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Abstract

It is well known that the mixed linear complementarity problem can be
used to model equilibria in energy markets as well as a host of other engineer-
ing and economic problems. The binary-constrained mixed linear complemen-
tarity problem is a formulation of the mixed linear complementarity problem
in which some variables are restricted to be binary. This paper presents a
novel approach for solving the binary-constrained mixed linear complementar-
ity problem. First we solve a series of linear optimization problems that enables
us to replace some of the complementarity constraints with linear equations.
Then we solve an equivalent mixed integer linear programming formulation of
the original binary-constrained mixed linear complementarity problem (with
a smaller number of complementarity constraints) to guarantee a solution to
the problem. Our computational results on a wide range of test problems,
including some engineering examples, demonstrate the usefulness and the ef-
fectiveness of this novel approach.
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Linear Programming.

1. Introduction

The discretely-constrained mixed linear complementarity problem (DC-
MLCP) is a formulation of the mixed linear complementarity problem (MLCP)
in which some of the variables are restricted to be discrete. The DC-MLCP
has many practical applications. For example, it includes a realistic model
of market equilibrium in electric power markets and for grid based industries
[21, 28, 29, 51, 34]. It also models the interaction between several players in a
non-cooperative game with binary decisions, such as transportation and facility
location models [9] and agriculture and land-use planning [60]. The important
benefits of DC-MLCPs are further described in [17], where their usefulness is
shown for solving important problems in transportation networks and power
system networks with storage. In most applications of DC-MLCP, the discrete
variables are binary and represent the on/off status of the players or other
entities involved, such as power generators in the power systems context. For
this reason, this paper focuses on DC-MLCP with binary variables; we call
this problem the binary-constrained mixed linear complementarity problem
(BC-MLCP).

More formally, the mathematical formulation of the BC-MLCP is described

as follows. Given the vector q =

(
q1

q2

)
∈ Rn1 × Rn2 and the matrix A =(

A11 A12

A21 A22

)
∈ Rn×n, find

(
z1

z2

)
∈ Rn1 × Rn2 , where n1 + n2 = n, such

that:

0 ≤ q1 +
(
A11 A12

)( z1

z2

)
⊥ z1 ≥ 0 (1a)

0 = q2 +
(
A21 A22

)( z1

z2

)
, z2 free, (1b)

where some components of the variable

(
z1

z2

)
are constrained to be binary.

z1 and z2 are called the complementarity and the free variables, respectively.
The DC-MLCP has not been studied widely in the literature. Gabriel

et al. [28] proposed a mixed linear integer programming (MILP) approach
in which the complementarity constraints, as well as the integrality of the
discrete variables are relaxed. They showed that their approach was suitable
to energy markets. Their approach has also been successfully used to solve the
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Nash-Cournot game with application to power markets [29], and to solve the
electricity pool pricing [51].

As opposed to the DC-MLCP, the linear complementarity problem (LCP)
has attracted a lot of interest due to its wide range of applications [5, 10, 11,
19, 61]. Several solution techniques have been proposed in the literature for
the LCP [20, 40, 46, 36, 39, 1, 4]. Most of these techniques (Lemke’s algorithm,
Projected Gauss Seidel, etc.) are iterative algorithms and they make use of
linear algebra to solve or approximately solve the LCP, see [41, 42, 8, 58, 59, 46].
Some of these methods are impressively successful when the matrix A has a
particular structure. The classes of positive semi-definite and P matrices are
the most interesting of these classes. For the positive semi-definite matrices,
the LCP always has a solution provided it is feasible, i.e., the linear constraints
are consistent, as shown by Cottle et al. [10].

It has been shown that solving an LCP is equivalent to finding a stationary
point of a bilinear programming problem (BPP) [47]. In this case, the LCP
has a solution if and only if there is a global solution to the corresponding
BPP with optimal value equal to zero. However, the BPP is an NP-hard
problem. Therefore using global optimization techniques for the BPP in the
case of the LCP will not make the problem less hard. Al-Khayyal [3], Júdice
and Faustino [37], and Júdice [38] have solved the LCP using an equivalent
quadratic programming formulation.

In this paper, we propose a new solution approach for the BC-MLCP. Our
approach consists of two steps. Firstly, we consider the RLT relaxation of the
complementarity constraints and solve a series of LPs that enables us to replace
some of these constraints with linear equations. We present theoretical results
to show that we do not lose any point that satisfies the BC-MLCP constraints.
Then, we have a second step which ensures that it always finds a solution that
satisfies all the constraints of the BC-MLCP. This is the approach proposed by
Sherali et al. [55] for LCPs. It consists of solving an MILP that is equivalent
to the BC-MLCP. We validate our proposed solution approach on some 1400
test instances that include well-known engineering applications.

The rest of this paper is organized as follows. In Section 2, we present the
different reformulations of the problem that the reader will encounter in this
paper. We review the relevant literature in Section 3. The description of our
proposed solution approach is presented in Section 4 and the computational
experience is discussed in Section 5. Finally some concluding remarks are
given in Section 6.

Notation:. Let N = {1, . . . , n1, n1 + 1, . . . , n1 + n2} = {1, . . . , n}, B = {i ∈
N : zi is binary}, N1 = {1, . . . , n1} and N2 = {n1 + 1, . . . , n1 + n2} = N \N1.
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In this paper, n1 and n2 designate the number of complementarity and free
variables, respectively, and n = n1 + n2 is the total number of variables.

2. Problem formulations

In this section we present the different formulations used throughout this
paper.

2.1. An equivalent reformulation of the BC-MLCP

Solving the BC-MLCP is equivalent to finding a point z1 ∈ Rn1 and z2 ∈
Rn2 that satisfies the following system:

q1 + A11z1 + A12z2 ≥ 0 (2a)

(q1 + A11z1 + A12z2)T z1 = 0 (2b)

q2 + A21z1 + A22z2 = 0 (2c)

z2 free (2d)

z1 ≥ 0 (2e)

z1
i , z

2
j ∈ {0, 1} for i ∈ B ∩N1, j ∈ B ∩N2 (2f)

Assumption 1. All the continuous variables satisfy 0 ≤ z1
i ≤ u1

i with u1
i ∈ R+

for all i ∈ N1 \ B, and l2i ≤ z2
i ≤ u2

i with u2
i , l

2
i ∈ R and u2

i > l2i for all
i ∈ N2 \B.

Gabriel et al. [28] give motivations for Assumption 1, and propose a method
for finding suitable bounds.

Lemma 1. Suppose that Assumption 1 is in force such that 0 ≤ z1
i ≤ u1

i with
u1
i ∈ R+ for all i ∈ N1 \ B, and l2i ≤ z2

i ≤ u2
i with u2

i , l
2
i ∈ R and u2

i > l2i for
all i ∈ N2 \B. Then, without loss of generality, we can assume that zi ∈ [0, 1]
for all i ∈ N \ B, in other words, all the solutions of the BC-MLCP satisfy
zi ∈ [0, 1].

A proof of Lemma 1 is given in Appendix B.

In order to simplify the notation used so far, we set x =

(
z1

z2

)
, and we

let Ai ∈ R1×n be the ith row of the matrix A, and qi the ith element of the

vector q. We can therefore define the following set F , which is equivalent
(

in

the sense that a solution x to any optimization problem over the set F is a

solution to the BC-MLCP
)

to the set of all the solutions of the BC-MLCP

considering Assumption 1.
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F =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
qi + Aix ≥ 0 for i ∈ N1

(qi + Aix)xi = 0 for i ∈ N1

qi + Aix = 0 for i ∈ N2

0 ≤ xi ≤ 1 for i ∈ N \B
xi ∈ {0, 1} for i ∈ B

 .

Note that F does not directly relate to an MLCP as it is not a square
system. This is because the constraints xi ≤ 1 for all i ∈ N \B and xi ∈ {0, 1}
for all i ∈ B do not have associated dual variables. The rest of this paper
focuses on finding a point x ∈ F that is a solution to the BC-MLCP.

2.2. An RLT-based relaxation of the set F
Following the idea of the RLT relaxation [54], we introduce the variables

yij = xixj for 1 ≤ i ≤ j ≤ n and relax the quadratic constraint yij = xixj with
the linear inequalities yij ≥ 0, xi − yij ≥ 0, xj − yij ≥ 0 and yij − xi − xj +
1 ≥ 0 for all pairs i, j. These inequalities are also known as the McCormick
inequalities [44]. We also relax the binary constraints as 0 ≤ xi ≤ 1 and
strengthen this relaxation by adding the constraints yii = xi for i ∈ B. These
constraints are redundant for F but can prove useful in the relaxation F̃ .

The RLT relaxation of the set F is given by the set

F̃ =



x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qi + Aix ≥ 0 for i ∈ N1

qixi +
n∑

j=1

Aijyij = 0 for i ∈ N1

qi + Aix = 0 for i ∈ N2

0 ≤ xi ≤ 1 for i ∈ N
yii = xi for i ∈ B
yij ≥ 0 for 1 ≤ i ≤ j ≤ n
yij ≤ xi for 1 ≤ i ≤ j ≤ n
yij ≤ xj for 1 ≤ i ≤ j ≤ n

yij + 1 ≥ xi + xj for 1 ≤ i ≤ j ≤ n



.

It is important to note that if both xi and xj are binary, then the Mc-
Cormick inequalities are equivalent to yij = xixj. Otherwise, they simply rep-
resent valid inequalities or linear over- and under-estimators of the quadratic
equation yij = xixj. This is the reason why F̃ is a relaxation of the set F .

In addition, it is clear that for all x ∈ F , one can find y ∈ R(n
2) such that

(x, y) ∈ F̃ (take y ∈ R(n
2) such that its components correspond to yij = xixj).

This type of relaxation can sometimes be strengthened further by adding some
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families of RLT-related cutting planes, see for example [6, 16], or by imple-
menting the Optimization-Based Bound Tightening (OBBT) [32, 50, 43, 57]
procedure for global MINLP.

2.3. Sub-problems related to F̃
In this paper, we present an LP-based procedure that successively fixes the

complementarity constraints (qi +Aix)xi = 0 to either qi +Aix = 0 or xi = 0,
for i ∈ N1. So, for a given index i0 ∈ N1, we define the corresponding relaxed
sets as:

F̃+
i0

=



x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qi + Aix ≥ 0 for i ∈ N1

qixi +
n∑

j=1

Aijyij = 0 for i ∈ N1, i 6= i0

qi + Aix = 0 for i ∈ N2

0 ≤ xi ≤ 1 for i ∈ N
yii = xi for i ∈ B
yij ≥ 0 for 1 ≤ i ≤ j ≤ n
yij ≤ xi for 1 ≤ i ≤ j ≤ n
yij ≤ xj for 1 ≤ i ≤ j ≤ n

yij + 1 ≥ xi + xj for 1 ≤ i ≤ j ≤ n
qi0 + Ai0x = 0


and

F̃0
i0

=



x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qi + Aix ≥ 0 for i ∈ N1

qixi +
n∑

j=1

Aijyij = 0 for i ∈ N1, i 6= i0

qi + Aix = 0 for i ∈ N2

0 ≤ xi ≤ 1 for i ∈ N
yii = xi for i ∈ B
yij ≥ 0 for 1 ≤ i ≤ j ≤ n
yij ≤ xi for 1 ≤ i ≤ j ≤ n
yij ≤ xj for 1 ≤ i ≤ j ≤ n

yij + 1 ≥ xi + xj for 1 ≤ i ≤ j ≤ n
xi0 = 0



.

F̃+
i0

and F̃0
i0

differ from F̃ only in that the ith0 equation of the form qixi +
n∑

j=1

Aijyij = 0 has been replaced by the equations qi0 + Ai0x = 0 and xi0 = 0,

respectively. These two sets will later be used to simplify notation, especially
in Theorem 1 and Algorithm 1.
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3. Literature review

In this section, we discuss some of the existing literature on the DC-MLCP.
Then, we will review the RLT method proposed by Sherali et al. [55] for solving
the LCP, which will be extended to BC-MLCP in Section 4.2. For more details
on LCPs, we refer the reader to [8, 10].

3.1. DC-MLCP review

One of the early works on discretely-constrained complementarity was by
Cunnigham and Geelen [13] who considered using rank-symmetric and prin-
cipally unimodular matrices. A matrix M is defined as rank-symmetric if
rank(M [X, Y ]) = rank(M [Y,X]) for the submatrix of M [A,B] defined by
rows from the set A and columns from the set B. Principally unimodular
matrices have the property that every nonsingular principal submatrix has
determinant = ±1; they generalize the more familiar totally unimodular ma-
trices. Cunnigham and Geelen [13] showed that if the LCP matrix M is
integer-valued, rank-symmetric, and principally unimodular, and q is an in-
tegral vector, then if the linear complementarity problem with data q,M has
a solution, then it has an integer-valued one. Their results extend those of
Chandrasekaran et al. [12] where the authors showed that the LCP matrix M
is principally unimodular if and only if for every integral vector q, all basic
solutions of the LCP(q,M) are integral. In [12], the authors provide a peel-
ing algorithm that can find an integer solution to the related LCP for certain
classes of LCP matrices M . However in some cases no conclusions can be
drawn about the solutions.

Earlier work in Pardalos and Nagurney [49] considered the integer LCP
and showed that when the variables are bounded, an equivalent integer linear
formulation can be used. However these authors solved the unbounded case
using enumeration, and thus the current paper is an improvement on this
approach.

Gabriel et al. [28, 29] considered a Pareto optimal approach trading off
integrality with an MLCP solution. Ruiz et al. [51] subsequently applied that
approach to a power market DC-MLCP. More recently, Huppmann and Sid-
diqui [34] considered an approach to solve binary Nash equilibrium problems
for power markets that interprets dual variables to binary constraints using
the benefit or loss from deviations as opposed to marginal relaxations. Their
work has a more problem-specific focus than this paper. Lastly, Gabriel [30]
considered a DC-MCP reformulation using the concept of a median function
and applied it to both the traditional and a bounded MCP.
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3.2. The RLT approach for the LCP

Sherali et al. [55] proposed an enumerative algorithm that solves the LCP
exactly. Their approach solves an equivalent MILP reformulation of the LCP
based on the RLT relaxation. In fact they showed that the LCP, as formulated
in (1) with n2 = 0, is equivalent to the following MILP:

min
v,w

qTv +
n∑

i=1

n∑
j=1

Aijwij (3a)

s.t. (3b)
n∑

j=1

Akjwij + qkvi ≥ 0 ∀(i, k) (3c)

n∑
j=1

Akjxj + qk ≥
n∑

j=1

Akjwij + qkvi for i, k ∈ N (3d)

0 ≤ wij ≤ 1 for 1 ≤ i ≤ j ≤ n (3e)

wjj = xj for j ∈ N (3f)

vj ∈ {0, 1} for j ∈ N (3g)

wij ≥ 0 for 1 ≤ i ≤ j ≤ n (3h)

wij ≤ xi for 1 ≤ i ≤ j ≤ n (3i)

wij ≤ vj for 1 ≤ i ≤ j ≤ n (3j)

wij + 1 ≥ xi + vj for 1 ≤ i ≤ j ≤ n. (3k)

Note that vi = 0 if xi = 0 and vi = 1 if xi > 0, and the variable wij represents
the quadratic term vixj for all pair i, j. The paper [55] proposed a branch-
and-bound method for solving problem (3). It is important to mention that
such a branch-and-bound algorithm can converge even faster if some valid
inequalities are added to tighten this RLT relaxation. Audet et al. [6] and
Djeumou-Fomeni et al. [16] propose several families of cutting planes for this
purpose.

The first component of the solution approach proposed in the current paper
uses an RLT relaxation of the complementarity constraints. However, it differs
from the method in [55] in the sense that it uses the traditional RLT relaxation
(yij = xixj) without introducing new binary variables. It also solves a series
of LPs in order to replace some of the complementarity constraints with linear
equations.

3.3. The disjunctive-constraints approach

A common approach to deal with complementarity constraints is to recast
them as disjunctive constraints [22]. This approach can also be used to solve
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BC-MLCP instances. Starting with the reformulation F defined in Section
2.1, the complementarity relationship can be recast using the so-called Big-M
method to yield the following set:

FM =


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qi + Aix ≥ 0 for i ∈ N1

qi + Aix ≤Mui for i ∈ N1

xi ≤M(1− ui) for i ∈ N1

qi + Aix = 0 for i ∈ N2

0 ≤ xi ≤ 1 for i ∈ N \B
xi ∈ {0, 1} for i ∈ B
ui ∈ {0, 1} for i ∈ N1.


,

where the parameter M is a suitably large positive constant and u is a vector
of binary variables.

This approach, while easy to implement, has the drawback that the choice
of M is problem-specific, and one must either find the constant M analytically,
or proceed by trial-and-error approach to obtain it. Choosing M too small
may result in FM 6= F , and even FM = ∅; on the other hand, choosing M too
large may result in ill-conditioning of the problem and increased run times. For
these reasons, we believe that proposing an alternative approach is worthwhile.
Furthermore we show in Subsection 5.2 that the Big-M approach can fail on
some simple instances of BC-MLCP for which our approach is able to find
exact solutions.

4. Our solution approach for the BC-MLCP

In this section we describe our proposed solution approach for the BC-
MLCP. This approach proceeds in two main steps. In the first step, we solve a
series of LPs that enables us to fix some of the complementarity constraints to
linear equations. Then, in the second step, we solve an MILP that is equivalent
to the original BC-MLCP with possibly a reduced number of complementarity
constraints.

4.1. Replacement of the complementarity constraints

In this section we show how we can replace some of the complementarity
constraints by solving a series of LPs. One way of finding a point that belongs
to the set F is by solving any optimization problem over the set defined by
F . Any such problem will be an NP-hard problem as it is a nonconvex,
mixed-integer nonlinear programming problem. However, we show that one
can solve a finite series of LPs over the set F̃ and use the results to replace
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some of the complementarity constraints with linear equations. In order to do
so, we proceed as follows.

For i0 ∈ N1, we define the following LP : min(x,y)∈F̃ xi0 . We can use the
solution of this LP to replace the complementarity constraint (qi0 +Ai0x)xi0 =
0 with a linear equation using the following result.

Theorem 1. Let us assume that F̃ is non-empty. For i0 ∈ N1, let x∗i0 be the
optimal objective value of min

(x,y)∈F̃
xi0. We have the following:

1. If x∗i0 6= 0, then all the feasible points of F̃ are contained in the set

defined by F̃+
i0

. Thus the constraint (qi0 + Ai0x)xi0 = 0 can be replaced
by qi0 + Ai0x = 0.

2. If x∗i0 = 0 and the problem min
(x,y)∈F̃+

i0

xi0 is infeasible, then all the feasible

points of F̃ are contained in the set defined by F̃0
i0

. Thus the constraint
(qi0 + Ai0x)xi0 = 0 can be replaced by xi0 = 0.

Proof.

1. By definition the set F̃ contains the set F . In addition, x∗i0 6= 0 means

that there is no feasible point (x, y) ∈ F̃ that satisfies xi0 = 0. Therefore,
there is no such point in F either, and the complementarity constraint
(qi0 + Ai0x)xi0 = 0 can only be satisfied if qi0 + Ai0x = 0.

2. Let the problem min
(x,y)∈F̃+

i0

xi0 be infeasible. This means that there is no

feasible point (x, y) ∈ F̃ that satisfies qi0 + Ai0x = 0. Therefore, there
is no such point in F either, and the complementarity constraint (qi0 +
Ai0x)xi0 = 0 can only be satisfied if xi0 = 0.

Remarks.

• It is important to note that when x∗i0 = 0 and the problem min
(x,y)∈F̃+

i0

xi0 is

feasible, no conclusion can be drawn, i.e., we do not have any justifiable
reason to replace the complementarity constraint (qi0 +Ai0x)xi0 = 0 with
either qi0 + Ai0x = 0 or xi0 = 0.

• One can also see the results of Theorem 1 as a partial application of
OBBT combined with strong branching on xi0 = 0 ∨ qi0 + Ai0x =
0. Indeed, OBBT would normally solve both min(x,y)∈F̃ xi0 and
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max(x,y)∈F̃ xi0, and use the results to refine the bounds on the
variables, whereas Theorem 1 only considers min(x,y)∈F̃ xi0 and
uses the results to possibly replace the nonlinear constraint
(qi0 + Ai0x)xi0 = 0 with either qi0 + Ai0x = 0 or xi0 = 0.

• The second part of Theorem 1 can be strengthened if i0 ∈ B, in which
case one could fix xi0 = 1 when checking for the infeasibility of min

(x,y)∈F̃+
i0

xi0 .

The result of Theorem 1 enables us to design a procedure that successively
replaces some of the complementarity constraints with linear equations. This
procedure will be described in the next section.

4.2. On finding a solution of the BC-MLCP

In this subsection, we describe the different steps of our proposed solution
approach for the BC-MLCP. Our approach proceeds in two main steps. First,
we fix some of the complementarity constraints to linear equations. Then, we
solve an MILP that is equivalent to the original BC-MLCP with possibly a
reduced number of complementarity constraints. A more detailed description
of each step is given as follows.

1. Replacing the complementarity constraints: At this stage, we
implement the procedure described in Algorithm 1, which is the result
of Theorem 1. Algorithm 1 starts with the first complementar-
ity variable, i0 = 1, and minimizes it over the relaxed set F̃ .
Depending on the result of this minimization, if one of the
conditions in Theorem 1 is satisfied, then the complementarity
constraint (qi0 +Ai0x)xi0 = 0 is accordingly replaced in the set F̃ .
Otherwise the complementarity constraint is left unchanged.
The algorithm then repeats these steps for each of the other
complementarity variables in turn, i0 = 2, . . . , n1. The detailed
step-by-step procedure is given in Algorithm 1.
It is important to note that fixing one complementarity constraint may
affect the fixing of another complementarity constraint in the sense that
the feasible region would have shrunken. This suggests that the order
in which the variables are considered can affect the total number of
complementarity constraints fixed. Therefore, in our implementation we
have decided to repeat Algorithm 1 until it is no longer possible to fix
any complementarity constraints.
At the end of this step, we define the following sets: N+

1 = {i ∈ N1 :
(qi + Aix)xi = 0 is replaced by qi + Aix = 0} and N0

1 = {i ∈ N1 :
(qi + Aix)xi = 0 is replaced by xi = 0}.
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Algorithm 1 : Procedure to reduce the number of complementarity con-
straints

Initialize i0 = 1
while i0 ≤ n1 do

Solve the LP min
(x,y)∈F̃

xi0 .

if the above LP is infeasible, then
Stop and exit (the BC-MLCP is infeasible).

else
Let (x∗, y∗) be its optimal solution.
if (qi +Aix

∗)x∗i = 0 for all i ∈ N1 and x∗i ∈ {0, 1} for all i ∈ B then
Stop and output x∗ as a solution of the BC-MLCP.

else
if x∗i0 > 0 then

Replace the constraint qi0xi0 +
n∑

j=1

Ai0yi0j = 0

with the equation qi0 + Ai0x = 0.
(We can further set xi0 = 1 if i0 ∈ B.)

else
Solve the LP min

(x,y)∈F̃+
i0

xi0 .

if this LP is infeasible then
Set xi0 = 0.

end if
end if

end if
end if
i0 = i0 + 1

end while

2. Solving the final MILP reformulation of the BC-MLCP: The
procedure of replacing the complementarity constraints may end with
either N+

1 ∪N0
1 = N1 or N+

1 ∪N0
1 ( N1.

If N+
1 ∪ N0

1 = N1 then all the complementarity constraints have been
fixed and therefore the set F is equivalent to

F1 =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
qi + Aix = 0 for i ∈ N+

1

xi = 0 for i ∈ N0
1

qi + Aix = 0 for i ∈ N \N1

0 ≤ xi ≤ 1 for i ∈ N \B
xi ∈ {0, 1} for i ∈ B

 .
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Hence, we find a solution to the BC-MLCP by solving an MILP over the
set F1 with a zero objective function.
If N+

1 ∪ N0
1 ( N1, i.e., only some of the complementarity constraints

have been fixed and therefore the set F is equivalent to

F2 =


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qi + Aix ≥ 0 for i ∈ N1 \ (N+
1 ∪N0

1 )
(qi + Aix)xi = 0 for i ∈ N1 \ (N+

1 ∪N0
1 )

qi + Aix = 0 for i ∈ N+
1

xi = 0 for i ∈ N0
1

qi + Aix = 0 for i ∈ N \N1

0 ≤ xi ≤ 1 for i ∈ N \B
xi ∈ {0, 1} for i ∈ B


.

Note that finding a solution in the set F2 is again equivalent to finding a
solution of a BC-MLCP problem, but with a smaller set of complemen-
tarity variables. In our approach, we follow the idea of Sherali et al [55]
and define an MILP in the form of (3), which is equivalent to finding a
solution in the set F2. This MILP is defined by:
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min
x,v,w

qTv +
∑

i∈N1\(N+
1 ∪N0

1 )

∑
j∈N

Aijwij (4a)

s.t.

n∑
j=1

Akjwij + qkvi ≥ 0 for i, k ∈ N1 \ (N+
1 ∪N0

1 )

(4b)
n∑

j=1

Akjxj + qk ≥
n∑

j=1

Akjwij + qkvi for i, k ∈ N1 \ (N+
1 ∪N0

1 )

(4c)

qi + Aix = 0 for i ∈ N+
1

(4d)

xi = 0 for i ∈ N0
1

(4e)

qi + Aix = 0 for i ∈ N \N1

(4f)

xj ∈ {0, 1} for j ∈ B
(4g)

0 ≤ wij ≤ 1 for i ∈ N1 \ (N+
1 ∪N0

1 ), j ∈ N
(4h)

wii = xi for i ∈ N1 \ (N+
1 ∪N0

1 )
(4i)

vi ∈ {0, 1} for i ∈ N1 \ (N+
1 ∪N0

1 )
(4j)

wij ≥ 0 for i ∈ N1 \ (N+
1 ∪N0

1 ), j ∈ N
(4k)

wij ≤ xj for i ∈ N1 \ (N+
1 ∪N0

1 ), j ∈ N
(4l)

wij ≤ vi for i ∈ N1 \ (N+
1 ∪N0

1 ), j ∈ N
(4m)

wij + 1 ≥ xj + vi for i ∈ N1 \ (N+
1 ∪N0

1 ), j ∈ N.
(4n)

In [55], the authors developed an enumerative branch-and-bound algo-
rithm for solving the MILP (4). We use the MIP solver of CPLEX [35].
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5. Computational experiments

We report computational results on a variety of BC-MLCP instances. Some
of these instances come from well-known engineering applications. We have
used instances that are important from both the theoretical and the practical
point of view.

All our routines were coded in the C programming language and compiled
with gcc 4.6 [33], and the results were obtained by running our code on a laptop
with processor at 2.13 GHz and 8 GB of RAM. We used CPLEX version 12.6
[35] in our experiments. All the linear programming problems encountered in
Step 1 (replacing complementarity constraints) of our approach were solved
with the LP solver of CPLEX, while the mixed-integer problems encountered in
Step 2 (MILP reformulation) were solved with the MIP solver of CPLEX.

5.1. Experiments with random BC-MLCP instances

In this Section, we test the efficiency of our proposed algorithm on ran-
domly generated BC-MLCP instances. For this purpose, we experiment with
three different sets of instances. In the first experiment, we investigate the
effect that the number of binary variables has on the performance of the al-
gorithm, but with a fixed number of variables. The second experiment tests
the performance of our approach on BC-MLCP instances and highlights the
contribution of this paper. Finally, the third experiment illustrates how the
performance of the algorithm is affected by both the density of the matrix A
and the proportion of complementarity versus free variables.

5.1.1. Generation of the instances

All three sets of test instances were generated as follows. First we generate
the matrix A with entries drawn randomly from a uniform distribution on the
interval [−20, 20]. Then we generate a vector x with entries drawn randomly
from a uniform distribution on the interval [0, 20] for the complementarity vari-
ables, and on [−20, 20] for the free variables. We uniformly choose a percentage
of these entries and change their values to either 0 or 1. This represents the
percentage of binary variables present in the problem. If all the non-binary
entries of x are non-zero, we force some of them to be zero. The vector q is
then calculated in the following manner. For i ∈ {1, . . . , n1}, if xi 6= 0 then
qi = −Aix, while if xi = 0 then qi = −Aix + ε, with ε being uniformly drawn
from [−5, 5], and finally for i ∈ {n1 + 1, . . . , n1 + n2}, qi = −Aix. It is im-
portant to note that this procedure is run independently from the algorithm
for solving the instances. The idea is to be able to obtain a BC-MLCP that
has at least one feasible solution. This procedure has been used previously for
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generating random instances of linear programs with equilibrium constraints,
see e.g. [62].

The characteristics specific to the instances in each experiment will be given
in the next three subsections. These characteristics refer to the percentage of
binary variables, α, the percentage of complementarity versus free variables,
ρ, and the density of the matrix A, ∆.

5.1.2. First experiment

In this experiment, we wanted to assess whether the percentage (α) of the
binary variables present in the problem could affect the computational time
of our approach. For this experiment, we generated 10 instances with n =
200, n1 = n2 = 100 (i.e., ρ = 50%) for each value of α ∈ {10, 20, 30, . . . , 100}
(i.e., we uniformly chose α% of the n variables to be binary). We also set the
density (percentage of non-zero elements) of the matrix A to ∆ = 90%. We
present the general overview of this experiment in Figure 1. In each of these
graphs, the x-axis corresponds to the value of α ∈ {10, 20, 30, . . . , 100},
while the y-axis shows the CPU times (in seconds) required to solve
the instances. In Figure 1a, the box plots show the distribution of
the CPU times for all ten instances for each value of α, while Figure
1b provides the average CPU time for the ten instances.

It can be seen in both graphs of Figure 1 that the CPU times of
instances with a smaller percentage of binary variables are greater
than the CPU times of instances with a higher percentage of bi-
nary variables. For example, it took up to 600 seconds to solve in-
stances for which only 10% of the variables are required to be binary,
whereas at most 45 seconds were required for instances where all the
variables are binary. This suggests that the more binary variables
there are in the BC-MLCP problem, the more efficient our proposed
method is expected to be. The results of the next subsection also
support this observation. Our explanation of this behaviour is that
the relaxed set F̃ becomes a tighter approximation of the original set
F when there are more binary variables because the McCormick in-
equalities are equivalent to yij = xixj when both xi and xj are binary.

5.1.3. Second experiment

Our second experiment tests the performance of our approach on BC-
MLCP instances. For this experiment, we generated 10 instances for each
value of n ∈ {20, 40, 60, . . . , 200}, n1 = n2 = n/2 (i.e., ρ = 50%) and for each
value of α ∈ {20, 40, 60, 80}. Here we also assume that 90% of the entries in
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Figure 1. CPU time Vs percentage of binary variables

(a) General tendency
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(b) The averages

the matrix A are non-zero entries. The results of this experiment are shown in
Table 1. The size of each instance is given in column ‘n’, the average number
of complementarity constraints fixed by Algorithm 1 is reported in column
‘Fixed’. Column ‘#S2’ gives the number of instances, out of 10, for which the
MILP reformulation phase (Step 2) of our approach was needed by the overall
algorithm (Step 1 + Step 2) to solve the problem.

We report in Table 1 three sets of computational times (in seconds) needed
to solve the instances. The first one (column ‘S1’) is the time taken to solve
the problems when Step 1 alone is considered. The second one (column ‘S2’) is
the time taken to solve the problem if the MILP (Step 2 alone) reformulation
is solved directly with CPLEX without our proposed pre-processing phase (Step
1).The third one (column ‘S1S2’) is the computational time of implementing
the overall proposed algorithm (Step 1 + Step 2). Finally, the column ‘Big-M’
reports the time taken by the Big-M method (with M = 1, 000) as described
in Section 3.3. These computational times are averages over 10 instances.

These results show that our approach solves BC-MLCP instances more ef-
ficiently than if we solve the MILP reformulation of the BC-MLCP directly,
as per Section 3.2. More importantly, it can be seen that ‘Step 1’, which is
the main novelty in this paper, plays a very significant role in the overall algo-
rithm. In fact, it can be seen in Table 1 that the MILP (Step 2) alone is very
time-consuming, whereas the novel procedure of replacing complementarity
constraints with linear equations speeds up the overall algorithm significantly.
This step alone is able to yield a solution to the BC-MLCP without needing
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the MILP phase. Indeed, it can be observed that out of 400 instances tested
here, the MILP reformulation phase (Step 2) was required only once.

At this point one may think that Step 1 is enough to solve the
BC-MLCP problem. This is not true neither theoretically, nor ex-
perimentally, and we believe that these results are due to the struc-
ture of these instances. In Subsection 5.1.4 we conduct a third set
of experiments using instances with more diverse structures, and
the results show that when varying the structure of the problem
in terms of number of complementarity constraints and density of
the matrix, Step 2 is indeed needed to solve the corresponding BC-
MLCP problems.

On the other hand, while the Big-M approach is more efficient than our
approach for the instances in the current section, we will show in Subsection
5.2 that the Big-M approach can fail on some simple instances of BC-MLCP
for which our approach is able to find exact solutions. This adds to other
drawbacks of the Big-M approach already mentioned in Section 3.

For the first two sets of experiments, one can notice that the running time
of our approach gets relatively smaller when the percentage of binary variables
present in the problem increases. This may be counter-intuitive for readers
that are familiar with integer programming. Recalling that the McCormick
inequalities are equivalent to yij = xixj when xi, xj ∈ {0, 1}, our explanation
for this behavior is that, when there are more binary variables in the problem,
replacing the quadratic identities yij = xixj with the McCormick inequalities
yields a tighter relaxation of the original problem. Moreover, unlike in integer
programming where one is looking for an optimal solution, in this problem we
are only searching for a feasible solution.

5.1.4. Third experiment

We carried out a third set of experiments with randomly generated BC-
MLCP instances to investigate how the density (number of non zero ele-
ments) of the matrix A and the number of the complementarity variables
could affect the performance of our approach. For this experiment, we gen-
erated 10 instances for each combination of n ∈ {20, 40, 60, . . . , 200},∆ ∈
{25%, 50%, 75%} and respectively 50%, 70% and 90% (so ρ = 50, 70, 90) of
variables being complementarity variables, where ∆ is the density of the ma-
trix A , and we fix α = 50. This resulted in a total of 900 additional test
instances for our approach. The results of this experiment are reported in
Table 2. We notice that when we consider 50% of the variables to be comple-
mentarity variables, Algorithm 1 (Step 1) often solves the BC-MLCP problem,
regardless of the density of the matrix. When the number of complementarity
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Table 1. Results of randomly generated BC-MLCP instances

With 20% Binary With 40% Binary
Time (s) Time (s)

n Fixed #S2 S1 S2 S1S2 Big-M n Fixed #S2 S1 S2 S1S2 Big-M
20 2 1 0.03 0.11 0.08 0.04 20 1 0 0.19 0.06 0.20 0.02
40 2 0 0.39 2.69 0.41 0.5 40 1 0 0.57 2.15 0.58 0.04
60 4 0 0.69 15.28 0.76 0.14 60 1 0 3.02 3.43 3.05 0.07
80 3 0 5.57 77.64 5.93 0.17 80 2 0 4.07 24.28 4.35 0.08
100 7 0 16.31 541.56 18.04 0.25 100 1 0 3.72 48.67 3.81 0.13
120 5 0 21.29 1650.21 23.16 0.45 120 4 0 18.55 683.42 19.25 0.19
140 9 0 64.65 5786.78 67.46 0.4 140 1 0 9.95 740.94 10.15 0.21
160 8 0 117.88 24598.38 120.13 0.75 160 2 0 39.95 1411.77 40.21 0.33
180 10 0 175.34 25689.08 194.34 0.54 180 2 0 55.07 7356.48 55.23 0.42
200 4 0 103.82 32740.1 113.89 0.92 200 2 0 44.35 6419.04 46.26 0.55

With 20% Binary With 40% Binary
Time (s) Time (s)

n Fixed #S2 S1 S2 S1S2 Big-M n Fixed #S2 S1 S2 S1S2 Big-M
20 1 0 0.08 0.05 0.09 0.02 20 0 0 0.04 0.02 0.04 0.01
40 0 0 0.42 0.54 0.43 0.05 40 0 0 0.32 0.62 0.33 0.04
60 1 0 0.97 5.69 0.97 0.06 60 1 0 1.63 3.85 1.74 0.07
80 0 0 0.74 14.86 0.77 0.06 80 0 0 1.62 12.97 1.67 0.06
100 2 0 1.08 18.17 1.14 0.11 100 1 0 2.42 14.15 2.54 0.1
120 1 0 2.81 40.78 2.81 0.21 120 1 0 2.95 25.98 3.11 0.14
140 0 0 3.34 44.31 3.62 0.26 140 1 0 4.49 111.36 4.73 0.25
160 0 0 4.29 167.73 4.34 0.32 160 1 0 5.4 210.59 5.63 0.25
180 1 0 6.63 174.44 6.85 0.43 180 1 0 9.74 469.26 10.02 0.34
200 0 0 9.97 1347.41 10.08 0.51 200 1 0 12.08 699.28 12.18 0.37

variables increases (70% and 90%), the MILP reformulation phase (Step 2)
of our approach becomes necessary, but the number of complementarity con-
straints fixed increases, which helps the MIP solver to quickly find a solution
when solving the MILP reformulation. We note that the computational time
also becomes very large for the instances with higher percentages of comple-
mentarity.

Overall, this third set of computational experiments with randomly gen-
erated instances shows that our approach can effectively solve BC-MLCP in-
stances without assuming any specific structure about the problem. The pre-
processing phase (Step 1) of our approach is indeed very important in reducing
the number of complementarity constraints. In most cases, this pre-processing
phase alone is capable of solving the BC-MLCP.

5.2. Illustration of the limitations of the Big-M technique for BC-MLCP

In this subsection we show the limitations of the Big-M technique for a class
of instances of BC-MLCP related to the computational problems associated
with the Hilbert matrix (K defined below) as discussed in [47, Page 56].

Consider the following linear programming problem with k decision vari-
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Table 2. Results of randomly generated BC-MLCP instances for a combination of 50%,
70% and 90% of complementarity with various values of the density of the matrix A, ∆ ∈
{25%, 50%, 75%}, α = 50.

ρ
=

50
%

∆ = 25% ∆ = 50% ∆ = 75%
n Fixed #S2 Time n Fixed #S2 Time n Fixed #S2 Time
20 1 0 0.00 20 1 0 0.00 20 1 0 0.01
40 0 0 0.03 40 0 0 0.03 40 0 0 0.03
60 1 0 0.24 60 1 0 0.40 60 0 0 0.16
80 0 0 0.42 80 0 0 0.44 80 0 0 0.65
100 0 0 0.87 100 0 0 0.83 100 0 0 1.17
120 1 0 2.90 120 0 0 1.82 120 1 0 4.22
140 0 0 2.54 140 0 0 2.01 140 0 0 2.50
160 0 0 2.55 160 0 0 2.43 160 0 0 3.76
180 0 0 4.94 180 0 0 4.30 180 0 0 4.96
200 0 0 5.93 200 0 0 5.60 200 0 0 9.16

ρ
=

70
%

∆ = 25% ∆ = 50% ∆ = 75%
n Fixed #S2 Time n Fixed #S2 Time n Fixed #S2 Time
20 2 1 0.01 20 2 1 0.03 20 2 0 0.01
40 4 1 0.36 40 3 2 0.89 40 4 0 0.55
60 5 0 2.42 60 8 2 16.98 60 9 0 5.03
80 9 4 121.55 80 7 2 75.63 80 6 0 29.88
100 11 1 129.33 100 6 0 16.85 100 8 0 158.63
120 12 0 47.84 120 8 0 31.18 120 12 1 389.50
140 11 0 68.59 140 11 0 157.34 140 13 1 822.56
160 13 1 506.82 160 15 2 1471.39 160 14 2 1118.01
180 14 2 1637.20 180 16 0 501.00 180 15 2 1598.83
200 22 3 3190.70 200 15 1 1548.32 200 14 2 1430.00

ρ
=

90
%

∆ = 25% ∆ = 50% ∆ = 75%
n Fixed #S2 Time n Fixed #S2 Time n Fixed #S2 Time
20 6 5 0.08 20 3 0 0.02 20 4 0 0.05
40 6 7 21.36 40 2 2 0.21 40 3 10 68.38
60 7 9 543.89 60 5 10 82.39 60 9 10 178.67
80 10 9 2190.36 80 7 6 51.43 80 8 10 2885.34
100 8 10 2917.76 100 5 10 1039.59 100 7 10 3285.53
120 5 10 3782.44 120 3 10 2166.80 120 3 10 3584.69
140 4 10 3543.03 140 4 10 3425.35 140 6 10 4891.38
160 6 10 5524.26 160 5 10 2845.27 160 1 10 5371.31
180 3 10 6314.93 180 4 10 2832.82 180 15 10 5892.84
200 11 10 8869.49 200 7 10 2899.62 200 5 10 9974.47

ables:

min
y

cTy (5a)

s.t. Ky ≤ b (5b)

y ≥ 0, (5c)

where c,K and b are defined as follows:
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K =



1

2

1

3
. . .

1

k + 1
1

3

1

4
. . .

1

k + 2
...

...
...

...
1

k + 1

1

k + 2
. . .

1

2k


,

b = (bi, i = 1, . . . , k)T =

(
k∑

j=1

1

i+ j

)
,

and

c = (cj, j = 1, . . . , k)T =

(
2

j + 1
+

k∑
i=2

1

j + i

)
.

This problem is known to have a unique optimal solution y∗ = (1, 1, . . . , 1)
and the dual problem also has a unique optimal solution π∗ = (2, 1, . . . , 1) [47].
Furthermore, the results obtained when solving this problem using pivoting
algorithms or a complementarity pivot algorithm through LCP formulation
are very poor, especially when k ≥ 10 (see [47]). The LCP formulation of
such a problem can be regarded as a BC-MLCP where all the entries of x are
constrained to be binary except for the (k + 1)st entry which is continuous.

In this experiment we solve the resulting BC-MLCP using the Big-M ap-
proach as introduced in Subsection 3.3 with the value of M = 10. The Big-M
approach returns the problem as infeasible even for very small value of k
(k ≥ 3). This is clearly because it is not capable of identifying a solution that
satisfies the binary conditions of the variables.

While the infeasibility result from the Big-M approach suggests that the
value of M is too small, it is easy to check that M = 10 is a suitable value for
this example. Relaxing the binary conditions, we obtained the solutions:

(y, π) = (0.997, 1.007, 0.994, 1.988, 1.043, 0.965) when k = 3,

(y, π) = (0.985, 1.096, 0.823, 1.096, 1.979, 1.152, 0.696, 1.176) when k = 4,

(y, π) = (0.95, 1.32, 0.66, 0.00, 3.05, 0.00, 1.94, 1.37, 0.58, 0.00, 3.09, 0.00) when k = 6.

In contrast, our approach was capable of finding the exact solution for
these instances for at least such small values of k, through the process of
replacing complementarity constraints with linear equations of Algorithm 1.
More specifically, in Algorithm 1 when we have min

(x,y)∈F̃
xi0 > 0 for a binary

variable xi0 , we set xi0 = 1. This allowed our approach to find the exact
solution to the above instances.
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5.3. A two-node energy system

This example, taken from [29], presents a Nash-Cournot game between
two energy producers. Each producer decides on their production level qp, p ∈
{1, 2} to maximize their profit function [a−b(q1+q2)]qp−

(
βpq

2
p + ρpqp

)
subject

to their production capacity constraints spqmin ≤ qp ≤ spqmax, where sp is a
binary variable that is 1 if player p decides to produce and 0 if not. Here the
binary variable sp might for example relate to the on/off status for a power
generation unit. If on, then the minimum and maximum production quantities
are in force. If off, then both the upper and lower bounds are equal to zero.
The BC-MLCP model associated with this example is defined as follows.

0 ≤ −2qp(b+ βp) + bq−p − (a− ρp) + (λmax
p − λmin

p ) ⊥ qp ≥ 0, (6a)

0 ≤ spqmax − qp ⊥ λmax
p ≥ 0, (6b)

0 ≤ −spqmin + qp ⊥ λmin
p ≥ 0, (6c)

0 ≤ 1− sp ⊥ δp ≥ 0, (6d)

sp ∈ {0, 1}, (6e)

for all p ∈ {1, 2}. The parameters are a = 9, b = 1, β1 = β2 = 1, ρ1 = 1, ρ2 =
3, qmin = 1.5 and qmax = 4.

The results are reported in Table 3. They are similar to the ones found by
Gabriel et al. [29]. This does not necessarily suggest that there is a unique
solution to this problem. Note that all the complementarity constraints are
satisfied as well as the binary requirement on the variables s1 and s2. For
this instance, Algorithm 1 was able to provide a solution that satisfies both
requirements without the need of the MILP reformulation phase (Step 2) of
our approach.

Table 3. Output of the two-node energy system

Param. q1 q2 s1 s2 λmax
1 λmax

2 λmin
1 λmin

2

Values 1.62 1.5 1 1 0.0 0.0 0.0 1.62

5.4. A market-clearing problem as BC-MLCP

In order to test our approach on more practical BC-MLCP instances, we
consider the power market-clearing problem presented in Section 3 of [28].
This is a market-clearing problem of a multi-period power network, which fea-
tures 6 (production/consumption) nodes, 8 producers and 4 demand blocks.
The model corresponds to a multi-period auction in which producers submit
production offers consisting of energy blocks and their corresponding selling
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prices as well as start-up and shut-down costs. In addition, consumers submit
consumption bids consisting of energy blocks and their corresponding buying
prices. This model clears the market by maximizing the social welfare which
is computed using the producers offers and the consumers bids (i.e., the “de-
clared” social welfare). We present the model in Appendix A, and refer the
reader to [28] for a full description of this problem and the definition of its
parameters. The variables of this problems are:

• PG
tib: the power produced by block b of unit i in period t.

• PD
tjk: the power consumed by block k of demand j in period t.

• µGmax
tib : the Lagrangian multiplier associated with the bound of the pro-

duction for block b of unit i in period t.

• µDmax
tjk : the Lagrangian multiplier associated with the bound of the de-

mand for block k of unit j in period t.

• µmin
ti : the Lagrangian multiplier associated with the minimum power

output of unit i in period t.

• νmin
tnm and νmax

tnm : the Lagrangian multipliers associated with the limits of
the transmission capacity of the line relating nodes n and m in period t.

• δtn: the voltage angle of node n in period t.

• ξmax
tn : the Lagrangian multiplier associated with δtn.

• CU
ti and CD

ti : are respectively the non-negative start-up and shut-down
cost of unit i in period t. Their corresponding Lagrangian multipliers
are ηUti and ηDti , respectively.

• vti: the binary variable describing the on/off status of unit i in period t.
Its corresponding Lagrangian multiplier is βmax

ti .

• λtn: the Lagrangian multiplier associated with the equation that enforces
the power balance at node n in period t.

• ξ1
t(n=1): the Lagrangian multiplier associated with the equation that im-

poses the reference node.

We report the values of the variables related to each producer in Table
4. The values of variables related to each demand block and the values of
nodes specific variables are given in Table 5 and in Table 6, respectively. In
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addition to the values reported in these tables we also had νmin
tnm = 0, νmax

tnm =
0 for all t, n,m, and ξ1

t(n=1) = 0 for all t. Some of these values match with

those reported in [28]. For this problem, the MILP reformulation phase (Step
2) of our approach was required in order to find a solution. However, Algorithm
1 was able to replace up to 99 (out of 248) complementarity constraints with
linear equations.

Table 4. Producers variables

Producers
PG
tib µG

tib µmin
ti ηUti CU

ti

t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2
i = 1 0 0 2 0 0 10 0 0 0 0
i = 2 0 0 4 0 0 8 1 0 0 0
i = 3 50 25 6 0 0 6 0.8 0 0 0
i = 4 50 25 8 0 0 4 0 0 0 0
i = 5 50 25 10 0 0 2 0 0 0 0
i = 6 50 25 12 0 0 0 0 0 0 0
i = 7 50 50 14 2 0 0 1 0 350 0
i = 8 50 50 16 4 0 0 1 0.4 500 0

Producers
ηDti CD

ti βmax
ti vti

t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2
i = 1 0 0.2 0 0 0 0 0 0
i = 2 0 0.57 0 0 0 0 0 0
i = 3 0 0.5 0 0 0 0 1 1
i = 4 0 0.4 0 0 300 0 1 1
i = 5 0 0.22 0 0 450 0 1 1
i = 6 0 0 0 0 600 0 1 1
i = 7 0 0 0 0 350 100 1 1
i = 8 0 0 0 0 500 0 1 1

Table 5. Demands variables

Demands
PD
tjk µD

tjk

t=1 t=2 t=1 t=2
j = 1 0 50 0 6
j = 2 100 50 0 6
j = 3 100 50 0 7
j = 4 100 50 1 7
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Table 6. Nodes variables

Nodes
δtn ξmax

tn λtn
t=1 t=2 t=1 t=2 t=1 t=2

n = 1 0 0 0 0 26 14
n = 2 0.002 -0.005 0 0 26 14
n = 3 -0.0017 0.005 0 0 26 14
n = 4 0.1067 0.03 0 0 26 14
n = 5 0.125 0.025 0 0 26 14
n = 6 0.0933 0.02 0 0 26 14

6. Conclusions

We have presented a novel exact solution approach for the BC-MLCP. Our
approach starts with a sophisticated pre-processing which considers the RLT
relaxation of the complementarity constraints and enables us to replace some
of the complementarity constraints with linear equations by solving a series
of LPs. This pre-processing is then followed by the solution of an equivalent
MILP reformulation of the BC-MLCP with a reduced number of complemen-
tarity constraints, which ensures that our approach always finds a solution that
satisfies all the complementarity constraints as well as all the integrality condi-
tions. Our computational results on a variety of both practical and theoretical
examples show that the pre-processing often suffices to find a solution. Some
of the comparisons provided also show that solving the MILP reformulation of
the BC-MLCP without our proposed pre-processing can be significantly more
expensive computationally. This suggests that our pre-processing can be used
to improve the efficiency of other BC-MLCP algorithms.

For future research, we could incorporate cutting planes in the second phase
(Algorithm 1) of our approach to strengthen the RLT relaxation. Several
cutting planes have been proposed in the literature for this purpose, see for
example [6, 16]. This might enable Algorithm 1 to find a solution in fewer
iterations.
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Appendix A. Market-clearing model

0 ≤ PG
tib ⊥ λGtib − λtn + µGmax

tib − µmin
ti ≥ 0, ∀t,∀i ∈ Ψn,∀b (A.1a)

0 ≤ PD
tjk ⊥ −λDtjk + λtn + µDmax

tjk ≥ 0, ∀t,∀j ∈ Ψn,∀k (A.1b)

0 ≤ µGmax
tib ⊥ νtiP

Gmax
tib − PG

tib ≥ 0, ∀t, ∀j,∀k (A.1c)

0 ≤ µDmax
tjk ⊥ PDmax

tjk − PD
tjk ≥ 0, ∀t,∀i, ∀b (A.1d)

0 ≤ µmin
ti ⊥

∑
b

PG
tib − νtiPGmin

ti ≥ 0, ∀t,∀i (A.1e)

0 ≤ vmin
tnm ⊥ Bnm(δtn − δtm) + Pmax

nm ≥ 0, ∀t, ∀n,∀m ∈ Θn (A.1f)

0 ≤ vmax
tnm ⊥ Pmax

nm −Bnm(δtn − δtm) ≥ 0, ∀t,∀n,∀m ∈ Θn (A.1g)

0 ≤ δtn + π ⊥
∑
m∈Θn

Bnm(λtn − λtm)

+
∑
m∈Θn

Bnm(vmin
tmn − vmin

tnm) + ξmax
tn + (ξ1

t(n=1)) ≥ 0, ∀t, ∀n
(A.1h)

0 ≤ π − δtn ⊥ ξmax
tn ≥ 0, ∀t,∀n (A.1i)

0 ≤ ηUti ⊥ CU
ti − (vti − v(t−1)i)K

U
i ≥ 0, ∀t, ∀i (A.1j)

0 ≤ 1− ηUti ⊥ CU
ti ≥ 0, ∀t,∀i (A.1k)

0 ≤ ηDti ⊥ CD
ti − (v(t−1)i − vti)KD

i ≥ 0, ∀t, ∀i (A.1l)

0 ≤ 1− ηDti ⊥ CD
ti ≥ 0, ∀t, ∀i (A.1m)

0 ≤ vti ⊥ µmin
ti PGmin

ti −
∑
b

µGmax
tib PGmax

tib +KU
i (ηUti − ηU(t+1)i)

−KD
i (ηDti − ηD(t+1)i) + βmax

ti ≥ 0, ∀t < T, ∀i
(A.1n)

0 ≤ vti ⊥ µmin
ti PGmin

ti −
∑
b

µGmax
tib PGmax

tib +KU
i η

U
ti

−KD
i η

D
ti + βmax

ti ≥ 0, ∀t = T,∀i
(A.1o)

0 ≤ 1− vti ⊥ βmax
ti ≥ 0, ∀t,∀i (A.1p)∑

(i∈Ψn)b

PG
tib −

∑
(j∈Ψn)k

PD
tjk =

∑
m∈Θn

Bnm(δtn − δtm), ∀t, ∀n (A.1q)

δtn = 0, ∀t, n = 1 (A.1r)
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Appendix B. Proof of Lemma 1

Proof. From the lemma’s premise, there exists finite bounds such that 0 ≤
z1
i ≤ u1

i for i ∈ N1 \ B and l2i ≤ z2
i ≤ u2

i for i ∈ N2 \ B. Thus, we can form a

new variables s1
i =

z1i
u1
i

and s2
i =

z2i−l2i
u2
i−l2i

with 0 ≤ s1
i , s

2
i ≤ 1. The original LCP

(q, A) is given as

0 ≤ q1 + A11z1 + A12z2⊥z1 ≥ 0

0 = q2 + A21z1 + A22z2, z2 free

where z1, z2 are respectively, the vector of nonnegative and free variables and

where q =

(
q1

q2

)
, A =

(
A11 A12

A21 A22

)
, conformal with z1, z2. Define the

positive diagonal matrices D1 = diag (u1) and D2 = diag (u2 − l2) whose di-
agonals are the u1

i and u2
i − l2i values for z1 and z2, respectively. Clearly, in

light of the positive diagonals of D1, s1
i = 0 ⇔ z1

i = 0 and s1
i > 0 ⇔ z1

i > 0.
Note that D2 also has positive diagonals. We do have the following:

q1 + A11z1 + A12z2 = q1 + A11D1s1 + A12D2s2 + A12l2

=
(
q1 + A12l2

)
+ A11D1s1 + A12D2s2

= q̃1 + Ã11s1 + Ã12s2,

where q̃1 = q1 + A12l2, Ã11 = A11D1 and Ã12 = A12D2.
Analogously, 0 = q2 + A21z1 + A22z2 ⇔ 0 = q̃2 + Ã21s1 + Ã22s2, with

q̃2 = q2 + A22l2, Ã21 = A21D1 and Ã22 = A22D2, so that the solution set
of LCP(q, A) maps one-to-one to the solution set for LCP(q̃, Ã), where q̃ =(
q̃1

q̃2

)
, and Ã =

(
Ã11 Ã12

Ã21 Ã22

)
. Thus, without loss of generality it can be

assumed that zi ∈ [0, 1] for all i ∈ N \B.
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