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ABSTRACT
Learning ensembles by bagging can substantially improve the gen-
eralization performance of low-bias, high-variance estimators, in-
cluding those evolved by Genetic Programming (GP). To be efficient,
modern GP algorithms for evolving (bagging) ensembles typically
rely on several (often inter-connected) mechanisms and respective
hyper-parameters, ultimately compromising ease of use. In this pa-
per, we provide experimental evidence that such complexity might
not be warranted. We show that minor changes to fitness evalua-
tion and selection are sufficient to make a simple and otherwise-
traditional GP algorithm evolve ensembles efficiently. The key to
our proposal is to exploit the way bagging works to compute, for
each individual in the population, multiple fitness values (instead of
one) at a cost that is only marginally higher than the one of a nor-
mal fitness evaluation. Experimental comparisons on classification
and regression tasks taken and reproduced from prior studies show
that our algorithm fares very well against state-of-the-art ensemble
and non-ensemble GP algorithms. We further provide insights into
the proposed approach by (i) scaling the ensemble size, (ii) ablating
the changes to selection, (iii) observing the evolvability induced by
traditional subtree variation.
Code: https://github.com/marcovirgolin/2SEGP.
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1 INTRODUCTION
Learning ensembles by bagging, i.e., aggregating the predictions
of low-bias, high-variance estimators fitted on different samples
of the training set (see Sec. 3.1 for a more detailed description),
can improve generalization performance significantly [6, 7, 19, 50].
Random forests are a remarkable example of this [5, 8]. At the
same time, mixed results have been found when using deep neural
networks [13, 23, 41, 62]. For Genetic Programming (GP) [36, 53],
bagging has generally been found to be beneficial [17, 28, 34, 56].
Since in a classic GP algorithm the outcome of the evolution is one
best-found individual (i.e., the estimator that best fits the training
set), perhaps the simplest way to build an ensemble of GP individu-
als is to evolve multiple populations independently, and aggregate
the outcomes. However, since a GP population can naturally host
diverse individuals, it makes sense to seek ways to evolve the en-
semble in one go and save substantial computational resources.

Many ensemble learning GP-based approaches have been pro-
posed so far (see Sec. 2 for an overview). We can broadly categorize
them in two classes: Simple Independent Ensemble Learning Ap-
proaches (SIEL-Apps), and Complex Simultaneous Ensemble Learning
Algorithms (CSEL-Algs). SIEL-Apps form an ensemble of estimators
by repeating the execution of a (typically classic) GP algorithm
that produces, each time, a single estimator. As said before, this
idea is simple but inefficient. Instead, CSEL-Algs make use of a
number of novel mechanisms and respective hyper-parameters to
obtain an ensemble in one go. For this reason, CSEL-Algs can be
very efficient, but also quite complex and thus difficult to adopt
in practical applications. Moreover, from a scientific standpoint, it
may be hard to assess which moving-parts of a CSEL-Alg are really
needed and which are not.

In this paper, we seek to obtain the best of both worlds: A GP
algorithm that learns ensembles efficiently (e.g., without repeating
multiple evolutions) and is simple enough to be thought as a pos-
sible minimal/natural extension of classic GP. Specifically, given
a classic tree-based GP algorithm, we introduce only (arguably)
minor modifications to fitness evaluation and selection, with the
goal of making the population specialize uniformly across
different realizations of the training set (in the context of bag-
ging, these are called bootstrap samples, see Sec. 3.1). The proposed
modifications are time-efficient. We call the resulting algorithm
Simple Simultaneous Ensemble Genetic Programming (2SEGP) and
show that, despite its simplicity, 2SEGP is competitive with State-of-
the-Art (SotA) ensemble and non-ensemble GP algorithms. We do
this by reporting and reproducing results from recent literature on
real-world benchmark classification and regression datasets. More-
over, to better understand what matters when learning bagging
ensembles in GP, we include experiments that dissect our algorithm.
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2 RELATEDWORK
In this paper we focus on ensemble learning intended as bagging
(see Sec. 3.1), when GP is used to evolve the estimators. We do not
consider ensemble learning intended as boosting, i.e., the iterative
fitting of weak estimators to (weighted) residuals [14, 24, 25]. For the
reader interested in boosting GP, we refer, e.g., to [15, 21, 28, 51, 57].
Similarly, we do not consider works where, even if GP was used
to decide how to aggregate the estimators, these were learned by
other algorithms than GP [3, 4, 31, 43, 44].

Starting with SIEL-Apps, we remark that the works in this cate-
gory mostly focus on how the aggregation of GP-evolved estimators
can be improved, rather than on how to evolve ensembles efficiently.
For example, some early works look into improving the ensemble
prediction quality by weighing member predictions by a measure
of confidence [28] or by bypassing outlier member predictions [34].
Further investigations have been carried out across problems of
different nature, in [29, 30, 60]. An SIEL-App is also used in [66],
yet this time with a non-classic GP algorithm where individuals
are linear combinations of multiple trees and the evolution is made
scalable by leveraging on-line, parallel computing. Other works in
this category are [35, 64, 77], respectively for hybridization with
multi-objective evolution, incomplete data, and large-scale data.

CSEL-Algs are of most interest w.r.t. the present work as they
attempt to evolve an ensemble in an efficient manner. In [2], e.g.,
multi-objective GP is used to build ensembles where the members
are Pareto non-dominated individuals. Importantly, having multi-
ple objectives is a prerequisite for this proposal (not the case here).
Multifactorial GP is used in [74] to evolve ensembles of decision tree-
like individuals that each interpret the dataset features differently.
More recently, [73] proposed the Diverse Niching Genetic Program-
ming (DivNichGP) algorithm, which works in single-objective and
manages to obtain an ensemble by maintaining population diver-
sity by (i) Using bootstrap sampling every generation to constantly
vary the training data distribution, and (ii) Including a niching
mechanism. Niching is further used at termination in order to pick
the final ensemble members from the population, and requires two
dedicated hyper-parameters to be set. Another recent investigation
is [17], where ensembles are learned to reduce the typical suscep-
tibility of symbolic regression GP algorithms to outliers. In that
work, spatially-clustered individuals (e.g., as neighboring nodes of
a toroidal graph) compete in fitting different bootstrap samples [63].
This algorithm requires to choose the graph and cluster structure as
well as the way computational resources should be distributed on
the graph nodes. Lastly, in [56] ensemble learning is realized by the
simultaneous co-evolution of a population of estimators (trees), and
a population of ensemble candidates (forests). For this algorithm,
alongside the hyper-parameters for the population of trees, one
needs to set the hyper-parameters for the population of forests (e.g.,
for variation, selection, and voting method).

We remark that, in order to ameliorate for the complexity in-
troduced in CSEL-Algs, the respective works provide recommen-
dations on default hyper-parameter settings. Even so, we believe
that these algorithms can still be considered sufficiently complex
that pursuing a simpler approach remains a worthwhile endeavour.
We include the three CSEL-Algs from [17, 56, 73] (among other GP
algorithms) in our comparisons.

3 LEARNING BAGGING ENSEMBLES BY
MINOR MODIFICATIONS TO CLASSIC GP

We now describe how, taken a classic GP algorithm that returns a
single best-found estimator, one can evolve bagging ensembles. In
other words, how to obtain 2SEGP from classic GP. We assume the
reader to be familiar with the workings of a classic tree-based GP
algorithm, and refer, e.g., to [53] (Chapters 2–4).

The backbone of our proposal consists of two aspects: (i) Evaluate
a same individual according to different realizations of the training set
(i.e., bootstrap samples); and (ii) Let the population improve uniformly
across these realizations. To achieve these aspects, we only modify
fitness evaluation (we also describe the use of linear scaling [32]
as it is very useful in practice) and selection. We do not make any
changes to variation: Any parent can mate with any other (using
classic subtree crossover), and any type of genetic material can be
used to mutate any individual (using classic subtree mutation). Our
intuition is that exchanging genetic material between estimators
that are best on different samples of the training set is not detrimen-
tal because these samples are themselves similar to one another
(we provide insights about this in Sec. 7.3).

We proceed by recalling how bagging works, followed by de-
scribing the modifications we propose, for the sake of clarity, first
to selection and then to fitness evaluation.

3.1 Bagging
As aforementioned, we focus on learning ensembles by bagging,
i.e., bootstrap aggregating [7]. We use traditional bootstrap, i.e.,
we obtain 𝛽 realizations of the training set T1, . . . ,T𝛽 , each with
as many observations as the original training set T = {(x𝑖 , 𝑦𝑖 )}𝑛𝑖=1,
by uniformly sampling from T with replacement. Aggregation of
predictions is performed the traditional way, i.e., by majority voting
(i.e., mode) for classification, and averaging for regression. One run
of our algorithm will produce an ensemble of 𝛽 members where
each member is the best-found individual (i.e., elite) according to
the fitness measured on the bootstrap sample T𝑗 , with 𝑗 = 1, . . . , 𝛽 .

3.2 Selection for uniform progress across the
bootstrap samples

Weemploy a remarkably simplemodification of truncation selection
that is applied after the offspring population has been obtained by
variation of the parent population, i.e., in a (` + _) fashion. The
main idea is to select individuals in such a way that progress is
uniform across all the bootstrap samples T1, . . . ,T𝛽 . To this end,
we now make the assumption that each individual does not have
a single fitness value, rather, it has 𝛽 of them, one per bootstrap
sample T𝑗 . We show how these 𝛽 fitness values can be computed
efficiently in Sec. 3.3.

Pseudocode for the modified truncation selection is given in
Algorithm 1. Very simply, we perform 𝛽 truncation selections, each
focused on one of the 𝛽 fitness values, and where the

(
𝑛pop/𝛽

)
top-

ranking individuals are chosen each time. Note that this selection
ensures weakly monotonic fitness decrease across all the bootstrap
samples. Note also that a same individual can obtain multiple copies
if it has fitness values such that it is top-ranking according to
multiple bootstrap samples.
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Lastly, one can see that the computational complexity of this
selection method is determined by sorting the population 𝛽 times
and copying individuals, i.e., O(𝛽𝑛pop log𝑛pop + 𝑛popℓ), under the
assumption that ℓ is the (worst-case) size of an individual (in the case
of tree-based GP, the number of nodes). As we will show in Sec. 3.3
below, the cost of fitness evaluation over the entire population will
dominate the cost of selection. See Sec. 7.2 for ablations.

Algorithm 1: Our simple extension of truncation selection.
input :P (parent pop.), O (offspring pop.), 𝛽 (ensemble size)
output :P′ (new pop. of selected individuals)

1 Q = join(P,O);
2 P′ ← [];
3 for 𝑗 ∈ 1, 2, . . . , 𝛽 do
4 sort Q according to the 𝑗th fitness value;
5 for 𝑘 ∈ 1, 2, . . . ,

(
𝑛pop/𝛽

)
do

6 P′ ← join(P′, [Q𝑘 ]);

7 return P′;

3.3 Fitness evaluation on all bootstrap samples
A typical fitness evaluation in GP comprises (i) Computing the
output of the individual in consideration; (ii) Computing the loss
function between the output and the label. Both steps are performed
using the original training set T = {(x𝑖 , 𝑦𝑖 )}𝑛𝑖=1. Recall that the
computation cost of step (i) is O(ℓ𝑛), because we need to compute
the ℓ operations that compose the individual for each observation
in the training set. Step (ii) takes O(𝑛) but is additive, thus the total
asymptotic cost ultimately amounts to O(ℓ𝑛).

Since we wish the population to evolve uniformly well across
the bootstrap samples, our selection method needs each individual
to have a fitness value for each bootstrap sample. In other words,
we need to compute the fitness w.r.t. T1, . . . ,T𝛽 . A naive solution
would be to repeat steps (i) and (ii) for each T𝑗 , leading to a time
cost of O(𝛽ℓ𝑛); Ultimately the same cost an SIEL-App would have
(although distributed across multiple evolutions).

To improve upon the naive cost O(𝛽ℓ𝑛), we make the following
observation. In many machine learning algorithms, the specific
realization of the training set determines the structure of the esti-
mator that will be learned in an explicit (and possibly deterministic)
way. For example, to learn a decision tree, the training set is used
to determine what nodes are split and what condition is applied [9].
Consequently, when making bagging ensembles of decision trees
(i.e., random forests [8]), one needs to build each decision tree as a
function of the respective T𝑗 , and so a multiplicative 𝛽 term in the
asymptotics cannot be avoided. The situation is different in GP. In
GP, the structure of an individual emerges as an implicit byproduct
of the whole evolutionary process; Fitness evaluation, in particular,
is not responsible for altering structure. We exploit this.

Recall that each T𝑗 is obtained by bootstrap of the original T,
thus contains only elements of T. It follows that an individual’s
output computed over the observations of T𝑗 contains only el-
ements that are also elements of the output computed over T.
So, if we compute the output over T, we obtain the output el-
ements for T𝑗 ,∀𝑗 . Formally, let S𝑗 be the collection of indices

Figure 1: Scaling (vertical axis) of 𝛽 × ℓ and 𝛽 + ℓ .

that identifies T𝑗 , i.e., S𝑗 = [𝑠 𝑗1, . . . , 𝑠
𝑗
𝑛] s.t. 𝑠

𝑗

𝑙
∈ {1, . . . , 𝑛} and

{(x𝑘 , 𝑦𝑘 )}𝑘∈S𝑗 = {(x𝑘 , 𝑦𝑘 )}
𝑠
𝑗
𝑛

𝑘=𝑠
𝑗

1
= T𝑗 . Then one can:

(1) Compute once the output of the estimator over T, i.e., {𝑜𝑖 }𝑛𝑖=1;
(2) For 𝑗 = 1, . . . , 𝛽 , assemble a T𝑗 -specific output {𝑜𝑘 }𝑘∈S𝑗

from {𝑜𝑖 }𝑛𝑖=1;
(3) For 𝑗 = 1, . . . , 𝛽 , compute Loss({𝑦𝑘 }𝑘∈S𝑗 , {𝑜𝑘 }𝑘∈S𝑗 ) as 𝑗th

fitness value.
Step 1 costs O(ℓ𝑛), step 2 and step 3 cost O(𝛽𝑛), they are executed
in sequence:

O(ℓ𝑛) + O(𝛽𝑛) + O(𝛽𝑛) = O(𝑛(ℓ + 𝛽)) . (1)

This method is asymptotically faster than re-computing the out-
put over each T𝑗 whenever ℓ + 𝛽 < ℓ𝛽—basically in any meaningful
scenario. Fig. 1 shows at a glance, for growing 𝛽 and ℓ , that the
additive contribution 𝛽 + ℓ quickly becomes orders of magnitudes
better than the multiplicative one 𝛽 × ℓ . Memory-wise, all we need
is to store each S𝑗 at initialization, which costs O(𝛽𝑛). See Sec. 7.1
for experiments.

Note that the time cost of fitness evaluation (for the entire popu-
lation) normally dominates the one of selection and the larger the
number of observations in the training set 𝑛, the less the cost of
selection will matter. We remark that steps 2 and 3 can be imple-
mented in terms of (𝛽×𝑛)-dimensional matrix operations, if desired
(e.g., in our python implementation, we leverage numpy [65]).

Linear scaling. We can easily include linear scaling when com-
puting the fitness on all bootstrap samples. Linear scaling is an
efficient and effective method to improve the performance of GP
in regression [32, 33]. It consists of computing and applying two
coefficients 𝑎, 𝑏 to perform an affine transformation of the out-
put that optimally minimizes the training (optionally, root) mean
squared error as in MSE𝑎,𝑏 (𝑦, 𝑜) = 1

𝑛

∑𝑛
𝑖=1 (𝑦𝑖 − (𝑎 + 𝑏𝑜𝑖 ))

2. These
coefficients are:

𝑎 = 𝑦 − 𝑏𝑜, 𝑏 =

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦) (𝑜𝑖 − 𝑜)∑𝑛

𝑖=1 (𝑜𝑖 − 𝑜)
2 , (2)

where 𝑦 (resp., 𝑜) denote the arithmetic mean of the label (resp.,
output) over the training set T. SotA GP algorithms often include
linear scaling (or regression in some form) [38, 39, 68, 71, 76].

We incorporate linear scaling in our approach by computing
𝛽 coefficients 𝑎 𝑗 , 𝑏 𝑗 to scale each T𝑗 -specific output in a similar
fashion to how step 3 of the previous section is performed. This
requires to add an O(𝛽𝑛) term to the left-hand side of Eq. (1), which
does not change the asymptotics. Implementation can again rely
on matrix operations for the sake of speed (see our code).
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4 EXPERIMENTAL SETUP
We attempt to (mostly) reproduce the experimental settings used
in [56], to which we compare in terms of classification. Specifically,
we use 𝑛pop = 500, the selection method described in Sec. 3.2, and
variation by subtree crossover and subtree mutation with equal
probability (0.5). We use the uniform random depth node selection
method for variation [52] to oppose bloat. If an offspring with more
than 500 nodes is generated, we discard it and clone the parent.

We use ramped half-and-half initialization with tree heights 2–
6 [53]. The function set is {+,−,×, ÷̃, √̃·, l̃og}, with the last three
operators implementing protection by, respectively, ÷̃(𝑎, 𝑏) := 𝑎 ×
sign(𝑏)/(|𝑏 | + Y),

√̃
𝑥 :=

√
|𝑥 |, l̃og(𝑥) := log( |𝑥 | +Y), with sign(0) :=

1 and Y = 10−10. Alongside the features, we include an ephemeral
random constant terminal [53] (even though [56] chose not to)
with values sampled from U(−5, 5), because ephemeral random
constants can improve performance [53, 71] (and other algorithms
we compare to use them). 2SEGP needs only one additional hyper-
parameter compared to classic GP, i.e., the desired ensemble size
𝛽 . We set 𝛽 = 0.1 × 𝑛pop = 50 as a rule of thumb. We analyze other
settings of 𝛽 in Sec. 7.1.

We use z-score data standardization as advised in [18]. We in-
clude linear scaling for both regression and classification tasks. In
our case it is plausible to apply linear scaling in classification (prior
to rounding the output to the nearest class) since the considered
problems are binary (the label is 0 or 1). For completeness, we also
include results without linear scaling for classification.

A run consists of 100 generations. We conduct 40 independent
runs to account for the randomness of both GP and training-test
splitting, for which we use a 70 %–30 % ratio as in [56, 76]. Sta-
tistical significance is evaluated using pairwise non-parametric
Mann-Whitney𝑈 tests with 𝑝-value < 0.05 and Holm-Bonferroni
correction [27, 47]. In particular, we say that an algorithm is among
the best ones if no other performs significantly better.

5 COMPETING ALGORITHMS AND
CONSIDERED DATASETS

Classification. For comparisons on classification problems, the
first set of results we consider was provided by the authors of [56].
From [56], we report the results of the best-performing ensemble
algorithm “ensemble GP with weighted voting” (eGPw); the best-
performing non-ensemble algorithm “Multidimensional Multiclass
GP with Multidimensional Populations” (M3GP), and classic GP
(cGP). M3GP in particular is a SotA GP-based feature construction
approach. In [56], M3GP is found to outperform most of the other
(GP and non-GP) algorithms, including random forest.

We further include our own re-implementation of “Diverse Nich-
ing Genetic Programming” (DivNichGP), made by following [73],
and that we make available at https://github.com/marcovirgolin/
DivNichGP. For DivNichGP, we maintain equal subtree crossover
and mutation probability, but also allow reproduction to take place
with a 5% rate, to follow the settings of the original paper. Di-
vNichGP internally uses tournament selection; We set this to size 8
(as for our cGP for regression, described below). For DivNichGP’s
niching mechanism, we use the same distance threshold of 0 and
maximal niche size of 1 as in [73]. Since DivNichGP uses a validation
set to aggregate the ensemble, we build a pseudo-validation set by

taking the out-of-bag observations of the last-sampled realization
of the training set. All the other settings are as in Sec. 4.

The datasets we consider for classification are the five real-world
datasets used in [56] that are readily available from the UCI reposi-
tory [20]. We refer to [56] for details on these datasets.

Regression. For regression, we report results from [76] (see their
Table 7), i.e., median test errors of SotA GP regression algorithms.
These algorithms are “Evolutionary Feature Synthesis” (EFS) [1],
“Genetic Programming Toolbox for The Identification of Physical
Systems” (GPTIPS) [58, 59] (and a modified version mGPTIPS that
uses settings similar to those of EFS), and “Geometric Semantic
Genetic Programming with Reduced Trees” (GSGP-Red) [48]. We
refer to [76] for the settings and choices made for these algorithms.

We further include a home-baked version of cGP that uses tourna-
ment selection of size 8 (we also experimented with size 4 and trun-
cation selection, but they performed worse), with all other settings
being as explained before. We use again our re-implementation of
DivNichGP. Next, as additional ensemble learning GP algorithm, we
consider the “Spatial Structure with Bootstrapped Elitism” (SS+BE)
algorithm proposed in [17], by means of results that were provided
by the first author of the work. The settings for SS+BE are slightly
different from those of 2SEGP in that they follow those presented
in [17], as prescribed by the author: Evolution runs for 250 gener-
ations, with a population of size 196, and using a 14 × 14 toroidal
grid distribution.

Next, we consider two recent algorithms that improve variation.
The first is the GP version of the Gene-pool Optimal Mixing Evolu-
tionary Algorithm (GP-GOMEA) [70, 71]. GP-GOMEA uses a form
of crossover that preserves high-mutual information patterns. Since
GP-GOMEA requires relatively large population sizes to infer mean-
ingful patterns but converges quickly, we shift resources between
population size and number of generations, i.e., we set 𝑛pop = 5000
and use only 10 generations. Moreover, GP-GOMEA uses a fixed
tree template representation: We set the template height to 7 so
that up to 255 nodes can be hosted (half the maximum allowed size
for the other algorithms). Second and last, we include the linear
scaling-enhanced version of the semantic operator Random Desired
Operator [52, 75], denoted by RDO×LS+LS in [68]. RDO×LS+LS uses a form
of semantic-driven mutation based on the internal computations
of GP subtrees and a library of pre-computed subtrees. We use the
traditional “population-based” library, updated every generation
and storing up to 500 subtrees, up to 12 deep.

Like for 2SEGP, linear scaling (or some similar form thereof,
see [76]) is also used for the other algorithms (except for GSGP-
Red for which it was not used [76]). We remark that while the
generational cost of 2SEGP is only marginally larger than the one
of cGP (as explained in Sec. 3), the same is often not true for the
competing SotA algorithms, some of which take substantially more
time to run (we refer to the respective papers for details). Hence, in
many comparisons, 2SEGP can be considered to be disadvantaged.

For the sake of reproducibility we rely once more on datasets
used in previous work, and this time specifically on the four real-
world UCI datasets of [76].
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6 BENCHMARK RESULTS
Classification. Table 1 shows the accuracy obtained by eGPw,

M3GP, DivNichGP, cGP, and of course 2SEGP, the latter with and
without linear scaling. At training time, M3GP is significantly best
on three out of five datasets, while 2SEGP is second-best. Compared
to eGPw and DivNichGP, which also evolve ensembles, 2SEGP per-
forms better (on Heart significantly so), except for on Parks when
linear scaling is disabled. This is the only dataset where we observe
a substantial drop in performance when linear scaling is turned
off. When testing, due to the generalization gap and the Holm-
Bonferroni correction, less results are significantly different. This
is evident for BCW. Compared to M3GP, 2SEGP is significantly
better on Parks, but worse on Sonar. On Heart, M3GP is no longer
superior, as substantial performance is lost when testing. Note also
that DivNichGP, possibly because it uses a (pseudo-)validation set
to choose the final ensemble, exhibits slightly (but not significantly)
better generalization than 2SEGP on Heart and Iono. Overall, de-
spite being simpler, 2SEGP fares well against DivNichGP, eGPw,
and even M3GP.

Regression. Table 2 shows the results of 2SEGP, DivNichGP,
SS+BE, GP-GOMEA, RDO×LS+LS , cGP, and the algorithms from [76]
(only test is reported in their Table 7) in terms of Root Mean Squared
Error (RMSE). 2SEGP always outperforms DivNichGP with the ex-
ception of training on ENH and testing on ENC. Similarly, 2SEGP
outperforms SS+BE on almost all cases (not when testing on ENC).
2SEGP is also competitive with the SotA algorithms, as it is only
significantly worse than GP-GOMEA and RDO×LS+LS on ENH when
testing. On ASN, 2SEGP is not matched by any other algorithm. In-
terestingly, our implementation of cGP achieves rather good results
on most datasets, and performs better in terms of median RMSE
than some of the SotA algorithms from [76].

7 INSIGHTS
In this section, we provide insights about our proposal. We begin
by assessing the role of 𝛽 in terms of prediction error and time,
including when the ensemble is formed by an SIEL-App. Next, we
investigate our selection method by ablation. Last but not least, we
peek into the effect of classic GP variation in 2SEGP. From now on,
we consider the regression datasets.

7.1 On the role of the ensemble size 𝛽
We assess the performance gain (or loss) of the approach when 𝛽 is
increased while the population size 𝑛pop is kept fixed. We include
a comparison to obtaining an ensemble by running independent
cGP evolutions, i.e., as in a classic SIEL-App. For 2SEGP, we scale
𝛽 (approx.) exponentially, i.e., 𝛽 = 5, 25, 50, 100, 250, 500. For our
SIEL-App, we use 𝛽 = 1, 2, . . . , 10, as running times of sequential
executions quickly become prohibitive.We include cGP, DivNichGP,
and SS+BE in the comparison. All settings are as before (Sec. 4).

Role of 𝛽 in 2SEGP. Fig. 2 shows the distribution of test RMSE
against the average time taken when using different 𝛽 settings (re-
sults on the training set are not shown here but follow the same
trends). For now we focus on 2SEGP (red crosses), and will con-
sider the other algorithms later. Larger ensembles seem to perform

similarly to, or slightly better than, smaller ensembles, with dimin-
ishing returns. Statistical tests between pairwise configurations
of 𝛽 for 2SEGP reveal that most test RMSE distributions are not
significantly different from each other (𝑝-value ≥ 0.05 except, e.g.,
between 𝛽 = 5 and 𝛽 = 500 on CCS; and between 𝛽 = 5 and 𝛽 = 250
on ENH). In particular, we cannot refute the null hypothesis that
larger 𝛽 leads to better performance because inter-run performance
variability is relatively large (this is in part due to performance loss
when testing). Hence, setting 𝛽 to large values such as 𝛽 = 1.0×𝑛pop
results in a time cost increase for no marked performance gain.

Figure 2: Distribution of test RMSE (median and interquar-
tile range) w.r.t. average time taken by 2SEGP (in red), our
SIEL-App (in blue), DivNichGP (in green), and SS+BE (in
pink); or a single estimator by cGP (in black). For 2SEGP, 𝛽
is scaled approximately exponentially (from left to right, 𝛽
is 5, 25, 50, 100, 250, 500). For our SIEL-App, 𝛽 is scaled linearly
(from left to right, 𝛽 is 1, 2, 3, . . . , 10).

Delving deeper, Fig. 3 shows, for different 𝛽 settings in ASN runs,
how many individuals are different from one another during the
evolution (with 𝑛pop = 500). This is shown for the ensemble, i.e., the
collection of 𝛽 individuals that are elite according to a T𝑗 -specific
fitness value, and for the population. We consider exact syntactical
copies (rather than, e.g., on semantic equivalence) to better assess
the influence of selection, which copies individuals as they are. The
plots on the left show that, no matter how big 𝛽 is, only a very
small number of distinct individuals are top-ranking across all the
bootstrap samples at initialization. As the evolution proceeds, the
larger 𝛽 is, the more the ensemble will be redundant. The bottom-
left plot shows that, no matter what 𝛽 is (excl. 𝛽 = 5), one-fifth of
the final ensemble is made by duplicates of one type of individual.

The plots on the right show how 𝛽 affects the population. We
know that, in classic GP, duplicates can rapidly increase in early
stages to then decrease later, when small modifications of a same
root structure are generated [10, 11, 42]. This effect can be seen
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Table 1: Median accuracy (higher is better) ± interquartile range of 2SEGP, 2SEGPw/o linear scaling (w/oLS), DivNichGP, eGPw,
M3GP, and cGP on the UCI datasets of [56]. Underlined results are best, i.e., not significantly worse than any other.

Training Test

Algorithm BCW Heart Iono Parks Sonar BCW Heart Iono Parks Sonar

2SEGP (ours) 0.995±0.005 0.944±0.022 0.976±0.017 0.948±0.011 0.966±0.034 0.965±0.018 0.815±0.062 0.896±0.047 0.936±0.012 0.738±0.067
w/oLS (ours) 0.995±0.006 0.947±0.021 0.978±0.012 0.892±0.021 0.959±0.036 0.965±0.013 0.809±0.049 0.896±0.047 0.885±0.031 0.754±0.067
DNGP 0.979±0.010 0.915±0.021 0.955±0.015 0.931±0.057 0.924±0.043 0.959±0.019 0.815±0.049 0.901±0.026 0.917±0.055 0.730±0.063
eGPw 0.983±0.008 0.907±0.025 0.884±0.032 0.923±0.042 0.924±0.034 0.956±0.018 0.790±0.034 0.830±0.057 0.822±0.064 0.762±0.060
M3GP 0.971±0.002 0.970±0.017 0.932±0.042 0.981±0.024 1.000±0.012 0.957±0.014 0.778±0.069 0.871±0.057 0.897±0.051 0.810±0.071
cGP 0.964±0.016 0.825±0.033 0.773±0.060 0.842±0.077 0.769±0.055 0.961±0.018 0.784±0.049 0.745±0.057 0.797±0.102 0.714±0.044

Table 2:MedianRMSE (smaller is better)± interquartile range of the considered algorithms on theUCI datasets of [76]. Median
results of GPTIPS, mGPTIPS, EFS, and GSGP-Red are reported from [76]. Underlined results are best, i.e., not significantly
worse than any other (excl. the algs. from [76] as we only have medians). Best median-only test results are starred.

Training Test

Algorithm ASN CCS ENC ENH ASN CCS ENC ENH

2SEGP (ours) 2.899±0.290 5.822±0.353 1.606±0.200 0.886±0.556 3.082★±0.438 6.565±0.439 1.801±0.263 0.961±0.553
DivNichGP 3.360±0.343 6.615±0.454 1.809±0.190 1.079±0.415 3.458 ±0.487 7.031±0.370 1.930±0.156 1.158±0.398
SS+BE 3.271±0.316 6.517±0.412 1.882±0.363 1.190±0.291 3.416 ±0.333 6.986±0.744 1.946±0.380 1.204±0.366
GP-GOMEA 3.264±0.172 6.286±0.300 1.589±0.079 0.739±0.138 3.346 ±0.238 6.777±0.313 1.702±0.200 0.804±0.184
RDOxLS

+LS 3.482±0.172 6.476±0.249 1.703±0.125 0.819±0.186 3.579 ±0.245 6.800±0.423 1.791±0.180 0.881±0.309
cGP 3.160±0.295 6.279±0.305 1.851±0.441 1.196±0.431 3.359 ±0.379 6.759±0.623 2.041±0.383 1.267±0.556
GPTIPS - - - - 4.138 8.762 2.907 2.538
mGPTIPS - - - - 4.003 7.178 2.278 1.717
EFS - - - - 3.623 6.429★ 1.640★ 0.546★
GSGP-Red - - - - 12.140 8.798 3.172 2.726

for small 𝛽 values. For (too) large 𝛽 values, a single generation is
sufficient to annihilate population diversity. This is because our
selection causes top-ranking individuals across the T𝑗 s to get 𝛽
copies, and at initialization only a few individuals have decent
performance. Nevertheless, considering Fig. 2, this does not seem to
break the algorithm in terms of test RMSE. This could be explained
by the fact that larger 𝛽 values also allow for larger diversity gains
later on, as visible in the last generations of the top-right plot. In
fact, for large 𝛽 there are many T𝑗 s and thus a larger number of
elites is maintained. Conversely, when 𝛽 is smaller (e.g., 5 or 25),
less elites are possible and population diversification caps sooner.

Since many ensemble members can be duplicates, we can prune
the ensemble obtained at the end of the run. In fact, we remark that
if one (takes a weighted average of the linear scaling coefficients
shared by duplicate individuals and) removes duplicates, the ensem-
ble retains the same predictive power. Pruning for 𝛽 = 50 already
results in considerable reductions of the ensemble size, between
34% (for ENH) and 75% (for CCS) of the original size.

Overall, these results show that: (i) Performance-wise, 2SEGP is
relatively robust to the setting of 𝛽 ; (ii) The ensemble may contain
duplicates, but this does not represent an issue because duplicates
can be trimmed off without any decrease of predictive power; and,
ultimately, (iii) It is sensible to use values of 𝛽 between 5% and 30%
of the population size.

Figure 3: Mean and 95% conf. intervals of 40 runs on ASN (w.
𝑛pop = 500) of two aspects of diversity (top and bottom) as
ratios over ensemble (left) or population size (right).
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Comparing with the SIEL-App. The time cost taken by our SIEL-
App to form an ensemble of size 𝛽 is approximately 𝛽 times the
time of performing a single cGP evolution, as expected (we address
potential for parallelism in the last paragraph of this section). As
can be seen in Fig. 2, 2SEGP can build larger ensembles in a fraction
of the time taken by the SIEL-App, in line with our expectation
from Eq. (1). We also report the performance of SS+BE (run on a
different machine by the first author of [17]) and DivNichGP for
𝛽 = 50. In brief, 2SEGP with reasonable settings (e.g., 𝛽 = 25, 50)
has a running time which is in the same ballpark of the times taken
by SS+BE and DivNichGP, hence it is similarly efficient.

We now focus on comparing 2SEGP with the SIEL-App and start
by considering the setting 𝛽 = 5 for both, i.e., in each plot, the first
red point and the fifth blue point, respectively. Interestingly, while
2SEGP uses only a fraction of the computational resources required
to learn the ensemble compared to our SIEL-App, the ensembles ob-
tained by the SIEL-App do not outperform the ensembles obtained
by 2SEGP. The SIEL-App starts to perform slightly better than cGP
already with 𝛽 = 2, but at the cost of twice the running time. Within
that time, 2SEGP can use 50 bootstrap samples (3rd red dot) and
typically obtains better performance than any other algorithm. In
general, given a same time limit, under-performing runs of 2SEGP
are often better than or similar to average-performing runs of the
SIEL-App, thanks to the former being capable of evolving larger
ensembles. A downside of 2SEGP is that it obtains larger inter-run
performance variance than the SIEL-App. Nevertheless, this is only
natural because the latter uses a new population to evolve each
ensemble member.

We remark that if the population size (which we now denote by
|P| for readability) and/or the number of generations (𝐺) required by
our SIEL-App are reduced as to make the SIEL-App match the com-
putational expensiveness of 2SEGP, then the SIEL-App performs
poorly. This can be expected because (cfr. Sec. 3.3):

Time cost of the SIEL-App ≃ Time cost of 2SEGP

𝛽𝐺SIEL-App |P|SIEL-Appℓ𝑛 ≃ 𝐺2SEGP |P|2SEGP𝑛(𝛽 + ℓ)

𝐺SIEL-App |P|SIEL-App ≃ 𝐺2SEGP |P|2SEGP 𝛽 + ℓ
𝛽ℓ

.

(3)

For example, if we assume ℓ = 100, set 𝛽 = 50, 𝐺2SEGP = 100,
and |P|2SEGP = 500, then a possible setting for the SIEL-App is
|P|SIEL-App = 100 and 𝐺SIEL-App = 15 (or vice versa); If we use the
same settings but reduce the ensemble size to 𝛽 = 5, then for the
SIEL-App we have |P|SIEL-App = 105 and 𝐺SIEL-App = 100 (or vice
versa). With the former setting, we found that the SIEL-App cannot
produce competitive results. With the latter setting, the SIEL-App
performed better, but still significantly worse than 2SEGP and cGP
on all four regression datasets.

Finally, we must consider that, when an SIEL-App is used, each
ensemble member can be evolved in parallel. If, e.g.,𝑘𝛽 computation
units are available, one can evolve a 𝛽-sized ensemble using 𝛽

parallel evolutions, each one parallelized on 𝑘 units. Nevertheless,
with 2SEGP, resources for parallelism can be fully invested into
one population, which can consequently be increased in size if
desired. In other words, the results shown in this section regarding
performance vs. time cost could in principle be rephrased in terms
of performance vs. memory cost. We leave an analysis of how an

SIEL-App and 2SEGP compare in terms of the interplay between
population size and parallel compute to future work.

7.2 Ablation of selection
We now investigate whether there is merit in partitioning the pop-
ulation during selection, as proposed in Sec. 3.2. If partitioning is
disabled, one can no longer copy top-ranking estimators according
to each T𝑗 . We consider the following alternatives: (1) Survival
according to truncation (Trunc) or tournament (Tourn) selection,
based on the best fitness value among any T𝑗—We call this strategy
“Push further What is Best” (PWB); (2) Like the previous point,
but according to worse fitness value among any T𝑗—We call this
strategy “Push What Lacks behind” (PWL). Note that also in [74]
individuals are ranked according to a PWB strategy (although the
fitness values do not come from bootstrap samples).

We use the same settings of Sec. 4 (incl. 𝛽 = 0.1 × 𝑛pop). Table 3
shows test RMSEs obtained using our selection method and the
ablated versions. It can be noted that the ablated versions perform
worse than our selection method, with a few exceptions for tourna-
ment selection with size 8 on ENC or ENH. In fact, the performance
of tournament selection is the closest to the one of our selection. Us-
ing PWB or PWL leads to mixed results across the datasets, except
when tournament selection with size 8 is used, where PWL is al-
ways better in terms of median results. Still, the proposed selection
method leads to either equal or better performance.

Table 3: Median test RMSE ± interquartile range of our se-
lection method and its ablations. Tournament size is 4 or 8.
Underlined results are best (not sig. worse than any other).

Selection ASN CCS ENC ENH

Ours 3.082±0.438 6.565±0.439 1.801±0.263 0.961±0.553
TruncPWB 3.727±0.292 7.347±0.489 2.187±0.311 1.593±0.449
TruncPWL 3.689±0.310 7.373±0.468 2.154±0.242 1.605±0.310
TournPWB

4 3.527±0.372 6.996±0.439 1.977±0.479 1.299±0.302
TournPWL

4 3.569±0.517 7.025±0.443 1.946±0.267 1.314±0.402
TournPWB

8 3.440±0.485 7.042±0.475 1.938±0.361 1.137±0.427
TournPWL

8 3.371±0.338 6.896±0.541 1.876±0.189 1.023±0.370

Fig. 4 shows how the fitness values of the ensemble evolve using
our selection method and the two PWB ablated versions, for one
random run on ASN (we do not show the average of multiple runs as
run-specific trends cancel out). It can be seen that ablated truncation
performs worse than the other two, and that our selection leads
to the smallest RMSEs. At the same time, our selection leads to
rather uniform decrease of best-found RMSEs across the bootstrap
samples. Conversely, when using TournPWB

4 , some RMSEs remain
large compared to the rest, e.g., notably so for T7, T40, and T47.

These results indicate that it is important to include partitioning
as to promote uniform improvement across the bootstrap samples.
Since tournament selection performs rather well, and in particular
better than simple truncation selection, it would be worth studying
whether our selection method can be improved by incorporating
tournaments in place of truncations, or SotA selection methods
such as Y-lexicase selection [37, 40].
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Figure 4: Training RMSEs of the best-found estimators for
each T𝑗 across 10 generations on ASN (lighter is better).

Figure 5: Frequency of producing offspring with smaller
RMSE than their parents for the first 10 generations of a ran-
dom run on ASN (darker is better).

7.3 Evolvability by classic variation
In our experiments, we used classic subtree crossover and subtree
mutation. Our intuition was that mating between different indi-
viduals would be beneficial even if they rank better according to
different bootstrap samples. To assess whether classic variation is
good enough, we look at evolvability [67], here expressed as the
frequency by which variation produces offspring that are fitter than
their parents. We consider two aspects: (1) Same-T𝑗 improvement:
Frequency of producing an offspring that has a better 𝑗th fitness
value than the parent; (2) Other-T𝑗 improvement: Frequency of pro-
ducing an offspring that has an equal or worse 𝑗th fitness value
than the parent, but better 𝑘th ≠ 𝑗th fitness value than the parent.

Fig. 5 shows the ratios of improvement for the first 10 genera-
tions of a random run on ASN. Not only Other-T𝑗 improvements are
frequent, they can be more frequent than Same-T𝑗 improvements
(we observe the same in other runs). So, an unsuccessful variation
event w.r.t. one bootstrap sample can actually be successful w.r.t.
to another bootstrap sample (see, e.g., the column for T49). Thus,
classic variation is already able to make the population improve
across different realizations of the training set. This corroborates

our proposal of leaving classic variation untouched for the sake
of simplicity. Nevertheless, improvements may be possible by in-
corporating (orthogonal) SotA variation methods [49, 52, 71], or
strategies for restricted mating and speciation [22, 46, 61].

8 CONCLUSIONS AND FUTUREWORK
We show that small changes are sufficient to make an otherwise-
classic GP algorithm evolve bagging ensembles efficiently and ef-
fectively. Efficiency is a consequence of requiring only a single
evolution over a single population where the nature of bootstrap
sampling is exploited to perform fast fitness evaluations across all
realizations of the training set. Effectiveness is perhaps somewhat
surprising: The proposed algorithm can often match or even out-
perform state-of-the-art GP algorithms, despite being much simpler.
In light of these results, we argue that GP can be considered to be
naturally suited to evolve bagging ensembles, which come (almost)
for free in terms of computation cost.

There are a number of avenues for future work worth exploring.
Perhaps a first step could consist of studying whether it is possi-
ble to decouple selection pressure from the number of bootstrap
samples. This would improve diversity preservation at the early
stages of the evolution and possibly ultimately enhance ensemble
quality, especially when one wishes to use a small population. Next,
it will be interesting to integrate methods proposed in complex
GP algorithms that are orthogonal and complementary to our ap-
proach, such as novel variation and ensemble aggregation methods.
Designing “ensemble-friendly” versions of state-of-the-art selection
methods (e.g., Y-lexicase selection [40]) could also be very beneficial,
and porting knowledge from ensemble learning algorithms of differ-
ent nature could lead to further improvements [54, 55]. Importantly,
it would be natural to explore whether the fitness evaluation and
selection changes proposed here can be applied to other types of
evolutionary algorithms, e.g., to efficiently learn ensembles when
optimizing the parameters or the topology of neural networks [61].
Last but not least, we remark that by learning an ensemble of many
estimators, one loses an advantage of GP: The possibility to inter-
pret the final solution [12, 26, 45, 69, 72]. Nevertheless, future work
could explore integrating ensemble methods for feature importance
and prediction confidence estimation [16, 35, 41], which are other
relevant aspects to trust machine learning.
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