514 research outputs found

    SOLVING TWO-LEVEL OPTIMIZATION PROBLEMS WITH APPLICATIONS TO ROBUST DESIGN AND ENERGY MARKETS

    Get PDF
    This dissertation provides efficient techniques to solve two-level optimization problems. Three specific types of problems are considered. The first problem is robust optimization, which has direct applications to engineering design. Traditionally robust optimization problems have been solved using an inner-outer structure, which can be computationally expensive. This dissertation provides a method to decompose and solve this two-level structure using a modified Benders decomposition. This gradient-based technique is applicable to robust optimization problems with quasiconvex constraints and provides approximate solutions to problems with nonlinear constraints. The second types of two-level problems considered are mathematical and equilibrium programs with equilibrium constraints. Their two-level structure is simplified using Schur's decomposition and reformulation schemes for absolute value functions. The resulting formulations are applicable to game theory problems in operations research and economics. The third type of two-level problem studied is discretely-constrained mixed linear complementarity problems. These are first formulated into a two-level mathematical program with equilibrium constraints and then solved using the aforementioned technique for mathematical and equilibrium programs with equilibrium constraints. The techniques for all three problems help simplify the two-level structure into one level, which helps gain numerical and application insights. The computational effort for solving these problems is greatly reduced using the techniques in this dissertation. Finally, a host of numerical examples are presented to verify the approaches. Diverse applications to economics, operations research, and engineering design motivate the relevance of the novel methods developed in this dissertation

    Economic Engineering Modeling of Liberalized Electricity Markets: Approaches, Algorithms, and Applications in a European Context: Economic Engineering Modeling of Liberalized Electricity Markets: Approaches, Algorithms, and Applications in a European Context

    Get PDF
    This dissertation focuses on selected issues in regard to the mathematical modeling of electricity markets. In a first step the interrelations of electric power market modeling are highlighted a crossroad between operations research, applied economics, and engineering. In a second step the development of a large-scale continental European economic engineering model named ELMOD is described and the model is applied to the issue of wind integration. It is concluded that enabling the integration of low-carbon technologies appears feasible for wind energy. In a third step algorithmic work is carried out regarding a game theoretic model. Two approaches in order to solve a discretely-constrained mathematical program with equilibrium constraints using disjunctive constraints are presented. The first one reformulates the problem as a mixed-integer linear program and the second one applies the Benders decomposition technique. Selected numerical results are reported

    An exact solution method for binary equilibrium problems with compensation and the power market uplift problem

    Get PDF
    We propose a novel method to find Nash equilibria in games with binary decision variables by including compensation payments and incentive-compatibility constraints from non-cooperative game theory directly into an optimization framework in lieu of using first order conditions of a linearization, or relaxation of integrality conditions. The reformulation offers a new approach to obtain and interpret dual variables to binary constraints using the benefit or loss from deviation rather than marginal relaxations. The method endogenizes the trade-off between overall (societal) efficiency and compensation payments necessary to align incentives of individual players. We provide existence results and conditions under which this problem can be solved as a mixed-binary linear program. We apply the solution approach to a stylized nodal power-market equilibrium problem with binary on-off decisions. This illustrative example shows that our approach yields an exact solution to the binary Nash game with compensation. We compare different implementations of actual market rules within our model, in particular constraints ensuring non-negative profits (no-loss rule) and restrictions on the compensation payments to non-dispatched generators. We discuss the resulting equilibria in terms of overall welfare, efficiency, and allocational equity

    Computing all solutions of Nash equilibrium problems with discrete strategy sets

    Full text link
    The Nash equilibrium problem is a widely used tool to model non-cooperative games. Many solution methods have been proposed in the literature to compute solutions of Nash equilibrium problems with continuous strategy sets, but, besides some specific methods for some particular applications, there are no general algorithms to compute solutions of Nash equilibrium problems in which the strategy set of each player is assumed to be discrete. We define a branching method to compute the whole solution set of Nash equilibrium problems with discrete strategy sets. This method is equipped with a procedure that, by fixing variables, effectively prunes the branches of the search tree. Furthermore, we propose a preliminary procedure that by shrinking the feasible set improves the performances of the branching method when tackling a particular class of problems. Moreover, we prove existence of equilibria and we propose an extremely fast Jacobi-type method which leads to one equilibrium for a new class of Nash equilibrium problems with discrete strategy sets. Our numerical results show that all proposed algorithms work very well in practice

    Equilibrium modeling and solution approaches inspired by nonconvex bilevel programming

    Full text link
    This paper introduces the concept of optimization equilibrium as an equivalently versatile definition of a generalized Nash equilibrium for multi-agent non-cooperative games. Through this modified definition of equilibrium, we draw precise connections between generalized Nash equilibria, feasibility for bilevel programming, the Nikaido-Isoda function, and classic arguments involving Lagrangian duality and social welfare maximization. Significantly, this is all in a general setting without the assumption of convexity. Along the way, we introduce the idea of minimum disequilibrium as a solution concept that reduces to traditional equilibrium when equilibrium exists. The connections with bilevel programming and related semi-infinite programming permit us to adapt global optimization methods for those classes of problems, such as constraint generation or cutting plane methods, to the problem of finding a minimum disequilibrium solution. We show that this method works, both theoretically and with a numerical example, even when the agents are modeled by mixed-integer programs

    A MPCC-NLP approach for an electric power market problem

    Get PDF
    The electric power market is changing - it has passed from a regulated market, where the government of each country had the control of prices, to a deregulated market economy. Each company competes in order to get more clients and maximize its profits. This market is represented by a Stackelberg game with two firms, leader and follower, and the leader anticipates the reaction of the follower. The problem is formulated as a Mathematical Program with Complementarity Constraints (MPCC). It is shown that the constraint qualifications usually assumed to prove convergence of standard algorithms fail to hold for MPCC. To circumvent this, a reformulation for a nonlinear problem (NLP) is proposed. Numerical tests using the NEOS server platform are presented
    • …
    corecore