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Allowing the population size to variate during the evolution can bring advantages to evolutionary 
algorithms (EAs), retaining computational effort during the evolution process. Dynamic popula-

tions use computational resources wisely in several types of EAs, including genetic programming. 
However, so far, a thorough study on the use of dynamic populations in Geometric Semantic 
Genetic Programming (GSGP) is missing. Still, GSGP is a resource-greedy algorithm, and the use 
of dynamic populations seems appropriate. This paper adapts algorithms to GSGP to manage 
dynamic populations that were successful for other types of EAs and introduces two novel 
algorithms. The novel algorithms exploit the concept of semantic neighbourhood. These methods 
are assessed and compared through a set of eight regression problems. The results indicate that 
the algorithms outperform standard GSGP, confirming the suitability of dynamic populations for 
GSGP. Interestingly, the novel algorithms that use semantic neighbourhood to manage variation 
in population size are particularly effective in generating robust models even for the most difficult 
of the studied test problems.

1. Introduction

Evolutionary Algorithms (EAs) are bioinspired population-based methods of Computational Intelligence [1]. The effects of hyper-

parameterisation on EAs have been studied since the dawn of the field [2]. In succinct terms, two main approaches to hyperparameter 
setting exist: hyperparameter tuning and hyperparameter control. The former consists of testing different hyperparameters in a 
restrained manner, for instance, using cross-validation and then using the configuration that led to the best results to solve the 
underlying problem. The latter consists of dynamically changing the hyperparameter values throughout the evolutionary process. 
Following the taxonomy proposed in [2], this can be done in at least two ways: deterministically and adaptively. Deterministic hyper-

parameter control relies upon some time-dependent function to update hyperparameters. Adaptive hyperparameter control, instead, 
adapts the hyperparameter values based on the information obtained from the evolutionary process itself, so the values are modified 
depending on the feedback from evolutionary dynamics. A significant amount of work suggests the superiority of hyperparameter 
control over tuning [2]. Traditionally, both practitioners and researchers focus on hyperparameters related to genetic operators and 
selection algorithms [3,4]. However, the population size plays a significant role in the algorithms’ performance [5,6]. If the popula-

tion size is too small, the evolutionary process may quickly get stuck in a sub-optimal solution, typically due to diversity loss [7,8]; 
if it is too large, an unnecessarily large amount of computational resources may be wastefully used to solve the problem. Population 
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size control soon became a reality in EAs, and several works aimed at presenting deterministic and adaptive systems for dynamic 
population size control have been proposed (many of which are discussed in Section 2).

Genetic Programming (GP) [9] is an EA that evolves computer programs to solve a specific task. Typically, the solutions in 
a GP population are complex structures, whose dynamic dimension often tends to grow during the evolution [10,11]. In such a 
context, any method aimed at saving computational effort without compromising performance should be beneficial for GP. In fact, 
although less frequently than for other types of EAs, deterministic and adaptive dynamic methods to control the population size have 
also been applied to GP, with encouraging results (also these previous studies are discussed in Section 2). However, to the best of 
our knowledge, an extensive study of dynamic populations has never been performed for one of the most promising developments 
of GP: Geometric Semantic GP (GSGP) [12,13]. GSGP is a variant of GP in which standard crossover and mutation are replaced by 
so-called geometric semantics operators (GSOs). Exploiting semantic awareness, GSOs have the interesting property of inducing a 
unimodal error surface on any supervised learning problem, bestowing on GSGP a noteworthy optimisation power [13,14]. However, 
GSOs have the drawback of generating offspring that are always larger than their parents. Thus, the dimension of the individuals 
in a GSGP population steadily grows during the evolution, and many previous works have proposed techniques to decrease the 
computational effort or speed up the algorithm [14–19]. In this context, developing methods to dynamically update the population 
size in GSGP, both deterministically and adaptively, looks like a reasonable next research step. This is particularly true considering 
that the population size has already been recognized as a crucial hyperparameter for GSGP [20].

In this paper, we introduce methods that dynamically variate the population size of GSGP. The motivation for this study is 
that GSGP can (possibly more than other methods) benefit from a wise use of computational resources. Some of the methods that 
we propose are adaptions to GSGP of already existing algorithms that are promising for GP or other forms of EAs. Others are novel 
use the concept of semantic neighbourhood, well-known in the literature [50]. Our objective is to allow GSGP to save a significant 
amount of computational effort, while maintaining its excellent optimisation ability and its attractive properties (like exploiting 
semantic awareness and inducing a unimodal error surface). The main contributions of this work are:

• Extending dynamic population systems to GSGP, confirming their appropriateness also for this GP variant.

• Introducing novel dynamic population systems, specifically for GSGP, able to outperform preexisting systems.

• Demonstrating that dynamic populations can help GSGP use computational resources more effectively, while still maintaining 
the interesting properties that made GSGP popular.

The paper is organized as follows: in Section 2, we revise the existing literature in the area of dynamic populations in EAs. At the 
end of that section, a special focus is dedicated to the analysis of previous work employing dynamic populations in GP. Section 3

introduces GSGP, including the definition of GSOs, and also discusses the concept of semantic neighbourhood. Section 4 describes 
the dynamic population algorithms studied in this work. In Section 5, we first present the case studies on which the algorithms’ 
performance will be tested. Those case studies consist of five real-life symbolic regression problems, plus three theoretically hand-

tailored symbolic regression benchmarks. Then, the section discusses the parameter set used in our study, with the objective of 
fostering complete replicability of our experiments. Section 6 presents and discusses the obtained experimental results. Finally, 
Section 7 concludes the work and suggests ideas for future research.

2. Previous and related work

The first efforts at developing EAs with dynamic population size date back to the 1990s. For instance, based on the hypothesis 
that different stages of the evolutionary process might require different appropriate population sizes, Arabas et al. [21] proposed a 
novel heuristic for the dynamic adaptation of population size in genetic algorithms (GAs), called GAVaPS. GAVaPS introduced the 
concept of the candidate solutions’ lifetime, which was meant to replace the selection mechanism. The authors based their rationale 
on the ageing process, common to natural environments. Three strategies were explored for solutions’ lifetime estimation. GAVaPS 
was tested on four continuous optimisation problems and compared to the Goldberg’s simple GAs [22]. The results indicated that 
GAVaPS outperforms simple GAs in terms of fitness, however at a significantly higher computational cost.

In 2000, Back et al. [5] investigated the feasibility of dynamically controlling three GAs’ hyperparameters: population size, 
crossover rate and mutation rate. While most of the existing contributions focused on adapting one parameter at a time, the authors 
proposed a joint hyperparameter control. Both crossover and mutation rates were encoded as extra genes in the linear chromosome 
representing the candidate solution (aka self-adaptive hyperparameter control); for the population size, however, the authors updated 
GAVaPS by relaxing the ageing of the fittest individual in the population. The results indicated that adapting the population size alone 
is very effective and is almost as effective as controlling the tree hyperparameters simultaneously. The authors concluded that it is 
possible to use GAs without the need of a user-specified population size, crossover and mutation rates, provided that hyperparameter 
control is used jointly. However, they also pointed out that the main source of this flexibility comes from the adaptation of the 
population size.

In 2004, Eiben et al. performed a comparative assessment of several existing adaptive methods for the population size, and pro-

posed a new one [6]. As baselines, the authors selected the methods previously introduced in [5], while the proposed method was 
called the Population Resizing on Fitness Improvement GA (PRoFIGA). PRoFIGA dynamically increases the population size propor-

tionally with the improvement of the best fitness in the population or when there is stagnation for a given number of generations, and 
decreases the population size otherwise. By increasing the population size, the authors aimed to skew the search towards exploration, 
2

which was considered particularly useful in the early stages of the search, where fitness typically improves, or when there is strong 
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evidence for stagnation. Alternatively, when there is a short-term lack of fitness improvement, PRoFIGA aimed at concentrating 
the algorithm’s resources in exploitation by reducing the population size and, consequently, the genetic diversity. To increase the 
population, the authors cloned solutions that were chosen by means of tournament selection, whereas an anti-tournament was used 
to remove solutions. PRoFIGA did not decrease the population size after a certain minimal population size was reached. The results 
indicated that GAVaPS extended as in [5] outperformed all the other studied algorithms, followed by PRoFIGa and standard GAs. 
The method proposed in [23] was found to be competitive only on relatively simple problems.

An extension of PRoFIGA was proposed in [24], by taking an opposite approach for the population size adaptation. Specifically, 
the authors suggested reducing the population size when the best fitness increases, which would allow for reduction in the com-

putational costs of the search while still obtaining fair levels of performance. The authors also advocated that the initial landscape 
of an optimisation problem is typically rugged, and one might need a large population size to better explore it during the early 
stages of the search. After some period of time, the candidate solutions tend to concentrate on a smaller region of the space, which 
may correspond to a smoother fitness landscape. According to the authors, this relative reduction in the ruggedness was a valid 
justification for decreasing the population size, and therefore the computational effort, without a significant deterioration of the 
algorithm’s effectiveness. The proposed approach was compared against a fixed population size GA and two strategies based on the 
number of generations: linear and exponential decrease. The results indicated the superiority of the proposed approach in terms of 
both effectiveness and efficiency. Surprisingly, the authors did not compare the performance of their method against PRoFIGA [6], 
which they initially criticized and compared their method with simple predetermined systems that can only decrease the population 
size, without ever increasing it. A smaller population size may incapacitate the EA to discriminate between candidate solutions at 
the basin of attraction of the best peak and solutions at the basin of attraction of other peaks [25].

More recently, Tanabe et al. [26] introduced L-SHADE. This algorithm is a variation of the well-known differential evolution (DE) 
algorithm SHADE, in which the population size is decreased linearly with generations. The results indicate that L-SHADE significantly 
outperforms SHADE, but it also has some drawbacks. Starting the linear decrease at the first generation does not give the required 
time for the individuals to evolve effectively, and it wastes computational power by evaluating solutions that will then be removed 
right away. The authors also pointed out that linear reduction may increase the possibility of premature convergence.

In [27], Awad et al. proposed a solution to the drawbacks of L-SHADE introducing of niching-based reduction. Instead of removing 
the worst individuals according to fitness, the individuals were divided into two niches, both of the same size (half of the current 
population size each). The first niche was composed of the best individuals of the population and its closest neighbours in the 
population. The second niche was made of the remaining individuals. Then a set of closest neighbours of the best individual of the 
second niche were removed. A similar approach was presented in [28], where a slightly different equation was used to decide the 
number of individuals to be removed at each generation.

The advantage of continuously decreasing is that it allows having a bigger population in the early generations so that exploring 
the search space is encouraged, while a smaller number of individuals promotes exploitation later on. However, it is clear that only 
decreasing the population size usually leads the algorithm to get stuck in local optima. For this reason, contributions such as [29]

have recently proposed variants of dynamic population EAs that can also increase the population size, if needed during the evolution. 
Those algorithms regulate the population size according to different parameters, such as fitness improvement and the population 
density in neighbourhood areas of each individual.

2.1. Previous studies on dynamic populations in genetic programming

In GP, the dimension of the individuals usually tends to increase during the evolution, often leading to a phenomenon called 
bloat [10,11].1 So, the computational cost needed to evaluate the solutions increases with generations as well. For this reason, 
any method aimed at saving computational effort can be beneficial to GP, including the dynamic adaption of the population size. 
Nevertheless, dynamic populations have been relatively less studied in GP, compared to other EAs. The first attempt dates back to 
2003, when Fernandez et al. introduced a system, called Plague, to reduce the computational cost of GP by dynamically reducing 
the population size [30,31]. In Plague, at each generation, the 𝑘 worst individuals are discarded, being 𝑘 a new hyperparameter. 
The results showed a decrease of the computational cost as the performance of the algorithm remained comparable to the one of 
standard GP, at least for the case studies that were considered. The major drawback of this approach is the loss of diversity through 
generations, caused by the continuous decrease of the population size.

A few years later, two contributions [32,33] proposed modifications to the previously discussed approach. In [32], four new 
population fitness stagnation assessment methods were introduced. A new gradient pivot function was also proposed, to regulate 
whether to add or remove individuals from the population. In [33], together with the introduction of an exponential pivot function 
and a new stagnation assessment phase, a new population variation equation was introduced. This equation induces an exponential 
variation of the population size in order to accelerate convergence. These two approaches both showed promising results, as they 
were able to reduce the computational effort while keeping the performance at a similar level as standard GP.

Dynamic populations in GP have also been proposed as a viable strategy to address issues associated with dynamic environments. 
This type of problem is usually associated with a target function that undergoes changes over time. In [34], a GP system was proposed, 
able to adjust the population size in response to changes in fitness. Specifically, the population size was reduced as fitness improves 

1 The most accepted definition of bloat is the uncontrolled growth in the dimension of the evolving individuals, without a corresponding improvement in their 
3

fitness [10,11].
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and incremented as fitness plateaus. In this way, the algorithm was able to adapt to changes of the target function, while at the same 
time, preserving computational resources and preventing overfitting in time intervals where the target function remains constant. 
The decision to add or remove individuals from the population was based on an equation that takes into account the current fitness 
values of the individuals in the population and the current population size.

In this work, we have selected a number of existing population resizing mechanisms. The methods were selected based on 
their recency and the evidence regarding their relative effectiveness in previous studies. In particular, we included the approaches 
proposed in [34,6,24]. As a comparison baseline, we selected simple linear decrease, following [30,31].

3. Geometric semantic genetic programming

Let 𝐗 = {𝐱1, 𝐱2, ..., 𝐱𝑛} be the set of input data (training instances, observations or fitness cases) of a symbolic regression problem, 
and 𝐭 = [𝑡1, 𝑡2, ..., 𝑡𝑛] the vector of the respective expected output or target values (in other words, for each 𝑖 = 1, 2, ..., 𝑛, 𝑡𝑖 is the 
expected output corresponding to input 𝐱𝑖). A GP individual (or program) 𝑃 can be seen as a function that, for each input vector 
𝐱𝑖 returns the scalar value 𝑃 (𝐱𝑖). Following [12], termed semantics of 𝑃 the vector 𝑠𝑃 = [𝑃 (𝐱1), 𝑃 (𝐱2), ..., 𝑃 (𝐱𝑛)]. This vector can be 
represented as a point in an 𝑛-dimensional space, that we call semantic space. Note that the target vector 𝐭 itself is a point in the 
semantic space.

As explained above, GSGP is a variant of GP where the standard crossover and mutation are replaced by GSOs. The objective 
of GSOs is to define modifications to the syntax of GP individuals that have a precise and measurable effect on their semantics. In 
particular, geometric semantic crossover (GSC) generates one offspring whose semantics stands in the line joining the semantics of 
the two parents in the semantic space. Instead, geometric semantic mutation (GSM), by mutating an individual 𝑖, allows obtaining 
another individual 𝑗 such that the semantics of 𝑗 stands inside a ball of a given predetermined radius centred in the semantics of 𝑖. 
One of the reasons why GSOs became popular is because GSOs induce a unimodal error surface (on training data) for any supervised 
learning problem where fitness is calculated using an error measure between outputs and targets. In other words, when using GSOs 
the error surface on training data is guaranteed not to have any locally optimal solution. It was shown that this property holds for 
any regression or, more recently, classification problem [35], independently of how big and how complex data are. Reference [13]

contains a detailed explanation of the reason why the error surface is unimodal and why this is important. The definitions of the 
GSOs are, as given in [12], respectively:

Geometric semantic crossover (GSC) Given two parent functions 𝑇1, 𝑇2 ∶ℝ𝑛 →ℝ, GSC returns the function GSC(𝑇 ) = (𝑇1 ⋅ 𝑇𝑅) + ((1 −
𝑇𝑅) ⋅ 𝑇2), where 𝑇𝑅 is a random function whose output values range in the interval [0, 1].

Geometric semantic mutation (GSM) Given a parent function 𝑇 ∶ ℝ𝑛 → ℝ, GSM with mutation step 𝑚𝑠 returns the function 
GSM(𝑇 ) = 𝑇 +𝑚𝑠 ⋅ (𝑇𝑅1 − 𝑇𝑅2), where 𝑇𝑅1 and 𝑇𝑅2 are random functions.

The reason why GSM uses a difference between two random trees, 𝑇𝑅1 and 𝑇𝑅2, is that the amount of modification it causes must 
be centred in zero. In other words, a random expression is needed that has the same probability of being positive or negative. Even 
though this is not in the original definition of GSM, later contributions [36,13,37] have clearly shown that limiting the codomain of 
𝑇𝑅1 and 𝑇𝑅2 in a predefined interval (for instance [0, 1], as it is done for 𝑇𝑅 in GSC) helps improve the generalisability of GSGP. For 
this reason, as in several previous works [13,14], also in this paper we constrain the outputs of 𝑇𝑅, 𝑇𝑅1, and 𝑇𝑅2 by wrapping them 
in a logistic function. Only the definitions of the GSOs for symbolic regression problems are given here since they are the only ones 
used in this work. For the definition of GSOs for other domains, the reader is referred to [12].

As reported in [12,13], GSOs have the drawback of generating larger offspring than the parents, and this entails a rapid growth 
of the size of the individuals in the population. To counteract this problem, in [14,38–40] implementations of GSOs were proposed, 
that make GSGP significantly faster than standard GP. This is possible through a smart representation of GP individuals that allows 
us to not store their genotypes during the evolution. This implementation is particular to GSGP because it is based on the fact that 
GSC and GSM compose the ancestors and the needed random programs by means of a precise and previously fixed expression [13]. 
The implementation presented in [40] is the one used here.

3.1. Semantic neighbourhood

The semantic neighbourhood of an individual 𝑃 (denoted by  (𝑃 )) indicates the set of individuals that can be generated by 
applying GSM to 𝑃 . In other words:

 (𝑃 ) = {𝑇 | 𝑇 = GSM(𝑃 )}

Given a semantic neighbourhood 𝑆 =  (𝑃 ), 𝑃 is called the reference individual of 𝑆 and the individuals belonging to 𝑆 are 
called the semantic neighbours of 𝑃 . In [50], semantic neighbourhood was used to introduce the concept of Training Improvement 
Effectiveness (TIE). TIE was used to measure the effectiveness of GSM at a given stage of the search process. It consists of the 
percentage of semantic neighbours that have a better fitness on the training set than their reference individual, calculated either on 
a sample of individuals or on the best individual in the population. TIE was used as an early stopping criterion for the Semantic 
4

Stochastic Hill Climber (SSHC) and the Semantic Learning Machine (SML) in [50]. In other words, the training was terminated when 
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TIE was smaller than a previously fixed threshold. The experimental findings based on three real-world regression problems showed 
that the TIE criterion yields the most robust generalisations [50].

In this work, we use TIE as a guideline to decide whether we should add or remove individuals from the population, instead 
of terminating the execution as it would happen in [50]. Moreover, in order to shed light on the ambiguity generated in [24], 
we propose to assess our approach following two population management policies. In the first, we adapt the strategy proposed 
in [6]: when TIE yields high values, this might indicate that the algorithm is still in the phase of exploration; therefore adding more 
individuals to the population is expected to support exploratory search. A low value of TIE might suggest convergence, and removing 
individuals from the population might emphasize exploitation by reducing genetic diversity. In the second population management 
strategy, we adopt the opposite rationale (as proposed in [24]): remove the individuals from the population when TIE yields high 
values to save the computational costs; add the individuals when TIE yields low values to escape local optima. Note that neither [2]

nor [24] have used TIE in their methods. It is important to highlight, however, that the experimental results (see Section 6) only 
report the former policy because both yield comparable performance and we did not want to overwhelm the reader with redundant 
results. Following [50], in the continuation we calculate the TIE using the best individual in the population.

4. Dynamic population methods

Six different methods to manage dynamic populations in GSGP are studied in this paper. Those methods are presented in the 
continuation of this section.

4.1. LD-GSGP

The first method we present uses a simple linear decrease (LD) of the population size that is steadily applied during the evolution. 
Called LD-GSGP, it follows the idea of Plague, proposed by Fernandez et al. [30,31]. Starting with the initial population size, which 
is a parameter to be chosen before the beginning of the execution, the method functions by removing from the population a constant 
number of individuals at each generation. The number 𝑁 of individuals to be removed from the population is chosen with the 
objective of terminating the evolution with a given target final population size. The final population size is another parameter of the 
algorithm. Following [34], the individuals that are removed from the population at each generation are the 𝑁 individuals with the 
worst fitness on the training set. Following the taxonomy proposed in [2], LD-GSGP is the only deterministic method of dynamic 
variation of the population size that we study in this work. In fact, in LD-GSGP the population size control relies on a time-dependent 
linear function. Instead, all the remaining approaches, presented in the continuation of this section, are adaptive methods. In fact, 
they adapt the population size based on some information obtained during the evolutionary process itself.

4.2. DP-GSGP

The second method, referred to as Dynamic Population GSGP (DP-GSGP), is an extension to GSGP of the system presented 
in [34]. DP-GSGP utilizes an adaptive approach, by incorporating the ability to add or remove individuals from the population based 
on specific events that occur during the evolution. Specifically, it is assumed that the optimisation is effective if the best fitness value 
in the current generation is found to be superior to the one in the previous generation; in this situation, the individuals are removed 
from the population. The rationale is that this may allow us to save computational effort without compromising the effectiveness 
of the search. Conversely, the evolutionary process is assumed to stagnate if the best fitness in the population remains unchanged; 
in this situation, adding new individuals to the population can increase the population’s and improve the exploration at the cost of 
extra computational effort. The use of elitism prevents the best fitness in the population from worsening one generation to the next. 
Exactly as in [34], the number of individuals to be added/removed is regulated by the following equation:

Δ𝑝𝑜𝑝 = 𝑝𝑖𝑣𝑜𝑡× 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ× 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛× 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (1)

where:

• Δ𝑝𝑜𝑝 is the difference in the population size from one generation to the next.

• 𝑝𝑖𝑣𝑜𝑡 is either -1, if the best fitness improved in the last generation, or 1, otherwise. This parameter regulates whether to add or 
remove individuals from the population.

• 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ is a parameter used to scale the value of 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 and 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. It is used to add or remove from 
the population a number of individuals that is a percentage of 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 × 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 at each generation.

• 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is a parameter controlled by Algorithm 1. It always returns a value in the range [𝑚𝑖𝑛_coeff 𝑓𝑖𝑡, 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡], 
where 𝑚𝑖𝑛_coeff 𝑓𝑖𝑡 and 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 are parameters. It returns 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 when the current fitness is “bad”, i.e. large (given that 
we want to minimize the error). In particular, 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is equal to 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 when the best fitness in the population 
is larger than a previously fixed value, called 𝑚𝑎𝑥_𝑓𝑖𝑡. Analogously, 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is equal to 𝑚𝑖𝑛_coeff 𝑓𝑖𝑡 when the best 
fitness in the population approximates the optimal fitness in a satisfactory way. In particular, when it is smaller than another 
previously fixed value called 𝑡𝑔𝑟_𝑓𝑖𝑡. When the best fitness in the population is included in [𝑡𝑔𝑟_𝑓𝑖𝑡, 𝑚𝑎𝑥_𝑓𝑖𝑡], 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
is equal to the output of the linear function shown in Fig. 1, which is directly proportional to the best fitness in the population.

• 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is the output of a linear function built in a similar way to 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. The pseudo-code of the 
5

method that regulates this function is shown in Algorithm 2. Analogously to the 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, this linear function returns 
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Fig. 1. Graphical representation of the function used to adapt 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 in DP-GSGP, as defined in Algorithm 1.

Algorithm 1 Pseudo code for 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.
if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡) ≤ 𝑡𝑔𝑟_𝑓𝑖𝑡) then

return 𝑚𝑖𝑛_coeff 𝑓𝑖𝑡 ;
else if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡) ≥𝑚𝑎𝑥_𝑓𝑖𝑡) then

return 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 ;
else

return 𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 −𝑚𝑖𝑛_coeff 𝑓𝑖𝑡 ×
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑏𝑒𝑠𝑡)−𝑡𝑔𝑟_𝑓𝑖𝑡
𝑚𝑎𝑥_𝑓𝑖𝑡−𝑡𝑔𝑟_𝑓𝑖𝑡

+𝑚𝑖𝑛_coeff 𝑓𝑖𝑡
end if

Algorithm 2 Pseudo code for 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.

if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 ≤ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝

4
then

return 𝑚𝑎𝑥_coeff 𝑠𝑖𝑧𝑒 ;
else if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 ≥ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝 then

return 𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒 ;
else

return 𝑚𝑎𝑥_coeff 𝑠𝑖𝑧𝑒 −𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒 ×
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒−𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝

4
−𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝

+𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒
end if

the maximum possible value (i.e., 𝑚𝑎𝑥_coeff 𝑠𝑖𝑧𝑒) when the current population size is minimal (i.e., 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝4 ) and the mini-

mum possible value (i.e., 𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒) when the current population size is maximal (i.e., the initial value of the population 
size 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑜𝑝). When the current population size is included in [𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒, 𝑚𝑎𝑥_coeff 𝑠𝑖𝑧𝑒], 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is inversely 
proportional to the current population size itself.

When individuals have to be removed from the population, DP-GSGP chooses the worst individuals in terms of fitness on the training 
set. When new individuals need to be added to the population, random individuals are created, using the same algorithm as the one 
employed in the population initialisation phase.

4.3. TIE-DP-GSGP

The third method we present, called TIE-DP-GSGP, is novel and it is a variation of DP-GSGP discussed in Section 4.2. The only 
difference between TIE-DP-GSGP and DP-GSGP is in the way the method decides if the algorithm is stagnating or not. Instead of 
comparing the best fitness from the current generation with the one from the previous generation, TIE-DP-GSGP uses the TIE criterion 
presented in Section 3.1 to take this decision. To calculate the TIE, TIE-DP-GSGP uses a number of neighbours equal to the initial 
population size. At each generation, TIE is compared with a previously fixed tolerance threshold. If it is smaller than this threshold, 
then |Δ𝑝𝑜𝑝| individuals are removed from the population, where Δ𝑝𝑜𝑝 is defined in Equation (1); contrarily, |Δ𝑝𝑜𝑝| individuals are 
added. Different values of the tolerance threshold are tested in our experiments.

4.4. TIE-DP-GSGP-SEI

The fourth method studied in this work, called TIE-DP-GSGP-SEI (in which the acronym SEI stands for store eliminated individu-

als) is also novel, and it is a variation of the TIE-DP-GSGP presented in Section 4.3. The only difference is that TIE-DP-GSGP-SEI uses 
a repository, where all the individuals that have been removed from the population in the previous generations are stored. When 
the population size needs to be increased, instead of adding random individuals to the population, TIE-DP-GSGP-SEI chooses the 
6

best individuals in the repository, in terms of training fitness. The rationale behind this choice is that the genetic material of the 
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Fig. 2. Flowchart of TIE-DP-GSGP and TIE-DP-GSGP-SEI.

Algorithm 3 Pseudo code for PRoFIGSGP.

if 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔𝑡) ≤ 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔𝑡−1) then

𝑔𝑟𝑜𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

else if fitness did not improve for 𝐺 generations or more then

𝑔𝑟𝑜𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

else

𝑠ℎ𝑟𝑖𝑛𝑘_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

end if

individuals in the repository has already evolved, and so it is supposed to have better fitness than random individuals. We do realize, 
however, that such an approach can eventually contribute to diversity loss, in comparison to the TIE-DP-GSGP method. In order to 
clarify whether this will happen and to what extent, we decided to include this variant in our experiments. A flowchart of the main 
working process of TIE-DP-GSGP and TIE-DP-GSGP-SEI is presented in Fig. 2.

4.5. PRoFIGSGP

PRoFIGSGP is an adaptation to GSGP of the PRoFIGA method, presented in [6] and discussed in Section 2. PRoFIGSGP (Population 
Regulation on-the-Fly in GSGP) uses a dynamic population size modified based on the current performance of the evolutionary 
process. The population size is increased when the algorithm is making slow progress and decreased when the algorithm is making 
rapid progress. This allows the algorithm to focus computational resources on areas of the search space where progress is being made 
while avoiding wasting resources on areas where progress is not being made. PRoFIGSGP works as shown in Algorithm 3, where 𝑔𝑡
is the current generation, and 𝑔𝑡−1 is the previous generation. The population increase, 𝑔𝑟𝑜𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, is the result of Equation (2), 
where 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐹𝑎𝑐𝑡𝑜𝑟 is a random value, drawn with uniform distribution from (0, 1), and 𝑚𝑎𝑥𝐸𝑣𝑎𝑙𝑁𝑢𝑚 and 𝑐𝑢𝑟𝑟𝐸𝑣𝑎𝑙𝑁𝑢𝑚 denote the 
given maximum number of fitness evaluations and the current number of evaluations, respectively. 𝑚𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠𝑛𝑒𝑤, 𝑚𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑙𝑑 and 
𝑖𝑛𝑖𝑡𝑀𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 are the best fitness values in the current generation, the previous generation and the initial population, respectively.

𝑔𝑟𝑜𝑤_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛= 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐹𝑎𝑐𝑡𝑜𝑟 × (𝑚𝑎𝑥𝐸𝑣𝑎𝑙𝑁𝑢𝑚− 𝑐𝑢𝑟𝑟𝐸𝑣𝑎𝑙𝑁𝑢𝑚)

×
𝑚𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠𝑛𝑒𝑤 −𝑚𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑙𝑑

𝑖𝑛𝑖𝑡𝑀𝑎𝑥𝐹 𝑖𝑡𝑛𝑒𝑠𝑠

(2)

The new individuals to be added to the population are clones of good individuals that are chosen by tournament selection from 
the actual population. The value 𝑠ℎ𝑟𝑖𝑛𝑘_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, corresponding to the number of removed individuals, is equal to a percentage of 
7

the current population. The individuals to be removed are chosen according to their fitness: the ones with higher values are removed. 
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Table 1

Similarities and differences between the various presented methods.

Algorithm Fitness-based Use semantic neighbourhood Time-dependent function

LD-GSGP ✓
DP-GSGP ✓
TIE-DP-GSGP ✓
TIE-DP-GSGP-SEI ✓
PRoFIGSGP ✓
SPS-GSGP ✓

Table 2

Datasets used in this experimental study.

Dataset #Observations #Features Target range Reference

Boston 506 13 [5, 50] [42]

Concrete 1005 8 [2.3318, 82.5992] [43]

Bioav 358 241 [0.4, 100.0] [44]

LD50 234 626 [0.25, 8900.0] [44]

PPB 5875 19 [7.0, 54.992] [44]

f4 6060 1 [-0.3, 0.3] [41]

f11 200 2 [0.0028, 1.0] [41]

f16 200 2 [-1.3102, 0.0] [41]

The algorithm also includes a mechanism for preventing the population size from becoming too large, which can lead to a decrease 
in performance.

4.6. SPS-GSGP

SPS-GSGP is another variant of population size adjustment strategies developed for GAs [24]. In SPS-GSGP, the population size 
is reduced proportionally to the change in its best fitness. Let 𝑁𝑡 be the population size at generation 𝑡. Denote the change in best 
fitness at generation 𝑡 by Δ𝑓𝑏𝑒𝑠𝑡

𝑡
= |𝑓𝑏𝑒𝑠𝑡

𝑡−1 − 𝑓𝑏𝑒𝑠𝑡
𝑡−2 |∕|𝑓

𝑏𝑒𝑠𝑡
𝑡−2 |. Then the new population size, 𝑁𝑡+1 is determined as follows:

𝑁𝑡+1 =
⎧
⎪
⎨
⎪
⎩

(1 − Δ𝑓𝑏𝑒𝑠𝑡
𝑡

)𝑁𝑡, if Δ𝑓𝑏𝑒𝑠𝑡
𝑡

≤Δ𝑓𝑏𝑒𝑠𝑡
𝑚𝑎𝑥

(1 − Δ𝑓𝑏𝑒𝑠𝑡
𝑚𝑎𝑥

)𝑁𝑡, if Δ𝑓𝑏𝑒𝑠𝑡
𝑡

>Δ𝑓𝑏𝑒𝑠𝑡
𝑚𝑎𝑥

𝑚𝑖𝑛_𝑝𝑜𝑝𝑠𝑖𝑧𝑒, if 𝑁𝑡+1 < 𝑚𝑖𝑛_𝑝𝑜𝑝𝑠𝑖𝑧𝑒

(3)

where Δ𝑓𝑏𝑒𝑠𝑡
𝑚𝑎𝑥

is a parameter that corresponds to the fitness tolerance level and 𝑚𝑖𝑛_𝑝𝑜𝑝𝑠𝑖𝑧𝑒 is another parameter that corresponds to 
the minimum population size allowed.

Table 1 aims to distinguish between the different methods used in our work. The first column indicates whether the population 
adjustment is purely based on the fitness values of the individuals. The second column indicates whether the population adjustment 
method uses the semantic neighbourhood. The third column indicates whether the method uses a time-dependent function or whether 
the decision-making is supported by evolutionary dynamics. It is worth highlighting that the only difference between TIE-DP-GSGP 
and TIE-DP-GSGP-SEI is the fact that the latter stores eliminated individuals.

5. Experimental setup

5.1. Test problems

In our experimental study, eight datasets are used, five of which are real-world datasets, while the remaining three are artificial 
datasets introduced in [41]. The main characteristics of these datasets are presented in Table 2.

Contrarily to the other chosen test problems, that are well-established and widely used for benchmarking in GP, the Bioavailability 
dataset deserves a specific discussion. In fact, that dataset was criticised in [45], partially because of a lack of preprocessing because 
it includes features that contain no information as well as contradictory relationships between the dependent and independent 
variables. However, according to many authors who have used this dataset, these characteristics are interesting and should be 
integrated into a reasonable benchmark suite, because they allow us to test the ability of our algorithms to deal with the difficulties 
and ambiguities typical of real-world data. It is not our objective to discuss what characteristics a good benchmark suite should 
possess (refer to [46,47]). We simply observe that the Bioavailability dataset, as well as the PPB and LD50 datasets, has been used 
in several previous GP studies, clearly indicating a trend for overfitting to emerge [14,36,37]. We thus use these three datasets as a 
8

sort of stress test case to assess the generalisability of the studied algorithms.
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Table 3

Parameters used in our experimental study.

Algorithm Parameter Value

Common to all the algorithms

Initial population size 200 individuals

Minimum population size 50 individuals

Number of Generations 100

Crossover probability 0.2 for GSGP, 0.8 for GP

Mutation probability 0.8 for GSGP, 0.2 for GP

Mutation step (𝑚𝑠) Random number in [0, 1)

Selection Tournament

Tournament size 2 individuals

Initialisation method Ramped Half-and-Half

DP-GSGP & TIE-DP-GSGP & 
TIE-DP-GSGP-SEI

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 0.3

𝑡𝑔𝑟_𝑓𝑖𝑡 0.01

𝑚𝑎𝑥_𝑓𝑖𝑡 60

𝑚𝑖𝑛_coeff 𝑓𝑖𝑡 1

𝑚𝑎𝑥_coeff 𝑓𝑖𝑡 10

𝑚𝑖𝑛_coeff 𝑠𝑖𝑧𝑒 0

𝑚𝑎𝑥_coeff 𝑠𝑖𝑧𝑒 10

PRoFIGSGP

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐹𝑎𝑐𝑡𝑜𝑟 0.1

𝑚𝑎𝑥𝐸𝑣𝑎𝑙𝑁𝑢𝑚 20000

𝑠ℎ𝑟𝑖𝑛𝑘𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 5%

𝐺 5

SPS-GSGP Δ𝑓𝑏𝑒𝑠𝑡
𝑚𝑎𝑥

0.08

5.2. Performance measures

In all the different methods presented in Section 4, the fitness of the evolving individuals is assessed using the Root Mean Squared 
Error (RMSE) on the training set, and the experimental comparison is carried out using the RMSE on training and unseen data 
(training set and test set, respectively). However, it is clear that at each generation, each one of the methods may be employing a 
population that contains a different number of individuals. So, different generations may cost very disparate computational efforts 
to be evaluated. For this reason, it would not be fair to compare the RMSE across generations. A much better approach is the one 
adopted in [30], where the RMSE is compared at corresponding values of the computational effort. In this paper, we adopt the same 
definition of computational effort as in [30]. The computational effort is calculated by computing the average number of nodes of 
the individuals in the population at generation 𝑔 (indicated as 𝑎𝑣𝑔_𝑙𝑒𝑛𝑔ℎ𝑡𝑔) and then by computing the partial effort (indicated as 
𝑃𝐸𝑔) as follows:

𝑃𝐸𝑔 = 𝑛 × 𝑎𝑣𝑔_𝑙𝑒𝑛𝑔ℎ𝑡𝑔 (4)

where 𝑛 is the number of individuals in the population at generation 𝑔. Then, the computational effort 𝐸𝑔 is calculated as the 
cumulative sum of the partial efforts until generation 𝑔, as expressed by the following equation:

𝐸𝑔 = 𝑃𝐸𝑔 + 𝑃𝐸𝑔−1 + ...+ 𝑃𝐸1 + 𝑃𝐸0 (5)

To assess the computational effort spent by an algorithm, this measure takes into account both the population size and the dimension 
(expressed as a number of nodes) of the individuals in the population. It was considered in [30] as a faithful model for the actual 
running time of the algorithm.

In the next section, the experimental results will be presented by reporting curves of the RMSE against the computational effort. 
In other words, the plots presented in the next section will have a point at each generation 𝑔, and that point will have 𝐸𝑔 on the 
horizontal axis and the training or test RMSE of the best individual in the population on the training set at generation 𝑔 on the vertical 
axis. This allows us to compare the training and test RMSE of the different studied methods for the same values of the computational 
effort.

In order for the comparison to be completely fair, for the algorithms that involve the creation of a semantic neighbourhood, 
i.e., TIE-DP-GSGP and TIE-DP-GSGP-SEI, the individuals evaluated from the semantic neighbourhood are included in the calculation 
of the computational effort. So, the equation of 𝑃𝐸𝑔 for TIE-DP-GSGP and TIE-DP-GSGP-SEI is:

𝑃𝐸𝑔 = 𝑛 × 𝑎𝑣𝑔_𝑙𝑒𝑛𝑔ℎ𝑡𝑔 + 𝑛𝑛𝑒𝑖𝑔ℎ × 𝑎𝑣𝑔_𝑙𝑒𝑛𝑔ℎ𝑡𝑛𝑒𝑖𝑔ℎ (6)

where 𝑛𝑛𝑒𝑖𝑔ℎ is the total number of neighbours of the best solution in the population at generation 𝑔 and 𝑎𝑣𝑔_𝑙𝑒𝑛𝑔ℎ𝑡𝑛𝑒𝑖𝑔ℎ is the average 
number of nodes of those neighbours.

5.3. Parameter settings

The parameters used in our experimental study are presented in Table 3. The objective of our work is to compare the traditional 
9

version of GSGP, which uses a population with constant size, with the dynamic population variants. In the last part of our experimen-
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Fig. 3. Experimental results of the Bioavailability dataset.

tal study, we will also compare all the studied GSGP variants with the corresponding algorithms applied to standard GP. Our focus 
is not on obtaining the best possible results on the studied test problems. For this reason, instead of optimizing the parameters, we 
have preferred to use a relatively standard parameter setting, taken from the literature [14,34,24,6]. In particular, we have decided 
to use a configuration in which GSM is applied with a higher probability than GSC, as recommended in the literature [14,13]. By its 
very definition, in fact, GSM is constrained to generate “offspring” very close to its “parent” in the semantic space. In other words, 
the outputs calculated by the “offspring” program are indeed equal to the outputs of the “parent” program, except for a weak pertur-

bation in some of them, whose importance can be tuned by means of the mutation step parameter, 𝑝𝑚. This guarantees the locality of 
the GSM operator, preventing it from becoming something comparable to a random search. Furthermore, given its ability to induce 
a unimodal error surface, GSM is typically used as the leading genetic operator for GSGP. However, besides this configuration (that 
uses a GSM rate of 0.8 and a GSC rate of 0.2), we have also tested a configuration in which GSC is applied more often than GSM (i.e., 
a GSM rate of 0.2 and a GSC rate of 0.8). The obtained results (not shown here to save space) have confirmed that the configuration 
in which GSM is applied with a higher probability than GSC outperforms the other. Besides these parameters, TIE-DP-GSGP and 
TIE-DP-GSGP-SEI have been tested with the following values of the tolerance threshold: 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6.

All the results reported in the next section are medians over 30 independent runs. At every run, the datasets have been split into 
a different random training/test partition, where 70% of the observations were randomly selected, with uniform probability, to form 
the training set, while the remaining 30% form the test set. The same partition has been used for all the studied methods at each 
particular run.

6. Experimental results

The obtained experimental results are reported in Figs. 3, 4, 5, 6, 7, 8, 9 and 10 for the Bioavailability, Boston, Concrete, PPB, 
10

LD50, f11, f16 and f4 test cases, respectively.
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Fig. 4. Experimental results of the Boston dataset.

Each one of these figures shows a comparison between six algorithms: GSGP, LD-GSGP, DP-GSGP, PRoGSGP, SPS-GSGP and 
the version of TIE-DP-GSGP or TIE-DP-GSGP-SEI using the tolerance threshold value that has returned the best result on a given 
problem. For example, when the legend reports TIE-DP-GSGP_06, the result corresponds to the TIE-DP-GSGP algorithm with a 
tolerance threshold equal to 0.6. Also, each figure contains three plots. The two plots in the upper part of the figure are the curves 
of the fitness against the computational effort, calculated respectively on the train and test partitions over all the generations. The 
third plot, in the lower part of the figure, is the curve of the test fitness against the computational effort, cut at the minimum value 
(𝑚𝑖𝑛𝑒𝑓𝑓 ) of the computational effort reached by any of the considered algorithms at the last generation of its execution. For example, 
if TIE-DP-GSGP is the first to complete the 100 generations of the evolutionary process and uses 1,000,000 units of computational 
effort, then the third plot will report test fitness (RMSE) for all six algorithms at that computational effort to allow a fair comparison. 
Table 4 reports 𝑝-values of the Wilcoxon test for pairwise comparison of the methods. These 𝑝-values are calculated at computational 
effort 𝑚𝑖𝑛𝑒𝑓𝑓 . The 𝑝-values are in bold when they are statistically significant, using a significance level 𝛼 = 0.05, with the Bonferroni 
correction [49].

The results clearly show the advantage of using adaptive methods for controlling the population size in GSGP: from the figures, it 
is clear that at least one of the five adaptive methods significantly outperforms standard GSGP on unseen data for all the studied test 
problems, except for the unique, isolated, case of the f4 synthetic benchmark, for which all the studied methods have comparable 
performance. Even if observing algorithms’ performance at their maximum computational effort (this corresponds to the sub-figure 
(b)), there is always at least one adaptive method that achieves better generalisability than GSGP. When compared to standard 
GSGP, the studied population control methods allow saving a considerable amount of computational effort and yield solutions of 
better quality for the same computational budget. Following the p-values from Table 4, the proposed TIE-DP-GSGP and TIE-DP-GSGP-
11

SEI methods significantly outperform standard GSGP on unseen data on the majority of the studied problems (five test cases in eight), 
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Fig. 5. Experimental results of the Concrete dataset.

while having comparable performance on the three remaining cases. Interestingly, for the datasets known from the literature to be 
prone to overfitting [14,36,37], i.e., Bioavailability, PPB and LD50, the proposed TIE-DP-GSGP and TIE-DP-GSGP-SEI methods are 
always able to counteract overfitting, significantly outperforming the standard version of GSGP on unseen data. When compared with 
other adaptive methods, the proposed methods consistently achieve comparable or even better results. Although there is no parameter 
setting for the proposed TIE-DP-GSGP and TIE-DP-GSGP-SEI methods that outperforms the remaining adaptive approaches on all the 
problems, the comparison of the training and test curves between the first two sub-figures i each figure suggests that the proposed 
method is particularly adverse to overfitting. Our interpretation is that semantic awareness, implemented by the TIE criterion, is 
very important to limit overfitting for those datasets (consistently with what was already observed in the literature [14,36]). Besides 
corroborating the hypothesis that TIE-DP-GSGP and TIE-DP-GSGP-SEI do not overfit, this last observation suggests that an appropriate 
parameter setting of TIE-DP-GSGP and TIE-DP-GSGP-SEI on the training, data should also correspond to a reasonable configuration 
of these methods on unseen data.

We now deepen the analysis of the results by discussing them problem by problem. The analysis of Fig. 3 shows that the proposed 
TIE-DP-GSGP_06 and two other adaptive methods (DP-GSGP and SPS-GSGP) achieve comparable generalisability, both in terms of 
𝑚𝑖𝑛𝑒𝑓𝑓 and when assessed at the maximum computational effort (b). The PRoFIGSGP method arrives at similar test results (b) but 
with a larger computational effort. At 𝑚𝑖𝑛𝑒𝑓𝑓 , the proposed approach is statistically better than LD-GSGP, PRoFIGSGP and standard 
GSGP. It is also relevant to highlight the consistency of these four adaptive methods when comparing the training (3a) and test 
curves (3b). All the presented methods save a considerable amount of computational effort and find solutions that are statistically 
better than standard GSGP.

For both Figs. 4 and 5, LD-GSGP allows for achieving the best levels of generalisability when considering both maximum (b) and 
minimum computational (c) effort; the difference was found to be statistically significant (Table 4). The remaining adaptive methods 
12

exhibit comparable test fitness, although ProFIGSGSP consumes more computational effort to complete 100 generations. Regarding 
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Fig. 6. Experimental results of the PPB dataset.

the standard GSGP, however, all the adaptive methods happen to be statistically better at 𝑚𝑖𝑛𝑒𝑓𝑓 than their static counterpart on the 
Concrete problem; on the Boston problem, statistical difference was observed only with LD-GSGP.

For the last pharmacokinetic dataset, PPB (Fig. 6), all the novel algorithms significantly outperform the standard GSGP while 
having comparable performances between each other. Moreover, the comparison between the training (3a) and test curves (3b)

favours the adaptive methods in terms of consistency (except LD-GSGP).

The analysis of Fig. 7 shows that the proposed TIE-DP-GSGP_05 method achieves statistically superior generalisability at 
𝑚𝑖𝑛𝑒𝑓𝑓 (7c), except for DP-GSGP; nevertheless, visually, the proposed TIE-DP-GSGP_05 is clearly more advantageous. When con-

sidering the six algorithms at their maximum computational effort (7b), it becomes clear that the adaptive methods achieve notably 
lower fitness values using substantially fewer resources when compared to their static counterpart. Once again, one can note the 
consistency of the adaptive methods (except LD-GSGP) when comparing the training (3a) and test curves (3b).

Finally, we discuss the results obtained on the studied hand-tailored benchmarks. On the f11 function, TIE-DP-GSGP-SEI_01, 
DP-GSGP, PRoFIGSGP and SPS-GSGP perform comparably to each other and significantly outperform the other two methods on the 
test set. While there is no statistically significant difference between the test RMSE of LD-GSGP and standard GSGP on this problem, 
standard GSGP clearly appears to be more prone to overfitting, shown by the wide oscillations of the GSGP curve on the test set. 
On the f16 function, TIE-DP-GSGP-SEI_02, DP-GSGP, PRoFIGSGP and SPS-GSGP perform comparably to each other and to standard 
GSGP as well. All these algorithms significantly outperform LD-GSGP, which is clearly affected by overfitting, as can be observed by 
the wide oscillations of its curve. Finally, on the f4 function, all the studied methods perform in a comparable way to each other, 
since no statistically significant difference can be observed in their respective performance.

Several potential factors lead to the differences in experimental results between different adaptive methods across the test prob-
13

lems. Of all the implemented adaptive methods, LD-GSGP reported the least consistent results: while on Boston and Concrete it 
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Fig. 7. Experimental results of the LD50 dataset.

reported the best results at 𝑚𝑖𝑛𝑒𝑓𝑓 , clearly overfit on PPB, LD50, f11 and f16 problems. We consider that this discrepancy relates to 
the underlying “adaptive” mechanics of this algorithm: a simple time-dependent linear decrease that does not take the evolutionary 
dynamics into account. Thus, for some problems, it might happen to work well, whereas for others it might lead to overfitting. Fre-

quently, the SPS-GSGP and DP-GSGP methods seem to exhibit similar performance. We consider that the main reason for this resides 
in the conceptual similarities between the two approaches: the population size is reduced based on the fitness improvement from 
one generation to another. The main difference consists of how exactly the number of individuals to be removed is regulated (see 
Sections 4.2 and 4.6 for more details). In this sense, we speculate that the different approaches to estimating the number of removed 
individuals lead to comparable performances when evaluated on different problems. The generalisability of the PRoFIGSGP method 
was found to be substantially different from the aforementioned methods. In our opinion, this relates to the guiding rationale behind 
the algorithm’s population adaptation, which seems to contrast with that of DP-GSGP and SPS-GSGP: the population grows if there is 
an improvement of the elite from one generation to another, or then there is no improvement after G generations (long period); the 
population decreases otherwise (no improvement in the short-term). While the three methods that exploit evolutionary dynamics for 
adjusting the population size (DP-GSGP, SPS-GSGP, PRoFIGSGP) rely upon rules essentially based on fitness improvement from one 
generation to another, the proposed TIE-DP-GSGP method performs population adjustment using a conceptually different approach – 
by exploring the semantic neighbourhood of the current elite and estimating the proportion of better neighbours. In our opinion, 
such a degree of semantic awareness justifies its empirical superiority assessed on eight symbolic regression problems, in particular 
the robustness to overfitting.

All these results, and in particular the ones obtained on the five real-life applications, show that the novel introduced methods, 
i.e. TIE-DP-GSGP and TIE-DP-GSGP-SEI, were very successful. This outcome represents a strong argument in favour of the use of 
14

semantic awareness as a criterion to decide whether to increment or decrement the population size of GSGP during the evolution. 
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Fig. 8. Experimental results of the f11 dataset.

Furthermore, the presented results indicate that TIE is an appropriate measure to capture the information needed to adapt the 
population size appropriately.

6.1. A comparison with standard GP

All the methods presented and studied so far can be applied in a very natural way to standard GP. This extension, however, 
is impractical for the approaches used in TIE-DP-GSGP and TIE-DP-GSGP-SEI, because TIE-based methods are deeply rooted in the 
concept of semantic neighbourhood, introduced in Section 3.1, and are constructed using GSM applied to a reference individual. 
Given that GSM is a defining operator of GSGP, it would be unsuitable to extend the TIE-DP-GSGP and TIE-DP-GSGP-SEI methods to 
standard GP. Although the focus of our work is on GSGP, still it is interesting to investigate how differently GSGP and standard GP 
benefit from all these different ways of managing dynamic populations. Table 5 reports the RMSE on the test set at the maximum 
level of the computational effort reached by all the algorithms for the different studied variants applied to standard GP, together 
with the analogous results for the GSGP variants. The 𝑝-values are also reported in the table. The first observation is that the 
best GSGP variant consistently outperforms the best standard GP variant on all the studied test problems, except for the PPB, Boston 
and f4 datasets, in which no statistically significant difference is visible. Another interesting outcome apparent in Table 5 is that the 
difference between the static population and the dynamic population variants of GSGP is generally more marked than in the case 
of standard GP. Actually, for standard GP the variant that uses a static population size even outperforms the dynamic population 
variants in most of the test cases. In other words, using dynamic populations looks more convenient for GSGP than for standard GP. 
15

This outcome is a further corroboration of the suitability of this research and encourages us to pursue the study.
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Fig. 9. Experimental results of the f16 dataset.

7. Conclusion and future work

The use of dynamic populations is widespread in evolutionary computation. It can be seen either simply as a method to save 
computational effort (in the cases where the population size is steadily decreased during evolution) or, in slightly more sophisticated 
terms, as a way to preserve computational effort in some particular phases of evolution, to spend it more effectively in others (the case 
in most advanced proposed methods, where the population size can increase or decrease dynamically during evolution). Many studies 
exist that exploit dynamic populations in several EAs such as genetic algorithms and differential evolution. The particularity of GP, 
compared to other EAs, is that it evolves complex structures, such as computer programs, that have a dynamic and highly variable 
size. Furthermore, the evolving programs typically grow during the evolution, often giving rise to the well-known phenomenon of 
bloat, which cause a large waste of computational effort. Thus, GP seems a particularly appropriate algorithm to be improved, with 
methods aimed at saving computational effort, and it is only natural that studies apply dynamic populations to GP. However, up to 
date, no systematic study of dynamic populations in GSGP has been published. Nevertheless, GSGP is a particularly resource-greedy 
variant of GP, given that its genetic operators create offspring always larger than their parents, causing fast growth in the code that 
is evolving in the population.

The first element of novelty of this paper is that it applied dynamic populations to GSGP. Different approaches were tested on 
eight datasets, five of which correspond to real-world problems, while the remaining three are artificial benchmarks. Some of the 
studied approaches were inspired by methods previously been applied to other variants of EAs, while two of them were novel. The 
six algorithms used are:
16

• LD-GSGP: a simple linear decrease of the population size, inspired by [30,31].
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Fig. 10. Experimental results of the f4 dataset.

• DP-GSGP: an adaptation to GSGP of the DP algorithm presented in [34].

• TIE-DP-GSGP: a novel variant of the DP-GSGP, with a different fitness stagnation assessment method, based on the TIE measure 
presented in [50].

• TIE-DP-GSGP-SEI: another novel variation of the TIE-DP-GSGP algorithm, that stores the removed individuals in order to reinte-

grate the most promising ones when needed.

• PRoFIGSGP: an adaptation to GSGP of the algorithm presented in [6].

• SPS-GSGP: an adaptation to GSGP of the algorithm presented in [24].

Experimental results show that, given a common budget of computational effort, all the studied algorithms that use a dynamic pop-

ulation outperformed, or in the worst case performed comparably, to the standard version of GSGP. Among the different algorithms, 
the novel ones, based on the TIE measure (i.e., TIE-DP-GSGP and TIE-DP-GSGP-SEI), seem particularly interesting. In fact, besides 
being among the best-performing algorithms on all the studied problems, they are able to return robust models, that show a very 
good performance on unseen data, on problems where overfitting is a known issue, such as Bioavailability, PPB and LD50. Last but 
not least, the results have indicated a clear advantage in using dynamic populations in GSGP compared to standard GP.

In the future, we plan to study other criteria to decide on the variation of the population size, distinct from fitness. For instance, 
the adaption of the population size could be guided by other principles like diversity (genotypic diversity, as it already happens for 
other EAs, or semantic diversity, which would be novel and seems promising for GSGP), model complexity or model interpretability. 
Another interesting topic to extend this work would be to better investigate what individuals should be added to the population 
when the population size needs to grow. The advantages of using old individuals, such as in TIE-DP-GSGP-SEI, compared to random 
17

genetic material, encourage us to hypothesize that more effective strategies could be developed.
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Table 4

𝑝-values of the Wilcoxon test for pairwise comparison of GSGP and its variants. The GSGP algorithm is adopted from Moraglio’s paper [48], whereas LD-GSGP, 
DP-GSGP, PRoFIGSGP and SPS-GSGP algorithms are inspired by Fernandez et al. [30], Vanneschi et al. [34], Eiben et al. [6], and Hallam et al. [24], respectively.

Problem Algorithms

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP_06

Bioav.

GSGP – 1.7e-06 1.7e-06 1.7e-06 1.7e-06 1.7e-06

LD-GSGP 1.7e-06 – 1.7e-06 0.339 1.7e-06 1.7e-06

DP-GSGP 1.7e-06 1.7e-06 – 4.3e-06 0.734 0.766

PRoFIGSGP 1.7e-06 0.339 4.3e-06 – 3.5e-06 3.2e-06

SPS-GSGP 1.7e-06 1.7e-06 0.734 3.5e-06 – 0.614

TIE-DP-GSGP_06 1.7e-06 1.7e-06 0.766 3.2e-06 0.614 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP-SEI_04

Boston

GSGP – 1.9e-06 0.125 0.36 0.094 0.086

LD-GSGP 1.9e-06 – 1.7e-06 2.6e-06 1.7e-06 1.9e-06

DP-GSGP 0.125 1.7e-06 – 0.107 0.469 0.642

PRoFIGSGP 0.360 2.6e-06 0.107 – 0.088 0.086

SPS-GSGP 0.094 1.7e-06 0.469 0.088 – 0.845

TIE-DP-GSGP_06 0.0859 1.9e-06 0.642 0.086 0.845 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP-SEI_04

Concrete

GSGP – 1.7e-06 5.79e-05 3.11e-05 6.89e-05 4.86e-05

LD-GSGP 1.7e-06 – 1.7e-06 1.9e-06 1.7e-06 1.7e-06

DP-GSGP 5.79e-05 1.7e-06 – 1e-04 0.82 0.02

PRoFIGSGP 3.11e-05 1.9e-06 1e-04 – 4.58e-05 0.053

SPS-GSGP 6.89e-05 1.7e-06 0.82 4.58e-05 – 0.013

TIE-DP-GSGP_04 4.86e-05 1.7e-06 0.024 0.053 0.013 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP_05

LD50

GSGP – 0.644 4.3e-06 0.002 0.001 1.9e-06

LD-GSGP 0.644 – 3.2e-06 0.004 0.005 1.7e-06

DP-GSGP 4.3e-06 3.2e-06 – 0.003 0.002 0.075

PRoFIGSGP 0.002 0.004 0.003 – 0.837 2.4e-04

SPS-GSGP 0.0014839 0.0046818 0.002278 0.8373006 – 6.89e-05

TIE-DP-GSGP_05 1.9e-06 1.7e-06 0.075 2.4e-04 6.89e-05 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP-SEI_04

PPB

GSGP – 5.7e-04 1e-04 1.2e-04 1.1e-04 5.31e-05

LD-GSGP 5.7e-04 – 0.125 0.106 0.159 0.017

DP-GSGP 1e-04 0.125 – 0.905 0.77 0.068

PRoFIGSGP 1.2e-04 0.106 0.905 – 0.820 0.150

SPS-GSGP 1.1e-04 0.159 0.77 0.82 – 0.37

TIE-DP-GSGP-SEI_05 5.31e-05 0.017 0.068 0.15 0.37 –

D GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP-SEI_01

F11

GSGP – 0.072 1.8e-05 9.3e-06 3.9e-06 8.5e-06

LD-GSGP 0.072 – 1.8e-05 4.17e-05 1.8e-05 1.02e-05

DP-GSGP 1.8e-05 1.8e-05 – 0.309 0.781 0.441

PRoFIGSGP 9.3e-06 4.17e-05 0.309 – 0.36 0.453

SPS-GSGP 3.9e-06 1.8e-05 0.781 0.36 – 0.614

TIE-DP-GSGP_01 8.5e-06 1.02e-05 0.441 0.453 0.614 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP_02

F16

GSGP – 0.001 0.254 0.254 0.254 0.254

LD-GSGP 0.001 – 1.1e-04 1.1e-04 1.1e-04 1.1e-04

DP-GSGP 0.254 1.1e-04 – 0.128 0.176 0.235

PRoFIGSGP 0.254 1.1e-04 0.128 – 0.670 0.671

SPS-GSGP 0.254 1.1e-04 0.176 0.670 – 0.752

TIE-DP-GSGP_01 0.254 1.1e-04 0.235 0.671 0.752 –

GSGP LD-GSGP DP-GSGP PRoFIGSGP SPS-GSGP TIE-DP-GSGP_02

F4

GSGP – 0.254 0.453 0.975 0.688 0.894

LD-GSGP 0.254 – 0.943 0.185 0.959 0.644

DP-GSGP 0.453 0.943 – 0.184 0.552 0.393

PRoFIGSGP 0.975 0.185 0.184 – 0.569 0.658

SPS-GSGP 0.688 0.959 0.552 0.569 – 0.820

TIE-DP-GSGP_01 0.894 0.644 0.393 0.658 0.820 –
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Table 5

Comparison of the variants of GSGP and the variants of GP on the different test problems, together with the 𝑝-values 
(in bold when the difference is statistically significant (𝑝 < 0.05)). The GSGP algorithm is adopted from Moraglio’s paper 
[48], while the LD-GP, DP-GP, PRoFIGP, and SPS-GP algorithms as well as their adaptation to GSGP, are inspired by 
Fernandez et al. [30], Vanneschi et al. [34], Eiben et al. [6], and Hallam et al. [24] respectively.

Problem GSGP and its variations Test fitness GP and its variations Test fitness p-values

Bioavailability

GSGP 45.028 GP 37.227 0.025

DP-GSGP 30.368 DP-GP 38.715 1.9e-06

LD-GSGP 36.795 LD-GP 38.557 0.036

PRoFIGSGP 42.181 PRoFIGP 37.771 0.22

SPS-GSGP 30.376 SPS-GP 42.425 1.7e-06

TIE-DP-GSGP_06 30.376

Boston

GSGP 8.362 GP 5.86 2.12e-06

DP-GSGP 8.667 DP-GP 5.73 3e-04

LD-GSGP 6.824 LD-GP 7.061 1.7e-04

PRoFIGSGP 8.47 PRoFIGP 7.231 3.2e-06

SPS-GSGP 8.623 SPS-GP 8.375 0.13

TIE-DP-GSGP_06 8.56

Concrete

GSGP 19.167 GP 14.473 4e-04

DP-GSGP 15.817 DP-GP 15.582 0.558

LD-GSGP 12.143 LD-GP 15.261 1.9e-06

PRoFIGSGP 15.724 PRoFIGP 17.682 0.007

SPS-GSGP 15.866 SPS-GP 20.017 7.6e-06

TIE-DP-GSGP_04 15.669

LD50

GSGP 2236.109 GP 2129.449 0.009

DP-GSGP 2116.802 DP-GP 2088.826 0.082

LD-GSGP 2253.352 LD-GP 2168.068 0.003

PRoFIGSGP 2198.44 PRoFIGP 2107.628 0.135

SPS-GSGP 2229.225 SPS-GP 2189.461 0.44

TIE-DP-GSGP_05 2043.26

PPB

GSGP 34.163 GP 30.185 0.001

DP-GSGP 31.005 DP-GP 31.261 0.64

LD-GSGP 33.123 LD-GP 31.417 0.86

PRoFIGSGP 32.155 PRoFIGP 30.776 0.7

SPS-GSGP 32.224 SPS-GP 32.77 0.19

TIE-DP-GSGP_05 30.606

f11

GSGP 2.361 GP 0.633 0.068

DP-GSGP 0.236 DP-GP 0.663 3.8e-06

LD-GSGP 0.621 LD-GP 1.145 0.1

PRoFIGSGP 0.26 PRoFIGP 2.025 1.2e-05

SPS-GSGP 0.241 SPS-GP 1.306 1.1e-05

TIE-DP-GSGP_01 0.243

f4

GSGP 1.719 GP 1.719 0.44

DP-GSGP 1.718 DP-GP 1.719 0.909

LD-GSGP 1.718 LD-GP 1.719 0.106

PRoFIGSGP 1.71 PRoFIGP 1.719 0.614

SPS-GSGP 1.718 SPS-GP 1.719 0.75

TIE-DP-GSGP_01 1.718

f16

GSGP 3.273 GP 7.281 0.002

DP-GSGP 2.703 DP-GP 5.082 2e-04

LD-GSGP 6.35 LD-GP 6.475 0.45

PRoFIGSGP 2.703 PRoFIGP 4.424 0.001

SPS-GSGP 2.703 SPS-GP 3.553 0.106

TIE-DP-GSGP_01 2.703
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