
Information Sciences 648 (2023) 119513

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

A study of dynamic populations in geometric semantic genetic

programming

Davide Farinati ∗, Illya Bakurov, Leonardo Vanneschi
NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal

A R T I C L E I N F O A B S T R A C T

Keywords:

Dynamic populations

Genetic programming

Geometric semantic genetic programming

Semantic neighbourhood

Allowing the population size to variate during the evolution can bring advantages to evolutionary
algorithms (EAs), retaining computational effort during the evolution process. Dynamic popula-

tions use computational resources wisely in several types of EAs, including genetic programming.
However, so far, a thorough study on the use of dynamic populations in Geometric Semantic
Genetic Programming (GSGP) is missing. Still, GSGP is a resource-greedy algorithm, and the use
of dynamic populations seems appropriate. This paper adapts algorithms to GSGP to manage
dynamic populations that were successful for other types of EAs and introduces two novel
algorithms. The novel algorithms exploit the concept of semantic neighbourhood. These methods
are assessed and compared through a set of eight regression problems. The results indicate that
the algorithms outperform standard GSGP, confirming the suitability of dynamic populations for
GSGP. Interestingly, the novel algorithms that use semantic neighbourhood to manage variation
in population size are particularly effective in generating robust models even for the most difficult
of the studied test problems.

1. Introduction

Evolutionary Algorithms (EAs) are bioinspired population-based methods of Computational Intelligence [1]. The effects of hyper-

parameterisation on EAs have been studied since the dawn of the field [2]. In succinct terms, two main approaches to hyperparameter
setting exist: hyperparameter tuning and hyperparameter control. The former consists of testing different hyperparameters in a
restrained manner, for instance, using cross-validation and then using the configuration that led to the best results to solve the
underlying problem. The latter consists of dynamically changing the hyperparameter values throughout the evolutionary process.
Following the taxonomy proposed in [2], this can be done in at least two ways: deterministically and adaptively. Deterministic hyper-

parameter control relies upon some time-dependent function to update hyperparameters. Adaptive hyperparameter control, instead,
adapts the hyperparameter values based on the information obtained from the evolutionary process itself, so the values are modified
depending on the feedback from evolutionary dynamics. A significant amount of work suggests the superiority of hyperparameter
control over tuning [2]. Traditionally, both practitioners and researchers focus on hyperparameters related to genetic operators and
selection algorithms [3,4]. However, the population size plays a significant role in the algorithms’ performance [5,6]. If the popula-

tion size is too small, the evolutionary process may quickly get stuck in a sub-optimal solution, typically due to diversity loss [7,8];
if it is too large, an unnecessarily large amount of computational resources may be wastefully used to solve the problem. Population

* Corresponding author.
Available online 14 August 2023
0020-0255/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: dfarinati@novaims.unl.pt (D. Farinati).

https://doi.org/10.1016/j.ins.2023.119513

Received 23 February 2023; Received in revised form 30 June 2023; Accepted 9 August 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:dfarinati@novaims.unl.pt
https://doi.org/10.1016/j.ins.2023.119513
https://doi.org/10.1016/j.ins.2023.119513
http://creativecommons.org/licenses/by/4.0/

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

size control soon became a reality in EAs, and several works aimed at presenting deterministic and adaptive systems for dynamic
population size control have been proposed (many of which are discussed in Section 2).

Genetic Programming (GP) [9] is an EA that evolves computer programs to solve a specific task. Typically, the solutions in
a GP population are complex structures, whose dynamic dimension often tends to grow during the evolution [10,11]. In such a
context, any method aimed at saving computational effort without compromising performance should be beneficial for GP. In fact,
although less frequently than for other types of EAs, deterministic and adaptive dynamic methods to control the population size have
also been applied to GP, with encouraging results (also these previous studies are discussed in Section 2). However, to the best of
our knowledge, an extensive study of dynamic populations has never been performed for one of the most promising developments
of GP: Geometric Semantic GP (GSGP) [12,13]. GSGP is a variant of GP in which standard crossover and mutation are replaced by
so-called geometric semantics operators (GSOs). Exploiting semantic awareness, GSOs have the interesting property of inducing a
unimodal error surface on any supervised learning problem, bestowing on GSGP a noteworthy optimisation power [13,14]. However,
GSOs have the drawback of generating offspring that are always larger than their parents. Thus, the dimension of the individuals
in a GSGP population steadily grows during the evolution, and many previous works have proposed techniques to decrease the
computational effort or speed up the algorithm [14–19]. In this context, developing methods to dynamically update the population
size in GSGP, both deterministically and adaptively, looks like a reasonable next research step. This is particularly true considering
that the population size has already been recognized as a crucial hyperparameter for GSGP [20].

In this paper, we introduce methods that dynamically variate the population size of GSGP. The motivation for this study is
that GSGP can (possibly more than other methods) benefit from a wise use of computational resources. Some of the methods that
we propose are adaptions to GSGP of already existing algorithms that are promising for GP or other forms of EAs. Others are novel
use the concept of semantic neighbourhood, well-known in the literature [50]. Our objective is to allow GSGP to save a significant
amount of computational effort, while maintaining its excellent optimisation ability and its attractive properties (like exploiting
semantic awareness and inducing a unimodal error surface). The main contributions of this work are:

• Extending dynamic population systems to GSGP, confirming their appropriateness also for this GP variant.

• Introducing novel dynamic population systems, specifically for GSGP, able to outperform preexisting systems.

• Demonstrating that dynamic populations can help GSGP use computational resources more effectively, while still maintaining
the interesting properties that made GSGP popular.

The paper is organized as follows: in Section 2, we revise the existing literature in the area of dynamic populations in EAs. At the
end of that section, a special focus is dedicated to the analysis of previous work employing dynamic populations in GP. Section 3

introduces GSGP, including the definition of GSOs, and also discusses the concept of semantic neighbourhood. Section 4 describes
the dynamic population algorithms studied in this work. In Section 5, we first present the case studies on which the algorithms’
performance will be tested. Those case studies consist of five real-life symbolic regression problems, plus three theoretically hand-

tailored symbolic regression benchmarks. Then, the section discusses the parameter set used in our study, with the objective of
fostering complete replicability of our experiments. Section 6 presents and discusses the obtained experimental results. Finally,
Section 7 concludes the work and suggests ideas for future research.

2. Previous and related work

The first efforts at developing EAs with dynamic population size date back to the 1990s. For instance, based on the hypothesis
that different stages of the evolutionary process might require different appropriate population sizes, Arabas et al. [21] proposed a
novel heuristic for the dynamic adaptation of population size in genetic algorithms (GAs), called GAVaPS. GAVaPS introduced the
concept of the candidate solutions’ lifetime, which was meant to replace the selection mechanism. The authors based their rationale
on the ageing process, common to natural environments. Three strategies were explored for solutions’ lifetime estimation. GAVaPS
was tested on four continuous optimisation problems and compared to the Goldberg’s simple GAs [22]. The results indicated that
GAVaPS outperforms simple GAs in terms of fitness, however at a significantly higher computational cost.

In 2000, Back et al. [5] investigated the feasibility of dynamically controlling three GAs’ hyperparameters: population size,
crossover rate and mutation rate. While most of the existing contributions focused on adapting one parameter at a time, the authors
proposed a joint hyperparameter control. Both crossover and mutation rates were encoded as extra genes in the linear chromosome
representing the candidate solution (aka self-adaptive hyperparameter control); for the population size, however, the authors updated
GAVaPS by relaxing the ageing of the fittest individual in the population. The results indicated that adapting the population size alone
is very effective and is almost as effective as controlling the tree hyperparameters simultaneously. The authors concluded that it is
possible to use GAs without the need of a user-specified population size, crossover and mutation rates, provided that hyperparameter
control is used jointly. However, they also pointed out that the main source of this flexibility comes from the adaptation of the
population size.

In 2004, Eiben et al. performed a comparative assessment of several existing adaptive methods for the population size, and pro-

posed a new one [6]. As baselines, the authors selected the methods previously introduced in [5], while the proposed method was
called the Population Resizing on Fitness Improvement GA (PRoFIGA). PRoFIGA dynamically increases the population size propor-

tionally with the improvement of the best fitness in the population or when there is stagnation for a given number of generations, and
decreases the population size otherwise. By increasing the population size, the authors aimed to skew the search towards exploration,
2

which was considered particularly useful in the early stages of the search, where fitness typically improves, or when there is strong

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

evidence for stagnation. Alternatively, when there is a short-term lack of fitness improvement, PRoFIGA aimed at concentrating
the algorithm’s resources in exploitation by reducing the population size and, consequently, the genetic diversity. To increase the
population, the authors cloned solutions that were chosen by means of tournament selection, whereas an anti-tournament was used
to remove solutions. PRoFIGA did not decrease the population size after a certain minimal population size was reached. The results
indicated that GAVaPS extended as in [5] outperformed all the other studied algorithms, followed by PRoFIGa and standard GAs.
The method proposed in [23] was found to be competitive only on relatively simple problems.

An extension of PRoFIGA was proposed in [24], by taking an opposite approach for the population size adaptation. Specifically,
the authors suggested reducing the population size when the best fitness increases, which would allow for reduction in the com-

putational costs of the search while still obtaining fair levels of performance. The authors also advocated that the initial landscape
of an optimisation problem is typically rugged, and one might need a large population size to better explore it during the early
stages of the search. After some period of time, the candidate solutions tend to concentrate on a smaller region of the space, which
may correspond to a smoother fitness landscape. According to the authors, this relative reduction in the ruggedness was a valid
justification for decreasing the population size, and therefore the computational effort, without a significant deterioration of the
algorithm’s effectiveness. The proposed approach was compared against a fixed population size GA and two strategies based on the
number of generations: linear and exponential decrease. The results indicated the superiority of the proposed approach in terms of
both effectiveness and efficiency. Surprisingly, the authors did not compare the performance of their method against PRoFIGA [6],
which they initially criticized and compared their method with simple predetermined systems that can only decrease the population
size, without ever increasing it. A smaller population size may incapacitate the EA to discriminate between candidate solutions at
the basin of attraction of the best peak and solutions at the basin of attraction of other peaks [25].

More recently, Tanabe et al. [26] introduced L-SHADE. This algorithm is a variation of the well-known differential evolution (DE)
algorithm SHADE, in which the population size is decreased linearly with generations. The results indicate that L-SHADE significantly
outperforms SHADE, but it also has some drawbacks. Starting the linear decrease at the first generation does not give the required
time for the individuals to evolve effectively, and it wastes computational power by evaluating solutions that will then be removed
right away. The authors also pointed out that linear reduction may increase the possibility of premature convergence.

In [27], Awad et al. proposed a solution to the drawbacks of L-SHADE introducing of niching-based reduction. Instead of removing
the worst individuals according to fitness, the individuals were divided into two niches, both of the same size (half of the current
population size each). The first niche was composed of the best individuals of the population and its closest neighbours in the
population. The second niche was made of the remaining individuals. Then a set of closest neighbours of the best individual of the
second niche were removed. A similar approach was presented in [28], where a slightly different equation was used to decide the
number of individuals to be removed at each generation.

The advantage of continuously decreasing is that it allows having a bigger population in the early generations so that exploring
the search space is encouraged, while a smaller number of individuals promotes exploitation later on. However, it is clear that only
decreasing the population size usually leads the algorithm to get stuck in local optima. For this reason, contributions such as [29]

have recently proposed variants of dynamic population EAs that can also increase the population size, if needed during the evolution.
Those algorithms regulate the population size according to different parameters, such as fitness improvement and the population
density in neighbourhood areas of each individual.

2.1. Previous studies on dynamic populations in genetic programming

In GP, the dimension of the individuals usually tends to increase during the evolution, often leading to a phenomenon called
bloat [10,11].1 So, the computational cost needed to evaluate the solutions increases with generations as well. For this reason,
any method aimed at saving computational effort can be beneficial to GP, including the dynamic adaption of the population size.
Nevertheless, dynamic populations have been relatively less studied in GP, compared to other EAs. The first attempt dates back to
2003, when Fernandez et al. introduced a system, called Plague, to reduce the computational cost of GP by dynamically reducing
the population size [30,31]. In Plague, at each generation, the 𝑘 worst individuals are discarded, being 𝑘 a new hyperparameter.
The results showed a decrease of the computational cost as the performance of the algorithm remained comparable to the one of
standard GP, at least for the case studies that were considered. The major drawback of this approach is the loss of diversity through
generations, caused by the continuous decrease of the population size.

A few years later, two contributions [32,33] proposed modifications to the previously discussed approach. In [32], four new
population fitness stagnation assessment methods were introduced. A new gradient pivot function was also proposed, to regulate
whether to add or remove individuals from the population. In [33], together with the introduction of an exponential pivot function
and a new stagnation assessment phase, a new population variation equation was introduced. This equation induces an exponential
variation of the population size in order to accelerate convergence. These two approaches both showed promising results, as they
were able to reduce the computational effort while keeping the performance at a similar level as standard GP.

Dynamic populations in GP have also been proposed as a viable strategy to address issues associated with dynamic environments.
This type of problem is usually associated with a target function that undergoes changes over time. In [34], a GP system was proposed,
able to adjust the population size in response to changes in fitness. Specifically, the population size was reduced as fitness improves

1 The most accepted definition of bloat is the uncontrolled growth in the dimension of the evolving individuals, without a corresponding improvement in their
3

fitness [10,11].

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

and incremented as fitness plateaus. In this way, the algorithm was able to adapt to changes of the target function, while at the same
time, preserving computational resources and preventing overfitting in time intervals where the target function remains constant.
The decision to add or remove individuals from the population was based on an equation that takes into account the current fitness
values of the individuals in the population and the current population size.

In this work, we have selected a number of existing population resizing mechanisms. The methods were selected based on
their recency and the evidence regarding their relative effectiveness in previous studies. In particular, we included the approaches
proposed in [34,6,24]. As a comparison baseline, we selected simple linear decrease, following [30,31].

3. Geometric semantic genetic programming

Let 𝐗 = {𝐱1, 𝐱2, ..., 𝐱𝑛} be the set of input data (training instances, observations or fitness cases) of a symbolic regression problem,
and 𝐭 = [𝑡1, 𝑡2, ..., 𝑡𝑛] the vector of the respective expected output or target values (in other words, for each 𝑖 = 1, 2, ..., 𝑛, 𝑡𝑖 is the
expected output corresponding to input 𝐱𝑖). A GP individual (or program) 𝑃 can be seen as a function that, for each input vector
𝐱𝑖 returns the scalar value 𝑃 (𝐱𝑖). Following [12], termed semantics of 𝑃 the vector 𝑠𝑃 = [𝑃 (𝐱1), 𝑃 (𝐱2), ..., 𝑃 (𝐱𝑛)]. This vector can be
represented as a point in an 𝑛-dimensional space, that we call semantic space. Note that the target vector 𝐭 itself is a point in the
semantic space.

As explained above, GSGP is a variant of GP where the standard crossover and mutation are replaced by GSOs. The objective
of GSOs is to define modifications to the syntax of GP individuals that have a precise and measurable effect on their semantics. In
particular, geometric semantic crossover (GSC) generates one offspring whose semantics stands in the line joining the semantics of
the two parents in the semantic space. Instead, geometric semantic mutation (GSM), by mutating an individual 𝑖, allows obtaining
another individual 𝑗 such that the semantics of 𝑗 stands inside a ball of a given predetermined radius centred in the semantics of 𝑖.
One of the reasons why GSOs became popular is because GSOs induce a unimodal error surface (on training data) for any supervised
learning problem where fitness is calculated using an error measure between outputs and targets. In other words, when using GSOs
the error surface on training data is guaranteed not to have any locally optimal solution. It was shown that this property holds for
any regression or, more recently, classification problem [35], independently of how big and how complex data are. Reference [13]

contains a detailed explanation of the reason why the error surface is unimodal and why this is important. The definitions of the
GSOs are, as given in [12], respectively:

Geometric semantic crossover (GSC) Given two parent functions 𝑇1, 𝑇2 ∶ℝ𝑛 →ℝ, GSC returns the function GSC(𝑇) = (𝑇1 ⋅ 𝑇𝑅) + ((1 −
𝑇𝑅) ⋅ 𝑇2), where 𝑇𝑅 is a random function whose output values range in the interval [0, 1].

Geometric semantic mutation (GSM) Given a parent function 𝑇 ∶ ℝ𝑛 → ℝ, GSM with mutation step 𝑚𝑠 returns the function
GSM(𝑇) = 𝑇 +𝑚𝑠 ⋅ (𝑇𝑅1 − 𝑇𝑅2), where 𝑇𝑅1 and 𝑇𝑅2 are random functions.

The reason why GSM uses a difference between two random trees, 𝑇𝑅1 and 𝑇𝑅2, is that the amount of modification it causes must
be centred in zero. In other words, a random expression is needed that has the same probability of being positive or negative. Even
though this is not in the original definition of GSM, later contributions [36,13,37] have clearly shown that limiting the codomain of
𝑇𝑅1 and 𝑇𝑅2 in a predefined interval (for instance [0, 1], as it is done for 𝑇𝑅 in GSC) helps improve the generalisability of GSGP. For
this reason, as in several previous works [13,14], also in this paper we constrain the outputs of 𝑇𝑅, 𝑇𝑅1, and 𝑇𝑅2 by wrapping them
in a logistic function. Only the definitions of the GSOs for symbolic regression problems are given here since they are the only ones
used in this work. For the definition of GSOs for other domains, the reader is referred to [12].

As reported in [12,13], GSOs have the drawback of generating larger offspring than the parents, and this entails a rapid growth
of the size of the individuals in the population. To counteract this problem, in [14,38–40] implementations of GSOs were proposed,
that make GSGP significantly faster than standard GP. This is possible through a smart representation of GP individuals that allows
us to not store their genotypes during the evolution. This implementation is particular to GSGP because it is based on the fact that
GSC and GSM compose the ancestors and the needed random programs by means of a precise and previously fixed expression [13].
The implementation presented in [40] is the one used here.

3.1. Semantic neighbourhood

The semantic neighbourhood of an individual 𝑃 (denoted by (𝑃)) indicates the set of individuals that can be generated by
applying GSM to 𝑃 . In other words:

 (𝑃) = {𝑇 | 𝑇 = GSM(𝑃)}

Given a semantic neighbourhood 𝑆 = (𝑃), 𝑃 is called the reference individual of 𝑆 and the individuals belonging to 𝑆 are
called the semantic neighbours of 𝑃 . In [50], semantic neighbourhood was used to introduce the concept of Training Improvement
Effectiveness (TIE). TIE was used to measure the effectiveness of GSM at a given stage of the search process. It consists of the
percentage of semantic neighbours that have a better fitness on the training set than their reference individual, calculated either on
a sample of individuals or on the best individual in the population. TIE was used as an early stopping criterion for the Semantic
4

Stochastic Hill Climber (SSHC) and the Semantic Learning Machine (SML) in [50]. In other words, the training was terminated when

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

TIE was smaller than a previously fixed threshold. The experimental findings based on three real-world regression problems showed
that the TIE criterion yields the most robust generalisations [50].

In this work, we use TIE as a guideline to decide whether we should add or remove individuals from the population, instead
of terminating the execution as it would happen in [50]. Moreover, in order to shed light on the ambiguity generated in [24],
we propose to assess our approach following two population management policies. In the first, we adapt the strategy proposed
in [6]: when TIE yields high values, this might indicate that the algorithm is still in the phase of exploration; therefore adding more
individuals to the population is expected to support exploratory search. A low value of TIE might suggest convergence, and removing
individuals from the population might emphasize exploitation by reducing genetic diversity. In the second population management
strategy, we adopt the opposite rationale (as proposed in [24]): remove the individuals from the population when TIE yields high
values to save the computational costs; add the individuals when TIE yields low values to escape local optima. Note that neither [2]

nor [24] have used TIE in their methods. It is important to highlight, however, that the experimental results (see Section 6) only
report the former policy because both yield comparable performance and we did not want to overwhelm the reader with redundant
results. Following [50], in the continuation we calculate the TIE using the best individual in the population.

4. Dynamic population methods

Six different methods to manage dynamic populations in GSGP are studied in this paper. Those methods are presented in the
continuation of this section.

4.1. LD-GSGP

The first method we present uses a simple linear decrease (LD) of the population size that is steadily applied during the evolution.
Called LD-GSGP, it follows the idea of Plague, proposed by Fernandez et al. [30,31]. Starting with the initial population size, which
is a parameter to be chosen before the beginning of the execution, the method functions by removing from the population a constant
number of individuals at each generation. The number 𝑁 of individuals to be removed from the population is chosen with the
objective of terminating the evolution with a given target final population size. The final population size is another parameter of the
algorithm. Following [34], the individuals that are removed from the population at each generation are the 𝑁 individuals with the
worst fitness on the training set. Following the taxonomy proposed in [2], LD-GSGP is the only deterministic method of dynamic
variation of the population size that we study in this work. In fact, in LD-GSGP the population size control relies on a time-dependent
linear function. Instead, all the remaining approaches, presented in the continuation of this section, are adaptive methods. In fact,
they adapt the population size based on some information obtained during the evolutionary process itself.

4.2. DP-GSGP

The second method, referred to as Dynamic Population GSGP (DP-GSGP), is an extension to GSGP of the system presented
in [34]. DP-GSGP utilizes an adaptive approach, by incorporating the ability to add or remove individuals from the population based
on specific events that occur during the evolution. Specifically, it is assumed that the optimisation is effective if the best fitness value
in the current generation is found to be superior to the one in the previous generation; in this situation, the individuals are removed
from the population. The rationale is that this may allow us to save computational effort without compromising the effectiveness
of the search. Conversely, the evolutionary process is assumed to stagnate if the best fitness in the population remains unchanged;
in this situation, adding new individuals to the population can increase the population’s and improve the exploration at the cost of
extra computational effort. The use of elitism prevents the best fitness in the population from worsening one generation to the next.
Exactly as in [34], the number of individuals to be added/removed is regulated by the following equation:

Δ𝑝𝑜𝑝 = 𝑝𝑖𝑣𝑜𝑡× 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ× 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛× 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (1)

where:

• Δ𝑝𝑜𝑝 is the difference in the population size from one generation to the next.

• 𝑝𝑖𝑣𝑜𝑡 is either -1, if the best fitness improved in the last generation, or 1, otherwise. This parameter regulates whether to add or
remove individuals from the population.

• 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ is a parameter used to scale the value of 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 and 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. It is used to add or remove from
the population a number of individuals that is a percentage of 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 × 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 at each generation.

• 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is a parameter controlled by Algorithm 1. It always returns a value in the range [𝑚𝑖𝑛_coeff 𝑓𝑖𝑡, 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡],
where 𝑚𝑖𝑛_coeff 𝑓𝑖𝑡 and 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 are parameters. It returns 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 when the current fitness is “bad”, i.e. large (given that
we want to minimize the error). In particular, 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is equal to 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 when the best fitness in the population
is larger than a previously fixed value, called 𝑚𝑎𝑥_𝑓𝑖𝑡. Analogously, 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is equal to 𝑚𝑖𝑛_coeff 𝑓𝑖𝑡 when the best
fitness in the population approximates the optimal fitness in a satisfactory way. In particular, when it is smaller than another
previously fixed value called 𝑡𝑔𝑟_𝑓𝑖𝑡. When the best fitness in the population is included in [𝑡𝑔𝑟_𝑓𝑖𝑡, 𝑚𝑎𝑥_𝑓𝑖𝑡], 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
is equal to the output of the linear function shown in Fig. 1, which is directly proportional to the best fitness in the population.

• 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is the output of a linear function built in a similar way to 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. The pseudo-code of the
5

method that regulates this function is shown in Algorithm 2. Analogously to the 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, this linear function returns

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Fig. 1. Graphical representation of the function used to adapt 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 in DP-GSGP, as defined in Algorithm 1.

Algorithm 1 Pseudo code for 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.
if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡) ≤ 𝑡𝑔𝑟_𝑓𝑖𝑡) then

return 𝑚𝑖𝑛_coeff 𝑓𝑖𝑡 ;
else if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡) ≥𝑚𝑎𝑥_𝑓𝑖𝑡) then

return 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 ;
else

return 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 −𝑚𝑖𝑛_coeff 𝑓𝑖𝑡 ×
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡)−𝑡𝑔𝑟_𝑓𝑖𝑡
𝑚𝑎𝑥_𝑓𝑖𝑡−𝑡𝑔𝑟_𝑓𝑖𝑡

+𝑚𝑖𝑛_coeff 𝑓𝑖𝑡
end if

Algorithm 2 Pseudo code for 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.

if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 ≤ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝

4
then

return 𝑚𝑎𝑥_coeff 𝑠𝑖𝑧𝑒 ;
else if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 ≥ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝 then

return 𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒 ;
else

return 𝑚𝑎𝑥_coeff 𝑠𝑖𝑧𝑒 −𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒 ×
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒−𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝

4
−𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝

+𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒
end if

the maximum possible value (i.e., 𝑚𝑎𝑥_coeff 𝑠𝑖𝑧𝑒) when the current population size is minimal (i.e., 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝4) and the mini-

mum possible value (i.e., 𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒) when the current population size is maximal (i.e., the initial value of the population
size 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝). When the current population size is included in [𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒, 𝑚𝑎𝑥_coeff 𝑠𝑖𝑧𝑒], 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is inversely
proportional to the current population size itself.

When individuals have to be removed from the population, DP-GSGP chooses the worst individuals in terms of fitness on the training
set. When new individuals need to be added to the population, random individuals are created, using the same algorithm as the one
employed in the population initialisation phase.

4.3. TIE-DP-GSGP

The third method we present, called TIE-DP-GSGP, is novel and it is a variation of DP-GSGP discussed in Section 4.2. The only
difference between TIE-DP-GSGP and DP-GSGP is in the way the method decides if the algorithm is stagnating or not. Instead of
comparing the best fitness from the current generation with the one from the previous generation, TIE-DP-GSGP uses the TIE criterion
presented in Section 3.1 to take this decision. To calculate the TIE, TIE-DP-GSGP uses a number of neighbours equal to the initial
population size. At each generation, TIE is compared with a previously fixed tolerance threshold. If it is smaller than this threshold,
then |Δ𝑝𝑜𝑝| individuals are removed from the population, where Δ𝑝𝑜𝑝 is defined in Equation (1); contrarily, |Δ𝑝𝑜𝑝| individuals are
added. Different values of the tolerance threshold are tested in our experiments.

4.4. TIE-DP-GSGP-SEI

The fourth method studied in this work, called TIE-DP-GSGP-SEI (in which the acronym SEI stands for store eliminated individu-

als) is also novel, and it is a variation of the TIE-DP-GSGP presented in Section 4.3. The only difference is that TIE-DP-GSGP-SEI uses
a repository, where all the individuals that have been removed from the population in the previous generations are stored. When
the population size needs to be increased, instead of adding random individuals to the population, TIE-DP-GSGP-SEI chooses the
6

best individuals in the repository, in terms of training fitness. The rationale behind this choice is that the genetic material of the

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Fig. 2. Flowchart of TIE-DP-GSGP and TIE-DP-GSGP-SEI.

Algorithm 3 Pseudo code for PRoFIGSGP.

if 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔𝑡) ≤ 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔𝑡−1) then

𝑔𝑟𝑜𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

else if fitness did not improve for 𝐺 generations or more then

𝑔𝑟𝑜𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

else

𝑠ℎ𝑟𝑖𝑛𝑘_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

end if

individuals in the repository has already evolved, and so it is supposed to have better fitness than random individuals. We do realize,
however, that such an approach can eventually contribute to diversity loss, in comparison to the TIE-DP-GSGP method. In order to
clarify whether this will happen and to what extent, we decided to include this variant in our experiments. A flowchart of the main
working process of TIE-DP-GSGP and TIE-DP-GSGP-SEI is presented in Fig. 2.

4.5. PRoFIGSGP

PRoFIGSGP is an adaptation to GSGP of the PRoFIGA method, presented in [6] and discussed in Section 2. PRoFIGSGP (Population
Regulation on-the-Fly in GSGP) uses a dynamic population size modified based on the current performance of the evolutionary
process. The population size is increased when the algorithm is making slow progress and decreased when the algorithm is making
rapid progress. This allows the algorithm to focus computational resources on areas of the search space where progress is being made
while avoiding wasting resources on areas where progress is not being made. PRoFIGSGP works as shown in Algorithm 3, where 𝑔𝑡
is the current generation, and 𝑔𝑡−1 is the previous generation. The population increase, 𝑔𝑟𝑜𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, is the result of Equation (2),
where 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐹𝑎𝑐𝑡𝑜𝑟 is a random value, drawn with uniform distribution from (0, 1), and 𝑚𝑎𝑥𝐸𝑣𝑎𝑙𝑁𝑢𝑚 and 𝑐𝑢𝑟𝑟𝐸𝑣𝑎𝑙𝑁𝑢𝑚 denote the
given maximum number of fitness evaluations and the current number of evaluations, respectively. 𝑚𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠𝑛𝑒𝑤, 𝑚𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑙𝑑 and
𝑖𝑛𝑖𝑡𝑀𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 are the best fitness values in the current generation, the previous generation and the initial population, respectively.

𝑔𝑟𝑜𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛= 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐹𝑎𝑐𝑡𝑜𝑟 × (𝑚𝑎𝑥𝐸𝑣𝑎𝑙𝑁𝑢𝑚− 𝑐𝑢𝑟𝑟𝐸𝑣𝑎𝑙𝑁𝑢𝑚)

×
𝑚𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠𝑛𝑒𝑤 −𝑚𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑙𝑑

𝑖𝑛𝑖𝑡𝑀𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠

(2)

The new individuals to be added to the population are clones of good individuals that are chosen by tournament selection from
the actual population. The value 𝑠ℎ𝑟𝑖𝑛𝑘_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, corresponding to the number of removed individuals, is equal to a percentage of
7

the current population. The individuals to be removed are chosen according to their fitness: the ones with higher values are removed.

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Table 1

Similarities and differences between the various presented methods.

Algorithm Fitness-based Use semantic neighbourhood Time-dependent function

LD-GSGP ✓
DP-GSGP ✓
TIE-DP-GSGP ✓
TIE-DP-GSGP-SEI ✓
PRoFIGSGP ✓
SPS-GSGP ✓

Table 2

Datasets used in this experimental study.

Dataset #Observations #Features Target range Reference

Boston 506 13 [5, 50] [42]

Concrete 1005 8 [2.3318, 82.5992] [43]

Bioav 358 241 [0.4, 100.0] [44]

LD50 234 626 [0.25, 8900.0] [44]

PPB 5875 19 [7.0, 54.992] [44]

f4 6060 1 [-0.3, 0.3] [41]

f11 200 2 [0.0028, 1.0] [41]

f16 200 2 [-1.3102, 0.0] [41]

The algorithm also includes a mechanism for preventing the population size from becoming too large, which can lead to a decrease
in performance.

4.6. SPS-GSGP

SPS-GSGP is another variant of population size adjustment strategies developed for GAs [24]. In SPS-GSGP, the population size
is reduced proportionally to the change in its best fitness. Let 𝑁𝑡 be the population size at generation 𝑡. Denote the change in best
fitness at generation 𝑡 by Δ𝑓𝑏𝑒𝑠𝑡

𝑡
= |𝑓𝑏𝑒𝑠𝑡

𝑡−1 − 𝑓𝑏𝑒𝑠𝑡
𝑡−2 |∕|𝑓

𝑏𝑒𝑠𝑡
𝑡−2 |. Then the new population size, 𝑁𝑡+1 is determined as follows:

𝑁𝑡+1 =
⎧
⎪
⎨
⎪
⎩

(1 − Δ𝑓𝑏𝑒𝑠𝑡
𝑡

)𝑁𝑡, if Δ𝑓𝑏𝑒𝑠𝑡
𝑡

≤Δ𝑓𝑏𝑒𝑠𝑡
𝑚𝑎𝑥

(1 − Δ𝑓𝑏𝑒𝑠𝑡
𝑚𝑎𝑥

)𝑁𝑡, if Δ𝑓𝑏𝑒𝑠𝑡
𝑡

>Δ𝑓𝑏𝑒𝑠𝑡
𝑚𝑎𝑥

𝑚𝑖𝑛_𝑝𝑜𝑝𝑠𝑖𝑧𝑒, if 𝑁𝑡+1 < 𝑚𝑖𝑛_𝑝𝑜𝑝𝑠𝑖𝑧𝑒

(3)

where Δ𝑓𝑏𝑒𝑠𝑡
𝑚𝑎𝑥

is a parameter that corresponds to the fitness tolerance level and 𝑚𝑖𝑛_𝑝𝑜𝑝𝑠𝑖𝑧𝑒 is another parameter that corresponds to
the minimum population size allowed.

Table 1 aims to distinguish between the different methods used in our work. The first column indicates whether the population
adjustment is purely based on the fitness values of the individuals. The second column indicates whether the population adjustment
method uses the semantic neighbourhood. The third column indicates whether the method uses a time-dependent function or whether
the decision-making is supported by evolutionary dynamics. It is worth highlighting that the only difference between TIE-DP-GSGP
and TIE-DP-GSGP-SEI is the fact that the latter stores eliminated individuals.

5. Experimental setup

5.1. Test problems

In our experimental study, eight datasets are used, five of which are real-world datasets, while the remaining three are artificial
datasets introduced in [41]. The main characteristics of these datasets are presented in Table 2.

Contrarily to the other chosen test problems, that are well-established and widely used for benchmarking in GP, the Bioavailability
dataset deserves a specific discussion. In fact, that dataset was criticised in [45], partially because of a lack of preprocessing because
it includes features that contain no information as well as contradictory relationships between the dependent and independent
variables. However, according to many authors who have used this dataset, these characteristics are interesting and should be
integrated into a reasonable benchmark suite, because they allow us to test the ability of our algorithms to deal with the difficulties
and ambiguities typical of real-world data. It is not our objective to discuss what characteristics a good benchmark suite should
possess (refer to [46,47]). We simply observe that the Bioavailability dataset, as well as the PPB and LD50 datasets, has been used
in several previous GP studies, clearly indicating a trend for overfitting to emerge [14,36,37]. We thus use these three datasets as a
8

sort of stress test case to assess the generalisability of the studied algorithms.

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Table 3

Parameters used in our experimental study.

Algorithm Parameter Value

Common to all the algorithms

Initial population size 200 individuals

Minimum population size 50 individuals

Number of Generations 100

Crossover probability 0.2 for GSGP, 0.8 for GP

Mutation probability 0.8 for GSGP, 0.2 for GP

Mutation step (𝑚𝑠) Random number in [0, 1)

Selection Tournament

Tournament size 2 individuals

Initialisation method Ramped Half-and-Half

DP-GSGP & TIE-DP-GSGP &
TIE-DP-GSGP-SEI

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 0.3

𝑡𝑔𝑟_𝑓𝑖𝑡 0.01

𝑚𝑎𝑥_𝑓𝑖𝑡 60

𝑚𝑖𝑛_coeff 𝑓𝑖𝑡 1

𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 10

𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒 0

𝑚𝑎𝑥_coeff 𝑠𝑖𝑧𝑒 10

PRoFIGSGP

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐹𝑎𝑐𝑡𝑜𝑟 0.1

𝑚𝑎𝑥𝐸𝑣𝑎𝑙𝑁𝑢𝑚 20000

𝑠ℎ𝑟𝑖𝑛𝑘𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 5%

𝐺 5

SPS-GSGP Δ𝑓𝑏𝑒𝑠𝑡
𝑚𝑎𝑥

0.08

5.2. Performance measures

In all the different methods presented in Section 4, the fitness of the evolving individuals is assessed using the Root Mean Squared
Error (RMSE) on the training set, and the experimental comparison is carried out using the RMSE on training and unseen data
(training set and test set, respectively). However, it is clear that at each generation, each one of the methods may be employing a
population that contains a different number of individuals. So, different generations may cost very disparate computational efforts
to be evaluated. For this reason, it would not be fair to compare the RMSE across generations. A much better approach is the one
adopted in [30], where the RMSE is compared at corresponding values of the computational effort. In this paper, we adopt the same
definition of computational effort as in [30]. The computational effort is calculated by computing the average number of nodes of
the individuals in the population at generation 𝑔 (indicated as 𝑎𝑣𝑔_𝑙𝑒𝑛𝑔ℎ𝑡𝑔) and then by computing the partial effort (indicated as
𝑃𝐸𝑔) as follows:

𝑃𝐸𝑔 = 𝑛 × 𝑎𝑣𝑔_𝑙𝑒𝑛𝑔ℎ𝑡𝑔 (4)

where 𝑛 is the number of individuals in the population at generation 𝑔. Then, the computational effort 𝐸𝑔 is calculated as the
cumulative sum of the partial efforts until generation 𝑔, as expressed by the following equation:

𝐸𝑔 = 𝑃𝐸𝑔 + 𝑃𝐸𝑔−1 + ...+ 𝑃𝐸1 + 𝑃𝐸0 (5)

To assess the computational effort spent by an algorithm, this measure takes into account both the population size and the dimension
(expressed as a number of nodes) of the individuals in the population. It was considered in [30] as a faithful model for the actual
running time of the algorithm.

In the next section, the experimental results will be presented by reporting curves of the RMSE against the computational effort.
In other words, the plots presented in the next section will have a point at each generation 𝑔, and that point will have 𝐸𝑔 on the
horizontal axis and the training or test RMSE of the best individual in the population on the training set at generation 𝑔 on the vertical
axis. This allows us to compare the training and test RMSE of the different studied methods for the same values of the computational
effort.

In order for the comparison to be completely fair, for the algorithms that involve the creation of a semantic neighbourhood,
i.e., TIE-DP-GSGP and TIE-DP-GSGP-SEI, the individuals evaluated from the semantic neighbourhood are included in the calculation
of the computational effort. So, the equation of 𝑃𝐸𝑔 for TIE-DP-GSGP and TIE-DP-GSGP-SEI is:

𝑃𝐸𝑔 = 𝑛 × 𝑎𝑣𝑔_𝑙𝑒𝑛𝑔ℎ𝑡𝑔 + 𝑛𝑛𝑒𝑖𝑔ℎ × 𝑎𝑣𝑔_𝑙𝑒𝑛𝑔ℎ𝑡𝑛𝑒𝑖𝑔ℎ (6)

where 𝑛𝑛𝑒𝑖𝑔ℎ is the total number of neighbours of the best solution in the population at generation 𝑔 and 𝑎𝑣𝑔_𝑙𝑒𝑛𝑔ℎ𝑡𝑛𝑒𝑖𝑔ℎ is the average
number of nodes of those neighbours.

5.3. Parameter settings

The parameters used in our experimental study are presented in Table 3. The objective of our work is to compare the traditional
9

version of GSGP, which uses a population with constant size, with the dynamic population variants. In the last part of our experimen-

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Fig. 3. Experimental results of the Bioavailability dataset.

tal study, we will also compare all the studied GSGP variants with the corresponding algorithms applied to standard GP. Our focus
is not on obtaining the best possible results on the studied test problems. For this reason, instead of optimizing the parameters, we
have preferred to use a relatively standard parameter setting, taken from the literature [14,34,24,6]. In particular, we have decided
to use a configuration in which GSM is applied with a higher probability than GSC, as recommended in the literature [14,13]. By its
very definition, in fact, GSM is constrained to generate “offspring” very close to its “parent” in the semantic space. In other words,
the outputs calculated by the “offspring” program are indeed equal to the outputs of the “parent” program, except for a weak pertur-

bation in some of them, whose importance can be tuned by means of the mutation step parameter, 𝑝𝑚. This guarantees the locality of
the GSM operator, preventing it from becoming something comparable to a random search. Furthermore, given its ability to induce
a unimodal error surface, GSM is typically used as the leading genetic operator for GSGP. However, besides this configuration (that
uses a GSM rate of 0.8 and a GSC rate of 0.2), we have also tested a configuration in which GSC is applied more often than GSM (i.e.,
a GSM rate of 0.2 and a GSC rate of 0.8). The obtained results (not shown here to save space) have confirmed that the configuration
in which GSM is applied with a higher probability than GSC outperforms the other. Besides these parameters, TIE-DP-GSGP and
TIE-DP-GSGP-SEI have been tested with the following values of the tolerance threshold: 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6.

All the results reported in the next section are medians over 30 independent runs. At every run, the datasets have been split into
a different random training/test partition, where 70% of the observations were randomly selected, with uniform probability, to form
the training set, while the remaining 30% form the test set. The same partition has been used for all the studied methods at each
particular run.

6. Experimental results

The obtained experimental results are reported in Figs. 3, 4, 5, 6, 7, 8, 9 and 10 for the Bioavailability, Boston, Concrete, PPB,
10

LD50, f11, f16 and f4 test cases, respectively.

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Fig. 4. Experimental results of the Boston dataset.

Each one of these figures shows a comparison between six algorithms: GSGP, LD-GSGP, DP-GSGP, PRoGSGP, SPS-GSGP and
the version of TIE-DP-GSGP or TIE-DP-GSGP-SEI using the tolerance threshold value that has returned the best result on a given
problem. For example, when the legend reports TIE-DP-GSGP_06, the result corresponds to the TIE-DP-GSGP algorithm with a
tolerance threshold equal to 0.6. Also, each figure contains three plots. The two plots in the upper part of the figure are the curves
of the fitness against the computational effort, calculated respectively on the train and test partitions over all the generations. The
third plot, in the lower part of the figure, is the curve of the test fitness against the computational effort, cut at the minimum value
(𝑚𝑖𝑛𝑒𝑓𝑓) of the computational effort reached by any of the considered algorithms at the last generation of its execution. For example,
if TIE-DP-GSGP is the first to complete the 100 generations of the evolutionary process and uses 1,000,000 units of computational
effort, then the third plot will report test fitness (RMSE) for all six algorithms at that computational effort to allow a fair comparison.
Table 4 reports 𝑝-values of the Wilcoxon test for pairwise comparison of the methods. These 𝑝-values are calculated at computational
effort 𝑚𝑖𝑛𝑒𝑓𝑓 . The 𝑝-values are in bold when they are statistically significant, using a significance level 𝛼 = 0.05, with the Bonferroni
correction [49].

The results clearly show the advantage of using adaptive methods for controlling the population size in GSGP: from the figures, it
is clear that at least one of the five adaptive methods significantly outperforms standard GSGP on unseen data for all the studied test
problems, except for the unique, isolated, case of the f4 synthetic benchmark, for which all the studied methods have comparable
performance. Even if observing algorithms’ performance at their maximum computational effort (this corresponds to the sub-figure
(b)), there is always at least one adaptive method that achieves better generalisability than GSGP. When compared to standard
GSGP, the studied population control methods allow saving a considerable amount of computational effort and yield solutions of
better quality for the same computational budget. Following the p-values from Table 4, the proposed TIE-DP-GSGP and TIE-DP-GSGP-
11

SEI methods significantly outperform standard GSGP on unseen data on the majority of the studied problems (five test cases in eight),

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Fig. 5. Experimental results of the Concrete dataset.

while having comparable performance on the three remaining cases. Interestingly, for the datasets known from the literature to be
prone to overfitting [14,36,37], i.e., Bioavailability, PPB and LD50, the proposed TIE-DP-GSGP and TIE-DP-GSGP-SEI methods are
always able to counteract overfitting, significantly outperforming the standard version of GSGP on unseen data. When compared with
other adaptive methods, the proposed methods consistently achieve comparable or even better results. Although there is no parameter
setting for the proposed TIE-DP-GSGP and TIE-DP-GSGP-SEI methods that outperforms the remaining adaptive approaches on all the
problems, the comparison of the training and test curves between the first two sub-figures i each figure suggests that the proposed
method is particularly adverse to overfitting. Our interpretation is that semantic awareness, implemented by the TIE criterion, is
very important to limit overfitting for those datasets (consistently with what was already observed in the literature [14,36]). Besides
corroborating the hypothesis that TIE-DP-GSGP and TIE-DP-GSGP-SEI do not overfit, this last observation suggests that an appropriate
parameter setting of TIE-DP-GSGP and TIE-DP-GSGP-SEI on the training, data should also correspond to a reasonable configuration
of these methods on unseen data.

We now deepen the analysis of the results by discussing them problem by problem. The analysis of Fig. 3 shows that the proposed
TIE-DP-GSGP_06 and two other adaptive methods (DP-GSGP and SPS-GSGP) achieve comparable generalisability, both in terms of
𝑚𝑖𝑛𝑒𝑓𝑓 and when assessed at the maximum computational effort (b). The PRoFIGSGP method arrives at similar test results (b) but
with a larger computational effort. At 𝑚𝑖𝑛𝑒𝑓𝑓 , the proposed approach is statistically better than LD-GSGP, PRoFIGSGP and standard
GSGP. It is also relevant to highlight the consistency of these four adaptive methods when comparing the training (3a) and test
curves (3b). All the presented methods save a considerable amount of computational effort and find solutions that are statistically
better than standard GSGP.

For both Figs. 4 and 5, LD-GSGP allows for achieving the best levels of generalisability when considering both maximum (b) and
minimum computational (c) effort; the difference was found to be statistically significant (Table 4). The remaining adaptive methods
12

exhibit comparable test fitness, although ProFIGSGSP consumes more computational effort to complete 100 generations. Regarding

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Fig. 6. Experimental results of the PPB dataset.

the standard GSGP, however, all the adaptive methods happen to be statistically better at 𝑚𝑖𝑛𝑒𝑓𝑓 than their static counterpart on the
Concrete problem; on the Boston problem, statistical difference was observed only with LD-GSGP.

For the last pharmacokinetic dataset, PPB (Fig. 6), all the novel algorithms significantly outperform the standard GSGP while
having comparable performances between each other. Moreover, the comparison between the training (3a) and test curves (3b)

favours the adaptive methods in terms of consistency (except LD-GSGP).

The analysis of Fig. 7 shows that the proposed TIE-DP-GSGP_05 method achieves statistically superior generalisability at
𝑚𝑖𝑛𝑒𝑓𝑓 (7c), except for DP-GSGP; nevertheless, visually, the proposed TIE-DP-GSGP_05 is clearly more advantageous. When con-

sidering the six algorithms at their maximum computational effort (7b), it becomes clear that the adaptive methods achieve notably
lower fitness values using substantially fewer resources when compared to their static counterpart. Once again, one can note the
consistency of the adaptive methods (except LD-GSGP) when comparing the training (3a) and test curves (3b).

Finally, we discuss the results obtained on the studied hand-tailored benchmarks. On the f11 function, TIE-DP-GSGP-SEI_01,
DP-GSGP, PRoFIGSGP and SPS-GSGP perform comparably to each other and significantly outperform the other two methods on the
test set. While there is no statistically significant difference between the test RMSE of LD-GSGP and standard GSGP on this problem,
standard GSGP clearly appears to be more prone to overfitting, shown by the wide oscillations of the GSGP curve on the test set.
On the f16 function, TIE-DP-GSGP-SEI_02, DP-GSGP, PRoFIGSGP and SPS-GSGP perform comparably to each other and to standard
GSGP as well. All these algorithms significantly outperform LD-GSGP, which is clearly affected by overfitting, as can be observed by
the wide oscillations of its curve. Finally, on the f4 function, all the studied methods perform in a comparable way to each other,
since no statistically significant difference can be observed in their respective performance.

Several potential factors lead to the differences in experimental results between different adaptive methods across the test prob-
13

lems. Of all the implemented adaptive methods, LD-GSGP reported the least consistent results: while on Boston and Concrete it

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Fig. 7. Experimental results of the LD50 dataset.

reported the best results at 𝑚𝑖𝑛𝑒𝑓𝑓 , clearly overfit on PPB, LD50, f11 and f16 problems. We consider that this discrepancy relates to
the underlying “adaptive” mechanics of this algorithm: a simple time-dependent linear decrease that does not take the evolutionary
dynamics into account. Thus, for some problems, it might happen to work well, whereas for others it might lead to overfitting. Fre-

quently, the SPS-GSGP and DP-GSGP methods seem to exhibit similar performance. We consider that the main reason for this resides
in the conceptual similarities between the two approaches: the population size is reduced based on the fitness improvement from
one generation to another. The main difference consists of how exactly the number of individuals to be removed is regulated (see
Sections 4.2 and 4.6 for more details). In this sense, we speculate that the different approaches to estimating the number of removed
individuals lead to comparable performances when evaluated on different problems. The generalisability of the PRoFIGSGP method
was found to be substantially different from the aforementioned methods. In our opinion, this relates to the guiding rationale behind
the algorithm’s population adaptation, which seems to contrast with that of DP-GSGP and SPS-GSGP: the population grows if there is
an improvement of the elite from one generation to another, or then there is no improvement after G generations (long period); the
population decreases otherwise (no improvement in the short-term). While the three methods that exploit evolutionary dynamics for
adjusting the population size (DP-GSGP, SPS-GSGP, PRoFIGSGP) rely upon rules essentially based on fitness improvement from one
generation to another, the proposed TIE-DP-GSGP method performs population adjustment using a conceptually different approach –
by exploring the semantic neighbourhood of the current elite and estimating the proportion of better neighbours. In our opinion,
such a degree of semantic awareness justifies its empirical superiority assessed on eight symbolic regression problems, in particular
the robustness to overfitting.

All these results, and in particular the ones obtained on the five real-life applications, show that the novel introduced methods,
i.e. TIE-DP-GSGP and TIE-DP-GSGP-SEI, were very successful. This outcome represents a strong argument in favour of the use of
14

semantic awareness as a criterion to decide whether to increment or decrement the population size of GSGP during the evolution.

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Fig. 8. Experimental results of the f11 dataset.

Furthermore, the presented results indicate that TIE is an appropriate measure to capture the information needed to adapt the
population size appropriately.

6.1. A comparison with standard GP

All the methods presented and studied so far can be applied in a very natural way to standard GP. This extension, however,
is impractical for the approaches used in TIE-DP-GSGP and TIE-DP-GSGP-SEI, because TIE-based methods are deeply rooted in the
concept of semantic neighbourhood, introduced in Section 3.1, and are constructed using GSM applied to a reference individual.
Given that GSM is a defining operator of GSGP, it would be unsuitable to extend the TIE-DP-GSGP and TIE-DP-GSGP-SEI methods to
standard GP. Although the focus of our work is on GSGP, still it is interesting to investigate how differently GSGP and standard GP
benefit from all these different ways of managing dynamic populations. Table 5 reports the RMSE on the test set at the maximum
level of the computational effort reached by all the algorithms for the different studied variants applied to standard GP, together
with the analogous results for the GSGP variants. The 𝑝-values are also reported in the table. The first observation is that the
best GSGP variant consistently outperforms the best standard GP variant on all the studied test problems, except for the PPB, Boston
and f4 datasets, in which no statistically significant difference is visible. Another interesting outcome apparent in Table 5 is that the
difference between the static population and the dynamic population variants of GSGP is generally more marked than in the case
of standard GP. Actually, for standard GP the variant that uses a static population size even outperforms the dynamic population
variants in most of the test cases. In other words, using dynamic populations looks more convenient for GSGP than for standard GP.
15

This outcome is a further corroboration of the suitability of this research and encourages us to pursue the study.

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Fig. 9. Experimental results of the f16 dataset.

7. Conclusion and future work

The use of dynamic populations is widespread in evolutionary computation. It can be seen either simply as a method to save
computational effort (in the cases where the population size is steadily decreased during evolution) or, in slightly more sophisticated
terms, as a way to preserve computational effort in some particular phases of evolution, to spend it more effectively in others (the case
in most advanced proposed methods, where the population size can increase or decrease dynamically during evolution). Many studies
exist that exploit dynamic populations in several EAs such as genetic algorithms and differential evolution. The particularity of GP,
compared to other EAs, is that it evolves complex structures, such as computer programs, that have a dynamic and highly variable
size. Furthermore, the evolving programs typically grow during the evolution, often giving rise to the well-known phenomenon of
bloat, which cause a large waste of computational effort. Thus, GP seems a particularly appropriate algorithm to be improved, with
methods aimed at saving computational effort, and it is only natural that studies apply dynamic populations to GP. However, up to
date, no systematic study of dynamic populations in GSGP has been published. Nevertheless, GSGP is a particularly resource-greedy
variant of GP, given that its genetic operators create offspring always larger than their parents, causing fast growth in the code that
is evolving in the population.

The first element of novelty of this paper is that it applied dynamic populations to GSGP. Different approaches were tested on
eight datasets, five of which correspond to real-world problems, while the remaining three are artificial benchmarks. Some of the
studied approaches were inspired by methods previously been applied to other variants of EAs, while two of them were novel. The
six algorithms used are:
16

• LD-GSGP: a simple linear decrease of the population size, inspired by [30,31].

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Fig. 10. Experimental results of the f4 dataset.

• DP-GSGP: an adaptation to GSGP of the DP algorithm presented in [34].

• TIE-DP-GSGP: a novel variant of the DP-GSGP, with a different fitness stagnation assessment method, based on the TIE measure
presented in [50].

• TIE-DP-GSGP-SEI: another novel variation of the TIE-DP-GSGP algorithm, that stores the removed individuals in order to reinte-

grate the most promising ones when needed.

• PRoFIGSGP: an adaptation to GSGP of the algorithm presented in [6].

• SPS-GSGP: an adaptation to GSGP of the algorithm presented in [24].

Experimental results show that, given a common budget of computational effort, all the studied algorithms that use a dynamic pop-

ulation outperformed, or in the worst case performed comparably, to the standard version of GSGP. Among the different algorithms,
the novel ones, based on the TIE measure (i.e., TIE-DP-GSGP and TIE-DP-GSGP-SEI), seem particularly interesting. In fact, besides
being among the best-performing algorithms on all the studied problems, they are able to return robust models, that show a very
good performance on unseen data, on problems where overfitting is a known issue, such as Bioavailability, PPB and LD50. Last but
not least, the results have indicated a clear advantage in using dynamic populations in GSGP compared to standard GP.

In the future, we plan to study other criteria to decide on the variation of the population size, distinct from fitness. For instance,
the adaption of the population size could be guided by other principles like diversity (genotypic diversity, as it already happens for
other EAs, or semantic diversity, which would be novel and seems promising for GSGP), model complexity or model interpretability.
Another interesting topic to extend this work would be to better investigate what individuals should be added to the population
when the population size needs to grow. The advantages of using old individuals, such as in TIE-DP-GSGP-SEI, compared to random
17

genetic material, encourage us to hypothesize that more effective strategies could be developed.

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Table 4

𝑝-values of the Wilcoxon test for pairwise comparison of GSGP and its variants. The GSGP algorithm is adopted from Moraglio’s paper [48], whereas LD-GSGP,
DP-GSGP, PRoFIGSGP and SPS-GSGP algorithms are inspired by Fernandez et al. [30], Vanneschi et al. [34], Eiben et al. [6], and Hallam et al. [24], respectively.

Problem Algorithms

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP_06

Bioav.

GSGP – 1.7e-06 1.7e-06 1.7e-06 1.7e-06 1.7e-06

LD-GSGP 1.7e-06 – 1.7e-06 0.339 1.7e-06 1.7e-06

DP-GSGP 1.7e-06 1.7e-06 – 4.3e-06 0.734 0.766

PRoFIGSGP 1.7e-06 0.339 4.3e-06 – 3.5e-06 3.2e-06

SPS-GSGP 1.7e-06 1.7e-06 0.734 3.5e-06 – 0.614

TIE-DP-GSGP_06 1.7e-06 1.7e-06 0.766 3.2e-06 0.614 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP-SEI_04

Boston

GSGP – 1.9e-06 0.125 0.36 0.094 0.086

LD-GSGP 1.9e-06 – 1.7e-06 2.6e-06 1.7e-06 1.9e-06

DP-GSGP 0.125 1.7e-06 – 0.107 0.469 0.642

PRoFIGSGP 0.360 2.6e-06 0.107 – 0.088 0.086

SPS-GSGP 0.094 1.7e-06 0.469 0.088 – 0.845

TIE-DP-GSGP_06 0.0859 1.9e-06 0.642 0.086 0.845 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP-SEI_04

Concrete

GSGP – 1.7e-06 5.79e-05 3.11e-05 6.89e-05 4.86e-05

LD-GSGP 1.7e-06 – 1.7e-06 1.9e-06 1.7e-06 1.7e-06

DP-GSGP 5.79e-05 1.7e-06 – 1e-04 0.82 0.02

PRoFIGSGP 3.11e-05 1.9e-06 1e-04 – 4.58e-05 0.053

SPS-GSGP 6.89e-05 1.7e-06 0.82 4.58e-05 – 0.013

TIE-DP-GSGP_04 4.86e-05 1.7e-06 0.024 0.053 0.013 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP_05

LD50

GSGP – 0.644 4.3e-06 0.002 0.001 1.9e-06

LD-GSGP 0.644 – 3.2e-06 0.004 0.005 1.7e-06

DP-GSGP 4.3e-06 3.2e-06 – 0.003 0.002 0.075

PRoFIGSGP 0.002 0.004 0.003 – 0.837 2.4e-04

SPS-GSGP 0.0014839 0.0046818 0.002278 0.8373006 – 6.89e-05

TIE-DP-GSGP_05 1.9e-06 1.7e-06 0.075 2.4e-04 6.89e-05 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP-SEI_04

PPB

GSGP – 5.7e-04 1e-04 1.2e-04 1.1e-04 5.31e-05

LD-GSGP 5.7e-04 – 0.125 0.106 0.159 0.017

DP-GSGP 1e-04 0.125 – 0.905 0.77 0.068

PRoFIGSGP 1.2e-04 0.106 0.905 – 0.820 0.150

SPS-GSGP 1.1e-04 0.159 0.77 0.82 – 0.37

TIE-DP-GSGP-SEI_05 5.31e-05 0.017 0.068 0.15 0.37 –

D GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP-SEI_01

F11

GSGP – 0.072 1.8e-05 9.3e-06 3.9e-06 8.5e-06

LD-GSGP 0.072 – 1.8e-05 4.17e-05 1.8e-05 1.02e-05

DP-GSGP 1.8e-05 1.8e-05 – 0.309 0.781 0.441

PRoFIGSGP 9.3e-06 4.17e-05 0.309 – 0.36 0.453

SPS-GSGP 3.9e-06 1.8e-05 0.781 0.36 – 0.614

TIE-DP-GSGP_01 8.5e-06 1.02e-05 0.441 0.453 0.614 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP_02

F16

GSGP – 0.001 0.254 0.254 0.254 0.254

LD-GSGP 0.001 – 1.1e-04 1.1e-04 1.1e-04 1.1e-04

DP-GSGP 0.254 1.1e-04 – 0.128 0.176 0.235

PRoFIGSGP 0.254 1.1e-04 0.128 – 0.670 0.671

SPS-GSGP 0.254 1.1e-04 0.176 0.670 – 0.752

TIE-DP-GSGP_01 0.254 1.1e-04 0.235 0.671 0.752 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP_02

F4

GSGP – 0.254 0.453 0.975 0.688 0.894

LD-GSGP 0.254 – 0.943 0.185 0.959 0.644

DP-GSGP 0.453 0.943 – 0.184 0.552 0.393

PRoFIGSGP 0.975 0.185 0.184 – 0.569 0.658

SPS-GSGP 0.688 0.959 0.552 0.569 – 0.820

TIE-DP-GSGP_01 0.894 0.644 0.393 0.658 0.820 –

CRediT authorship contribution statement

Conceptualization: DF, LV, IB; Methodology: DF, LV, IB; Software: DF, IB; Validation: DF, LV, IB; Formal analysis: DF, LV, IB;
Investigation: DF, LV, IB; Resources: DF, LV, IB; Data curation: DF, LV, IB; Writing draft preparation: DF, LV, IB; Supervision: LV. All
18

authors have read and agreed to the submitted version of the manuscript.

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Table 5

Comparison of the variants of GSGP and the variants of GP on the different test problems, together with the 𝑝-values
(in bold when the difference is statistically significant (𝑝 < 0.05)). The GSGP algorithm is adopted from Moraglio’s paper
[48], while the LD-GP, DP-GP, PRoFIGP, and SPS-GP algorithms as well as their adaptation to GSGP, are inspired by
Fernandez et al. [30], Vanneschi et al. [34], Eiben et al. [6], and Hallam et al. [24] respectively.

Problem GSGP and its variations Test fitness GP and its variations Test fitness p-values

Bioavailability

GSGP 45.028 GP 37.227 0.025

DP-GSGP 30.368 DP-GP 38.715 1.9e-06

LD-GSGP 36.795 LD-GP 38.557 0.036

PRoFIGSGP 42.181 PRoFIGP 37.771 0.22

SPS-GSGP 30.376 SPS-GP 42.425 1.7e-06

TIE-DP-GSGP_06 30.376

Boston

GSGP 8.362 GP 5.86 2.12e-06

DP-GSGP 8.667 DP-GP 5.73 3e-04

LD-GSGP 6.824 LD-GP 7.061 1.7e-04

PRoFIGSGP 8.47 PRoFIGP 7.231 3.2e-06

SPS-GSGP 8.623 SPS-GP 8.375 0.13

TIE-DP-GSGP_06 8.56

Concrete

GSGP 19.167 GP 14.473 4e-04

DP-GSGP 15.817 DP-GP 15.582 0.558

LD-GSGP 12.143 LD-GP 15.261 1.9e-06

PRoFIGSGP 15.724 PRoFIGP 17.682 0.007

SPS-GSGP 15.866 SPS-GP 20.017 7.6e-06

TIE-DP-GSGP_04 15.669

LD50

GSGP 2236.109 GP 2129.449 0.009

DP-GSGP 2116.802 DP-GP 2088.826 0.082

LD-GSGP 2253.352 LD-GP 2168.068 0.003

PRoFIGSGP 2198.44 PRoFIGP 2107.628 0.135

SPS-GSGP 2229.225 SPS-GP 2189.461 0.44

TIE-DP-GSGP_05 2043.26

PPB

GSGP 34.163 GP 30.185 0.001

DP-GSGP 31.005 DP-GP 31.261 0.64

LD-GSGP 33.123 LD-GP 31.417 0.86

PRoFIGSGP 32.155 PRoFIGP 30.776 0.7

SPS-GSGP 32.224 SPS-GP 32.77 0.19

TIE-DP-GSGP_05 30.606

f11

GSGP 2.361 GP 0.633 0.068

DP-GSGP 0.236 DP-GP 0.663 3.8e-06

LD-GSGP 0.621 LD-GP 1.145 0.1

PRoFIGSGP 0.26 PRoFIGP 2.025 1.2e-05

SPS-GSGP 0.241 SPS-GP 1.306 1.1e-05

TIE-DP-GSGP_01 0.243

f4

GSGP 1.719 GP 1.719 0.44

DP-GSGP 1.718 DP-GP 1.719 0.909

LD-GSGP 1.718 LD-GP 1.719 0.106

PRoFIGSGP 1.71 PRoFIGP 1.719 0.614

SPS-GSGP 1.718 SPS-GP 1.719 0.75

TIE-DP-GSGP_01 1.718

f16

GSGP 3.273 GP 7.281 0.002

DP-GSGP 2.703 DP-GP 5.082 2e-04

LD-GSGP 6.35 LD-GP 6.475 0.45

PRoFIGSGP 2.703 PRoFIGP 4.424 0.001

SPS-GSGP 2.703 SPS-GP 3.553 0.106

TIE-DP-GSGP_01 2.703

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
19

Data will be made available on request.

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

Acknowledgements

This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project –
UIDB/04152/2020 – Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.

References

[1] L. Vanneschi, S. Silva, Lectures on Intelligent Systems, Natural Computing Series, Springer, 2023.

[2] A. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Trans. Evol. Comput. 3 (2) (1999) 124–141, https://doi .org /10 .
1109 /4235 .771166.

[3] S. Oh, W.-H. Suh, C.-W. Ahn, Self-adaptive genetic programming for manufacturing big data analysis, Symmetry 13 (4) (2021), https://doi .org /10 .3390 /
sym13040709.

[4] I. Bakurov, M. Castelli, O. Gau, F. Fontanella, L. Vanneschi, Genetic programming for stacked generalization, Swarm Evol. Comput. 65 (2021) 100913, https://

doi .org /10 .1016 /j .swevo .2021 .100913.

[5] T. Bäck, A.E. Eiben, N.A.L. van der Vaart, An emperical study on gas “without parameters”, in: M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo,
H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature – PPSN VI, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 315–324.

[6] A.E. Eiben, E. Marchiori, V.A. Valkó, Evolutionary algorithms with on-the-fly population size adjustment, in: X. Yao, E.K. Burke, J.A. Lozano, J. Smith, J.J. Merelo-

Guervós, J.A. Bullinaria, J.E. Rowe, P. Tiňo, A. Kabán, H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature – PPSN VIII, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004, pp. 41–50.

[7] A. Piotrowski, L-shade optimization algorithms with population-wide inertia, Inf. Sci. 468 (08 2018), https://doi .org /10 .1016 /j .ins .2018 .08 .030.

[8] R.C. Lonsinger, J.R. Adams, L.P. Waits, Evaluating effective population size and genetic diversity of a declining kit fox population using contemporary and
historical specimens, Ecol. Evol. 8 (23) (2018) 12011–12021, https://doi .org /10 .1002 /ece3 .4660.

[9] J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1, MIT press, 1992.

[10] S. Silva, E. Costa, Dynamic limits for bloat control in genetic programming and a review of past and current bloat theories, Genet. Program. Evol. Mach. 10 (2)
(2009) 141–179, https://doi .org /10 .1007 /s10710 -008 -9075 -9.

[11] S. Silva, S. Dignum, L. Vanneschi, Operator equalisation for bloat free genetic programming and a survey of bloat control methods, Genet. Program. Evol. Mach.
13 (2) (2012) 197–238, https://doi .org /10 .1007 /s10710 -011 -9150 -5.

[12] A. Moraglio, K. Krawiec, C. Johnson, Geometric semantic genetic programming, in: C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone (Eds.), Parallel
Problem Solving from Nature – PPSN XII, in: Lecture Notes in Computer Science, vol. 7491, Springer Berlin Heidelberg, 2012, pp. 21–31.

[13] L. Vanneschi, An Introduction to Geometric Semantic Genetic Programming, Springer International Publishing, Cham, 2017, pp. 3–42.

[14] M. Castelli, S. Silva, L. Vanneschi, A C++ framework for geometric semantic genetic programming, Genet. Program. Evol. Mach. 16 (1) (2015) 73–81.

[15] M. Castelli, L. Trujillo, L. Vanneschi, S. Silva, E. Z-Flores, P. Legrand, Geometric semantic genetic programming with local search, in: Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, GECCO ’15, Association for Computing Machinery, New York, NY, USA, 2015, pp. 999–1006.

[16] L. Trujillo, J.M. Muñoz Contreras, D.E. Hernandez, M. Castelli, J.J. Tapia, GSGP-CUDA – a CUDA framework for geometric semantic genetic programming,
SoftwareX 18 (2022) 101085, https://doi .org /10 .1016 /j .softx .2022 .101085.

[17] G. Pietropolli, L. Manzoni, A. Paoletti, M. Castelli, Combining geometric semantic GP with gradient-descent optimization, in: E. Medvet, G. Pappa, B. Xue (Eds.),
Genetic Programming, Springer International Publishing, Cham, 2022, pp. 19–33.

[18] L. Vanneschi, I. Bakurov, M. Castelli, An initialization technique for geometric semantic GP based on demes evolution and despeciation, in: 2017 IEEE Congress
on Evolutionary Computation (CEC), 2017, pp. 113–120.

[19] I. Bakurov, L. Vanneschi, M. Castelli, F. Fontanella, EDDA-V2 – an improvement of the evolutionary demes despeciation algorithm, in: A. Auger, C.M. Fonseca,
N. Lourenço, P. Machado, L. Paquete, D. Whitley (Eds.), Parallel Problem Solving from Nature – PPSN XV, Springer International Publishing, Cham, 2018,
pp. 185–196.

[20] M. Castelli, L. Manzoni, S. Silva, L. Vanneschi, A. Popovič, The influence of population size in geometric semantic GP, Swarm Evol. Comput. 32 (2017) 110–120,
https://doi .org /10 .1016 /j .swevo .2016 .05 .004.

[21] J. Arabas, Z. Michalewicz, J. Mulawka, GAVaPS – a genetic algorithm with varying population size, in: Proceedings of the First IEEE Conference on Evolutionary
Computation, IEEE World Congress on Computational Intelligence, vol. 1, 1994, pp. 73–78.

[22] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, 1988.

[23] G.R. Harik, F.G. Lobo, A parameter-less genetic algorithm, in: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation – Volume 1,
GECCO’99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999, pp. 258–265.

[24] J.W. Hallam, O. Akman, F. Akman, Genetic algorithms with shrinking population size, Comput. Stat. 25 (2010) 691–705.

[25] F.G. Lobo, C.F. Lima, On the utility of the multimodal problem generator for assessing the performance of evolutionary algorithms, in: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’06, Association for Computing Machinery, New York, NY, USA, 2006, pp. 1233–1240.

[26] R. Tanabe, A.S. Fukunaga, Improving the search performance of shade using linear population size reduction, in: 2014 IEEE Congress on Evolutionary Compu-

tation (CEC), 2014, pp. 1658–1665.

[27] N. Awad, M. Ali, P. Suganthan, Ensemble of parameters in a sinusoidal differential evolution with niching-based population reduction, Swarm Evol. Comput. 39
(09 2017), https://doi .org /10 .1016 /j .swevo .2017 .09 .009.

[28] W. Bingchuan, Z.-Y. Shui, Y. Feng, Z. Ma, Evolutionary algorithm with dynamic population size for constrained multiobjective optimization, Swarm Evol.
Comput. 73 (2022) 101104, https://doi .org /10 .1016 /j .swevo .2022 .101104.

[29] O. Montiel Ross, O. Castillo, P. Melin, R. Sepúlveda, Intelligent Control of Dynamic Population Size for Evolutionary Algorithms, 2006, pp. 551–557.

[30] F. Fernandez, L. Vanneschi, M. Tomassini, The effect of plagues in genetic programming: a study of variable-size populations, in: C. Ryan, T. Soule, M. Keijzer,
E. Tsang, R. Poli, E. Costa (Eds.), Genetic Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 317–326.

[31] F. Fernandez, M. Tomassini, L. Vanneschi, Saving computational effort in genetic programming by means of plagues, in: The 2003 Congress on Evolutionary
Computation, vol. 3, CEC ’03, 2003, pp. 2042–2049.

[32] P. Kouchakpour, A. Zaknich, T. Braunl, Dynamic population variation in genetic programming, Inf. Sci. 179 (2009) 1078–1091, https://doi .org /10 .1016 /j .ins .
2008 .12 .009.

[33] Y.-y. Tao, J. Cao, M.-L. Li, Genetic programming using dynamic population variation for computational efforts reduction in system modeling, J. Shanghai
Jiaotong Univ. 17 (04 2012), https://doi .org /10 .1007 /s12204 -012 -1251 -7.

[34] L. Vanneschi, G. Cuccu, Reconstructing dynamic target functions by means of genetic programming using variable population size, in: Computational Intelligence,
vol. 343, 2011, pp. 121–134.

[35] I. Bakurov, M. Castelli, F. Fontanella, A. Scotto di Freca, L. Vanneschi, A novel binary classification approach based on geometric semantic genetic programming,
Swarm Evol. Comput. 69 (2022) 101028, https://doi .org /10 .1016 /j .swevo .2021 .101028.

[36] L. Vanneschi, S. Silva, M. Castelli, L. Manzoni, Geometric Semantic Genetic Programming for Real Life Applications, Springer New York, New York, NY, 2014,
20

pp. 191–209.

http://refhub.elsevier.com/S0020-0255(23)01098-8/bib9D4FF237A8FD4C5F2D19D74DFA060B10s1
https://doi.org/10.1109/4235.771166
https://doi.org/10.1109/4235.771166
https://doi.org/10.3390/sym13040709
https://doi.org/10.3390/sym13040709
https://doi.org/10.1016/j.swevo.2021.100913
https://doi.org/10.1016/j.swevo.2021.100913
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibE9FC80650619C07C34C375142DC59A2Bs1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibE9FC80650619C07C34C375142DC59A2Bs1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib7AB11C5B4CEAFE67C144A1F7372145C7s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib7AB11C5B4CEAFE67C144A1F7372145C7s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib7AB11C5B4CEAFE67C144A1F7372145C7s1
https://doi.org/10.1016/j.ins.2018.08.030
https://doi.org/10.1002/ece3.4660
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib5D3C02BEE082DC061942F78BED203215s1
https://doi.org/10.1007/s10710-008-9075-9
https://doi.org/10.1007/s10710-011-9150-5
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib8D87ED64ADF6159D231486230710404Fs1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib8D87ED64ADF6159D231486230710404Fs1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib601B2F608F9093094B25421781208387s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib72BB0A20DBAE84EFCC752CB287357197s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib6844D83FB0A2B0FDC9EBC7C102C11DDCs1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib6844D83FB0A2B0FDC9EBC7C102C11DDCs1
https://doi.org/10.1016/j.softx.2022.101085
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibD2CAA8775055AAE77B7DB2213325F25Cs1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibD2CAA8775055AAE77B7DB2213325F25Cs1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib45D4A61E9AF3D6E6676982D5D55D64F8s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib45D4A61E9AF3D6E6676982D5D55D64F8s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib19291AA63D5758AC47730818BCC71F8Es1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib19291AA63D5758AC47730818BCC71F8Es1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib19291AA63D5758AC47730818BCC71F8Es1
https://doi.org/10.1016/j.swevo.2016.05.004
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibB50482BB6568922487F3DAB10C17F874s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibB50482BB6568922487F3DAB10C17F874s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib3D35DF2C9AB9B091CE24F8C0A206A750s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib7D61FA11FAD2F48A4F7588ACD944ED63s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib7D61FA11FAD2F48A4F7588ACD944ED63s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibC5EDD4205D652A360D616CAC2BDDDD87s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib6F97C65D200364593F07106923114D59s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib6F97C65D200364593F07106923114D59s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib0F677ABEE2C5FE1F8A7C9C5F2FE8CB10s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib0F677ABEE2C5FE1F8A7C9C5F2FE8CB10s1
https://doi.org/10.1016/j.swevo.2017.09.009
https://doi.org/10.1016/j.swevo.2022.101104
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib5C300FF7C53D26BB478EA5130B1DDC05s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib92A5D67B858E8D7B3CD9BE879B209923s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib92A5D67B858E8D7B3CD9BE879B209923s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibA2E33C317C7B4FC5FCFD259268955875s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibA2E33C317C7B4FC5FCFD259268955875s1
https://doi.org/10.1016/j.ins.2008.12.009
https://doi.org/10.1016/j.ins.2008.12.009
https://doi.org/10.1007/s12204-012-1251-7
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib93EE1BA13667F042C3C81452974AC3FAs1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib93EE1BA13667F042C3C81452974AC3FAs1
https://doi.org/10.1016/j.swevo.2021.101028
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibD72E7016F220BC89D7337E6AD2CB4B1As1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibD72E7016F220BC89D7337E6AD2CB4B1As1

Information Sciences 648 (2023) 119513D. Farinati, I. Bakurov and L. Vanneschi

[37] I. Gonçalves, S. Silva, C.M. Fonseca, On the generalization ability of geometric semantic genetic programming, in: P. Machado, M.I. Heywood, J. McDermott, M.
Castelli, P. García-Sánchez, P. Burelli, S. Risi, K. Sim (Eds.), Genetic Programming, Springer International Publishing, Cham, 2015, pp. 41–52.

[38] A. Moraglio, An efficient implementation of GSGP using higher-order functions and memoization, in: Semantic Methods in Genetic Programming, Workshop at
Parallel Problem Solving from Nature, 2014.

[39] J.F.B.S. Martins, L.O.V.B. Oliveira, L.F. Miranda, F. Casadei, G.L. Pappa, Solving the exponential growth of symbolic regression trees in geometric semantic
genetic programming, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’18, ACM, New York, NY, USA, 2018, pp. 1151–1158.

[40] I. Bakurov, M. Buzzelli, M. Castelli, L. Vanneschi, R. Schettini, General purpose optimization library (GPOL): a flexible and efficient multi-purpose optimization
library in Python, Appl. Sci. 11 (11) (2021), https://doi .org /10 .3390 /app11114774.

[41] M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling, in: Genetic Programming, 2003, pp. 70–82.

[42] D. Harrison, D.L. Rubinfeld, Hedonic housing prices and the demand for clean air, J. Environ. Econ. Manag. 5 (1) (1978) 81–102, https://doi .org /10 .1016 /
0095 -0696(78)90006 -2.

[43] I.-C. Yeh, Modeling of strength of high-performance concrete using artificial neural networks, Cem. Concr. Res. 28 (12) (1998) 1797–1808, https://doi .org /10 .
1016 /S0008 -8846(98)00165 -3.

[44] F. Archetti, S. Lanzeni, V. Messina, L. Vanneschi, Genetic programming for computational pharmacokinetics in drug discovery and development, Genet. Program.
Evol. Mach. 8 (2007) 413–432, https://doi .org /10 .1007 /s10710 -007 -9040 -z.

[45] G. Dick, A.P. Rimoni, P.A. Whigham, A re-examination of the use of genetic programming on the oral bioavailability problem, in: Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 1015–1022.

[46] J. McDermott, D.R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec, R. Harper, K. De Jong, U.-M. O’Reilly, Genetic programming
needs better benchmarks, in: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO ’12, Association for Computing
Machinery, New York, NY, USA, 2012, pp. 791–798.

[47] J. McDermott, G. Kronberger, P. Orzechowski, L. Vanneschi, L. Manzoni, R. Kalkreuth, M. Castelli, Genetic programming benchmarks: looking back and looking
forward, SIGEVOlution 15 (3) (dec 2022), https://doi .org /10 .1145 /3578482 .3578483.

[48] A. Moraglio, K. Krawiec, C. Johnson, Geometric semantic genetic programming, in: Parallel Problem Solving from Nature – PPSN XII, vol. 7491, 2012, pp. 21–31.

[49] C. Bonferroni, Teoria statistica delle classi e calcolo delle probabilità, in: Pubblicazioni del R. Istituto superiore di scienze economiche e commerciali di Firenze,
Seeber, 1936.

[50] Ivo Gonçalves, Sara Silva, Carlos M. Fonseca, Mauro Castelli, Unsure when to stop?, in: Proceedings of the Genetic and Evolutionary Computation Conference,
21

ACM, 2017, https://doi .org /10 .1145 /3071178 .3071328.

http://refhub.elsevier.com/S0020-0255(23)01098-8/bib8BDDEB78937E0AF0A59F88D440A8C37As1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib8BDDEB78937E0AF0A59F88D440A8C37As1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibADEBAC911A59A80A5FD74BF2D9513B35s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibADEBAC911A59A80A5FD74BF2D9513B35s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib94728A6E019162C4CFBFD091E36E83EFs1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib94728A6E019162C4CFBFD091E36E83EFs1
https://doi.org/10.3390/app11114774
http://refhub.elsevier.com/S0020-0255(23)01098-8/bibD3B835CACFB2B01DC1BB48E63F1839B2s1
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.1007/s10710-007-9040-z
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib880A3EB0015B8D47809B1CBD5F578D91s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib880A3EB0015B8D47809B1CBD5F578D91s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib75EF2A367AD37FB77152706530C33E7Es1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib75EF2A367AD37FB77152706530C33E7Es1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib75EF2A367AD37FB77152706530C33E7Es1
https://doi.org/10.1145/3578482.3578483
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib77C8D9DC271A2B49390CA83CC7BBDA91s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib1FEEBCEE4E032DA5EB8776D21CCA46E8s1
http://refhub.elsevier.com/S0020-0255(23)01098-8/bib1FEEBCEE4E032DA5EB8776D21CCA46E8s1
https://doi.org/10.1145/3071178.3071328

	A study of dynamic populations in geometric semantic genetic programming
	1 Introduction
	2 Previous and related work
	2.1 Previous studies on dynamic populations in genetic programming

	3 Geometric semantic genetic programming
	3.1 Semantic neighbourhood

	4 Dynamic population methods
	4.1 LD-GSGP
	4.2 DP-GSGP
	4.3 TIE-DP-GSGP
	4.4 TIE-DP-GSGP-SEI
	4.5 PRoFIGSGP
	4.6 SPS-GSGP

	5 Experimental setup
	5.1 Test problems
	5.2 Performance measures
	5.3 Parameter settings

	6 Experimental results
	6.1 A comparison with standard GP

	7 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

