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A New and Efficient Intelligent Collaboration Scheme for 

Fashion Design 

Abstract –Technology mediated collaboration process has been extensively studied for 

over a decade. Most applications with collaboration concepts reported in the literature focus 

on enhancing efficiency and effectiveness of the decision making processes in objective and 

well-structured workflows. However, relatively few previous studies have investigated the 

applications of collaboration schemes on problems with subjective and unstructured natures. 

In this paper, we explore a new intelligent collaboration scheme for fashion design which by 

nature relies heavily on human judgment and creativity. Techniques such as multi-criteria 

decision making, fuzzy logic and artificial neural network (ANN) models are employed. 

Industrial inputs and data are used for the analysis. Our experimental results suggest that the 

proposed scheme exhibits significant improvement over the traditional method in terms of the 

time cost effectiveness, and a company interview with design professionals has confirmed its 

effectiveness and significance. Insights are generated. 

Index Terms – design scheme, multi-criteria decision making, fuzzy logic, artificial 

neural network 
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I. INTRODUCTION 

The past 10 years have seen the advances in information systems which include the 

development of collaboration schemes [1],[3] and intelligent decision systems [2],[8]. Such 

schemes enable multi-party participation in organizational activities through sophisticated 

information management [40], [41]. In fact, studies on computer aided decision making tools 

can be dated back to the 1960s [31], [17], and became termed as decision support system 

(DSS) in the 1970s [18]. In the 1980s, most of the research works on DSS aimed at 

determining optimal design parameters and development processes for implementing the 

systems [9]. The use of a DSS will generally increase the effectiveness of decisions and/or the 

efficiency of the decision making process and its development can be a part of many business 

process re-engineering projects [15], [20]. For instance, Bui and Jarke [4] developed Co-op, a 

system for cooperative multiple criteria group decision support with a goal of enhancing the 

quality of decisions. Kraemer and King [23] introduced the concept of collaborative DSS 

which they defined as interactive computer-based systems to facilitate the solution of 

ill-structured problems by a set of decision makers working together as a team.  

Many works have been devoted to studying the technology mediated intelligent decision 

(TMID) systems and also their applications in collaborative commerce [2], [15], [19], [28]. 

Among them, design-related collaboration has also been studied while it appears to be rather 

complicated. According to [11], the element of human judgment is critical to the success of 

design and cannot be delegated to formal methods or simple machine intelligence. The design 

process is described as a set of issues and responses to those issues, with a tissue of weak and 

strong bonds linking these responses. In [27], this model of argumentation is confirmed to be 
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able to provide a remarkably robust description of design collaboration in a variety of settings. 

Furthermore, in [12] and [13], this model is adopted to analyze design collaborations in 

software engineering and mechanical engineering. On the other hand, Mitchell [26] pointed 

out that "design is not description of what is, it is exploration of what might be", which indeed 

explains why many conventional approaches failed to solve problems related to design 

process.  

Developments in the computer technologies over the past two decades have made the 

implementation of the artificial intelligence (AI) techniques feasible. As a result, it has been 

proven that several artificial intelligence techniques can be used as effective tools in solving 

problems where conventional approaches fail or perform poorly [32], [35], [42], [55]. An 

excellent example to demonstrate this argument can be found in the field of engineering 

design in which specific characteristics and requirements are given. Soft computing 

approaches, such as fuzzy logic, artificial neural networks and genetic algorithms (GA) can be 

used in engineering design for (i) representing and modeling the design knowledge, (ii) 

finding the optimal quantitative solutions, (iii) retrieving the pre-existing design knowledge, 

and (iv) learning new knowledge [31], [37]. These soft computing approaches can hence be 

powerful tools for developing versatile TMID systems related to technical design. Unlike the 

works in the literature ([40], [41], [42]) which focus on AI theory and models, our work 

focuses on the application of these technologies, and the enhancement of efficiency by the 

proposed TMID scheme. 

Fashion design, being a specific area of industrial design, shares some features as the 

technical designs mentioned above and there are a few published works which employ soft 

computing approaches to enhance the performance of fashion design. For instance, Kim & 
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Cho [21] used GA in the identification of fashion style to facilitate the design process. 

However, there is little prior study which illustrates how effective the soft computing 

approach is in enhancing fashion design. Moreover, how team work in fashion design can be 

supported by a TMID system is also under-explored. As a consequence, in this paper, we 

propose a new TMID system for the fashion design process. Alteration to the traditional 

fashion design process is proposed and the artificial neural network (ANN) approach is 

employed in the analysis, where no discipline specific knowledge is required. Our 

experimental findings have revealed that the proposed TMID system can improve the 

process’ efficiency and the quality of decision in the respective fashion design process. This 

illustrates a promising research ground of employing TMID in the creative design related 

industry. As a remark, the major differences between this paper and other related works in the 

literature are listed in Table 1. 

 

Table I 
MAJOR DIFFERENCES BETWEEN OUR MODEL AND OTHER TMID SYSTEMS 

 For unstructured 
problems 

For creative 
design 

Discipline specific 
knowledge required 

Our TMID Yes Yes No 
Kim & Cho [21] No Yes Yes 
Walczak et al.[37] No No Yes 
Lauria et al. [57] No No Yes 
 

II. TRADITIONAL FASHION DESIGN PROCESS & 

PROPOSED TMID MODEL 

In this section, the traditional fashion design process is studied and related data are collected 

from a fashion product company. The new design process which employs the TMID system is 

also proposed. 
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Fig. 1. Traditional design process in a fashion knitwear company. 

A. The traditional fashion design process 

In this research, the design process with real data of a Hong Kong based fashion knitwear 

company called Pearls & Cashmere (PC)5

                                                           
5 PC is a real knitwear company (see Appendix for the details of this company).  

 is studied. As a prototype of the fashion design 

process, a study on the real data of this company can provide important insights for the 
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development of the TMID system. Fig. 1 illustrates the whole design process currently 

employed in PC. In the fashion design process, the chief designer oversees the overall design 

workflow. In PC, there are three design teams located in the Mainland China and Hong Kong 

(HK). The chief designer in HK first gives his descriptions of the design brief to the design 

teams. The design teams in different locations would then work out their designs and present 

them to the chief designer for evaluation. The chief designer then makes a choice among 

various designs. Revisions are required when the chief designer is not satisfied, and the 

revision work is performed by the HK team only. 

Time and quality of design are two major performance measures for this fashion design 

process (and they also affect the whole related fashion supply chain’s performance [30], [39], 

[53], [56]). The expected time for each step of the design process, which is obtained from a 

survey with PC, is summarized in Fig. 1. As we can observe from Fig. 1, the most time 

consuming part is the individual design step of the designers. During this step, each individual 

designer will attend fashion shows and exhibitions, and hold discussion meetings with 

customers so as to get some ideas on the design. Other time consuming parts include the 

preparation of individual samples, revisions of design work and the communication of design 

description and proposals between the chief designer and the individual designers in different 

locations. It is clear that the traditional design process is far from perfect. In addition to the 

drawbacks mentioned above, a team who is not involved in the original design may also need 

to conduct the revision. Although this arrangement may reduce the time of delivery of design 

description and design proposals between different locations, the time required for getting a 

revised design is lengthy. There is also a lack of communication among the original designer 

and other designers. 

To overcome these existing challenges, which also improves the design process both in 

terms of the required time and the quality of design, a TMID system is proposed which aims 

at: simplifying the design process, supporting computer-aided design evaluation, and 

enhancing the collaboration between designers by various tools.  
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B. The model of fashion design process with Multi-Attribute 

Utility Function (MAUF) 

We propose to formulate the fashion design decision making problem as a multicriteria 

optimization problem in which the performances of individual objectives are considered. In 

fact, many design decision making problems reported in the literature employ this model 

formulation (see, .e.g, [29], [33], [43]). Most of these problems rely on the sum of the 

weighted preferences of individual designs with the weighting factors being assigned to 

individual attributes of designs depending on the respective importance. The objective 

function under such methods is often called a Multi-Attribute Utility Function (MAUF), 

which is widely used in multi-objective decision-making problems [35]. As a result, the 

MAUF can be used as a ranking system in the selection of the most preferable design among 

many alternatives in fashion design process. Moreover, color and texture are two critical 

factors in the fashion design process. The MAUF identifies the color differences from their 

corresponding numerical values. The color representation is an abstract mathematical model 

describing colors in numbers, typically in three or four values or color components. These 

representations are called color spaces. Images in computer are usually stored and displayed 

in the RGB color space [7]. When evaluating color differences in the MAUF, the differences 

should correspond to Euclidean distances. In other words, the same Euclidean distance should 

reflect the same difference between colors when judging by human eyes, regardless of what 

the colors are. However, a color space like the RGB color space does not guarantee Euclidean 

metric of its color difference, because the human eye is more sensitive to certain colors than 

the others. In RGB space, the tricolors have equal weighting. A better color space should take 

this into account in order to measure the color difference. There are other color spaces, which 

are defined for different demands. For example, the LUV space [7] is designed to 

approximate perceptually uniform color spaces. In this space the simple Euclidean distance 

2 2 2
1 2 1 2 1 2( ) ( ) ( )dist L L U U V V= − + − + −  is defined between two colors, (L1, U1, V1) and (L2, U2, V2), 

and this distance can be used to denote the color difference. The mapping between RGB and 

LUV spaces is given by [7]: 
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2 2 2
1 2 1 1 .
6

0 3 3

L R
U G
V B

    
    = − −    

    −    

 (1) 

The texture description in our TMID system is based on the fibers from which the texture is 

made of, and the corresponding proportion of the fiber blended in the texture. Suppose a 

texture is made of n kinds of fibers, the texture description is in a format of 1 2( , , )np p p , 

where ip  is the proportion of fiber i. With this definition, the MAUF which models a 

designer’s preference can be given in the following format: 

2 2 2
1 3 1 1 1( , , , , , ) ( ) ( ) ( )designer n n nU L U V p p w L l U u V v w p f w p f= − + − + − + − + + −  , (2) 

where ),,( vul is the hypothetical center of the designer’s color preference, and  

)...,,,( 21 nfff  is the hypothetical center of the designer’s texture preference. In (2), 

Euclidian difference color and absolute difference for fiber’s preference with weight 

parameters are utilized. These help illustrate the ordinary MAUF functions. The overall 

MAUF of a ranking system can be given by (3) below, 

1 2 3 4guide customer chief designer exhiU WU W U W U W U= + + + , (3) 

where customerU , chiefU  and exhiU  correspond to the parts of the utility function contributed 

by the customer, the chief designer, and the idea from exhibition, respectively. These all are 

called sub MAUFs and each iW  is the corresponding weight of the respective sub-MAUF. 

Such multi-criteria decision support methods are common in modeling collaborative 

design problem, and there exist many more varieties of MAUFs which can also model the 

problem. However, the traditional MAUF approach has some drawbacks6

                                                           
6 These methods typically rely on the specification of importance weights to accomplish trade-offs 
among the competing objectives. However, these methods often have difficulties in terms of the 
selection of all possible Pareto optimal solutions, and the direct specification of importance weights can 
be arbitrary and ad hoc 

 and in order to 

overcome these challenges, AI approaches are proposed in this paper in modeling the MAUF. 

To be specific, we propose to use ANN and fuzzy logic model in modeling the MAUF in the 

[47]. Besides these difficulties, using MAUF in modeling TMID systems also 
often requires expert knowledge of the under studied design process (e.g., we need to know the 
tradeoffs between colors and textures, or even expertise knowledge on colorimetry) in order to come up 
with a reasonable model to represent them. When modeling using MAUF, people usually assume linear 
models of importance weights while in reality, the underlying system may not act in a linear manner. 
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fashion design process. The ANN model has the capability of approximating arbitrary 

functions, and with the help of fuzzy logic, such model can successfully model the human 

preferences of fashion designers. The newly proposed TMID system with fuzzy ANN model 

of the fashion design process is depicted in Fig. 2, and Fig. 3 shows each step of the TMID 

system in details. 
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Fig. 2. The proposed fashion design process with the TMID system. 
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In Fig. 3(a), as the first step of the process, the chief designer gives the briefing of 

design either via descriptions of category in “words”, or via color and texture of the 

design. The key parameters, color and texture, can be translated into numerical values 

and thus be modeled in the TMID system. Fig. 3(b) shows the second step, in which 

the fuzzy ANN approximation of MAUF is employed to rank the designs from 

individual designers by the preferences of the chief designer, the inputs from fashion 

exhibition and the requirements from customers. The individual designer determines 

his/her design which will be sent to the chief designer based on this ranking. The 

design is revised if he/she is not satisfied with the ranking (this revision is called 

Internal Refinement). Fig. 3(c) illustrates the process when an individual designer 

sends his/her design to the chief designer. The fashion design process is completed if 

the chief designer finds that this design meets all his/her expectation, or the chief 

designer will provide his/her final comment to the individual designer either by words 

or picture so that the designer may follow in the revised design (this revision is called 

Major Revision). In Fig. 3(d) the chief designer’s comments are translated into 

numerical parameters and fed back to a fuzzy ANN ranking system to refine the chief 

designer’s preference. During the ranking process, if the preferences of another 

designer are available, they can also be used as the inputs to the fuzzy ANN system, 

so that the ranking is incorporated into the other designer’s preference, as shown in 

Fig. 3(e). 
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III. DECISION SUPPORT WITH MULTI-ATTRIBUTE 

UTILITY FUNCTION & ANN 

As mentioned in the previous section, MAUF and ANN are employed in our TMID system to 

perform automatic ranking of designs. The evaluation of fashion design consists of several 

attributes (such as colors and textures of the design). Decision-makers often find it difficult to 

handle the tradeoffs among multiple objectives in reaching a decision. These types of 

multi-objective decision making problems are generally solved by the multi-attribute utility 

theory (MAUT). The basic hypothesis of MAUT is that if there is a decision making problem, 

there is a real valued multi-attribute utility function (MAUF) defined among the set of 

feasible alternatives (e.g., the design proposals), which is to be maximized, then the 

alternative having the maximum value of MAUF is treated as the optimal solution. In order to 

evaluate a design, the preferences of the chief designer, other designers, exhibition inputs and 

customer inputs can all be included in the MAUF [24], [35], [22]. 

Many researchers are devoted to the determination of MAUF and this area has been 

well-established in recent years. Steuer [34] considered the utility function as the basis in 

which different settings (solution alternatives) to a multi-criteria problem are determined 

(where a higher value of the utility score implies a more preferred solution alternative). In the 

context of multiple objectives, an MAUF is often formed to rank a set of solution alternatives. 

A tradeoff among the objectives is usually made to evaluate the utility value associated with 

the solution alternative. This tradeoff incorporates the contribution of each optimization 

objective into an overall system performance evaluation. ANN has also been applied in 

solving the MAUF [5], [33] and it has been proven that any continuous MAUF can be 

mapped into an ANN three-layer perceptron [14]. Fuzzy logic is also often combined with 

ANN system [50]-[53], so that the approximation capability of ANN is introduced to the 

fuzzy system, and the fuzzy system provides benefits on the interpretation of results and 

interaction with user. In our work, a simple fuzzy ANN system is adopted for the 

approximation of the MAUF. Details about the fuzzy ANN system are discussed in the 

subsequent sections. 
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As the TMID system is developed to support human decisions, it has to imitate the human 

judgment on designs. While human judgments are often not clear and crisp, fuzzy logic is 

utilized to overcome this problem [38]. In this research, we employ fuzzy preference together 

with the MAUF in evaluating and ranking the fashion design proposals. The fuzzy ANN is a 

Mamdani type fuzzy ANN, and the number of its input node equals the input of the MAUF. 

The output node provides the result of the MAUF. The empirical experiment is conducted on 

the performance of the fuzzy ANN with a hypothetical MAUF below.  

customer

guide chief

designer

U
U w U

U

 
 

=  
 
 

 , (4)  

where w  is the weight vector. ANN has been used in the approximation of MAUF and it has 

been proven that the three layer feed-forward ANN has the ability of approximating any form 

of MAUF, or any assumption of the weight factors [45], [46]. As changing the weights in 

MAUF has no obvious impact on the ANN approximation for the MAUF, considering the 

popular knowledge that the customers’ preferences for a fashion product play a more 

important role than the designers’ ones, and the chief designer has the authority over other 

designers, w = (0.7, 0.2, 0.1) , which follows the above assumptions, is used in (4). 

In this analysis, the hypothetical MAUF (as in (2)), the center of color ( , , )l u v  and the 

center of texture 
1 2( , , , )nf f f  must be given. As these centers represent the ideal design 

details of a fashion product, which could be of any value. In this analysis, some random 

centers are given to the MAUFs just for illustrating the approximation ability of ANN.  

The hypothetical MAUF of the customer is centered with color (100, 20, 30) and texture 

(0.6, 0.4, 0); the hypothetical MAUF of chief designer is centered with color (80, 10, 10) and 

texture (0.5, 0.5, 0); the hypothetical MAUF of designer is centered with color (90, 10, 0) and 

texture (0.4, 0.5, 0.1). With (4), we have all the theoretical data for any given design proposal 

with the color and texture parameters as shown in Table II. 

Table II  
THE ANN APPROXIMATION OF MAUF 

Chief Designer's preference history 
 Color representation Textile composition (*100%) 

Rank L U V p1 p2 p3 
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(Lightness) (u coordinate) (v coordinate) Component 1 Component 2 Component 3 

0.618527   238 208 240 0.129874 0.15474216 0.715384 
0.311424  124 80 202 0.952498 0.01354855 0.033953 
0.232765  12 93 32 0.635219 0.03504115 0.32974 
0.342413   168 43 139 0.203284 0.12864596 0.66807 

…       

 

With sufficient past data (400, suppose that we have enough ranking records from the 

chief designer) of design proposals and the above setup of weight parameters, the analysis of 

ANN approximation is conducted. If we measure the approximation accuracy by the Mean 

Absolute Percentage Error (MAPE) which is given by 
1

1 | |N
n n

n n

R A
N R=

−∑  where Rn is the 

expected ranking value given by MAUF and An is the ANN approximated ranking value, the 

ANN can approximate the theoretical MAUF with MAPE of 0.96%. It is obvious that when 

there is insufficient past data, the accuracy of the ANN approximation of MAUF would drop, 

but in either case, the ANN often outperforms the traditional MAUF model [45], [46]. 

In the decision process under the framework of multipurpose decision-making, fuzziness 

is inevitably found in the human decisions and this property can be modeled by fuzzy sets 

theory [6]. There are also many studies on the fuzzy neural systems [50] which combine the 

benefits of fuzzy logic and ANN systems. In our study, a relatively simple fuzzy ANN system 

is employed to illustrate the benefit of such technologies. Though there are no advanced 

features such as the automatic adaptation of membership functions, it illustrates the 

effectiveness of such technologies. Fig. 4 illustrates an example of the fuzzy membership 

function which describes the chief designer's preference, and one of the inputs L. In real 

fashion design practice, as what we learnt from the company PC and many other similar firms, 

the designers often evaluate a design by linguistic words instead of numbers, and there could 

be multiple correlated aspects of evaluations such as color-matching and touch-feeling, etc. 

We employ only one overall ranking evaluation for the sake of simplicity. The preference is 

described with a degree of membership ranging from 0 to 1. Although there could be many 

fuzzy terms such as 10 in this range, too many terms will decrease the understandability of the 

system and may not benefit the decision-making process. In reality, designers use often three 

or four terms, as such, the chief designer's preference is divided into 4 fuzzy terms bad, fair, 
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good, great, and is transformed with the functions shown in Fig. 4. The four terms are evenly 

distributed along the numerical rank and the shapes of the membership functions are fixed 

during the running of the system. Such fuzzy preference could be improved if fuzzy neural 

systems like the ones in [51], [52] are employed to tune the parameters of the membership 

functions in the learning process, and this could be the future extension of our current 

research. The extreme values of preferences, which are smaller than 0.125 or greater than 

0.875, are considered as absolutely bad or great, and fields in between the two terms are 

equally divided into fair and good. The centers of the 4 terms are located at preference values 

0.125, 0.375, 0.625, 0.875. To reduce the computational burden, triangle-shape membership 

functions are used instead of the bell-shape ones. With this setting, an experiment was 

conducted. The structure of the fuzzy ANN system is depicted in Fig. 5, and the system is 

implemented by the neural network framework Neuroph [54]. The input parameters are given 

in (2). In the training stage, the crisp inputs of color and composition go into the input layer, 

and the target preferences, which are given by (1) and (2), go into the output node. The target 

preferences are then fuzzified into the four fuzzy terms as shown in Fig. 4. The fuzzy ANN is 

then trained with supervision by the input and fuzzy output. Once the fuzzy ANN is trained, it 

can be used to approximate the designers’ preferences. The result shows that the fuzzy ANN 

algorithm can fit the chief designer's theoretical MAUF with a 40% MAPE (increased 2% 

compared to the non-fuzzy one) with limited data (Table III). It is also observed that with 

sufficient data sets (with more than 100 data samples), the accuracies of the fuzzy and 

non-fuzzy algorithms are almost the same. This reveals that the fuzzy preference does 

increase the accuracy under certain circumstances, although the effect is not always 

significant, fuzzy preference is still useful in applications for modeling the human fuzzy 

nature. At the same time, the fuzzy ANN results are more understandable than the non-fuzzy 

one, and the fuzzy ANN is especially useful when the data sample size is small. As the 

fashion design process inherently involves many human reasoning and judgments, and this 

makes the fuzzy approach particularly suitable for the implementation of the TMID system 

for fashion design. For the case with the membership functions in Fig. 4, there are borderline 

cases where the “degree of membership” falls equally between two fuzzy sets, this 

phenomenon is especially likely to happen when the preferences of designers are not evenly 
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distributed like what is presumed by the membership function in Fig. 4, and this could reduce 

the accuracy of the system. Table 4 shows the errors that are introduced by these borderline 

cases, in which the preference values falling in the 0.05 interval around the mid points (0.25, 

0.5, 0.75) of terms are considered as the borderline cases. In most cases, less than 25% of the 

errors are introduced by these borderline cases, and such cases are especially rare in the 

scenario with more training data. Of course, such errors are highly related to the data feature 

and adopting a fuzzy ANN system with automatic adaptation of membership functions (like 

in [50]) or making the training set to include such borderline cases deliberately could alleviate 

such errors. 
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Fig. 5. The fuzzy ANN structure. 

 
Table III  

COMPARISON OF ACCURACY OF FUZZY AND NON-FUZZY ALGORITHMS IN TERM OF MAPE 
No. of Data Sets Fuzzy ANN ANN 
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4 40% 42% 
40 16.4% 17.7% 
100 0.83% 0.84% 
200 0.91% 0.91% 
300 0.95% 0.96% 
400 0.94% 0.96% 

 
Table IV  

ERRORS INTRODUCED BY BORDER CASES OF FUZZY MEMBERSHIP FUNCTIONS 
No. of Data Sets Error introduced by border cases of MF (%) 
4 25% 
40 22% 
100 6% 
200 11% 
300 0% 
400 0% 

 

IV. SIMULATION STUDIES 

To study the effectiveness and performance of the proposed TMID system, simulation 

experiments [36] of the design processes with and without the TMID system are conducted 

(depicted by Fig. 1 & Fig. 2 respectively). The simulations strictly follow the design 

processes and compute the respective time costs for each scenario. The overall time costs are 

then accumulated and the number of revision rounds is also obtained. As there is significant 

uncertainty in the parameters which model the fashion design process, Monte Carlo 

simulation method is used. In the following, Section A presents the simulation of design 

process with hypothetical datasets. The times spent on design and revision are defined to 

follow specific probability distributions, the improvement of the design quality is also 

modeled by some pre-defined probability distribution functions. In this simulation study, all 

the possible hypothetical combinations of the parameters in the design process are studied so 

as to give an overall picture of the relationships between the parameters and the time cost. 

After this, another simulation experiment with real data is discussed in Section B to further 

verify the results. Fig. 6 illustrates the pseudo codes for the simulations of the design process 

with and without the TMID system. 
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Fig. 6. The pseudo codes for the simulations of the design process 

A. Simulation with Hypothetical Data 

The two fashion design processes, namely the traditional design process and our proposed 

fashion design process with the TMID system, are simulated. Hypothetical data sets are used 

in this simulation study. A preliminary field study has indicated that the time cost of the 

design process appears to follow normal distributions. As a result, the total time cost is 

modeled as a normally distributed random variable. The mean of the normal distribution is 

given by the field data as shown in Fig. 1, which also illustrates the time cost in every step of 

the traditional design process. Normally it is assumed that the time cost in the new design 

process with the TMID, as in Fig. 2, is the same as the corresponding time cost in Fig. 1, 

except those factors that are affected by the TMID, such as the time spent on the initial design 

both in Fig. 1 & Fig. 2. In our experimental setup, we assume idt  follow a normal 

distribution of Normal(65.2, 5), so that (55.4 75.0) 95.0%p t< < = , with 75 days as the 

upper limit and 55 days the lower limit. The stopping criterion for the design process is 

modeled by a factor on the quality of design, or the satisfactory degree, denoted by [0,1]S ∈ . 

TMID process Traditional process 

Generate initial design time tid 
Generate initial satisfactory S for each designer’s 
design work 
 
Loop when S ≤  90% 
 Generate self-revision rounds 

Loop every self-revision rounds 
  Generate self-revision time 
  Increase S 

End loop 
 Increase S 
 Add up total time  
End loop 
Report total time and rounds 

Generate initial design time tid 
Generate initial satisfactory S for 
each designer’s design work 
 
 
Loop when S ≤  90% 
 Generate revision time 
 Increase S 
 Add up total time  
End loop 
 
 
 
Report total time and rounds 
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The chief designer selects a design from the design proposals and the final result is selected 

whenever S > 90%. Thus, S of every initial design must be defined. In practice, most designs 

need at least one revision, so it is reasonable to make S to follow a distribution that the 

probability of the initial design S > 90% is small enough. In our setup, S follows the normal 

distribution of Normal(50%, 0.2), and the probability that the initial design meets the stopping 

criteria ( 90%) 2.3%p S > =  is a small one. This obeys our assumption that most of the 

design will be revised. For every round of revision, the degree of satisfaction S is increased 

by (1 )S S S I′ = + − , which is a simple model similar to [29], where ( S−1 ) is the 

“unsatisfactory” factor which will be reduced by I, I is the factor representing the increase of 

satisfaction level, which is a quality improvement factor of each revision. It follows a normal 

distribution of Normal(u, 0.22) with mean u and standard deviation 0.2, (0,1)I ∈ , u = 70% is 

used for the initial test. The time spent in revision of design follows the distribution of 

Normal(7, 12), with a mean of 7 days as shown in Fig. 1. 

Based on these assumptions, the total design time for a traditional fashion design process 

in Fig. 1 is given by, 

(max )id sample cd r sample cdT t t t N t t t= + + + + + , (5) 

where the total time T is the sum of idt  (the time of initial design), samplet  (the time for 

individual sample), cdt  (the time for the chief designer to make decision and comment on 

design, and the time spent in sending the designs), N is the number of revisions, rt  is the 

time spent on revision. The total design time for the new TMID process (in Fig. 2) is given 

by,  

(max( ) )id r sample cdT t N nt t t′ ′= + + + . (6) 

where n is the number of revisions before the designer sends the design to the chief designer, 

N ′  is the number of rounds of sending design to the chief designer for comments in the new 

process with TMID, which is different from N in (5). The number of rounds n is also 

influenced by the satisfaction degree of the designer. Since a sequence of the discrete events 

like revisions can often be modeled as a Poisson process, we employ the Poisson distribution  
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P(λ) in the simulation experiments [48]. The simulation is conducted with the Monte Carlo 

method [25], with 1,000 evaluations for each parameter setting. Table V presents the 

simulation results. In this simulation, the two systems share the same parameter of the initial S 

and the increasing factor I. When there are new parameters introduced to the TMID process, 

we denote the increasing factor for self-revision by I ′ , and the number of rounds for 

self-revision by n. The simulation stops when S > 90%. The parameters’ settings are given in 

Table V. The results are presented by the average value of the total time cost in days and the 

number of rounds. The statistical 95% confidence intervals for the simulation results of time 

and rounds are also given. The experimental results have shown that with the help of the 

TMID system, the total time for the design process is reduced by around 17 days which is 

equal to 12% of the original one, and the number of rounds is also reduced slightly. 

Table V  

COMPARISON OF THE SIMULATION RESULTS OF THE TRADITIONAL FASHION DESIGN PROCESS 

AND THE FASHION DESIGN PROCESS WITH THE TMID SYSTEM (HYPOTHETICAL DATA) 

 Initial 

satisfaction 

degree S 

Increasing 

factor I 

Increasing 

factor for 

self-revision 

I ′  

Self-revisio

n rounds n  

Simulation results (average) 

Time 95% 

confidence 

interval 

Rounds 

N( N ′ ’) 

95% 

confidence 

interval 

Traditional 

process 
Normal(0.5, 

0.2) 

Normal(0.7

, 0.2) 

  137.5 ±1.2 2.3 ±0.034 

Process 

with 

TMID 

N(0.1, 0.1) Poisson 

λ=3 

120.9 ±1.5 2.1 ±0.023 

 

 

Table VI  
THE PERCENTAGE SAVING OF TIME COST IN FASHION DESIGN: THE TMID SYSTEM COMPARED 

TO THE TRADITIONAL PROCESS, WITH DIFFERENT I 
 I Time saving (%) 
TMID 0.1 -76.3% 

0.2 -60.6% 
0.3 -48.7% 
0.4 -37.9% 
0.5 -29.6% 
0.6 -20.9% 
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0.7 -15.2% 
0.8 -0.1% 
0.9 0.01% 

 

Many parameters in (5) and (6) influence the performance of the simulated design process. 

Further studies on the impact of these parameters on the total time cost and number of rounds 

of the design process with or without the TMID system are conducted. We first fix the 

distribution of revision rounds to be n ~ P( 3λ = ), and the increasing factors for self-revision 

are set to be I ′  ~ N(10%, 0.1) and I ′  ~ N(30%, 0.1), respectively. Table 6 illustrates a part 

of the results with I ′  ~ N(10%, 0.1), S ~ N(30%, 0.2) and I ranging from 10% to 90%. The 

percentages of saving of time cost are given in Table 6, where negative value means the time 

cost is reduced whereas a positive value means the time cost is increased. We can observe 

from Table 6 that in most cases the TMID reduces the time cost significantly, except for some 

rare cases where I is very high such as 0.8 or 0.9, the time costs of the two systems are almost 

the same. This reveals that the time cost saving of the TMID system is especially useful when 

I is small. 

Fig. 7 & Fig. 8 illustrate the comparisons in detail with all possible combinations of I and 

S, with I ranging from 10% to 80% and S ranging from 10% to 90%. In Fig. 7 & Fig. 8, we 

observe that with the increase of S and at a fixed I = 20%, the time and the number of rounds 

are decreased for both processes. The percentage improvement of the time cost is given by 

( ) / 100%cdss traditional traditionalt t t− × , where traditionalt  is the time cost of the traditional design 

process and cdsst  is the time cost of the design process with the TMID system. Among all the 

computed values, most cdsst  values are smaller than the traditionalt  values until S is increased 

to 80%, and in all cases the number of required rounds of the TMID system is smaller than 

that of the traditional system. Fig. 9 & Fig. 10 further show the result with S = 70% and 

increasing I; for this case, cdsst  is only better than traditionalt  in terms of the time cost when I 

< 30%, although the number of required rounds does reduce. 

In Fig.s 7-10, we find that the TMID system is especially helpful when the initial S is not 

very high and I is low. In most cases, with the help of the TMID system, the average number 
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of revision rounds of the new TMID fashion design process is lower than that of the 

traditional process. The major contribution of the proposed TMID system is hence on 

speeding up the revision process. When the initial satisfactory level is low, a longer revision 

time is needed in the design process; when the increasing factor of satisfaction is also low, 

more revision rounds are needed, and the TMID system is observed to be especially useful 

under this condition. In particular, when the increasing factor of satisfaction is higher, which 

means that “the case when the individual designers can meet the chief designers demand with 

just one revision” appears more often (it is a rare case though), the TMID system may only 

bring marginal improvement to the design process. 

Fig. 9 & Fig. 10 show similar results when 'I  follows Normal(30%, 0.1). Fig. 9 is 

similar to Fig. 7 in shape, but the time costs of TMID are significantly reduced and we 

observe in more than half of the combination of S and I that the time costs of the TMID 

process are better than that of the traditional process. Fig. 10 also shows that the average 

number of rounds is improved for the process with the TMID where for all cases the TMID 

process outperforms the traditional process. 
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Fig. 7. Comparison of time cost with different S and I in simulations of the traditional design 

process and the TMID design process when 'I ~ Normal(10%, 0.1). 
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Fig. 8. Comparison of number of rounds with different S and I in simulations of the 

traditional design process and the TMID design process when 'I ~ Normal(10%, 0.1). 
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Fig. 9. Comparison of time cost with different S and I in simulations of the traditional design 

process and the TMID design process when 'I ~ Normal(30%, 0.1). 
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Fig. 10. Comparison of number of rounds with different S and I in simulations of the 
traditional design process and the TMID design process when 'I ~ Normal(30%, 0.1). 

 

B. Simulation with Real Data 

From an interview with the knitwear company PC, we have collected the following data sets 

on the revision time rt , the number of revision round N , the time for initial design idt , and 

the time for transportation cdt  in the total design time under the traditional process as shown 

in (5), and the average time for each procedure is given in Fig. 1. Each of the sample data sets 

has a size of 50 data points. These practical data sets reveal some facts of the traditional 

fashion design process. The degree of satisfaction S is modeled by (1 )S S S I′ = + − , and the 

result for the number of revision rounds is given by Table VII. The real N  has an average 

value of 1.38, the nearest values to it in Table VII are highlighted. By using the data from 

Table VII, we can tell that the initial S is around 80%, and I is around 60%. This reveals that 

both S and I are fairly high in practice, and this is in fact the real situation. We use S = 80% 

and I = 60% in the following simulation analysis. 
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Table VII  

SIMULATION RESULT OF TRADITIONAL PROCESS ON AVERAGE REVISION ROUNDS VS. VARIOUS 

INITIAL SATISFACTORY S AND INCREASE FACTOR I 
 I  

Initial S 
10% 20% 30% 40% 50% 60% 70% 80% 90% 

10% 17.235 9.37 6.532 4.986 4.069 3.415 2.881 2.477 2.088 
20% 16.241 8.762 6.151 4.722 3.887 3.231 2.832 2.384 2.064 
30% 14.708 8.114 5.663 4.439 3.693 3.065 2.705 2.282 2.02 
40% 12.908 7.181 5.075 4.022 3.356 2.861 2.543 2.169 1.993 
50% 10.499 6.103 4.379 3.525 3.015 2.619 2.3 2.033 1.924 
60% 8.02 4.555 3.425 2.87 2.528 2.252 1.971 1.829 1.809 
70% 5.099 3.122 2.503 2.187 1.913 1.808 1.648 1.595 1.566 
80% 2.861 1.913 1.675 1.518 1.452 1.401 1.332 1.339 1.347 

 

In Fig. 11(a), the distribution of the real number of revision N  is given by a histogram. 

Observing from Fig. 11(a), we find the shape of the histogram is similar to a lognormal 

distribution. A simple calculation from the lognormal cumulative density function with 

0.2, 0.3µ σ= =  have the data points fall within [0, 3] with probability of 

(0 3) 95.0%p t≤ ≤ = , and Fig. 11(b) depicts a 50 sample data generated in one simulation 

run, which resembles the shape in Fig. 11(a). A Lillilifors test [49] is conducted on ln( N ) 

which verifies that N  does follow the lognormal distribution. As a result, this lognormal 

distribution is used to model the number of self-revision rounds in the simulation experiment. 

For the revision time rt , the Lillilifors test proves that the sample comes from a 

distribution in the normal family and we therefore use a normal distribution with parameters 

of 0.2, 0.3µ σ= = . The time for transportation cdt  is quite short (around the 2 days) 

comparing to the time for the whole process (usually more than 100 days), we just simply use 

its mean value in the simulation (since its variance does not significantly affect the result). 
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(a) Histogram of revision rounds N  (b) Histogram of lognormal distribution 

Fig. 11. The distribution of revision rounds. 
 

 
Table VIII  

THE PERCENTAGE SAVING OF TIME COST: TMID COMPARED TO THE TRADITIONAL PROCESS, 
WITH DIFFERENT I ′  

 I ′  Time 
TMID 0.1 -5.7% 

0.2 -8.6% 
0.3 -9.9% 

 0.4 -11.6% 
0.5 -13.8% 
0.6 -14.5% 
0.7 -15.3% 
0.8 -15.6% 
0.9 -15.5% 

 

The new simulation result of the traditional process (at S = 80% and I = 60%) gives a total 

time of design = 121.76 and number of revision = 1.002. While with the new setup of the 

simulation of TMID, the total time of design = 109.73 and the number of revision = 1.191, 

with I ′=0.3. Comparing to the results on hypothetical data, the total time is reduced quite 

significantly but the revision rounds (of major revision) increases, this is because the number 

of self-revision rounds is reduced, which apparently affects the total time, but the satisfactory 

factor increases slowly and causes the total number of revision rounds to rise. Detailed results 

with various 'I  exhibiting similar property as the ones in the theoretical data are not shown 

here. The percentage time difference of the process with the TMID system compared to the 
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traditional one is given in Table VIII. As a remark, the percentage time difference is given by 

100% ( ) /cdss traditional traditionala t t t= × − , where cdsst  is the time cost for the TMID process, 

and traditionalt  is the time cost for the traditional process. From Table VIII, we observe one 

prominent trend that when 'I  is larger, the significance of time cost reduction seems to be 

increasing and it gets to a steady state at around 0.8-0.9.   

 

V. CONCLUSION, COMPANY INTERVIEW & 

INSIGHTS 

In this paper, motivated by real world industrial practices, we have studied a new 

technology-mediated intelligent decision (TMID) scheme for the fashion design process. This 

TMID system is based on the team work spirit under the existing fashion design practices, 

and employs the fuzzy ANN approach in the analysis of the design qualities, where no 

discipline specific knowledge is required. Our experiments in using both real data sets and 

hypothetical data sets have indicated that with the help of fuzzy ANN models, the proposed 

TMID system exhibits significant improvement in enhancing the required time for the fashion 

design process while achieving a high design quality. Some specific insights are discussed 

below: 

1. The simulation studies conducted in this paper have revealed that the time cost reduction 

via the TMID system is especially prominent when the initial design’s degree of 

satisfaction (S), and the factor of quality improvement (I) are both high. Only for the case 

when S is low and I is very high (i.e. when the designer fails to understand the chief 

designer’s initial brief, produces a very poor initial design while makes a very good 

improved revision), the fashion design process with the TMID system is not so helpful. 

From the analysis with real data sets on the design process from a knitwear company PC, 

we have found that the S and I in practice are high which provides a good support that the 

potential improvement by using our proposed TMID system is relatively high. 
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2. For the factor 'I , our experiments have shown that its increase can enhance the TMID 

system’s performance but the magnitude of improvement is small, especially when 'I  is 

high. As a remark, our analysis also illustrates that the TMID process can shorten the 

design time even if the 'I  is as low as 10%. Since with the fuzzy ANN approximation of 

the MAUF, our TMID system is capable of “learning” human preferences and can get 

acceptable results even with very few historical data, this means it is very likely that we 

can have an 'I  which is large enough to guarantee a time improvement of the design 

process.  

3. There exist some special and extreme cases in which our proposed TMID system may not 

yield any real benefits. For example, when there are too many self-revision rounds (just 

like when the individual designer tends to misunderstand or even disagree with the chief 

designer’s advice), the TMID process may perform worse than the traditional one. 

4. In order to further verify the significance of our proposed fashion design process with the 

TMID system, we conducted an interview with the knitwear company PC. The key 

comments include: (a) In the traditional fashion design process, owing to time constraint, 

the chief designer could only select 1-2 major design works for production. Thus, if the 

proposed new process/system could improve the number of outputs for selection (e.g., the 

chief designer could be given 3-4 design works for selection and hence production), the 

proposed system is very useful. (b) In practice, for many new designs, the company has to 

proceed with at most two revisions even if the quality of design is far from perfect because 

there is insufficient time for marketing a new fashion design. Thus, under our proposed 

TMID scheme, we can reduce the time required for creating a fashion design with respect 

to a given quality level. Thus, within the same given time frame, we can generate more 

designs for the chief designer to choose. This is known to be very important. Plus, since 

the company currently has to sacrifice the quality of design for many new designs 

because of the long lead time to market which means the company has to rush up a few 

designs with few revisions, with our proposed new design process, the company can 

actually enhance quality by creating more high quality choices for the chief designer to 

select. We are hence very pleased to notice that our proposed new fashion design process 

with the TMID system can address the crucial concerns of the company in practice.  
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To conclude, we believe that this paper has provided a new TMID system for enhancing the 

fashion design process. This system’s performance has been tested with extensive 

experiments and it is known to be effective. Its features are also found to be useful in 

addressing many practical problems faced in the real world by knitwear companies. We hence 

believe that the proposed TMID system is applicable and significant in real world. Further 

explorations can be conducted by, for example, including more fuzzy preferences, introducing 

self-adaptive membership functions and employing the fuzzy reasoning. Moreover, a risk 

analysis [16], [44] on the level of risk (on the stochastic quality and time) associated with the 

TMID system in fashion design can be explored. 
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Appendix: Company Background of the Collaborating Company 

Established in 1984, Pearls & Cashmere (PC) has been associated with high quality cashmere 

products with stores in 5 stars hotels such as the Peninsula, Mandarin Oriental and 

Intercontinental. Pearls & Cashmere company designs, manufactures, markets and sells knit 

and woven products in the luxury goods industry. As a small pearl attached onto the Pearl of 

Orient that is Hong Kong, Pearls & Cashmere is a locally developed brand that is distinctive 

and unique. In 2005, it founded a new brand BYPAC (by Pearls and Cashmere), which 

employs professional international designers knowledgeable in fabrics, tailoring and design, 

to come up with new concept that qualify as a designer brand, truly international in standing. 

Today BYPAC boasts of a full range fashion items: sweater, pant, skirt, gloves, socks, scarf 

and shawl. The brand concept is to provide contemporary style with timeless elegance in 

luxurious fabrics and yarns. The core brand values focus on quality and value, with 

astonishing variety of colors and styles, from cashmere to cotton, sweaters to pants, 

accessories and gift items. BYPAC is committed to give customers with refined finishes and 

innovation in product development, from the design functionality to the fit and color choices. 

Being a vertical retailer, BYPAC controls every stage of the products; from yarn spinning to 

quality control at the factory and finally to the visual merchandising at the store. BYPAC also 

provides after sales customer service and ensure the product satisfaction at any time. The 

annual turnover of the Pearls and Cashmere company is in a range of US$50M and US$100M. 

The major export market includes Australia, China, Hong Kong, Japan, Korea, Taiwan and 

S.E. Asia. The offices are located at Hong Kong and at Shanghai respectively. 
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