2,151 research outputs found

    Sequential Symbolic Regression with Genetic Programming

    Get PDF
    This chapter describes the Sequential Symbolic Regression (SSR) method, a new strategy for function approximation in symbolic regression. The SSR method is inspired by the sequential covering strategy from machine learning, but instead of sequentially reducing the size of the problem being solved, it sequentially transforms the original problem into potentially simpler problems. This transformation is performed according to the semantic distances between the desired and obtained outputs and a geometric semantic operator. The rationale behind SSR is that, after generating a suboptimal function f via symbolic regression, the output errors can be approximated by another function in a subsequent iteration. The method was tested in eight polynomial functions, and compared with canonical genetic programming (GP) and geometric semantic genetic programming (SGP). Results showed that SSR significantly outperforms SGP and presents no statistical difference to GP. More importantly, they show the potential of the proposed strategy: an effective way of applying geometric semantic operators to combine different (partial) solutions, avoiding the exponential growth problem arising from the use of these operators

    The Effect of Distinct Geometric Semantic Crossover Operators in Regression Problems

    Get PDF
    This paper investigates the impact of geometric semantic crossover operators in a wide range of symbolic regression problems. First, it analyses the impact of using Manhattan and Euclidean distance geometric semantic crossovers in the learning process. Then, it proposes two strategies to numerically optimize the crossover mask based on mathematical properties of these operators, instead of simply generating them randomly. An experimental analysis comparing geometric semantic crossovers using Euclidean and Manhattan distances and the proposed strategies is performed in a test bed of twenty datasets. The results show that the use of different distance functions in the semantic geometric crossover has little impact on the test error, and that our optimized crossover masks yield slightly better results. For SGP practitioners, we suggest the use of the semantic crossover based on the Euclidean distance, as it achieved similar results to those obtained by more complex operators

    Geometric Semantic Grammatical Evolution

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.Geometric Semantic Genetic Programming (GSGP) is a novel form of Genetic Programming (GP), based on a geometric theory of evolutionary algorithms, which directly searches the semantic space of programs. In this chapter, we extend this framework to Grammatical Evolution (GE) and refer to the new method as Geometric Semantic Grammatical Evolution (GSGE). We formally derive new mutation and crossover operators for GE which are guaranteed to see a simple unimodal fitness landscape. This surprising result shows that the GE genotypephenotype mapping does not necessarily imply low genotype-fitness locality. To complement the theory, we present extensive experimental results on three standard domains (Boolean, Arithmetic and Classifier)

    A Study of Dynamic Populations in Geometric Semantic Genetic Programming

    Get PDF
    Farinati, D., Bakurov, I., & Vanneschi, L. (2023). A Study of Dynamic Populations in Geometric Semantic Genetic Programming. Information Sciences, 648(November), 1-21. [119513]. https://doi.org/10.1016/j.ins.2023.119513 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.Allowing the population size to variate during the evolution can bring advantages to evolutionary algorithms (EAs), retaining computational effort during the evolution process. Dynamic populations use computational resources wisely in several types of EAs, including genetic programming. However, so far, a thorough study on the use of dynamic populations in Geometric Semantic Genetic Programming (GSGP) is missing. Still, GSGP is a resource-greedy algorithm, and the use of dynamic populations seems appropriate. This paper adapts algorithms to GSGP to manage dynamic populations that were successful for other types of EAs and introduces two novel algorithms. The novel algorithms exploit the concept of semantic neighbourhood. These methods are assessed and compared through a set of eight regression problems. The results indicate that the algorithms outperform standard GSGP, confirming the suitability of dynamic populations for GSGP. Interestingly, the novel algorithms that use semantic neighbourhood to manage variation in population size are particularly effective in generating robust models even for the most difficult of the studied test problems.publishersversionpublishe

    Less is More: A Call to Focus on Simpler Models in Genetic Programming for Interpretable Machine Learning

    Get PDF
    Interpretability can be critical for the safe and responsible use of machine learning models in high-stakes applications. So far, evolutionary computation (EC), in particular in the form of genetic programming (GP), represents a key enabler for the discovery of interpretable machine learning (IML) models. In this short paper, we argue that research in GP for IML needs to focus on searching in the space of low-complexity models, by investigating new kinds of search strategies and recombination methods. Moreover, based on our experience of bringing research into clinical practice, we believe that research should strive to design better ways of modeling and pursuing interpretability, for the obtained solutions to ultimately be most useful

    Genetic Programming is Naturally Suited to Evolve Bagging Ensembles

    Get PDF
    Learning ensembles by bagging can substantially improve the generalization performance of low-bias, high-variance estimators, including those evolved by Genetic Programming (GP). To be efficient, modern GP algorithms for evolving (bagging) ensembles typically rely on several (often inter-connected) mechanisms and respective hyper-parameters, ultimately compromising ease of use. In this paper, we provide experimental evidence that such complexity might not be warranted. We show that minor changes to fitness evaluation and selection are sufficient to make a simple and otherwise-traditional GP algorithm evolve ensembles efficiently. The key to our proposal is to exploit the way bagging works to compute, for each individual in the population, multiple fitness values (instead of one) at a cost that is only marginally higher than the one of a normal fitness evaluation. Experimental comparisons on classification and regression tasks taken and reproduced from prior studies show that our algorithm fares very well against state-of-the-art ensemble and non-ensemble GP algorithms. We further provide insights into the proposed approach by (i) scaling the ensemble size, (ii) ablating the changes to selection, (iii) observing the evolvability induced by traditional subtree variation. Code: https://github.com/marcovirgolin/2SEGP.Comment: Added interquartile range in tables 1, 2, and 3; improved Fig. 3 and its analysis, improved experiment design of section 7.
    • …
    corecore