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Abstract 

The electric power market is changing - it has passed from a regulated market, where 
the government of each country had the control of prices, to a deregulated market 
economy. Each company competes in order to get more clients and maximize its profits. 
This market is represented by a Stackelberg game with two firms, leader and follower, 
and the leader anticipates the reaction of the follower. 
The problem is formulated as a Mathematical Program with Complementarity 
Constraints (MPCC). It is shown that the constraint qualifications usually assumed to 
prove convergence of standard algorithms fail to hold for MPCC. To circumvent this, a 
reformulation for a nonlinear problem (NLP) is proposed. Numerical tests using the 
NEOS server platform are presented. 
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1. Introduction 

 

The electric power market is in transition. Until recently, the market was regulated by 
the government of each country, and companies could only sell to a restrict set of 
consumers. 
With the deregularization, electricity industry becomes a liberalized activity where 
planning and operation scheduling are independent activities which are not constrained 
by centralized procedures. On the other side, the generator firms take more risk as they 
become responsible for their decisions. 
While in a regulated market the industry goal was to minimize the costs - once the price 
was fixed - now, it is also to maximize profit. A competition environment is created in 
order to benefit the consumers through price reduction, but ill effects can occur if the 
level of concentration in the market grows. 
In order to study the interaction of all market participants and to have a better 
knowledge of the market conditions, firms and governments need suitable decision-
support models. The deregularization process is under way in many countries. In 1998, 
the USA has begun their transition: California, Massachusetts and Rhode Island were 
the first states, but others will follow them over the next years. Nowadays, America’s 
electric power industry is highly fragmented [1]. 
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In Europe, the process has started in the decade of 80 in England and Wales. In the last 
years, the market has been faced with fusions and merges between companies. The 
directives of European Union for an electric power liberality led up to increasing 
institutional and physical connections between markets from different countries. Some 
papers about studies in course, related with German, French and The Netherlands power 
markets - see [2-6] for more details - have emerged. 
According to [7], there are reasons to consider electric power as a special commodity: 
all power travels over the same set of power lines, independently of the firm that 
generated it; this difference is particularly marked when the networks contains loops 
and there are transmission capacity limits; also electricity has unique physical 
properties, namely Kirchhoff voltage and current laws. 
As the electricity is difficult to store, and the quantity of power must be instantly 
adjusted to the demand, the companies that lead the market could easily manipulate the 
price, changing it to higher values, especially in peak consumption periods. The 
scientific community try to find models to predict how the prices will react to this new 
market structure. 
The organization of this paper is as follows: Section 2 introduces the Stackelberg game 
and the related concepts and definitions of optimization. In Section 3, it is present the 
formulation of the electric power problem as well as its transformation from MPCC into 
a MPCC-NLP problem and also the data specifying the network for the computational 
experiments. Finally, the numerical results obtained by a set of solvers are shown and 
the main conclusions are discussed in the last section. 
 
 
 
2 Stackelberg Game and Optimization 

 
To simulate the decision making process for defining offered prices in a deregulated 
environment, it was used the game theory, in particular the Stackelberg game. A 
parallelism between this economic theory and optimization is also addressed. 
 
 
2.1 Stackelberg Game 

 

In Stackelberg game there are two kinds of players: the leader and the followers. The 
leader firm has the power to manipulate the prices, production and expansion capacity 
in order to maximize its own profit and anticipates the reaction of the rest of the player 
firms. The leader uses the knowledge of the reactions in order to choose its own optimal 
strategy. The follower decisions are dependent on the leader strategy. The follower does 
not have the perception how its decisions influence the leader resolution. 
Between followers their behaviour act like a non-cooperative Nash game, where all 
players have the same information and no one can increase their own profit through 
unilateral decisions [8]. 
A Stackelberg game can be formulated as a bilevel programming problem and therefore 
we introduce the reader to it in the next subsection. 
 
 
 
 
 



2.2 Bilevel Optimization 

 

Definition 1 Bilevel Optimization Problem 
A bilevel optimization problem is composed by a first-level problem: 
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where y , for each value of x , is the solution of the second-level problem: 
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The variables x [y] are called as first [second] level variable, g(x,y) [h(x,y)] are the first 

[second] level constraints and F1(x,y) [F2(x,y)] are the first [second] level objective 

function. 

 

A typical bilevel problem is an optimization model whose constraints require that 
certain of its variables (x) solve an optimization subproblem that dependents 
parametrically on the remaining variables (y). 
Regarding with careful attention the structure of the bilevel problem, it is possible to 
observe that the first/second level of the bilevel problem corresponds to the 
leader/followers players on the Stackelberg game. 
A bilevel problem is convex if F2 and h are convex functions in y for all values of x that 
is to say if the second level problem is convex [9]. The problem studied in this paper is 
a convex bilevel problem. The great advantage of this property in bilevel optimization is 
that, under certain conditions, the second level problem can be replaced by their own 
Karush-Kuhn-Tucker (KKT) conditions, and the resulting problem is one level 
optimization problem with complementarity constraints.  
 
 
2.3 Mathematical Program with Complementarity Constraints 

 

Definition 2 MPCC Problem 
Mathematical Program with Complementarity Constraint (MPCC) is defined as: 
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where ( )210 ,, zzzz = , with the control variable 
n

IRz ∈0 and the state pIRzz ∈21, ; F is 

the objective function, IEici ∪∈, are the set of equality and inequality constraints, 

respectively. The sets E and I are the finite sets of indices. The objective function F and 

the constraints IEici ∪∈, are assumed twice continuously differentiable. The 



constraints related to complementarity are defined with the operator ⊥  and demand 

that the product of the two nonnegative quantities must be zero, i.e., 021 =ii zz , 

{ }pi ,...,1∈ . 

 

The concept of complementarity distinguishes an MPCC from a standard nonlinear 
optimization problem and is a synonymous of equilibrium, reason why this type of 
problem is so popular in optimization (see [8, 10, 11] for some applications in the last 
years). 
In engineering, the MPCC problems are being used for contact and structural mechanic 
problems, namely in robotic [3, 12, 13], obstacle problems [14], elastohydrodinamic 
lubrification [15, 16], process engineering models [17] and traffic network equilibrium 
[18, 19]. 
Applications in economics include the general equilibrium and game theory from which 
Nash and Stackelberg game are instances [20–22].  
A new field of applications is in ecological problems: the questions related with 
reduction of greenhouse gas emission rights, coalition formation and international trade 
in order to negotiate the emission rights between develop and developing countries can 
be also formulated as a MPCC problem [23, 24]. 
The MPCC problem is nonsmooth mostly due to the complementarity constraints. The 
optimal conditions are complex and very difficult to verify. Besides, the feasible set of 
MPCC is ill-posed since the constraint qualifications - namely, Mangasarian Fromovitz 
(MFCQ) and Linear Independent (LICQ) - which are commonly assumed to prove 
convergence of standard nonlinear programming do not hold at any feasible point of the 
complementarity constraints [25, 26]. This implies mostly that the multiplier set is 
unbounded, the active constraint normal are linearly dependent and the linearizations of 
the MPCC can become inconsistent arbitrarily close to a solution. 
The violation of constraint qualifications has led to a number of specific algorithms for 
MPCCs, such as branch-and-bound [27], implicit nonsmooth approaches [28], 
piecewise SQP methods [8] and perturbation and penalization approaches [29]. But the 
use of specific solvers for MPCC is not a real solution at this time, since these 
algorithms still need rather strong assumptions to ensure convergence. 
The search of new techniques and algorithms in order to solve real problems with large 
dimension is still an area with intense research. Recently, some authors suggested 
solving MPCC problem by an interesting way: reformulated it into an equivalent NLP 
problem. This formulation allows to take advantage of certain NLP algorithms features 
in order to obtain rapid local convergence. Besides, it works like a challenge for the 
NLP solver, because it allows to test its reliability and robustness, whereas the MPCC 
problem has specific irregularities.  
A MPCC defined in (3) can be reformulated as an equivalent NLP problem: 
 
Definition 3 NLP formulation of the MPCC problem 
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Recall that the complementarity constraint was replaced by a nonlinear inequality, 
relaxing the problem. The transformation from a MPCC problem into a NLP problem 
allows to use standard NLP solvers taking to advantage of the convergence properties of 
these solvers. 
One can easily show that the reformulated problem has the same properties that the 
previous one, including constraint qualifications and second-order conditions, which 
means that the violation of MFCQ is still a reality. However, in the last few years, some 
studies show that strong stationarity is equivalent to the KKT conditions of the MPCC-
NLP problem [30, 31]. This fact has advantages because strong stationarity is a useful 
and practical computation characterization, once it is relatively easy to find a stationary 
point in a NLP solver, under reasonable assumptions. 
 
 
3. The electric power market problem 

 

The problem described in this paper is based on the model proposed in [32]. It is a 
competitive power market, formulated as an oligopolistic equilibrium model.  
There are a number of generator firms, each owing a given number of units. These make 
an hourly bid to an Independent System Operator (ISO). The ISO, taking in 
consideration the network, solves a social welfare maximization problem, announces a 
dispatch for each bidder and possibly distinct prices at each node. It decides how much 
power to buy from generators and how much power to distribute to consumers and what 
prices to charge. All these decisions are made with the optimal power flow (OPF) in 
mind. 
In spite of the fact that the ISO expects the bid to be a reflex of the true costs, the reality 
is different: the units, generally, increase their own bid, without the knowledge of the 
outside world, as the figure 1 shows. This strategy has as main goal the increase of the 
units’ profit. 
 

 
Fig. 1 Marginal cost and bid curves 

 
The leader generator first decides and takes as input all the perceptions and information 
that it could have about the market (including predictable bids of the other firms, 
demand and supply functions) and it maximizes its profit inside a set of spatial price 
equilibrium constraints and Kirchhoff’s voltage and current laws. The followers firms 
make their own decisions taking into account the leader decision. 
 
 



3.1 Formulation 

 

In [32] the electric power market was formulated as a bilevel problem. In the first level - 
the leader level - the parameter related with the bid curve corresponds to the first level 
variable. In the second level - the follower level - there is a simulation of the conjectures 
of the market promoted by ISO and can be described as a commodity spatial price 
equilibrium problem. The model tries to find the optimal bid for each company. 
Next we introduce the notation used in the mathematical formulation:  
 
Indices: 

i node in the network 
ij arc from node i to node j 
m number of Kirchhoff voltage loops in the network 

 
Sets: 

N set of all nodes 
A set of all arcs 
Sf  set of generator nodes under control of leader firm f 
P set of all generators nodes 
D set of all demand nodes 
L set of Kirchhoff’ voltage loops m 
Lm set of ordered arcs (clockwise) associated with loop m 

 
 
Recall that, a node can be, simultaneously a generator and a consumer, so P and D are 
not necessarily disjoint and their union could be a proper subset of N. The uniqueness of 
the net flow on each arc is ensured by the Kirchhoff’s laws in the linearized DC models 
and, consequently, the number of (independent) loops are #A - #N + 1 (where #X is the 
set X cardinality). 
 
Parameters: 

ii ba ,   intercept and slope of supply function (marginal cost) for the generator at 

node Pi ∈  

ii dc ,  intercept and slope of demand function for consumer at node Di ∈  

iα   upper bound of the bid for the unit at node fSi ∈  

iSQ  upper bound of production capacity for the unit at node Pi ∈  

ijT   maximum transmission capacity on arc Aij ∈  

ijr  reactance on arc Aij ∈  

ijms  1± corresponding to the orientation of the arc Aij ∈ in loop Lm ∈  

(+1 if ij has the same orientation as the loop m) 
 
First-Level decision variable 

 

iα  bid for the unit at node Pi ∈  

 
 

In this model, it is assumed that the generate firms can only manipulate α (the intercept 

in the bid function) and not the slopeb , due to market and optimization assumptions. 



Let iα  be fixed for the competitive firms (ie, iα  fixed fSPi \∈∀ ) and variables for the 

leader firms (ie, iα  variable fSi ∈∀ ). 

 
Primal variables in the second-level: 

iSQ   vector defined by quantity of power generated by the unit at node i 

(
ii SiiS QbaQ += if Pi ∈  and 0=

iSQ if Pi ∉ ) 

iDQ  quantity of power demanded at node i 

(
ii DiiD QdcQ −= if Di ∈  and 0=

iDQ if Di ∉ ) 

ijT  matrix defined by MW transmitted from node i to node j 

 
Dual variables in the second-level 

iλ  marginal cost at node i 

iµ  marginal value of generation capacity for unit at node i 

ijθ  marginal value of transmission capacity on arc ij 

mγ  shadow price for Kirchhoff voltage law for loop m 

 
Next, it is defined the second-level convex quadratic problem. The objective function is 
related with the maximization of social welfare: 
 

max 
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This function reports a solution where the firms maximize their profits and the 
consumers maximize the utility of the product. 
The following constraints report to a spatial price equilibrium plus a constraint due to 
Kirchhoff voltage law. 

• Nonnegative demand variables: 
,0≥

iDQ  Di ∈  (6) 

 

• Lower and upper bounds for transmission variables: 

,0 ijij TT ≤≤  Aij ∈  (7) 

 

• Minimum and maximum capacity of production: 

,0
ii SS QQ ≤≤  Pi ∈  (8) 

 

• Conservation constraints: 

0
::

=−+− ∑∑
∈∈ Aijj

ij

Aijj

ijSD TTQQ
ii

 (9) 

 

• Kirchhoff voltage law: 

0=∑
∈

ijij

Lmij

ijm Trs  
(10) 

 
 



If in equation (8), by economic reasons, the minimum production level could not be 
zero, it is possible to change the lower bound and still use the same model. 
The description of the first level of the electric power is complete by taking into account 
that for the follower firms the bids are already fixed. The determination of the dominant 

company profit consists in finding a bid vector ( )
fi

f
Si ∈≡ :αα , a vector of supplies 

SQ , a vector of demands DQ  and a vector of transmission capacities T , by solving the 

following maximization problem. 
 

Maximize 
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where SQ , DQ  and T  for each value of ( )Pii ∈≡ :αα , are the solution of the second-

level problem (5)-(10). 
 

It is provided in [33] that, for each vectorα , there exists a unique globally optimal 
solution of the quadratic problem above. 
But, solving a bilevel problem is not an easy task. So, the approach is to replace the 
ISO’s lower-level optimization problem by its stationary conditions that results in a 
system of equilibrium constraints. To write the above information into a vector-matrix 
notation, it is necessary to introduce two additional matrices. 
Let ∆  be the matrix which give us the information about the pair (node, arc) in the 
electric network:  









∈∈=−

∈∈=

=∆

esother valu,0
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 someforif,1

NjorAjil

NjAijl
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Let R be the matrix (arc, cycle) related with the reactance coefficients: 
 



 ∈

=
otherwise,0

 if, mijijm

ijm

Lijrs
R  (13) 

 
So, the Karush-Kuhn-Tucker (KKT) optimality conditions of the lower problem are: 
 

SS QQ −≤0  ⊥  0≥µ  

(14) 

SQ≤0  ⊥  ( ) 0≥+++− SQbdiagαµλ  

DQ≤0  ⊥  ( ) 0≥++− DQddiagc αλ  

θ≤0  ⊥  0≥−TT  

T≤0  ⊥  0≥++∆ γθλ R
T  

free λ   0=∆+− TQQ SD
 

free γ   0=TR
T  



 
 

where λθµ ,,  and γ  are the dual variables. The notation diag(w) represents the 

diagonal matrix whose diagonal entries are the components of the vector w. 
Then, the second-level problem (5)-(10) can be replaced by the KKT conditions (14) 
and the MPCC problem is obtained by joining (11) and (14). 
For computational reasons the objective function needs to be reformulated, since it is 

neither convex nor concave due to the term
iSiQλ . The equivalent objective function for 

solve the maximization of the leader firm profit is: 

( ) ≡Sf Q,λπ ( ) ∑∑
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3.2 Data 

 

The electric power network includes a circuit with 30 nodes, which 6 are nodes with 
generators - 3 for the leader firm A and the 3 remaining for the follower firm B - and 21 
are demand nodes. Connecting the nodes there are 41 arcs and 12 loops. Figure 2 shows 
a scheme that provides all the necessary information.  

 
Fig. 2 Electric Network 

 

 

The data related with production, demand, transmission values are based on [7]. The 
generator cost function, reactance and upper bounds for supply and transmission flows 



values are also given. As a safety measure of the network the upper bounds values for 
the transmission capacity are 60% of the values assumed in [8]. 
To solve the dominant firm A problem it is assumed that the bids for the units of the 

company B are equals to their marginal costs, which means a=α . 

The demand curve for each costumer node is determined by 
iDii QdP −= 40 where id  is 

chosen so that MWhPi /30$= when 
iDQ  equals the value assumed in [34]. 

The code of this problem is in AMPL language and can be found in the MacMPEC [35] 
with the name monteiro.mod. It is a problem with 136 variables, 201 constraints where 
62 of them are complementarity constraints. 
To solve the problem, the MPCC-NLP approach was used, meaning that all 
complementarity constraints were reformulated as nonlinear constraints according the 
definition (4). 
 
4 Computational results and conclusions 

 

To solve the electric power problem it were used three nonlinear solvers that have 
distinct characteristics. 
Lancelot [36] is a standard Fortran 77 package for large scale nonlinear optimization, 
developed by Conn, Gould and Toint. The software uses an augmented Lagrangian 
approach and combines a trust region approach adapted to handle the bound constraints. 
Loqo [37] was developed by Vanderbei and is a software for solving smooth 
constrained optimization problems. It is based on an infeasible primal-dual interior 
point method applied to a sequence of quadratic approximations. It uses line search to 
induce global convergence and the Hessian is exact. 
The Snopt, developed by Gill, Murray and Saunders, is a software package for solving 
large-scale linear and nonlinear programs. The functions used should be smooth but not 
necessary convex and it is especially effective for problems whose functions and 
gradients are expensive to evaluate. 
The NEOS Server [38] platform was used to interface with the selected solvers. NEOS 
(Network Enabled Optimization System) is an optimization service that is available 
through the Internet. It is a large set of software packages considered as the state of the 
art in optimization.  
The numerical results obtained by the used NLP solvers are presented in Table 1 where 
the objective function together with the first level variables are shown. 
 
 

Solver Profit function )(π  Bid ( )fα  

LANCELOT 37.53 (35.83, 40, 29.80) 
LOQO 37.53 (35.83, 36.09, 20) 
SNOPT 37.53 (35.83, 39.99, 0) 

Table 1 Objective function and bid results 

  
  
Curiously, although it has been reached an identical value for all solvers for the 
objective function, the same didn’t happen for the bid variable, which take us to believe 
for the existence of the several local maximum points. 
For the second-level variables the values are also different, as the Tables 2 and 3 
expose. 
 



Node Lancelot Loqo Snopt Node Lancelot Loqo Snopt 

2 44.98 44.98 44.98 17 0 -1.37e-14 0 
3 2.55 2.55 2.55 18 0 -4.54e-15 -2.28e-26 
4 6.87 6.87 6.87 19 0 -4.55e-15 2.94e-13 
5 41.04 41.04 41.04 20 0 -4.71e-15 -5.98e-26 
7 0 -1.43e-14 0 21 0 0 0 
8 10.01 10.01 10.01 23 0 -6.42 2.96e-13 

10 0 -1.26e-14 8.08e-28 24 0 0 0 
12 0 -1.41e-14 1.09 26 0 0 0 
14 0 1.35e-14 0 29 0 0 0 
15 0 -5.71e-15 -2.96e-13 30 0 0 0 
16 1.32e-05 -4.32e-15 5.11e-13     

Table 2 Demanded power 

  
 

Node 1 2 5 8 11 13 

Lancelot 44.30 10.09 41.04 10.01 1.29e-5 0 
Loqo 44.31 10.09 41.04 10.01 1.60e-14 0 
Snopt 44.31 10.09 41.04 10.01 -2-16e-13 0 

Table 3 Generated Power 

 
There are some demand nodes that practically do not receive electric power. This may 
be explained for two reasons: economical ones because it is possible that the 
transportation of the energy for these places are too expensive and by the existence of 
large demander nodes close to the generator units that absorbed all the power produced. 
It has been shown that MPCC-NLP approach should be considered to solve real 
problems. 
As future work it is proposed the study of this problem developed as a Nash model, 
where both firms compete at the same level and with the same market information. 
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