54744 0.054 - 54147 54147 0 8390.3
R.300.1000.60 0.99 109471 109471 109471 109471 0 0.32 109471 109471 0 176.08
R.400.100.1 0.01 13 13 13 90 0.856 - 13 285 0.954 -
R.400.100.15 0.93 2747 3906 2737 5115 0.465 - 1811 8794 0.794 -
R.400.100.30 0.98 7755 8165 8055 8167 0.014 - 8165 8165 0 65486.19
R.400.100.60 1.00 15228 15228 15228 15228 0 1.97 15228 15228 0 491.28
R.400.1000.1 0.01 1343 1343 1343 2032 0.339 - 1336 4437 0.699 -
R.400.1000.15 0.93 28159 29685 28207 49825 0.434 - 19886 81262 0.755 -
R.400.1000.30 0.98 79868 85132 82264 85223 0.035 - 85128 85128 0 2699.44
R.400.1000.60 0.99 140816 140816 140816 140816 0 0.51 140816 140816 0 494.2
R.500.100.1 0.01 4 4 4 85 0.953 - 4 383 0.99 -
R.500.100.15 0.94 3543 5361 3523 6813 0.483 - 2370 11486 0.794 -
R.500.100.30 0.98 8600 9665 8693 10026 0.133 - 9665 9665 0 21075.92
R.500.100.60 1.00 18240 18240 18240 18240 0 0.5 18240 18240 0 1301.61
R.500.1000.1 0.01 1316 1316 1315 2090 0.371 - 1313 6205 0.788 -
R.500.1000.15 0.94 32950 50725 32522 64092 0.493 - 22597 111129 0.797 -
R.500.1000.30 0.98 91272 98987 93698 100270 0.066 - 98987 98987 0 26041.65
R.500.1000.60 1.00 178212 178212 178212 178212 0 0.57 178212 178212 0 1466.67
R.600.100.1 0.01 1 1 1 85 0.988 - 1 378 0.997 -
R.600.100.15 0.95 3656 5684 3611 7479 0.517 - 2355 13271 0.823 -
R.600.100.30 0.98 11841 12465 12127 12527 0.032 - 12465 12465 0 39004.34
R.600.100.60 1.00 23293 23293 23293 23293 0 0.48 23293 23293 0 1945.58
R.600.1000.1 0.01 1337 1337 1337 1337 0 131432 1336 4931 0.729 -
R.600.1000.15 0.94 36546 57237 36575 73389 0.502 - 27096 120975 0.776 -
R.600.1000.30 0.98 116037 126789 118311 129869 0.089 - 79564 178608 0.555 -
R.600.1000.60 1.00 214608 214608 214608 214608 0 0.67 214608 214608 0 3652.19
R.700.100.1 0.01 1 1 1 1 0 13781.6 1 446 0.998 -
R.700.100.15 0.96 4494 7311 4499 9213 0.512 - 3117 14643 0.787 -
R.700.100.30 0.99 13663 14510 14084 14601 0.035 - 8994 19138 0.53 -
R.700.100.60 1.00 24102 24102 24102 24102 0 1.49 24102 24102 0 6561.8
R.700.1000.1 0.01 1231 1231 1231 1231 0 56712 1228 4886 0.749 -
R.700.1000.15 0.96 40662 66837 40808 88621 0.54 - 29226 151331 0.807 -
R.700.1000.30 0.99 118718 134474 121173 138442 0.125 - 80969 187072 0.567 -
R.700.1000.60 1.00 245589 245589 245589 245589 0 1.54 245589 245589 0 8243.04
Average gap 0.227 0.443

Table 4.2. SOPLIB Instances
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Instances Density Best known DEC B&B
of P LB UB LB UB Gap Sec LB UB Gap Sec

gsm.153.124 0.97 1109 1109 1109 1109 0 972.61 1109 1109 0 1.82
gsm.444.350 0.99 2745 2745 2745 2745 0 1.29 2745 2745 0 1.58
gsm.462.77 0.84 577 577 577 577 0 3.77 577 577 0 17.47
jpeg.1483.25 0.48 93 93 93 93 0 9.47 93 93 0 6.26
jpeg.3184.107 0.89 769 793 769 793 0.03 - 791 791 0 82.19
jpeg.3195.85 0.74 28 68 28 68 0.588 - 68 68 0 47.66
jpeg.3198.93 0.75 304 312 304 312 0.026 - 312 312 0 53.2
jpeg.3203.135 0.90 830 852 830 852 0.026 - 850 850 0 306.84
jpeg.3740.15 0.26 40 40 40 40 0 4.12 40 40 0 3.12
jpeg.4154.36 0.63 167 167 167 167 0 288.28 167 167 0 18.55
jpeg.4753.54 0.77 241 245 241 245 0.016 - 245 245 0 25
susan.248.197 0.94 1338 1338 1304 1338 0.025 - 1338 1338 0 672.84
susan.260.158 0.92 1016 1016 945 1016 0.07 - 1016 1016 0 81.91
susan.343.182 0.94 1207 1207 1159 1207 0.04 - 1207 1207 0 195.43
typeset.10192.123 0.74 214 630 565 602 0.061 - 328 634 0.483 -
typeset.10835.26 0.35 127 127 127 127 0 114.55 127 127 0 55.74
typeset.12395.43 0.52 174 174 168 174 0.034 - 174 174 0 527.88
typeset.15087.23 0.56 98 98 98 98 0 0.33 98 98 0 10.01
typeset.15577.36 0.56 155 155 154 155 0.006 - 155 155 0 114.64
typeset.16000.68 0.66 84 84 84 84 0 6624.72 84 84 0 52.91
typeset.1723.25 0.24 64 64 64 64 0 40.32 64 64 0 40.38
typeset.19972.246 0.99 2018 2018 2018 2018 0 2.63 2018 2018 0 1.84
typeset.4391.240 0.98 1605 1605 1605 1605 0 4815.67 1605 1605 0 40.29
typeset.4597.45 0.49 184 184 184 184 0 22868 184 184 0 1017.7
typeset.4724.433 0.99 3466 3466 3466 3466 0 46.66 3466 3466 0 11.22
typeset.5797.33 0.75 131 131 131 131 0 0.48 131 131 0 69.5
typeset.5881.246 0.99 1732 1732 1732 1732 0 686.96 1732 1732 0 47.73
Average Gap 0.034 0.018

Table 4.3. COMPILERS Instances

4.4 Discussions & Conclusions

In the Sections 4.1 -4.3 we studied experimentally two exact algorithms for the
same problem that arose from different domains. Our experiments led to closing
nine previously open instances and getting improved upper and lower bounds
for seventeen other instances. A closer look at the results leads to more general
conclusions about the relative performance of the two algorithms. Although it
is difficult to predict how successful an algorithm will be on a given instance, it
is possible to observe that DEC usually performs well on instances with extreme
densities of precedence constraints (either very low or a very high) but does
not perform very well on instances with medium densities. The reason is that
the problem can be split into subproblems more easily when the densities are
extreme. If the density is low, it will be split into few large subproblems and if
it is high it will be split in multiple smaller subproblems. All in all, density is
a powerful predictor for the success of DEC on a dataset. On the other hand,
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B&B appears to be less effective on instances with a low density of precedence
constraints but is more effective than DEC on instances with medium densities.
It is also interesting to note that B&B performs very well on the COMPILERS
instances that are characterised by symmetrical cost graphs (the cost from vertex
i to vertex j is always equal to the cost from vertex j to vertex i for all COMPILERS
instances). The success of B&B on such instances is attributed to the effectiveness
of the history utilization pruning technique on the more symmetrical cases. When
edge costs are symmetrical, it will be more likely for the current sub-problem
to relate to a previously visited sub-problem, thus enabling more history-based
pruning.

4.5 Enhancing the B&B algorithm

As a continuation of the Section 4.2, in the current Section, we show that us-
ing a Minimum Cost Perfect Matching (MCPM)-based lower bound and a new
local search heuristic significantly improves the performance of the pure B&B
algorithm.

4.5.1 Enumeration Scheme

The B&B algorithm proposed in the following sections applies at each tree node
a lower bound technique and two pruning techniques: local-search domination
and history utilization. The lower bound technique is based on MCPM as de-
scribed in Section 4.2, but it was computed using a minimum-cost network flow
algorithm. As explained in Section 4.5.2, MCPM is computed in the current work
using the dynamic Hungarian algorithm [Mills-Tettey et al., 2007]. The exper-
imental results show that using the dynamic Hungarian algorithm to compute
a MCPM-based lower bound at each tree node significantly improves the per-
formance of the B&B algorithm. The local search heuristic is a new pruning
technique proposed in this paper. As explained in Section 4.5.4, the idea is de-
termining, in linear time, if there is a better permutation of the vertices in the
current node’s partial path and pruning the sub-tree below the current node if
such a permutation is found. The history utilization pruning technique used in
this work is the same technique used in [Shobaki and Jamal, 2015]. The idea
of this technique to store information about previously explored sub-problems
and using the stored information to quickly process similar sub-problems that
may be encountered later. Two sub-problems are similar if the set of vertices in
the partial paths is the same in both sub-problems and the two sets end with the
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same vertex. By exploiting the similarity, pruning or lower-bound computation
may be done in constant time.

4.5.2 Lower Bounds

In a previous work [Shobaki and Jamal, 2015], lower bounds were computed us-
ing an edge-based technique as described in the Section 4.2. The problem with
this approach is that the same edge could be used more than once, thus violating
the in-degree/out-degree constraint of the SOP and potentially producing a loose
lower bound. The in-degree/out-degree constraint is that each vertex, other than
the start and end vertices, must have exactly one outgoing edge and one incom-
ing edge. To mitigate this disadvantage of the edge-based lower bound, the in-
degree/out-degree constraint may be imposed by formulating the problem as a
Minimum-Cost Perfect Matching Problem to ensure that each edge is used ex-
actly once. First, we define the MCPM Problem, and then we describe how it
can be used to compute a tight lower bound for the SOP. Minimum-Cost Perfect
Matching (MCPM), also known as the Assignment Problem, is an optimization
problem in which the objective is finding a maximum-cardinality matching with
minimum cost in a weighted bipartite graph [Cormen, 2009]. Given a bipartite
graph G = (V, E) where V is set of vertices and E = {(i, j)|i, j ∈ V} is the set of
edges. A graph is bipartite if the vertex set V can be partitioned into two sets A
and B, called the bipartition, such that every edge has one endpoint in A and one
endpoint in B. A matching M ⊂ E is a set of edges such that every vertex v ∈ V
is incident to at most one edge in M . If a vertex has no edge in M incident to it,
that vertex is said to be unmatched. A matching is perfect if every vertex in the
graph is matched. The cost of matching is defined as

C(M) =
∑

e∈M

c(e)

Given a cost ci, j for each edge e ∈ E, a matching is called a minimum-cost
perfect matching if M has the minimum cost among all perfect matchings.

MCPM may be used to compute a lower bound for the SOP as follows. Given
a cost graph, we construct a bipartite graph in which each vertex in the cost
graph appears in both partitions of the bipartite graph. More precisely, for each
vertex v in the cost graph, we create a vertex vA in the A partition and a vertex
vB in the B partition. The cost-graph edges are then added between the vertices
in the A partition and the vertices in the B partition, such that for each edge
(u, v) in the cost graph, we create an edge (vA, vB) in the bipartite graph. In a
prefect matching of the resulting bipartite graph, each edge in cost graph will
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be used exactly once and each vertex will have exactly one outgoing edge and
one incoming edge, thus satisfying the in-degree/out-degree constraint of the
SOP. The start and end vertices will have to be handled differently by either not
including them in the bipartite graph or including them and then subtracting the
extra edge weight from the resulting minimum cost. In this paper, we take the
latter approach, as illustrated in the example of Section 4.5.3.

Although a perfect matching of the resulting bipartite graph satisfies the in-
degree/out-degree constraint, it does not necessarily give one Hamiltonian path;
the matching may correspond to one partial path as well as one or more cycles.
Therefore, the bipartite matching formulation is a relaxation of the SOP, and
a MCPM gives a lower bound on the optimal solution to the given SOP. It is
important to note here that since this MCPM lower bound has nothing to do
with the precedence constraints, it is a valid lower bound for the TSP as well.
Using the assignment problem to compute a lower bound for the TSP has been
previously proposed by [Christofides, 1972]. [Miller et al., 1991] have used a
matching-based lower bound in a B&B algorithm for the SOP.

In the following sections, we use the Dynamic Hungarian algorithm [Mills-
Tettey et al., 2007] to solve the MCPM problem. The dynamic Hungarian algo-
rithm is a dynamic version of the original Hungarian algorithm [Kuhn, 1955] that
makes it possible to repair an already-computed matching instead of construct-
ing a new matching from scratch when the graph is partially modified. This idea
works very well in a B&B solver, where each decision (branch in the enumera-
tion tree) only makes a small change to the matching. The change is fixing one
edge in the matching. The dynamic Hungarian algorithm runs in O(kn2) time,
where k is the number of changed rows/columns in the cost matrix. When k is a
constant, which is the case in a B&B solver, this leads to an O(n2) algorithm for
repairing a matching. This is a significant improvement compared to the origi-
nal Hungarian algorithm that runs in O(n3) time. Our experimental results show
that using the dynamic Hungarian algorithm does indeed produce a significantly
faster B&B solver than using the original Hungarian algorithm.

4.5.3 Dynamic Hungarian Algorithm

The dynamic Hungarian algorithm is used to compute lower bounds in our pro-
posed B&B algorithm as follows. Before enumeration starts, a bipartite graph
is constructed as described above using the original weights of the given cost
graph. This lower bound is called the static lower bound to distinguish it from
the dynamic lower bounds that are computed during enumeration. Each forward
step during enumeration augments the partial path by adding a new vertex to it.
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If the current partial path ends with vertex u and the newly added vertex is v,
this adds Edge (u, v) to the partial path. Therefore, the MCPM must be repaired
by forcing Edge (u, v) to be in the set of edges that form the matching. This is
accomplished by modifying the cost matrix such that all entries in Row u and Col-
umn v are set to infinity, except for Entry (u, v). The MCPM is repaired using the
dynamic Hungarian algorithm instead of re-computing a new matching using the
original Hungarian algorithm. The repaired MCPM gives a tighter lower bound
at the current tree node by satisfying the constraint of adding Edge (u, v) to the
matching. This tightened lower bound is called a dynamic lower bound, since it
changes dynamically during enumeration. When the B&B algorithm backtracks
to the previous node, it reverses the changes that have been made to the cost
matrix (setting some cells to infinity) and restores the previous dynamic lower
bound. As detailed in the paper of [Mills-Tettey et al., 2007], the dynamic Hun-
garian algorithm computes a new matching by un-matching the affected vertices
and reducing the cardinality of the matching by one. If Row i and Column j in
the cost matrix change, new feasible values are computed for the dual variables
or according to the following two equations

ai = min j(ci, j − β j)

β j = mini(ci, j − ai)

In the dynamic Hungarian algorithm, only a single iteration of the original
Hungarian algorithm is executed for each column/row change. A single itera-
tion of the Hungarian algorithm has a complexity of O(V 2). Since repairing the
matching to compute a dynamic lower bound at each tree node in our B&B al-
gorithm involves modifying one row and one column, the overall complexity of
computing a new dynamic lower bound in our algorithm is O(V 2).

In the rest of the section, we illustrate how dynamic lower bounds are com-
puted during the proposed B&B algorithm using MCPM. Figure 4.4 shows an
instance of the SOP. As shown in the figure, u1 and u6 are the start and end ver-
tices, and vertices v2, v3, v4 and v5 are independent vertices that may be visited
in any order. As mentioned in Section 4.5.2, the cost matrix is the adjacency
matrix representation of the cost graph. A weight of ∞ for Edge implies that
cannot be visited after. A valid numerical value for∞ is one plus the maximum
edge weight in the cost matrix. Substituting this numerical value for ∞ gives
the following cost matrix.

As defined in Section 4.5.2, a solution to the SOP is a Hamiltonian path that
consists of |V | − 1 edges, while a MCPM consists of |V | edges. In a Hamiltonian
path, the start vertex does not have an incoming edge and the end vertex does
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Figure 4.4. Example used to illustrate dynamic lower bound computation using
MCPM. The graph is the precedence graph and the matrix is the cost matrix
in which Ent r y(i, j) is the weight of Edge e = (ui, v j)

not have an outgoing edge. This is accounted for by setting the values of all
entries in the first column and the last row in the cost matrix to infinity. Since
each of the other vertices has at least one finite-weight outgoing edge and one
finite-weight incoming edge, the end vertex will always be matched to the start
vertex in any MCPM, and the weight of the edge connecting them will always be
∞. Thus, a lower bound on the cost of the Hamiltonian path is computed by
subtracting the numerical value that is substituted for ∞ from the cost of the
MCPM. In this example, the numerical value to be subtracted is 22. It should
be noted here that the Hungarian algorithm finds a maximum-cost matching
rather than a minimum-cost matching. However, it is fairly easy to transform the
minimization problem into a maximization problem by multiplying edge weights
by -1. To simplify the presentation, this detail is hidden, and the example is
presented as a minimization problem using the original positive weights.

Before enumeration starts, a static lower bound on the optimal solution is
computed by finding a MCPM using the Hungarian algorithm. Applying the
Hungarian algorithm to this example gives an initial matching that consists of
the following set of edges: {(1, 4), (2,3), (3, 2), (4, 5), (5,6), (6, 1)}.

Subtracting 22 from the cost of this matching gives a lower bound of 8 on
the cost of the Hamiltonian path. During enumeration, a path is constructed
incrementally by selecting a ready vertex and adding it to the path. A vertex is
ready if all of its predecessors in the precedence graph have been visited. Initially,
the start vertex v1 is the only ready vertex. Adding v1 to the path does not add any
constraints to the problem and thus does not lead to modifying the cost matrix.
The dynamic lower bound remains equal to the static lower bound.

After adding v1, vertices v2 through v5 become ready and one of them must
be selected to add an edge to the partial path. Suppose that v5 is selected, thus



99 4.5 Enhancing the B&B algorithm

adding Edge (v1, v5) to the partial path. To account for this constraint in the
MCPM problem, the cost matrix must be modified to force the selection of Edge
(v1, v5) in the matching. Thus, the matrix is modified by setting all entries in the
v1 row and v5 column to∞, except for Entry (u, v) . The result can be seen in
Table 4.4.

u1 u2 u3 u4 u5 u6
u1 22 2 5 0 3 22
u2 22 22 2 20 20 0
u3 22 2 22 20 20 0
u4 22 2 3 22 4 0
u5 22 20 2 4 22 0
u6 22 22 22 22 22 22

Table 4.4. Example Cost Matrix for the Dynamic Hungarian Algorithm

Applying the dynamic Hungarian algorithm to this modified cost matrix, re-
pairs the previous matching and produces the following new matching:

(1, 5), (2,3), (3, 2), (4, 6), (5,4), (6, 1)

Subtracting 22 from the cost of this matching, gives a new dynamic lower bound
of 11, which is tighter than the previous bound of 8. The process is repeated at
every new node in the enumeration tree.

4.5.4 Local Search

In the proposed B&B algorithm a local-search domination technique is used. In
this technique, local search is conduced at each tree node for a better partial so-
lution. If a better partial solution is found, the sub-tree below the current tree
node is pruned. A partial solution to the SOP is a partial path (sequence of ver-
tices). Given a partial path P = (x , v1, v2, v3, . . . , vn, y) with cost C at a certain
tree node, if there exists a permutation of the vertices through that has a lower
cost than C , the sub-tree below this node can be pruned. Since the number of
permutations is a factorial function of n, the set of all possible permutations can-
not be explored entirely within reasonable time. Thus, we limit the search for a
better permutation to a linear number of permutations by changing the position
of only one vertex in the sequence. More specifically, we move vn one step back
until it either reaches the first position or results in a precedence violating se-
quence. If this limited local search finds a partial solution with cost less than C ,
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the sub-tree below the current node is pruned. An example is shown in Figure
4.5. In this example, the partial path at the current node is (1,2, 3,4, 5,6, 7)with
cost 25, and vn is Vertex 6. By examining the permutations in which the position
of Vertex 6 is varied, a partial path with cost 21 is found. This implies that the
partial path at the current node cannot lead to an optimal solution and the sub-
tree below the current node may be pruned. The above-described local-search
domination technique may lead to finding a better partial path than the current
path. In theory, the better partial path may be used instead of the current par-
tial path in searching the rest of the tree. However, due to complexities related
to maintaining dynamic-lower bound information at each node, this idea is not
currently implemented. Resolving these complexities to take advantage of the
improved partial path is left for future work.

Figure 4.5. Local Search Domination example

4.5.5 Experiments

In this Section, we present the results of the experimental evaluation of the pro-
posed algorithm. The proposed algorithm was evaluated using three benchmark
suites: TSPLIB [TSP, n.d.], SOPLIB06 [Montemanni et al., 2008] and COMPIL-
ERS [Shobaki and Jamal, 2015]. The experiments were performed on a Quad-
Core AMD Opteron 2350 processor running at 2.0 GHz with 32 GB of RAM. The
time limit per instance was set to 48 hours.

4.5.5.1 Effectiveness of the new Lower Bound Technique

In this Section, we evaluate the effectiveness of the dynamic lower bound tech-
nique proposed in this paper. The new lower bound technique that is based
on the dynamic Hungarian algorithm is compared with the network-flow-based
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MCPM lower bound technique previously adopted in our work [Papapanagiotou
et al., 2015b]. As explained in Section 4.5.2, both lower bounds are based on
MCPM, but the dynamic Hungarian algorithm computes these lower bounds in
O(n2), while the network-flow algorithm computes them in O(n3) time. In this
comparison, only the instances that are solved optimally using both lower bound
techniques are considered. In both cases, local-search domination and history
utilization were applied. Tables 4.5, 4.6, 4.7 show the solution time in seconds
required to reach optimality for each of these instances. The results in these ta-
bles show that the speedup achieved by using the dynamic Hungarian algorithm
is quite substantial. On average, using the dynamic Hungarian algorithm gives
a speedup of 98% on TSPLIB (Table 4.5), 98% on SOPLIB (Table 4.6) and 75%
on COMPILERS (Table 4.7).

TSPLIB Instance Network Flow Time (s) Dynamic Hungarian Time (s) % Improvement
br17.10 1.29 0.12 90.7
br17.12 181.02 0.06 99.97
ESC07 0.02 0 100
ESC11 0.28 0 100
ESC12 0.25 0 100
ESC25 46.13 0.19 99.59
ft53.4 4988.76 69.27 98.61
rbg109a 2669.7 35.49 98.67
p43.4 938.2 22.98 97.55
ry48p.4 2471.05 58.28 97.64
Average 98.27

Table 4.5. Comparison of the proposed dynamic-Hungarian-based lower bound
with the previously published network-flow-based lower bound for the TSPLIB
instances that could be solved using both lower bounds.

4.5.5.2 Effectiveness of Local-Search Domination

An experiment was conducted to evaluate the effectiveness of the local-search
domination technique. The proposed B&B was applied to the instances under
study once with local-search domination enabled and once with local search-
domination disabled. In both cases, the lower bounds were computed using the
dynamic Hungarian algorithm and history utilization was applied. The effec-
tiveness of the local-search domination technique was evaluated by measuring
the solution time and the number of sub-problems (tree nodes) explored in each
case. The results of this comparison are shown in Tables 4, 5 and 6, which show
the number of sub-problems explored and the solution time needed to solve an
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SOPLIB06 Instance Network Flow Time (s) Dynamic Hungarian Time (s) % Improvement
R.200.100.30 741.45 9.52 98.72
R.200.100.60 32.13 0.06 99.81
R.200.1000.30 517.29 11.79 97.72
R.200.1000.60 35.29 0.2 99.43
R.300.100.30 3364.72 78.07 97.68
R.300.100.60 141.47 0.63 99.55
R.300.1000.30 8390.3 194.16 97.69
R.300.1000.60 176.08 0.8 99.55
R.400.100.30 65486.19 317.08 99.52
R.400.100.60 491.28 2.3 99.53
R.400.1000.30 2699.44 463.11 82.84
R.400.1000.60 494.2 2.4 99.51
R.500.100.30 21075.92 1006.82 95.22
R.500.100.60 1301.61 4.52 99.65
R.500.1000.30 26041.65 1444.57 94.45
R.500.1000.60 1466.67 4.56 99.69
R.600.100.30 39004.34 708.1 98.18
R.600.100.60 1945.58 4.12 99.79
R.600.1000.60 3652.19 6.95 99.81
R.700.100.60 6561.8 11.86 99.82
R.700.1000.60 8243.04 9.21 99.89
Average 98

Table 4.6. Comparison of the proposed dynamic-Hungarian-based lower bound
with the previously published network-flow-based lower bound for the SOPLIB
instances that could be solved using both lower bounds.
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COMPILER Instance Network Flow Time (s) Dynamic Hungarian Time (s) % Improvement
gsm.153.124 1.82 0.17 90.66
gsm.444.350 1.58 0.27 82.91
gsm.462.77 17.47 12.45 28.73
jpeg.1483.25 6.26 0.24 96.17
jpeg.3184.107 82.19 46.42 43.52
jpeg.3195.85 47.66 18.19 61.83
jpeg.3198.93 53.2 22.85 57.05
jpeg.3203.135 306.84 52.55 82.87
jpeg.3740.15 3.12 0.39 87.5
jpeg.4154.36 18.55 1.38 92.56
jpeg.4753.54 25 6.42 74.32
susan.248.197 672.84 612.98 8.9
susan.260.158 81.91 39.58 51.68
susan.343.182 195.43 53.2 72.78
typeset.10835.26 55.74 5.13 90.8
typeset.12395.43 527.88 40.82 92.27
typeset.15087.23 10.01 0 100
typeset.15577.36 114.64 1.89 98.35
typeset.16000.68 52.91 2.03 96.16
typeset.1723.25 40.38 1.06 97.37
typeset.19972.246 1.84 0.08 95.65
typeset.4391.240 40.29 23.51 41.65
typeset.4597.45 1017.7 24.38 97.6
typeset.4724.433 11.22 1.85 83.51
typeset.5797.33 69.5 0.03 99.96
typeset.5881.246 47.73 37.16 22.15
Average 74.88

Table 4.7. Comparison of the proposed dynamic-Hungarian-based lower bound
with the previously published network-flow-based lower bound for the COM-
PILER instances that could be solved using both lower bounds
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instance to optimality for the instances that could be solved with and without
local-search domination. In each table, the first percentage improvement is the
percentage reduction in the number of explored sub-problems and the second
percentage improvement is the percentage reduction in solution time. The per-
centage improvements in these tables show that the impact of the local-search
domination technique is quite significant. The percentage reduction in the num-
ber of explored sub-problems ranges from 0% to 22% with an average of 8% on
TSPLIB, from 0% to 58% with an average of 22% on SOPLIB and from 0% to 60%
with an average of 17% on COMPILERS. The percentage reduction in solution
time ranges from -8% (it was slower on ESC25) to 12% with an average of 4%
on SOPLIB, from 1% to 33% with an average of 13% on SOPLIB and from 6%
to 72% (excluding typeset.15087.23 which is solved very fast) with an average
of 37% on COMPILERS. The local-search domination technique described in this
paper reduces the number of explored sub-problems (tree node) at the cost of
increasing the computation time per sub-problem (tree node). The experimental
results in this Section show that the reduction in the number of explored sub-
problems overweighs the increase in the computation time per tree node, thus
giving an overall reduction in solution time. There is only one instance (ESC25)
on which enabling the local-search domination technique resulted in a negative
impact on the solution time.

TSPLib Instance Sub-problems % Time (s) %
LS OFF LS ON Improvement LS OFF LS ON Improvement

br17.10 75,903 75,903 0 0.18 0.18 0
br17.12 41,831 41,831 0 0.12 0.12 0
ESC07 39 39 0 0 0 0
ESC11 417 417 0 0.02 0.02 0
ESC12 3,727 3,634 2.5 0.03 0.03 0
ESC25 13,227 13,227 0 0.26 0.28 -7.69
ESC47 544,080 544,080 0 31.66 30.28 4.36
ESC63 2,287 2,287 0 0.12 0.11 8.33
ft53.4 41,322,976 33,785,419 18.24 158.76 145.12 8.59
ft70.4 1,645,159,076 1,448,510,681 11.95 5100.47 4887.66 4.17
rbg109a 6,151,882 4,769,686 22.47 33.02 30.4 7.93
rbg150a 6,610,432 5,453,541 17.5 59.1 54.47 7.83
p43.4 4,788,244 4,036,323 15.7 21.42 20.05 6.4
ry48p.4 28,096,631 22,204,422 20.97 57.96 51.24 11.59
Average 8% 4%

Table 4.8. Number of sub-problems explored and solution time needed with
and without local search on TSPLIB
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SOPLIB06 Instance Sub-problems % Solution Time (s) %
LS OFF LS ON Improvement LS OFF LS ON Improvement

R.200.100.1 4,995,942 4,995,942 0 1749.69 1666.15 4.77
R.200.100.30 5,344,788 4,594,598 14.04 29.33 27.31 6.89
R.200.100.60 6,718 5,666 15.66 0.33 0.32 3.03
R.200.1000.30 3,125,293 2,612,345 16.41 15.93 14.5 8.98
R.200.1000.60 38,940 22,990 40.96 0.55 0.46 16.36
R.300.100.30 9,868,973 8,738,422 11.46 80.21 69.04 13.93
R.300.100.60 5,984 5,418 9.46 0.86 0.81 5.81
R.300.1000.30 18,342,394 15,462,135 15.7 151.92 129.16 14.98
R.300.1000.60 40,863 21,918 46.36 1.19 0.9 24.37
R.400.100.30 26,325,040 22,089,735 16.09 253.23 226.29 10.64
R.400.100.60 115,258 89,644 22.22 2.93 2.76 5.8
R.400.1000.30 51,568,457 44,236,668 14.22 403.53 364.97 9.56
R.400.1000.60 237,008 99,602 57.98 4.28 2.85 33.41
R.500.100.30 92,852,231 74,071,755 20.23 1048.51 861.86 17.8
R.500.100.60 189,855 101,058 46.77 6.41 5.17 19.34
R.500.1000.30 92,042,506 88,745,961 3.58 956.66 944.15 1.31
R.500.1000.60 226,812 144,201 36.42 6.25 5.29 15.36
R.600.100.30 51,131,233 43,877,806 14.19 927.75 804.83 13.25
R.600.100.60 242,581 119,753 50.63 8.78 6.98 20.5
R.600.1000.30 143,295,846 126,106,542 12 1981.83 1651.4 16.67
R.600.1000.60 337,805 264,640 21.66 11.8 10.35 12.29
R.700.100.30 213,613,539 197,869,163 7.37 3231.7 2964.68 8.26
R.700.100.60 593,700 386,940 34.83 20.39 16.66 18.29
R.700.1000.30 191,947,642 181,423,750 5.48 3299.94 2974.59 9.86
R.700.1000.60 424,275 317,418 25.19 16.99 14.96 11.95
Average 22% 13%

Table 4.9. Number of sub-problems explored and solution time needed with
and without local search on SOPLIB
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COMPILER Instance Sub-problems % Solution Time (s) %
LS OFF LS ON Improvement LS OFF LS ON Improvement

gsm.153.124 13,594 10,543 22.44 0.31 0.17 45.16
gsm.444.350 1,803 1,803 0 0.52 0.27 48.08
gsm.462.77 1,120,024 994,779 11.18 16.01 12.45 22.24
jpeg.1483.25 48,955 44,842 8.4 0.33 0.24 27.27
jpeg.3184.107 5,252,360 4,297,369 18.18 56.89 46.42 18.4
jpeg.3195.85 1,654,926 1,184,444 28.43 24.17 18.19 24.74
jpeg.3198.93 2,111,955 2,108,240 0.18 49.36 22.85 53.71
jpeg.3203.135 10,349,003 7,478,110 27.74 72.05 52.55 27.06
jpeg.3740.15 254,645 224,565 11.81 0.5 0.39 22
jpeg.4154.36 198,436 171,206 13.72 1.84 1.38 25
jpeg.4753.54 1,653,784 1,290,876 21.94 8.54 6.42 24.82
susan.248.197 23,107,737 19,463,327 15.77 695.49 612.98 11.86
susan.260.158 3,971,946 2,819,246 29.02 53.04 39.58 25.38
susan.343.182 3,713,106 3,713,106 0 56.44 53.2 5.74
typeset.10835.26 2,226,650 2,226,650 0 5.51 5.13 6.9
typeset.12395.43 6,163,009 5,476,933 11.13 56.6 40.82 27.88
typeset.15087.23 673 673 0 0.01 0 100
typeset.15577.36 733,038 667,007 9.01 4.1 1.89 53.9
typeset.16000.68 494,344 253,504 48.72 7.19 2.03 71.77
typeset.1723.25 747,446 640,267 14.34 2.09 1.06 49.28
typeset.19972.246 1,977 788 60.14 0.27 0.08 70.37
typeset.4391.240 1,120,853 825,698 26.33 50.31 23.51 53.27
typeset.4597.45 9,106,973 8,494,767 6.72 49.03 24.38 50.28
typeset.4724.433 71,680 44,955 37.28 3.2 1.85 42.19
typeset.5797.33 2,989 2,719 9.03 0.05 0.03 40
typeset.5881.246 690,923 553,126 19.94 48.45 37.16 23.3
Average 17.36% 37.33%

Table 4.10. Number of sub-problems explored and solution time needed with
and without local search on COMPILER
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4.5.5.3 Overall Results

In this Section, we present the full performance results of the proposed B&B on
all three benchmark suites. These experiments were run using our most powerful
combination of techniques, including the dynamic Hungarian lower bounds and
the local-search domination technique that are described in the current paper as
well as the history utilization technique that was described in our previous work
[Shobaki and Jamal, 2015]. The results are shown in Tables 4.11, 4.12 and 4.13.
The second column in each table shows the density of the transitive closure of
each instance’s precedence graph, which is defined as 2|R|

|V |(|V |−1) . The third col-
umn shows the cost of the initial solution produced by a heuristic method before
starting the B&B search. The fourth column shows the optimal cost if known. If
the instance is still open, the best known lower and upper bounds are shown in
the fifth column. The last column shows the results of the proposed algorithm.
The first and second sub-columns in that column show the best bounds computed
by the proposed algorithm, and the third sub-column shows the optimality gap,
which is defined as . Finally, the fourth sub-column in the last column shows
the solution time in seconds if the problem is solved optimally within the time
limit. The last row in each table shows the average optimality gap. Instances in
bold are solved optimally for the first time in this work. Table 4.12 shows that
the proposed algorithm proved the optimality of 8 SOPLIB instances that were
previously open. Instances in italic are solved in this work but were not solved in
our previous work. The results in these tables show that the proposed algorithm
closed eight SOPLIB instances that were open. The results also show that the
current work closed six TSPLIB instances and one SOPLIB instance that were not
closed in our previous work. The current work also significantly reduced the sizes
of the optimality gaps on all benchmark suites. Compared to [Papapanagiotou
et al., 2015b], the enhanced algorithm proposed in the current paper reduces the
average size of the optimality gap from 0.340 to 0.217 on TSPLIB, from 0.443 to
0.122 on SOPLIB and from 0.018 to 0.004 on COMPILERS.

4.6 Discussion and Conclusions

In this chapter we presented an enhanced B&B algorithm for the sequential or-
dering problem. The enhancement is due to two effective techniques that are
proposed in this paper. The first technique is using the dynamic Hungarian algo-
rithm to compute a tight dynamic lower bound based on a MCPM formulation.
The second technique is a local-search domination technique. The experimental
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TSPLIB Density Starting Optimal Best Known Proposed B&B
Instance of P Cost Cost LB UB LB UB Gap Time (s)
br17.10 0.314 79 55 55 55 0 0.19
br17.12 0.359 79 55 55 55 0 0.1
ESC07 0.611 2300 2125 2125 2125 0 0
ESC11 0.359 2715 2075 2075 2075 0 0
ESC12 0.396 2034 1675 1675 1675 0 0
ESC25 0.177 2995 1681 1681 1681 0 0.13
ESC47 0.108 3606 1288 1288 1288 0 35.01
ESC63 0.173 68 62 62 62 0 0.1
ESC78 0.139 19715 18230 18205 19275 0.056
ft53.1 0.082 10404 7531 5931 8411 0.295
ft53.2 0.094 11652 8026 5931 10366 0.428
ft53.3 0.225 15127 10262 6662 11998 0.445
ft53.4 0.604 18549 14425 14425 14425 0 175.05
ft70.1 0.063 46060 39313 37978 43256 0.122
ft70.2 0.075 47688 40101 40419 38042 43034 0.116
ft70.3 0.142 50764 42535 38968 46271 0.158
ft70.4 0.589 59795 53530 53530 53530 0 5716.5
rbg048a 0.444 464 351 337 361 0.066
rbg050c 0.459 532 467 467 467 0 4693.27
rbg109a 0.909 1217 1038 1038 1038 0 134.3
rbg150a 0.927 1973 1750 1750 1750 0 28.97
rbg174a 0.929 2281 2033 2033 2033 0 3995.7
rbg253a 0.948 3327 2950 2834 2976 0.048
rbg323a 0.928 3687 3140 3046 3687 0.174
rbg341a 0.937 3342 2568 2274 2952 0.23
rbg358a 0.886 3845 2545 2389 3318 0.28
rbg378a 0.894 3824 2809 2816 2520 3401 0.259
kro124p.1 0.046 52575 38762 39420 33978 48914 0.305
kro124p.2 0.053 51094 39841 41336 34267 51094 0.329
kro124p.3 0.092 70844 43904 49499 34535 62671 0.449
kro124p.4 0.496 93107 73021 76103 46505 84585 0.45
p43.1 0.101 29010 28140 900 28260 0.968
p43.2 0.126 29570 28480 900 28565 0.968
p43.3 0.191 31340 28835 970 28885 0.966
p43.4 0.614 84425 83005 83005 83005 0 9.78
prob.100 0.048 2414 1045 1163 773 1704 0.546
prob.42 0.116 458 243 174 259 0.328
ry48p.1 0.091 22464 15805 12531 16631 0.247
ry48p.2 0.103 19697 16074 16666 12883 18078 0.287
ry48p.3 0.193 25455 19490 19894 13372 20772 0.356
ry48p.4 0.588 41110 31446 31446 31446 0 22.65
Average Gap 0.217

Table 4.11. Full results for TSPLIB instances. Solutions times are reported
only for those instances that could be solved optimally within the 48-hour time
limit.Instances in italic were not closed by our latest published work and are
closed in this work.Instances in boldface were open before this work and are
closed for the first time in this work
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SOPLIB06 Density Starting Optimal Best Known Proposed B&B
Instance of P Cost Cost LB UB LB UB Gap Time(s)
R.200.100.1 0.02 269 61 61 61 0 771.36
R.200.100.15 0.847 4070 1257 1792 1792 1792 0 8720.6
R.200.100.30 0.957 5509 4216 4216 4216 0 27.39
R.200.100.60 0.991 75968 71749 71749 71749 0 0.31
R.200.1000.1 0.02 3603 1404 1392 1409 0.012
R.200.1000.15 0.876 36427 14689 20481 20481 20481 0 9585.37
R.200.1000.30 0.958 53838 41196 41196 41196 0 10.04
R.200.1000.60 0.989 82130 71556 71556 71556 0 0.25
R.300.100.1 0.013 363 26 26 26 0 2712.07
R.300.100.15 0.905 5425 2166 3161 3152 3152 0 29583.57
R.300.100.30 0.97 8389 6120 6120 6120 0 93.2
R.300.100.60 0.994 10875 9726 9726 9726 0 1.13
R.300.1000.1 0.013 4404 1294 1294 1294 0 14050.89
R.300.1000.15 0.905 56770 21096 29183 29006 29006 0 53986.09
R.300.1000.30 0.965 78690 54147 54147 54147 0 187.11
R.300.1000.60 0.994 121391 109471 109471 109471 0 1.07
R.400.100.1 0.01 285 13 13 14 0.071
R.400.100.15 0.927 8402 2747 3906 3879 3879 0.566 157991.72
R.400.100.30 0.978 11280 8165 8165 8165 0 325.65
R.400.100.60 0.996 16688 15228 15228 15228 0 3.19
R.400.1000.1 0.01 4437 1343 1336 1355 0.014
R.400.1000.15 0.93 81262 28159 29685 22369 46814 0.522
R.400.1000.30 0.977 118887 85128 85128 85128 0 504.28
R.400.1000.60 0.995 155862 140816 140816 140816 0 3.09
R.500.100.1 0.008 356 4 4 5 0.2
R.500.100.15 0.945 10130 3543 5361 2821 6856 0.589
R.500.100.30 0.98 13458 9665 9665 9665 0 1179.44
R.500.100.60 0.996 20445 18240 18240 18240 0 6.91
R.500.1000.1 0.008 5318 1316 1313 1342 0.022
R.500.1000.15 0.94 95692 32950 50725 27009 62490 0.568
R.500.1000.30 0.981 139868 98987 98987 98987 0 1319.2
R.500.1000.60 0.996 194354 178212 178212 178212 0 5.96
R.600.100.1 0.007 326 1 1 5 0.8
R.600.100.15 0.95 11206 3656 5684 2929 7622 0.616
R.600.100.30 0.985 17427 12465 12465 12465 0 1379.06
R.600.100.60 0.997 25101 23293 23293 23293 0 8.95
R.600.1000.1 0.007 4931 1337 1336 1345 0.007
R.600.1000.15 0.945 110393 36546 57237 31026 79145 0.608
R.600.1000.30 0.984 171245 118311 126798 126798 126798 0 2068.37
R.600.1000.60 0.997 243027 214608 214608 214608 0 11.67
R.700.100.1 0.006 264 1 1 4 0.75
R.700.100.15 0.957 13478 4494 7311 3753 9944 0.623
R.700.100.30 0.987 20626 14084 14510 14510 14510 0 1928.38
R.700.100.60 0.997 26196 24102 24102 24102 0 7.9
R.700.1000.1 0.006 4886 1231 1228 1264 0.028
R.700.1000.15 0.956 133273 40808 66837 33703 98286 0.657
R.700.1000.30 0.986 193531 121173 134474 134474 134474 0 1070.1
R.700.1000.60 0.997 270194 245589 245589 245589 0 6.23
Average Gap 0.122

Table 4.12. Full results for SOPLIB instances. Solutions times are reported
only for those instances that could be solved optimally within the 48-hour time
limit. Instances in italic were not closed by our latest published work and are
closed in this work.Instances in boldface were open before this work and are
closed for the first time in this work
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COMPILERS Density Starting Optimal Best Known Proposed B&B
Instance of P Cost Cost LB UB LB UB Gap Time(s)
gsm.153.124 0.97 1201 1109 1109 1109 0 0.17
gsm.444.350 0.99 2814 2745 2745 2745 0 0.27
gsm.462.77 0.84 585 577 577 577 0 12.45
jpeg.1483.25 0.484 101 93 93 93 0 0.24
jpeg.3184.107 0.887 857 791 791 791 0 46.42
jpeg.3195.85 0.74 69 68 68 68 0 18.19
jpeg.3198.93 0.752 340 312 312 312 0 22.85
jpeg.3203.135 0.897 922 850 850 850 0 52.55
jpeg.3740.15 0.257 50 40 40 40 0 0.39
jpeg.4154.36 0.633 171 167 167 167 0 1.38
jpeg.4753.54 0.769 265 245 245 245 0 6.42
susan.248.197 0.939 1396 1338 1338 1338 0 612.98
susan.260.158 0.916 1099 1016 1016 1016 0 39.58
susan.343.182 0.936 1266 1207 1207 1207 0 53.2
typeset.10192.123 0.744 658 565 602 538 612 0.121
typeset.10835.26 0.349 139 127 127 127 0 5.13
typeset.12395.43 0.518 194 174 174 174 0 40.82
typeset.15087.23 0.557 101 98 98 98 0 0
typeset.15577.36 0.555 175 155 155 155 0 1.89
typeset.16000.68 0.658 97 84 84 84 0 2.03
typeset.1723.25 0.245 73 64 64 64 0 1.06
typeset.19972.246 0.993 2060 2018 2018 2018 0 0.08
typeset.4391.240 0.981 1633 1605 1605 1605 0 23.51
typeset.4597.45 0.493 196 184 184 184 0 24.38
typeset.4724.433 0.995 3507 3466 3466 3466 0 1.85
typeset.5797.33 0.748 135 131 131 131 0 0.03
typeset.5881.246 0.986 1745 1732 1732 1732 0 37.16
Average Gap 0.004

Table 4.13. Full results for COMPILER instances. Solutions times are reported
only for those instances that could be solved optimally within the 48-hour time
limit.Instances in italic were not closed by our latest published work and are
closed in this work.Instances in boldface were open before this work and are
closed for the first time in this work
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evaluation shows that both techniques significantly improve the performance of
the B&B algorithm. The dynamic-Hungarian-based lower bound speeds up the
B&B algorithm by 98% on TSPLIB and SOPLIB, and the local-search domination
techniques gives a speedup of 4% on TSPLIB and 13% on SOPLIB. With the appli-
cation of both techniques, the enhanced algorithm closes five SOPLIB instances
that were previously open and significantly reduces the sizes of the optimality
gaps on many other instances.

The proposed algorithm still does not perform well on instances with extreme
densities. Therefore, yet more powerful pruning techniques are needed. In fu-
ture work, we will continue to improve the effectiveness of the current pruning
techniques and explore new pruning techniques such as integrating lower bounds
from a mixed linear programming formulation.
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Chapter 5

Conclusions

In this thesis, we studied and developed novel solution approaches for 3 logistic
problems, namely the Orienteering Problem with Stochastic Travel and Service
Times (OPSTS), the 2-stage Capacitated Vehicle Routing Problem with Stochastic
Demands (2-stage CVRPSD) and the Sequential Ordering Problem (SOP). Con-
cerning the problems, the main focus and contribution was on the OPSTS. Con-
cerning the methods the main contribution was on sampling-based metaheuris-
tics for Stochastic Combinatorial Optimization Problems (SCOPs) like OPSTS and
2-stage CVRPSD. The metaheuristics developed, had a strong sampling compo-
nent in their objective functions, beat the state-of-the-art, showed the utility of
sampling in solving SCOPs and revealed the disadvantages of sampling when
problems have a structure similar to OPSTS. The hybrid methods developed later
counteracted the disadvantages of sampling improving further our results. Sec-
ondary but not less important were our contributions in our joint work with
external collaborators in the 2-stage CVRPSD motivated by the “Green Bullwhip
effect” created by companies in Germany. We had similar contributions in the
comparison and development of new exact methods for SOP that delivered re-
sults beating the state-of-the-art and closing previously unclosed instances in the
literature.

In the beginning of studying the OPSTS we examined ways to increase the
efficiency of the solution methods proposed in the paper that introduced the
problem [Campbell et al., 2011]. The bottleneck of the metaheuristic in that
paper as in many SCOPs, was the objective function which was computed using
an analytical approximation. The first attempt to accelerate the computation was
to use Monte Carlo sampling which has the added advantage that can be modified
easily to work with any distribution. It was shown that after some usages of the
Monte Carlo Evaluator (MC), it becomes significantly faster than the Analytical
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objective function. The effect of number of samples to error and speed of the
Monte Carlo Evaluator (MC) was also studied.

The study of MC uncovered cases where it is error-prone. This probed for
further research on reducing the error while maintaining the advantages of MC.
We named the node where the deadline occurs in the deterministic version of the
problem as the deadline node. We then observed that small errors in arrival time
in nodes neighboring the “deadline node” — that we call the Deadline Area —
can result in bigger accumulated error in the final objective value. This happens
because errors in arrival time estimation accumulate and an error in deciding
whether the node is before or after the deadline occurs in wrongly assigning
reward or penalty to that node and probably to other after that node.

These observations led to the development of hybrid methods to compute the
objective function. The first approach was to use an Analytical Evaluator to eval-
uate the nodes belonging to the deadline area and use the Monte Carlo Evaluator
(MC) for the rest of the nodes. We called this evaluator MC-Analytical-MC Eval-
uator or in short M-A-M. We observed experimentally, that using an Analytical
Evaluator only for a critical part of the solution -which usually turns out to be
small- reduces the error of the evaluator dramatically. This enables us to reduce
the number of samples used in the Monte Carlo evaluators, improving the overall
speed of the evaluator (apart from very small datasets e.g. 21 customers) and
most importantly improving the accuracy of the evaluator dramatically. This in
turn yields higher quality results when we embed this evaluator in metaheuristics
than the Analytical or MC ones.

The “deadline area” depending on its size affects both the relative error (to
the Analytical Evaluator) and the speed gain. As we grow the deadline area,
the relative error decreases exponentially (the best model fitted is exponential
with very small residual error) while the speed gain decreases only linearly. This
enables us to sacrifice a small linear speed gain for an exponential error decrease.

Based on the observation that in the sequence of nodes the ones that are
many nodes away before or after the deadline area most likely get a reward
or penalty respectively, we developed another evaluator to further increase the
performance of M-A-M. The new evaluator defines 2 new ares the Reward and
Penalty area which consist of nodes further away from the deadline area. These
nodes are assigned a reward or penalty without further computation. So the
new hybrid evaluator consists of the Reward-MC-Analytical-MC-Penalty Evalua-
tor and in brief is called R-M-A-M-P. The new evaluator has more areas to tune
and if tuned correctly it outperforms most other evaluators, in terms of the speed
gains versus the amount of error it yields. The benefits are more noticeable when
this evaluator gets embedded in a metaheuristic.
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Another evaluator we developed and tested on was the R-A-P or R-A-P which
is like the R-M-A-M-P evaluator but without the sampling part of MC evaluators.
R-A-P is a completely deterministic evaluator and was initially created to act as
a baseline for the usefulness of Monte Carlo sampling in the evaluators. It was
found experimentally that it is of practical importance and can outperform other
evaluators in the cases where the deadline occurs rarely and a small Analytical
part can keep the error very low.

Constructing better ways to approximate the objective function of OPSTS
helps us in something more essential which is reaching higher quality solutions
in the same time or finding a solution of predefined quality faster. The larger
the dataset, the greater the benefit from using the proposed evaluators. For the
purposes of our experiments we generated datasets of 1000, 1800, 2500 and
4000 nodes. We performed experiments with the VNS by embedding the An-
alytical and our most promising evaluator R-M-A-M-P and we measured their
performance in terms of the objective value reached for the same amount of run-
time on the same system. The hybrid evaluator R-M-A-M-P consistently aids the
metaheuristic find a better solution for the same amount of time, in certain cases
even 3 times as good.

Apart from the Variable Neighborhood Search Metaheuristic, which was the
state of the art at the time, we developed a Random Search Metaheuristic for OP-
STS. In almost all our experiments the Random Search Metaheuristic produced
statistically significantly higher quality solutions, indicating that either VNS is
not suitable for the OPSTS or better neighbourhoods/heuristics need to be used
by VNS.

The second problem we studied was the 2-stage Capacitated Vehicle Routing
Problem with Stochastic Demands. In the first stage of the problem, the vehicles
start from the depot and try to satisfy the base demands of the customers. In
the second stage, extra vehicles are sent to the customers whose demands were
not previously fully met because of probabilistic increases. In order to solve the
problem, we used various objective functions embedding them in an ant colony
optimization system. From the experiments, it can be concluded that adopting
a 1-stage average case approach leads to shortest overall distances while a 2-
stage approach leads to solutions with less vehicles. The conclusions reached by
the methods could serve as a decision supporting system for logistics managers
in order to reduce the environmental impact of gas emissions and the “green
bullwhip effect”.

The third problem studied was the Sequential Ordering Problem where our
contribution was in comparing experimetally 2 existing state-of-the-art exact al-
gorithms that were applied in different domains. From our experimental survey,
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the advantages and disadvantages of the 2 algorithms were revealed leading to
insights for a better exact algorithm. Although it is difficult to predict how suc-
cessful an algorithm will be on a given instance, it is possible to observe that
DEC usually performs well on instances with extreme densities of precedence
constraints (either very low or a very high) but does not perform very well on
instances with medium densities. On the other hand, B&B appears to be less
effective on instances with a low density of precedence constraints but is more
effective than DEC on instances with medium densities. It is also interesting to
note that B&B performs very well on the COMPILERS instances that are charac-
terized by symmetrical cost graphs (the cost from vertex i to vertex j is always
equal to the cost from vertex j to vertex i for all COMPILERS instances). The
success of B&B on such instances is attributed to the effectiveness of the history
utilization pruning technique on the more symmetrical cases and it was devel-
oped with these datasets in mind. We finally took the chance to refine the B&B
solver in order to achieve new state-of-the-art results.

At this point let us draw a final conclusion. To sum up, we strongly believe
that this work was able to contribute significantly in developing insights and
state-of-the-art solution methods to important logistics problems. Our results
have indicated new directions for future research. Firstly, our research empha-
sized the usefulness of hybrid sampling-based metaheuristics for problems with
structure similar to the OPSTS such as variants of Stochastic Knapsack. There
are many promising directions for future research in generalizing the methods
to work with problems in other areas such as scheduling as well as parallelizing
them. Another promising direction is creating metaheuristics that would auto-
matically decide the hybrid sampling technique to use and auto-tune it. Secondly,
our research in the Sequential Ordering Problem showed directions on how to
combine state-of-the-art exact algorithms into a better exact algorithm and ob-
tain better results and find the optimal solution to 9 instances that were open.
We believe there are many extremely promising future directions to take in our
research in the OPSTS and the SOP that will most probably bear novel important
results.
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Mladenović, N. and Hansen, P. [1997]. Variable neighborhood search, Computers
and Operations Research 24(11): 1097–1100.

Mojana, M. [2011]. Matheuristic techniques for the sequential ordering problem,
Master’s thesis, Faculty of Informatics, Università della Svizzera italiana.

Mojana, M., Montemanni, R., Caro, G. D. and Gambardella, L. [to appear]. An
algorithm combining linear programming and an ant system for the sequential
ordering problem, Proceedings of ATAI 2011 — The Second Annual International
Conference on Advanced Topics in Artificial Intelligence.

Mojana, M., Montemanni, R., Di Caro, G. and Gambardella, L. [2012]. A branch
and bound approach for the sequential ordering problem, Lecture Notes in Man-
agement Science 4: 266–273.

Montemanni, R. and Gambardella, L. [2009]. An ant colony system for team ori-
enteering problems with time windows, Foundations of computing and Decision
Sciences 34: 287–306.



125 Bibliography

Montemanni, R., Mojana, M., Caro, G. A. D. and Gambardella, L. M. [2013].
A decomposition-based exact approach for the Sequential Ordering Problem,
5: 2–13.

Montemanni, R., Smith, D. and Gambardella, L. [2007]. Ant colony systems for
large sequential ordering problems, Swarm Intelligence Symposium, 2007. SIS
2007. IEEE, IEEE, pp. 60–67.

Montemanni, R., Smith, D. and Gambardella, L. [2008]. A heuristic manipula-
tion technique for the sequential ordering problem, Computers and Operations
Research 35(12): 3931–3944.

Montemanni, R., Smith, D., Rizzoli, A. and Gambardella, L. [2008b]. Sequential
ordering problems for crane scheduling in port terminals, Proceedings of the
11th Intermodal Workshop on Harbor, Maritime and Multimodal Logistic Mod-
eling and Simulation (HMS 2008), Campora San Giovanni, Italy, pp. 180–189.

Montemanni, R., Smith, D., Rizzoli, A. and Gambardella, L. [2009]. Sequential
ordering problems for crane scheduling in port terminals, International Journal
of Simulation and Process Modelling 5(4): 348–361.

Moon, C., Kim, J., Choi, G. and Seo, Y. [2002]. An efficient genetic algorithm for
the travelling salesman problem with precedence constraints, European Jour-
nal of Operational Research 140(3): 606–617.

Murphy, P. R. and Poist, R. F. [2000]. Green logistics strategies: an analysis of
usage patterns, Transportation Journal pp. 5–16.

Özelkan, E. and Lim, C. [2008]. Conditions of reverse bullwhip effect in pric-
ing for price-sensitive demand functions, Annals of Operations Research 164
(1): 221–22.

Papadimitriou, C. H. and Steiglitz, K. [1982]. Combinatorial optimization: algo-
rithms and complexity.

Papapanagiotou, V. [2016]. https://vassilis.ai/thesis/opsts_data.zip

[Online; accessed 07-Mar-2018].

Papapanagiotou, V., Jamal, J., Montemanni, R., Shobaki, G. and Gambardella,
L. M. [2015b]. A comparison of two exact algorithms for the sequential order-
ing problem, 2015 IEEE Conference on Systems, Process and Control (ICSPC),
pp. 73–78.

https://vassilis.ai/thesis/opsts_data.zip


126 Bibliography

Papapanagiotou, V., Montemanni, R. and Gambardella, L. [2014]. Objective func-
tion evaluation methods for the orienteering problem with stochastic travel
and service times, Journal of Applied Operational Research 6(1): 16–29.

Papapanagiotou, V., Montemanni, R. and Gambardella, L. [2015a]. Hybrid
sampling-based evaluators for the orienteering problem with stochastic travel
and service times, Journal of Traffic and Logistics Engineering Vol 3(2).

Papapanagiotou, V., Montemanni, R. and Gambardella, L. M. [2015b]. The ori-
enteering problem with stochastic travel and service times new approaches to
sampling-based objective function evaluation, Annual International Conference
on Computational Mathematics, Computational Geometry Statistics.

Papapanagiotou, V., Montemanni, R. and Gambardella, L. M. [2016a]. Com-
parison of objective function evaluators for a stochastic orienteering problem,
2016 Joint 8th International Conference on Soft Computing and Intelligent Sys-
tems (SCIS) and 17th International Symposium on Advanced Intelligent Systems
(ISIS), pp. 465–471.

Papapanagiotou, V., Montemanni, R. and Gambardella, L. M. [2016b]. A
sampling-based metaheuristic for the orienteering problem with stochastic
travel times, Proc. 5th International Conference, Theory and Practice of Natural
Computing, TPNC 2016, Sendai, Japan, Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 97–109.

Papapanagiotou, V., Montemanni, R. and Gambardella, L. M. [2016c]. Sampling-
based objective function evaluation techniques for the orienteering problem
with stochastic travel and service times, in M. Lübbecke, A. Koster, P. Letmathe,
R. Madlener, B. Peis and G. Walther (eds), Operations Research Proceedings
2014, Springer International Publishing, Cham, pp. 445–450.

Papapanagiotou, V., Weyland, D., Montemanni, R. and Gambardella, L. [2013].
A sampling-based approximation of the objective function of the orienteering
problem with stochastic travel and service times, 5th International Conference
on Applied Operational Research, Proceedings, Lecture Notes in Management Sci-
ence, pp. 143–152.

Pulleyblank, W. and Timlin, M. [1991]. Precedence constrained routing and heli-
copter scheduling: Heuristic design, Technical Report RC17154 (#76032), IBM
T.J. Watson Research Center, Yorktown Heights, New York, USA.



127 Bibliography

Puterman, M. L. [2014]. Markov decision processes: discrete stochastic dynamic
programming, John Wiley & Sons.

Russell, R. and Urban, T. [2008]. Vehicle routing with soft time windows and
erlang travel times, Journal of the Operational Research Society 59(9): 1220–
1228.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H. and Dueck, G. [2000]. Record
breaking optimization results using the ruin and recreate principle, Journal of
Computational Physics 159(2): 139–171.

Sevkli, Z. and Sevilgen, F. [2006]. Variable neighborhood search for the ori-
enteering problem, Computer and Information Sciences–ISCIS 2006, Springer,
pp. 134–143.

Shobaki, G. and Jamal, J. [2015]. An exact algorithm for the sequential ordering
problem and its application to switching energy minimization in compilers,
Computational Optimization and Applications 61(2): 343–372.

Solis, F. and Wets, R.-B. [1981]. Minimization by random search techniques,
Mathematics of Operations Research 6(1): 19–30.
URL: http://dx.doi.org/10.1287/moor.6.1.19

Spall, J. [2005]. Introduction to stochastic search and optimization: estimation,
simulation, and control, Vol. 65, John Wiley & Sons.

Sundarakani, B., de Souza, R., Goh, M., Van Over, D., Manikandan, S. and Koh,
S. L. [2010]. A sustainable green supply chain for globally integrated networks,
Enterprise Networks and Logistics for Agile Manufacturing, Springer, pp. 191–
206.

Talbi, E. [2009]. Metaheuristics: from design to implementation, John Wiley &
Sons.

Tan, K., Cheong, C. and Goh, C. [2007]. Solving multiobjective vehicle rout-
ing problem with stochastic demand via evolutionary computation, European
Journal of Operational Research 177(2): 813 – 839.
URL: http://www.sciencedirect.com/science/article/pii/S0377221706000208

Tang, H. and Miller-Hooks, E. [2005]. Algorithms for a stochastic selective travel-
ling salesperson problem, Journal of The Operational Research Society 56: 439–
452.



128 Bibliography

Tanis, E. A. [2008]. A brief course in mathematical statistics, Pearson Education
India.

Teng, S. Y., Ong, H. L. and Huang, H. C. [2004]. An integer l-shaped algorithm for
time-constrained traveling salesman problem with stochastic travel and service
times, Asia-Pacific Journal of Operational Research 21(02): 241–257.
URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595904000229
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