1,855 research outputs found

    A fuzzy approach to building thermal systems optimization.

    Get PDF
    Optimization of building thermal systems is treated in the paper in the framework of fuzzy mathematical programming. This new approach allows to formulate more precisely the problem which compromises energy saving and thermal comfort satisfaction under given constraints. Fuzzy optimization problem is solved analytically under some assumptions. An example illustrates the viability of the approach proposed. A solution which significantly (with 38%) improves comfort is found which is more energetically expensive with only 0.6%. (c) IFS

    IK-FA, a new heuristic inverse kinematics solver using firefly algorithm

    Get PDF
    In this paper, a heuristic method based on Firefly Algorithm is proposed for inverse kinematics problems in articulated robotics. The proposal is called, IK-FA. Solving inverse kinematics, IK, consists in finding a set of joint-positions allowing a specific point of the system to achieve a target position. In IK-FA, the Fireflies positions are assumed to be a possible solution for joints elementary motions. For a robotic system with a known forward kinematic model, IK-Fireflies, is used to generate iteratively a set of joint motions, then the forward kinematic model of the system is used to compute the relative Cartesian positions of a specific end-segment, and to compare it to the needed target position. This is a heuristic approach for solving inverse kinematics without computing the inverse model. IK-FA tends to minimize the distance to a target position, the fitness function could be established as the distance between the obtained forward positions and the desired one, it is subject to minimization. In this paper IK-FA is tested over a 3 links articulated planar system, the evaluation is based on statistical analysis of the convergence and the solution quality for 100 tests. The impact of key FA parameters is also investigated with a focus on the impact of the number of fireflies, the impact of the maximum iteration number and also the impact of (a, ß, ¿, d) parameters. For a given set of valuable parameters, the heuristic converges to a static fitness value within a fix maximum number of iterations. IK-FA has a fair convergence time, for the tested configuration, the average was about 2.3394 × 10-3 seconds with a position error fitness around 3.116 × 10-8 for 100 tests. The algorithm showed also evidence of robustness over the target position, since for all conducted tests with a random target position IK-FA achieved a solution with a position error lower or equal to 5.4722 × 10-9.Peer ReviewedPostprint (author's final draft

    Convex Chance Constrained Model Predictive Control

    Full text link
    We consider the Chance Constrained Model Predictive Control problem for polynomial systems subject to disturbances. In this problem, we aim at finding optimal control input for given disturbed dynamical system to minimize a given cost function subject to probabilistic constraints, over a finite horizon. The control laws provided have a predefined (low) risk of not reaching the desired target set. Building on the theory of measures and moments, a sequence of finite semidefinite programmings are provided, whose solution is shown to converge to the optimal solution of the original problem. Numerical examples are presented to illustrate the computational performance of the proposed approach.Comment: This work has been submitted to the 55th IEEE Conference on Decision and Contro

    A new and efficient intelligent collaboration scheme for fashion design

    Get PDF
    Technology-mediated collaboration process has been extensively studied for over a decade. Most applications with collaboration concepts reported in the literature focus on enhancing efficiency and effectiveness of the decision-making processes in objective and well-structured workflows. However, relatively few previous studies have investigated the applications of collaboration schemes to problems with subjective and unstructured nature. In this paper, we explore a new intelligent collaboration scheme for fashion design which, by nature, relies heavily on human judgment and creativity. Techniques such as multicriteria decision making, fuzzy logic, and artificial neural network (ANN) models are employed. Industrial data sets are used for the analysis. Our experimental results suggest that the proposed scheme exhibits significant improvement over the traditional method in terms of the time–cost effectiveness, and a company interview with design professionals has confirmed its effectiveness and significance

    Reducing the Total Product Cost at the Product Design Stage

    Get PDF
    Currently used decision support systems allow decision-makers to evaluate the product performance, including a net present value analysis, in order to enable them to make a decision regarding whether or not to carry out a new product development project. However, these solutions are inadequate to provide simulations for verifying a possibility of reducing the total product cost through changes in the product design phase. The proposed approach provides a framework for identifying possible variants of changes in product design that can reduce the cost related to the production and after-sales phase. This paper is concerned with using business analytics to cost estimation and simulation regarding changes in product design. The cost of a new product is estimated using analogical and parametric models that base on artificial neural networks. Relationships identified by computational intelligence are used to prepare cost estimation and simulations. A model of product development, production process, and admissible resources is described in terms of a constraint satisfaction problem that is effectively solved using constraint programming techniques. The proposed method enables the selection of a more appropriate technique to cost estimation, the identification of a set of possible changes in product design towards reducing the total product cost, and it is the framework for developing a decision support system. In this aspect, it outperforms current methods dedicated for evaluating the potential of a new product

    Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective

    Full text link
    Neural-symbolic computing has now become the subject of interest of both academic and industry research laboratories. Graph Neural Networks (GNN) have been widely used in relational and symbolic domains, with widespread application of GNNs in combinatorial optimization, constraint satisfaction, relational reasoning and other scientific domains. The need for improved explainability, interpretability and trust of AI systems in general demands principled methodologies, as suggested by neural-symbolic computing. In this paper, we review the state-of-the-art on the use of GNNs as a model of neural-symbolic computing. This includes the application of GNNs in several domains as well as its relationship to current developments in neural-symbolic computing.Comment: Updated version, draft of accepted IJCAI2020 Survey Pape
    corecore