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Abstract

Deep Learning is considered the foundation of a new technological revo-
lution, which is going to radically change human beings lives. No doubt that,
in the following years, the use of deep learning techniques will bring to the
development of outstanding applications that will totally change the way people
interact with each other, interact with their environment, conceive work, travel,
etc.

However, while in the domain of applications deep learning is destined to
revolutionize any human activity, it is extremely difficult to believe that these
techniques, in an isolated way, can lead to the great dream of general artificial
intelligence. Indeed, deep learning algorithms have shown to reach human-like
performance inmany isolated tasks, like image recognition or speech recognition,
but they still struggle in integrating these single activities in a truly intelligent
behaviour. Moreover, they are tremendously data-hungry: is recognizing a cat
after having seen one million cats an intelligent behaviour?

There is a clear need to look forward for more complex and general theories,
where the outstanding deep learning techniques are not a final recipe but only
an ingredient. We hope this thesis to be a little step in this direction.

By taking inspiration fromboth symbolic artificial intelligence, strongly based
on mathematical logics, and behavioural sciences, this thesis formulates and
investigates a new theory about how intelligent behaviours can be the outcome
of the seamlessly integration of two reasoning mechanisms: one subsymbolic,
associative and fast; the other symbolic, cautious and slow. This integration
naturally emerges from a principle of MiniMax Entropy, where the model of
an intelligent system is asked to describe the environment it is exposed to by
minimizing its internal confusion, yet keeping the maximum uncertainty about
anything it is not able to explain. The theory nicely intercepts multiple AI fields
like Statistical Relational Learning, Deep Learning, Constrained Optimization,
Probabilistic Graphical Models, Neuro-Symbolic Integration, to name a few.

The theory is extremely general and multiple models can be described in
terms of MiniMax Entropy models. Some practical instances of the theory are
proposed and empirically investigated, showing competitive results in many
different learning and reasoning tasks w.r.t. other specific state-of-the-art ap-
proaches. Moreover, actual programming frameworks, inspired by the theory,
are proposed and provided to the community for future investigations.
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Chapter 1

Introduction

1.1 Motivations and Goals

The AI revolution. About 100 years ago we did not have wide access to electricity.
However, in the last 100 years, the rise of electricity transformed everymajor industry:
communication, travels, entertainment, etc. In the 18th century 70% of American
residents were working in agriculture but, today, less than 1% are working in it. This
happened in around 200 years only because of the single revolution that happened
in the electrical field.

“Artificial Intelligence is the new electricity” said Andrew Ng, co-founder of Cours-
era and Adjunct Professor of Computer Science at Stanford University.

Artificial Intelligence (AI) is predicted to be the next big technological revolution,
which is already shaping every aspects of our everyday lives. By a careful inspection,
it is easy to see that AI tools are everywhere around us. Vocal assistant in each
of our smartphones, controlled ads on the Web, traffic-aware satellite navigators,
park-assisted cars, clinical smart files are just few examples of AI in our daily life.
But this trend can only increase in the next years. Exactly like electricity, AI will
permeate every human activity in an increasingly impactful way. One astonishing
statistic describing this trend is the AI market projections in the period 2016-2025
that sees a growth from 1.4 billion $ to 60 billion $.

While the word “AI” is usually the most exploited to collectively describe all
these new technologies, experts in the field know that there is one particular class
of techniques mainly responsible of this explosion: deep learning. Indeed, AI is a
field that dates back to the born of computer science itself. However, its impact has
only be felt in these last years by the world, thank to the advancement of a class
of techniques, called deep learning, which evolved original researches in the filed of
neural networks. The explosion of deep learning research, together with a huge
improvement in distributed computational hardware, made possible the solution of
a large class of tasks which, up to few years earlier, were considered human being
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6 CHAPTER 1. INTRODUCTION

prerogative. Examples are image recognition, speech recognition, natural language
understanding.

An example of deep learning application that has recently resounded in all media
has been the victory of the AlphaGo algorithm against the Go world champion.
The Go game, which has always been considered the most difficult board game in
existence, has always put computers to the test. An approach that requires evaluating
all possible moves should consider a number of cases greater than the number of
atoms in the universe. Humans have always been considered superior in that they
accompanied a degree of intuition to pure logic. This allows them to proceed by
instinct when logic fails.

Informally speaking, the success of deep learning can be attributed to the ability
of these algorithms to mimic those human decisions that are more purely instinctive,
in the sense that they are not accompanied by a purely conscious reasoning process.
Often these are associative tasks, where we respond to sensory input with a decision
that is instinctive rather than due to careful and progressive analysis. Consider
looking at the image of the cat: you will say that it is a cat without consciously
considering the fact that it is a small mammal, with sharp teeth, pointed hilts and
long whiskers. Deep learning algorithms try to mimic this: they will say to you that
the image is depicting a cat, but they do not carry any logical reasoning behind that
decision: it is purely an associative answer. It is worth noticing that it is likely that the
success of deep learning should not be attributed necessarily to new and astonishing
ideas but mostly to a shift of paradigm. While original AI was more interested in
miming those conscious reasoning processes which are usually characteristic of
human intelligence, deep learning focused on miming another behaviour of humans,
which is connected to instinctive processes.

But: is deep learning the final recipe to general artificial intelligence? When talking
about general artificial intelligence, we are referring to that set of cognitive abilities
that will give machines human-like intelligence as a whole, which is likely to be the
big dream of every AI researcher. While there are no doubts that deep learning is
making a lot of little steps toward this objective, we believe that there is something
still missing, which we are going to motivate now.

Indeed, while discussing about instinctive tasks and decisions, there was a in-
tentional bug in our claim. It is true that a large part of human intelligence and
decision making is made of instinctive tasks and that deep learning is increasingly
improving in miming these behaviours, but humans are still capable of performing
more abstract and conscious reasoning processes on top of these. That is, after hav-
ing answered about an image to be a cat, the careful human viewer will also try to
abstract its answer in a structured way, checking if a logical analysis of its answer
make it still sound or not. This analysis (i.e. splitting into parts and then putting
everything together in a principled way) is likely to be beneficial for this and other
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similar tasks in the future. We believe human intelligence to be the never-ending
interaction between these two mechanisms: the former that is instinctive, fast, due to
many similar experiences, and the latter that is slow and careful, generalizing single
experience in general rules.

What this thesis is about. In this thesis, we propose a theory for modeling and
integrating intuitive processes of intelligence, referred to subsymbolic reasoning,
and cautious processes of intelligence, referred to symbolic reasoning. Here, deep
learning models becomes the building blocks of a more general theory, where objects
of the world are related to each other. The resultant relational settings is elegantly
described using logical formalism and logical arguments allow for more complex
reasoning processes to be carried on. In this way, standard deep learning techniques
are extended and complemented by abstract reasoning capabilities.

In the following of this section we want to motivate more deeply the need for
such an integration and some of its main features.

Fast and Slow thinking. Talking about human behaviours, this distinction is sup-
ported by recent discoveries in the behavioural science, among which those of Daniel
Kahneman which made it win the Nobel Prize in Economic Sciences. While going
deeper in Kahneman’s studies is out of the scope of this work, it is interesting to note
that he individuated multiple evidences of this dichotomy in human decision mak-
ing and general thinking. In particular, a lot of experiments on human behaviours
brought him to a model of the human thinking and decision making as the output of
the never-ending interaction of two fictitious systems, named System 1 and System 2.

To easily get the main idea of Kahneman’s studies, we introduce here an enlight-
ening experiment carried on during his research. Here, a group of people were asked
to solve two quite easy tasks: (i) individuating the emotion in a human face; and (ii)
calculating the result of a non-trivial multiplication (i.e. 17× 23). This is depicted
in Figure 1.1. All the participants showed a pretty identical behaviour: they were
able to answer immediately to the image recognition task, while they all showed
evident sign of effort (i.e. pupil dilatation) in solving the multiplication, which took
evidently more time to be solved. From a computational viewpoint, there are no
doubts that the multiplication is a far easier task than a face recognition task. So,
why do humans show this behaviour? Leaving apart physiology and hardware
differences (which are clearly very important), the most interesting analysis is that
these two reasoning processes are, in humans, very different in the way humans
tackle them. The angry-face task is an associative tasks; we use visual features to
index some memory we have about angry faces, without the need to ask for more
complex analyses. This "hashing" mechanism is demanding very low effort, since
no complex or sequential algorithm should be run. On the other side, while we do
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17× 23

Figure 1.1: Illustration of an experiment underlining the difference between symbolic
and subsymbolic task. The recognition of the image emotion, which is considered
a computationally harder task, is solved much faster by humans than a non-trivial
multiplication. This is due to the fact that in solving the image recognition task we
are making a lot of use of fast-associative inference, which is not possible in a purely
symbolic multiplication task.

have very fast memories about 1 digit × 1 digit multiplication, we cannot store all
the results of all the possible multiplications1, so we need to apply a more complex
algorithm, which allows us to generalize the simple multiplications we know to
general and unseen cases. However, this process requires multiple steps, where
intermediate results need to be stored and eventually integrated, and this is far more
energy demanding than the previous task. By using Kahneman’s definition, System
1 is capable of providing very reliable intuitions in the face emotion recognition task,
while it is completely inadequate for solving the multiplication task, which is carried
on by System 2.

An high level description of System 1 and System 2 behaviours and interaction is
quoted from Kahneman (2011):

System 1 operates automatically and quickly, with little or no effort
and no sense of voluntary control. System 2 allocates attention to the ef-
fortful mental activities that demand it, including complex computations.
The operations of System 2 are often associated with the subjective expe-
rience of agency, choice, and concentration. The automatic operations of
System 1 generate surprisingly complex patterns of ideas, but only the
slower System 2 can construct thoughts in an orderly series of steps. [. . . ]
Systems 1 and 2 are both active whenever we are awake. System 1 runs
automatically and System 2 is normally in a comfortable low-effort mode,

1While this is a good and general rule of thumb, it is clearly not always true and we link here
to the following subsection, about tight integration between symbolic and subsymbolic reasoning.
Indeed, a shop assistant, who has to compute receipts of carts with lots of pieces all with a unary cost
of 23, is likely to answer very fast to the multiplication above, as fast as we can answer 2× 3. This is
due to the fact that the shop assistant switches the paradigm in solving this task and their reasoning
system figures out that it is convenient to store all the results if they are needed very frequently.
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in which only a fraction of its capacity is engaged. System 1 continuously
generates suggestions for System 2: impressions, intuitions, intentions,
and feelings. If endorsed by System 2, impressions and intuitions turn
into beliefs, and impulses turn into voluntary actions. When all goes
smoothly, which is most of the time, System 2 adopts the suggestions of
System 1 with little or no modification. You generally believe your im-
pressions and act on your desires, and that is fine—usually. When System
1 runs into difficulty, it calls on System 2 to support more detailed and
specific processing that may solve the problem of the moment. System 2
is mobilized when a question arises for which System 1 does not offer an
answer. You can also feel a surge of conscious attention whenever you are
surprised. System 2 is activated when an event is detected that violates
the model of the world that System 1 maintains.

It is extremely curious that lots of the tasks associated with System 1 in Kahneman
(2011) are indeed tasks that deep learning techniques solve increasingly better as
time goes by. And it is even more curious that the tasks associated with System
2 are instead tasks of control and complex reasoning, tasks that characterized the
first period of AI and that failed when compared with the great success of deep
learning. An interpretation of this failure in terms of Kahneman’s studies is that
complex reasoning in humans is not an abstract and isolated process but it is likely
to be a second step of a simpler reasoning process based on intuitions, associations,
approximations. Several Kahneman’s experiments showed that human behaviour is
mostly controlled by System 1, but that at the same time, System 1 needs System 2 in
real complex scenarios, where multiple intuitions need to be ordered in a structured
thought.

Coming back to artificial intelligence, we have two big subfield of artificial intelli-
gence. From one side, we have what is currently referred to as symbolic reasoning. It is
the field collecting techniques that exploit complex reasoning over abstract symbols
to solve problems. It characterized the first era of AI and it is usually strictly linked
with logical reasoning and deductive processes. The main problem of these tech-
niques is their complexity, making them not usable in real world scenarios. On the
other side we have the subfield of AI which is often referred to subsymbolic reasoning,
which usually collects methods of solving tasks by exploiting (multiple) perceptual
experiences to come upwith a solution to a task. It is strictly connectedwith the fields
of machine learning and data mining, and it has been recently pushed extremely
forward by the techniques of deep learning. It is extremely more scalable than the
first one, but at the same time lacks from abstraction power, making it extremely
data hungry and inappropriate in complex scenarios.

The conceptual correlation between subsymbolic reasoning and System 1 and
symbolic reasoning and System 2 should now be evident. And equally evident
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should be our belief that, in designing a theory of artificial intelligence, both the field
of symbolic reasoning and subsymbolic reasoning should have a role. Subsymbolic
reasoning should guide themost of the reasoning processes, which allow the artificial
agent to be able to take fast and effortless decisions. At the same time, symbolic
reasoning should be responsible of checkingwhether the decisions of the subsymbolic
component are feasible and refining them when necessary.

A tight integration. Another interesting notion thatwe can borrow frombehavioural
sciences concerns the fact that tasks accomplished by System 1 in one individual are
not exactly the same tasks accomplished by System 1 in another individual. They
coincide in most of the cases but some exceptions are possible depending on the
individuals. This is extremely interesting since it seems suggesting that people can
tackle the same tasks in different ways, some exploiting more intuition and memory
association, others exploiting more control and logical reasoning. The most common
example is that of people playing chess and usually showing signs of effort when
thinking about a move (e.g. pupils dilatation); on the other side, chess champions
usually play in a much more intuitive way, not always perfectly conscious about the
reasons behind a certain move.

This circumstance seems to suggest that the surface of separation between which
tasks are symbolic and which sub-symbolic is not perfectly delineated but reveals
very blurred contours. And this behaviour is extremely delightful, in that there
should be a unified theory behind both worlds. Abstract reasoning is likely to be
the starting point in facing a new problem, due to the fact that abstraction allows
generalization to never-seen tasks. However repetition and exercise slowly decrease
the effort in solving the task and increase the intuitions about it. In Kahneman’s
words, System 1 needs always less and less supervisions from the System 2 and it
becomes more and more proficient in a certain task, due to exercise and experience.

These considerations suggest a second desired feature of the theory we are going
to provide. There should be a unified principle which allows a smooth transition
between symbolic and subsymbolic reasoning.

1.2 State-of-the-art and Open Problems
We will go through several state-of-the-art systems in Chapter 2. Here we will give
a general overview of where we are now in merging symbolic and subsymbolic
reasoning and what problems are still open.

The task of merging symbolic and subsymbolic reasoning has a long history but it
has taken a new look after the deep learning explosion as a new AI research subfield,
named neural-symbolic integration (Garcez et al., 2012). There are two major ways
of performing this integration.
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• From one side, we want to exploit neural techniques to improve purely symbolic
tasks. There are multiple ways of achieving this improvement. First of all,
neural models are usually much faster in performing inference, thanks to
their particular layered-structure of hidden variables; therefore, they can be
effectively used to perform a fast approximate inference (Chang and Blei, 2009;
Choi and Amir, 2012; Tu and Gimpel, 2018). Second, neural models usually
deal with perceptual (i.e. subsymbolic) representations of elements of the
world under investigation. This allows to exploit the particular geometry of
the perceptual world to simplify inference (Diligenti et al., 2017). Indeed, at the
end of the day, except very isolated cases, humans themselves reason about
the world around them and not about abstract entities. Finally, when this
perceptual space is not known, lot of neural models still assumed its existence
and they attributed a vectorized representation to symbolic entities , which is
optimized as a parameter of the learning problem. These representations are
often referred to as embeddings and multiple approaches translate relational
(i.e. logical) operations in terms of embeddings operations (Bordes et al., 2013;
Sourek et al., 2015; Trouillon et al., 2016; Rocktäschel and Riedel, 2017).

• From the other side, we want to exploit symbolic techniques to relate multiple
neural tasks. Indeed, in the setting of multi-task learning, there exists multiple
examples of neural models solving multiple tasks simultaneously (Collobert
et al., 2011). However, in most of (if not all) the cases tasks are not isolated but
are related to each other. This is sometimes referred to as structured prediction or
structured learning. The structure, even though adding a layer of complexity, can
strongly improve neural models since structure is a compact way to describe
lot of data (Liang et al., 2008). Indeed, one of the major drawback of neural
models, and deep learning in general, is the extremely large amount of data
they require to be trained. Structure is an high level source of knowledge, much
more clean and valuable than single examples. Incorporating structure in deep
learning is a fundamental step in improving its performances (Huang et al.,
2015). Logic has always been considered one of the most elegant languages
for expressing complexly structured knowledge and there have been multiple
approaches trying to incorporate logic knowledge in deep learning models
(Diligenti et al., 2017; Manhaeve et al., 2018).

Even though the awareness of the need for integrating models from the symbolic
AI community and the deep learning community has been increasing a lot recently,
the effort in the development of a unifying theory is still missing. While every single
contribution is extremely valuable, lots of them are very uncorrelated, difficult to
compare in order to underline common features or differences. This is likely to be
due to the wide heterogeneity of skills of researchers in the area. This circumstance
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makes the need of a unified and broad theory that describes multiple approaches
and that can help understanding the connections between them.

Moreover, a sound integration solution should recover a symbolic approach in
purely symbolic tasks and a subsymbolic approach in purely subsymbolic tasks,
while most of the existent approaches are still very close to only one of the two classes
of tasks.

Finally, the integration between the two layers is often achieved (e.g. in Bach et al.
(2017)) by simply stacking a symbolic approach on top of a subsymbolic approach.
This will hardly recover the tight integration that has been discussed in the previous
Section, where we expect both layers to benefit from each other.

1.3 Contributions
The major contributions of the thesis are as follows:

• The introduction of the principle of MiniMax Entropy, where the maximization
of the entropy for an unbiased description of the observations of the world is
coupled with a local minimization of the same entropy aiming at selecting the
best features for the description.

• Extension of the MiniMax Entropy principle to the conditional case, where
perceptual data are associated to basic elements of the reasoning process. This
extension individuates MiniMax Entropy models as a candidate for a unified
theory of neuro-symbolic integration.

• Proposal of a new theory for the design of logical potential functions based
on the exploitation of generated t-norm functions for the translation of FOL
formulas into real-valued constraints, enabling differential inference methods.
Based on Giannini et al. (2019); Marra et al. (2019c).

• Characterization of Learning FromConstraintsmodels (Gnecco et al., 2015; Gori,
2017) as a very specific instance of MiniMax Entropy models in a variational
inference setup.

• Definition, Implementation and Evaluation of LYRICS, a new programming
language for describing a wide range of neuro-symbolic tasks using First Order
Logic as user-interface language. Based on Marra et al. (2019b).

• Proposal and evaluation of Deep Logic Models, MiniMax Entropy models
exploiting fuzzy potentials and MAP inference. Based on Marra et al. (2019a).

• Proposal and evaluation of Neural Markov Logic Networks, aMiniMax Entropy
model with trainable relational potentials and Gibbs Sampling Inference. Based
on Marra and Kuželka (2019).
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1.4 Structure of the thesis
This thesis is structured as follows.

• Chapter 2 introduces basic concepts necessary for the rest of the dissertation.
In particular, two standard relational setting are described, namely First Order
Logic and Logic Programming. Then, basic approaches of Statistical Relational
Learning are described. They represent the background of many of the neuro-
symbolic integration approaches described in the next part of the Chapter.
Finally, other related approaches are discussed.

• Chapter 3 introduces the relational setting which will be shared by all the
approaches of the thesis. Then, the basic principles of Maximization of Entropy
and Minimization of Entropy are discussed and their integration into MiniMax
Entropy problems is introduced, together with a general scheme for estimation
and computation of these problems. The conditionalMiniMax Entropy problem
is discussed next, highlighting how this formulation makes MiniMax Entropy
models a candidate for general models in neuro-symbolic integration. Finally,
some approximated inference methods, exploited in the rest of the thesis, are
described and some links to similar methods are underlined.

• Chapter 4 describes how fuzzy logics can be exploited to define potentials
based on First Order Logic languages. In particular, the theory of t-norm and
their generators is introduced and its declination in binding logic and learning
is described.

• Chapter 5 introduces LYRICS, a general interface layer between logic and learn-
ing. It exploits the fuzzy logic conversion previously described to set up actual
learning problems. The programming framework of LYRICS is described next.
Finally, a large number of learning problem implemented in LYRICS are de-
scribed, showing both the easiness of implementation and the competitiveness
w.r.t. to other methods in the literature.

• Chapter 6 introduces Deep Logic Models (DLM), which are conditional Mini-
Max Entropy models exploiting fuzzy potentials and MAP inference as main
ingredients. DLM are compared with state-of-the-art neuro-symbolic integra-
tion approaches, showing improvements both in structured learning tasks and
link predictions tasks.

• Chapter 7 introduces Neural Markov Logic Networks (NMLN), which are
MiniMax Entropy models exploiting parametric potentials and Gibbs Sampling
as inferencemethod. NMLNare allowed to learn the structure of the problem as
neural potentials, allowing a very fine-grained representation of the underlying
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distribution. NMLN are shown to compare favourably w.r.t. state-of-the-art
neural theorem provers in link prediction tasks and to allow facing generative
tasks in the relational setting.

• Chapter 8 draws the conclusions of the presented work and introduces possible
future improvements of MiniMax Entropy problems.



Chapter 2

Related Works

2.1 Background

2.1.1 First Order Logic
In First Order Logic, a term is a variable, a constant or a functor applied to terms.
An atom is of the form p(t1, . . . , tn) where p is a predicate of arity n and the ti are
terms. A formula is built out of atoms using universal and existential quantifiers and
the usual logical connectives ¬,∧,∨,→,↔. A FOL theory is a set of formulas that
implicitly for a conjunction. An expression is called ground if it does not contain
variables. A literal is an atom or its negation. Each disjunction of literals is said to be
a clause. A disjunction consisting of a single literal is called a unit clause.

TheHerbrand base of a FOL theory is the set of all ground atoms constructed using
the predicates, functors and constants of the theory. A Herbrand interpretation, also
called a (possible) world, is an assignment of a truth value to all atoms in the Herbrand
base. Aworld or interpretation is called amodel of the theory if it satisfies all formulas
in the theory (in other worlds, if all formulas evaluate to true in that world).

2.1.2 Logic Programming (LP)
Syntactically, a normal logic program, or briefly logic program (LP) is a set of rules.
A rule (also called a normal clause) is a universally quantified expression of the form
h :- b1, ... , bn, where h is an atom and b1, . . . , bn are literals. The atom h is called
the head of the rule and b1, . . . , bn the body, representing the conjunction b1 ∧ . . . ∧ bn.
A fact is a rule that has true as its body and is written more compactly as h.

When using the well-founded semantics for LPs (?) and in the case of a negation-
free LP (or definite program), the well-founded model is identical to the well-known
Least Herbrand Model (LHM). The LHM is equal to the least of all models obtained
when interpreting the LP as a FOL theory of implications. The least model is the
model that is a subset of all other models (in the sense that it makes the fewest atoms

15
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true). Intuitively, the LHM is the set of all ground atoms that are entailed by the LP.
For negation-free LPs, the LHM is guaranteed to exist and be unique. For LPs with
negation, the well-founded model (Van Gelder et al., 1991) is commonly used.

Intuitively, the reason why one considers only the least model of an LP is that
LP semantics makes the closed world assumption (CWA). Under the CWA, everything
that is not implied to be true is assumed to be false. This has implications on how to
interpret rules. Given a ground LP and an atom a, the set of all rules with a in the
head should be read as the definition of a: the atom a is defined to be true if and only
if at least one of the rule bodies is true (the ‘only if’ is due to the CWA). This means
that there is a crucial difference in semantics between LP and FOL since FOL does
not make the CWA. For example, the FOL theory {a ← b} has 3 models {¬a,¬b},
{a,¬b} and {a, b}. The LP {a :- b} has only one model, namely the least Herbrand
model {¬a,¬b} (intuitively, a and b are false because there is no rule that makes b
true, and hence there is no applicable rule that makes a true either).

2.2 Related Statistical Relational Learning
Approaches

2.2.1 MLN
Markov logic networks (MLNs) (Richardson and Domingos, 2006) implement a
probabilistic logic providing a general interface to integrate learning and proba-
bilistic inference. In particular, first-order logic is used to define boolean Markov
Random Fields (MRFs). Any logical formula (possibly with a weight) corresponds
to a template for a set of potentials having a higher score for such assignments that
most satisfy the formula. MLNs can be exploited to mostly carry out both inference
and weight learning of the logical rules involved in a learning process, however in
(Kok and Domingos, 2005) an algorithm to learn also the set of rules from scratch if
presented, as well. MLNs incorporate logical semantics defining feature functions
into probability distributions to create models that capture both the structure and
the uncertainty in machine learning tasks. MLNs deal with first-order logic knowl-
edge base, however an interesting expressiveness extension has been considered in
(Gutiérrez-Basulto et al., 2018), where MLNs are extended to deal with statistical
universal quantifiers.

In particular, MLNs rely on the notion of Markov random field. An MRF is a
probabilistic graphical model for the joint distribution of a set of variables and it is
composed of an undirected graph expressing the variable dependencies and a set
of potential functions. For each variable it is considered a node in the graph while
a potential function (i.e. a non-negative function of the state of the corresponding
clique) is associated to any clique of the graph.
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Definition 2.1 (MRF). Let x = (x1, . . . , xn) ∈ X be a vector of random variables and let
φ = (φ1, . . . , φm) be a vector of potentials, where each potential φj assigns a real-valued
score to any configuration of the variables. Given ω = (ω1, . . . , ωm) a vector of real-valued
weights, a Markov Random Field is a probability distribution of the form:

P(x) =
1
Z

exp

(
m

∑
j=1

ωjφj(x)

)
,

where Z =
∫
X exp

(
∑m

j=1 ωjφj(x′)
)

dx′ is known as the partition function.

The integration with logic is carried out in MLNs as follows. Each potential
function φj is associated to a first-order logic formula Fj in a knowledge base KB.
KB can be seen as a set of constraints on the set of possible assignment, the fewer
formulas an assignment violates, the more probable it is, while it has the lowest
probability if it violates all the formulas. Each formula has to be considered either as
hard (infinite weight) or can be weighted to penalize differently the assignments with
respect to the formula satisfaction, the higher the weight, the greater the difference
in log probability between a world that satisfies the formula and one that does not.

Definition 2.2 (MLN). A Markov logic network L is a set of pairs (Fj, ωj), where Fj is a
FOL formula and ωj ∈ R. Relatively to a set of constants K = {k1, . . . , k|K|}, it defines an
MRF ML,K as follows:

• ML,K contains one binary node for each possible grounding1 of each predicate appear-
ing in L. The value of the node is 1 if the ground atom is true, and 0 otherwise.

• ML,K contains one feature for each possible grounding of each formula Fj in L. The
value of this feature is 1 if the ground formula is true, and 0 otherwise. The weight of
the feature is the ωj associated with Fj in L.

Hence, an MLN can be viewed as a template for constructing MRFs varying dif-
ferent sets of constants. Each of these MRF is said a ground MRF and the probability
distribution over possible assignments x specified by the ground Markov network
ML,K is given by

P(x) =
1
Z

exp

(
m

∑
j=1

ωjφj(x)

)
,

where φj(x) is the number of true groundings of Fj in x.
At hand, MLNs allow formulas with conjunctions, as well as negative or infinite

weights. However, the full class of Markov logic networks does not admit any known
polynomial-time approximation schemes for MAP inference. That is a reason why

1A grounding is an evaluation of a predicate on a certain element of a domain.
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we decide to consider a KB made of logic clauses. A clause Cj ∈ C is a disjunction
of variable x or its negation ¬x, well-known as literals. In particular for every j =
1, . . . , m, φj(x) equal 1 if an assignment to the variable x satisfies Cj and equal 0
otherwise. The weights of the potentials express the probability that the clause holds
according to the model. Let I+j , I−j ⊆ {1, . . . , n} be te set of indexes of the variables
xi occurring in Cj. Then Cj can be written as: ∨

i∈I+j

xi

∨
 ∨

i∈I−j

¬xi

 . (2.1)

In particular, MLNs can be exploited to find a most probable assignment to the
variables, i.e. MAP inference. Given an MRF defined by clauses in C, MAP inference
can be defined as the following integer linear program:

arg max
x∈{0,1}n ∑

Cj∈C
ωJ min

 ∑
i∈I+j

xi + ∑
i∈I−j

(1− xi), 1

 . (2.2)

While this program is generally intractable, some possible convex programming
relaxations have been considered in the literature, e.g. (Bach et al., 2013, 2017). In the
next section, we will introduce a generalization of MRFs, called HL-MRFs, that are
defined on continuous variables instead of boolean variables as for MLNs. Similar to
MLNs, PSL allows to define templates for HL-MRFs.

2.2.2 PSL
A possible way to make the problem in equation (2.2) feasible relies on the relaxation
to continuous values for the random variables in x. In particular, the formulas in
the knowledge base C are converted with the Łukasiewicz logic semantics (see Table
4.1) instead of Boolean logic. Łukasiewicz logic is a continuous t-norm fuzzy logic
and Ł-propositions in x can take truth values in [0, 1] instead of {0, 1}. This allows
us to represent also vague concepts together with their uncertainty. According to
Łukasiewicz logic clauses in C, the problem in equation (2.2) can be reformulated as
follows.

arg max
x∈[0,1]n

∑
Cj∈C

ωj min

 ∑
i∈I+j

xi + ∑
i∈I−j

(1− xi), 1

 . (2.3)

Whenever a clause Cj is unsatisfied we can express its distance to satisfaction. In
particular the problem in equation (2.3) can be rewritten in the following convex
optimization problem:

arg min
x∈[0,1]n

∑
Cj∈C

ωj max

1− ∑
i∈I+j

xi − ∑
i∈I−j

(1− xi), 0

 , (2.4)
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with the set of unweighted logical rules (namely to be hard-satisfied) integrated by
linear constraints expressing their distance to satisfaction:

1− ∑
i∈I+j

xi − ∑
i∈I−j

(1− xi) ≤ 0 .

We are now interested in defining a new kind of probabilistic graphical models,
called Hinge-Loss Markov Random Fields (HL-MRFs) (Bach et al., 2013, 2017), consid-
ering a hinge-loss energy function. First to define these models, we note that any
constraint distance to satisfaction corresponds to a hinge-loss function. Since the logi-
cal clauses can be converted into piecewise-linear constraints exploiting Łukasiewicz
logic, in the following we will consider a more general form for the allowed con-
straints including arbitrary linear constraints. In particular, the problem in equation
(2.4) can be generalized to

arg min
y∈[0,1]n

∑
Cj∈C

ωj max
{

lj(y), 0
}

,

where lj denotes any linear function of continuous random variables y, each term
in the sum denotes its distance from the satisfaction of lj(y) ≤ 0 and the weight ωj
scales the distance from satisfaction of the corresponding constraint. We note that
this definition applies to equality constraint as well, being representable as pair of
inequalities.

Definition 2.3. Let y = (y1, . . . , yn), x = (x1, . . . , xn′) be vector or variables with joint
domain D = [0, 1]n+n′ and φ = (φ1, . . . , φm) a vector of continuous potentials such that

φj(y, x
¯
) = (max{lj(y, x), 0})pj , (2.5)

where lj is a linear function and pj ∈ {1, 2}. Let c = (c1, . . . , cr) be a vector of linear
constraints (representing hard-constraints) defining the feasible set:

D̃ = {(y, x) ∈ D : ck(y, x) ≤ 0, ∀k ∈ {1, . . . , r}} .

Given a vector of nonnegative weights ω = (ω1, . . . , ωm), for any (y, x) ∈ D, a con-
strained hinge-loss energy function f ω is defined as:

f ω(y, x) =
m

∑
j=1

ωjφj(y, x) .

We present the definition in a conditional form, however this gives a more general
representation, indeed the set of conditioning variables may be empty.
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Definition 2.4 (HL-MRFs). A hinge-loss Markov random field P over random variables
y conditioned on random variables x is a probability density defined as follows:

P(y|x) =
{

0 if (y, x) /∈ D̃
1

Z(ω,x) exp(− f ω(y, x)) otherwise
,

where
Z(ω, x) =

∫
y|(y,x)∈D̃

exp(− f ω(y, x)) ,

and f ω is a hinge-loss energy function.

WhereasMarkovLogicNetworks define template forMRFs over boolean variables,
Probabilistic Soft Logic (PSL) can be seen as a templating language for HL-MRFs,
which are defined over continuous variables. In particular, a PSL program defines
a class of HL-MRFs that are parameterized by the input data and where potential
functions are associated to a set of templates corresponding to logical constraint. In
PSL two types of rules can be considered to represent hinge-loss potential templates:
logical rules, based on the mapping from logical clauses to hinge-loss potentials and
arithmetic rules providing additional syntax to define constraints.

Definition 2.5. A PSL program is a set of rules, each of which is a template for hinge-loss
potentials or hard linear constraints. When a PSL program is grounded to a certain domain,
it produces a HL-MRF conditioned on any specified observations.

Some comments are in orderd. The rules in a PSL program are written in a
first-order logical language. This means that the syntax of its logical rules involving
constants, variables and predicates can be described as in Sec. 2.1.1, however PSL does
not admit FOL functions except the ones defined in the arithmetical rules. We recall
that the term grounding refers to the application of any predicate to its arguments
consisting of only constants symbols. With the variables in the distribution grounded,
each rule in the PSL program is applied to the inputs and produces hinge-loss
potentials or hard linear constraints to be added to the HL-MRF. Any grounded
logical rule has associated a potential as that one in equation (2.5) that can be taken as
linear or quadratic. The presence of a weight determines if such rule has to be added
to the HL-MRF with the weight as parameter or to the set of constraints defining the
feasible set. For what concerns the logical expressiveness, PSL focuses on disjunctive
clauses with possible non-negative weights associated, that are converted using
the Łukasiewicz t-conorm x⊕ y = min{x + y, 1}, even if some expedients can be
considered to slightly increase its capability to deal with no-disjunctive formulas
and negative rule weights (Bach et al., 2017).

In the following, we will define how PSL can be exploited to define both learning
and inference machine learning tasks.
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MAP Inference One of the tasks we may carry out in PSL is maximum a posteriori
(MAP) inference aiming at finding a most probable assignment to the free variables
y given observations x. Since in HL-MRFs, the partition function Z does not depend
on y, the exponential is maximized by minimizing its negated argument and the
MAP problem can be defined as:

arg max
y

P(y|x) ≡ arg min
y

f ω(y, x) = arg min
y

ωT ·φ(y, x)

such that: ck(y, x) ≤ 0, ∀k ∈ {1, . . . , m}
(2.6)

MAP is a very fundamental task for PSL, indeed it allows the method to make
predictions. In addition, as expressed by equation (2.6) this can be formulated as
convex optimization and for instance some interior-point methods can be exploited.
However, we also notice that for PSL has also been considered a new algorithm based
on consensus optimization to scale to very large HL-MRFs for exact MAP inference.
In addition, several steps of MAP inference can be required to perform the weight
learning of the constraints that are involved in the inference process, according to an
iterative procedure.

RuleWeights Learning A possible way to carry out weight learning in a HL-MRFs,
is by maximizing the likelihood of the training data. In particular, we can maximize
the log-likelihood of the training data via gradient descent, where the derivative
with respect to any rule weight ωj is expressed by

∂ log P(y|x)
∂ωj

= Eω

[
φj(y, x)

]
− φj(y, x) ,

where Eω denotes the expectation under the distribution defined by ω. The gra-
dient with respect to the j-th clause weight is null when the distance from sat-
isfaction of the training data yt corresponds to what is predicted by the model:
φj(yt) = Eω

[
φj(y, x)

]
. Computing the expected value is intractable in a general

setting and improving PSL weight learning is an open research problem. A com-
mon solution is to approximate the expected value with the most probable approx-
imation (MAP solution) according to the current weights: Eω

[
φj(y, x)

]
≈ φj(yM),

where yM denotes the MAP solution at the current weights. Under this assumption,
weight learning becomes tractable, because inference to determine the most probable
interpretation corresponds to solving the convex optimization task as previously
described.

2.2.3 ProbLog
ProbLog is a probabilistic extension of Prolog. ProbLog is essentially Prologwhere all
clauses are labeled with the probability that they are true, and these probabilities are
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mutually independent. A ProbLog program specifies a probability distribution over
all possible non-probabilistic subprograms of the ProbLog program. The semantics
of ProbLog is then defined by the success probability of a query, which corresponds
to the probability that the query succeeds in a randomly sampled program from the
distribution.

ProbLog syntax

A ProbLog program consists of two parts: a set of ground probabilistic facts, and a
logic program, i.e. a set of rules and (‘non-probabilistic’) facts. A ground probabilistic
fact, written p::f, is a ground fact f annotated with a probability p. Syntactic sugar
for compactly specifying an entire set of probabilistic facts with a single statement
is usually allowed. Concretely, intensional probabilistic facts are allowed, which are
statements of the form p::f(X1,X2,...,Xn) :- body, with body a conjunction of calls
to non-probabilistic facts. The idea is that such a statement defines the domains of
the variables X1, X2, ... and Xn. When defining the semantics, as well as when
performing inference or learning, an intensional probabilistic fact should be replaced
by its corresponding set of ground probabilistic facts, as illustrated below. An atom
that unifies with a ground probabilistic fact is called a probabilistic atom, while an
atom that unifies with the head of some rule in the logic program is called a derived
atom.

The program for defining the classical alarm Bayesian network is given.

0.1::burglary. person(mary).

0.2::earthquake. person(john).

0.7::hears_alarm(X) :- person(X).

alarm :- burglary.

alarm :- earthquake.

calls(X) :- alarm, hears_alarm(X).

ProbLog Semantics

A ProbLog program specifies a probability distribution over possible worlds. To
define this distribution, it is easiest to consider the grounding of the program with
respect to the Herbrand base. Beforehand, a preprocessing step already replaced the
intensional probabilistic facts with their corresponding ground set.

Each ground probabilistic fact p::f gives an atomic choice, i.e. one can choose to
include f as a fact (with probability p) or discard it (with probability 1− p). A total
choice is obtained by making an atomic choice for each ground probabilistic fact.
Formally, a total choice is any subset of the set of all ground probabilistic atoms.
Hence, if there are n ground probabilistic atoms then there are 2n total choices.
Moreover, we have a probability distribution over these total choices: the probability
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of a total choice is defined to be the product of the probabilities of the atomic choices
that it is composed of (the product can be taken since atomic choices are seen as
independent events).

Given a particular total choice C, we obtain a logic program C ∪ R, where R
denotes the rules in the ProbLog program. We denote the well-founded model of
this logic program as WFM(C ∪ R).2 We call a given world ω amodel of the ProbLog
program if there indeed exists a total choice C such that WFM(C ∪ R) = ω.

Finally, the probability of a world that is a model of the ProbLog program is equal
to the probability of its total choice; the probability of a world that is not a model is 0.

Inference tasks in ProbLog

In the literature on probabilistic graphical models and statistical relational learning,
the two most common inference tasks are computing the marginal probability of
a set of random variables given some observations or evidence (we call this the
MARG task), and finding the most likely joint state of the random variables given
the evidence (known as the MPE task, for Most Probable Explanation). In PLP, the
focus has been on the special case of MARG where there is only a single query atom
Q and no evidence.

All these tasks can tackled in ProbLog, with the addition of a new task, called
EVID, that can be considered a building block for MARG. We now formally define
these tasks. Let At be the Herbrand base, i.e, the set of all ground (probabilistic and
derived) atoms in a given ProbLog program. We assume that we are given a set
E ⊂ At of observed atoms and a vector e with their observed truth values. We refer
to this as the evidence and write E = e. Note that the evidence is essentially a partial
interpretation of the atoms in the ProbLog program.

• In the MARG task, we are given a set Q ⊂ At of atoms of interest, called query
atoms. The task is to compute the marginal probability distribution of every
such atom given the evidence, i.e. compute P(Q | E = e) for each Q ∈ Q.

• The EVID or ‘probability of evidence’ task is to compute P(E = e). It cor-
responds to the likelihood of data in a learning setting and can be used as a
building block for solving the MARG task.

• The MPE task is to find the most likely interpretation (joint state) of all non-
evidence atoms given the evidence, i.e. finding arg maxu P(U = u | E = e),
with U being the unobserved atoms, i.e., U = At \ E.

The ProbLog approach to inference consists of two steps:
2Recall from Section 2.1.2 that for negation-free programs, the WFM is the least Herbrand model.
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1. Conversion of the program to a weighted Boolean formula. The conversion
takes as input a ProbLog program L, evidence E = e and a set of query atoms
Q, and returns a weighted Boolean (propositional) formula that contains all
necessary information. The conversion is similar for each of the considered
tasks (MARG, MPE or EVID). The only difference is the choice of the query set
Q. For MARG, Q is the set of atoms for which we want to compute marginal
probabilities. For EVID and MPE, Q = ∅. The outline of the conversion
algorithm is as follows.

a) Ground L yielding a program Lg while taking into account Q and E = e.
It is unnecessary to consider the full grounding of the program, we only
need the part that is relevant to the query given the evidence, that is, the
part that captures the distribution P(Q | E = e). We refer to the resulting
program Lg as the relevant ground programwith respect to Q and E = e.

b) Convert the ground rules in Lg to an equivalent Boolean formula ϕr.
This step converts the logic programming rules to an equivalent formula
and it is a purely logical processing.

c) Assert the evidence and define a weight function
To obtain the weighted formula, we first assert the evidence by defining
the formula ϕ as the conjunction of the formula ϕr for the rules and for
the evidence ϕe. Then we define a weight function for all atoms in ϕ, where
the weight is strictly connected to probabilities.

2. Inference on the weighted Boolean formula. At this stage, there is no more
traces of the logic program. We are left with a formula and aweighting function.
Thus the different inferences tasks are reformulated in terms of well-known
tasks such as MAX-SAT (for MPE) or weighted model counting (for EVID and
MARG)

As a final note, for solving weighted model counting, ProbLog makes use of an
intermediated step which translate (“compile”) the formula into a more efficient
one, i.e. an arithmetic circuit, which is closely linked to the concept of deterministic,
decomposable negation normal form (d-DNNF).

ProbLog and MLNs

There are some very interesting connections between a ProbLog program and a
specially constructed MLN. Indeed, the weighted formula that ProbLog construct
can be regarded as a ground MLN. The MLN contains the Boolean formula as a
“hard” formula (with infinite weight). The MLN also has two weighted unit clauses
per probabilistic atom: for a probabilistic atom a and weight function {a 7→ p,¬a 7→
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1− p}, the MLN contains a unit clause a with weight ln(p) and a unit clause ¬a with
weight ln(1− p).

There is the following equivalence result.

Theorem 1. Let Lg be the relevant ground program for some ProbLog program with re-
spect to Q and E = e. LetM be the corresponding ground MLN. The distribution P(Q)

according toM is the same as the distribution P(Q | E = e) according to Lg.

Note that for the MLN the distribution P(Q) (not conditioned on the evidence) is
considered. This is because the evidence is already hard-coded in the MLN.

2.3 Neuro-Symbolic Integration

2.3.1 Semantic-Based Regularization
Markov Logic Networks and Probabilistic Soft Logic provide a generic AI inter-
face layer for machine learning by implementing a probabilistic logic. However,
the integration with the underlying learning processes working on the low-level
sensorial data is shallow: a low-level learner is trained independently, then frozen
and stacked with the AI layer providing a higher-level inference mechanism. In
this section we present Semantic-Based Regularization (SBR) (Diligenti et al., 2017), a
language proposed to directly improve the underlying learner, while also providing
the higher-level integration with logic. A strong connection between SBR and MLNs
has also been pointed out in (Diligenti et al., 2017). In particular, SBR can be seen
as a MLN where the FOL formulas and node values are replaced by their fuzzy
generalization with the node values computed by kernel machines. More generally,
SBR is a unified framework for inference and learning centered around the notion of
constraint. On the one hand, the framework can exploit different machine learning
techniques to learn from continuous feature-based representations some relations
among patterns, e.g. in case of Kernel Machines. On the other hand, SBR converts a
set of first-order logic (FOL) formulas expressing some prior knowledge on the task
in a set of functional constraints according to a fuzzy logic translation of formulas.

In particular, SBR builds a multi-layer architecture where, at the first layer kernel
machines extract high-level feature representation of the input data. Then a second
layer takes as input the output of the kernel machines and implements a fuzzy
conversion of the FOL formulas in the knowledge base. The resulting model is
continuous and the semantic inference provided by the logic rules can be back-
propagated down to the kernel machines using any gradient-based schema. In
particular, the logical layer allows us to exploit possible available unsupervised data
improving the capacity of generalization of the model and can be exploited to correct
possible mistakes from the kernel machines layer. In the following we sketch how
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the conversion, from FOL to fuzzy logic and then again to functional constraints, is
carried out in SBR.

Let us consider a set of predicate functions P = {p1, . . . , pJ}, where each pj
with arity aj > 0 is grounded from the set Xj = Xj1, . . . ,Xjaj . In the following, we
indicate by pj(Xj) the set of possible groundings for the j-th predicate and P(X ) =

p1(X1) ∪ . . . ∪ pJ(XJ). Assuming all the predicates are evaluated in [0, 1], then the
truth degree of a formula containing an expression E can be computed by fuzzy
logic operators according to Table 4.1. The universal and existential quantifiers over
a variable xi are converted according to the following expressions:

∀xiE
(
P(X )

)
=⇒ Φ∀

(
P(X )

)
= min

xi∈Xi
tE
(
P(X )

)
,

∃xiE
(
P(X )

)
=⇒ Φ∃

(
P(X )

)
= max

xi∈Xi
tE
(
P(X )

)
.

However for implementing reasons, the universal quantifier is often translated as an
arithmetic mean over a variable domain, namely as:

∀xiE
(
P(X )

)
=⇒ Φ∀

(
P(X )

)
=

1
|Xi| ∑

xi∈Xi

tE
(
P(X )

)
.

To summarize, the network encoded by SBR for a given KB can be defined as in
the following.

Definition 2.6 (SBR network). Let us consider a set of FOL formulas in a knowledge base
KB composed by predicates that are grounded by a set of constants. We denote by x the feature
vector associated to a grounding x, with fi the function implemented by a Kernel Machine
to approximate the i-th unknown predicate pi. SBR builds a multi-layer network computing
the fuzzy FOL approximation of KB, where the value fi(x) replaces a grounded unknown
predicate pi(x).

We consider a multi-task learning problem, where a set of J unknown func-
tions have to be estimated and another J′ functions are known a priori, where f =

( f1, . . . , f J , . . . , f J+J′) denotes the vector of such functions. We assume we are given
a set of FOL formulas ϕ1, . . . , ϕH with corresponding fuzzy conversion Φ1, . . . , ΦH.
Then the formulas can be enforced to be satisfied by requiring 1 − Φh( f ) = 0,
0 ≤ Φh( f ) ≤ 1, with h = 1, . . . , H. The functionals Φh can express a property of a
single function or correlate multiple functions in order to support the learning pro-
cess. Assuming the function f j in f to belong to a certain functional spaceHj, we can
also express a regularization term according to the parsimony principle. Following
the classical penalty approach, the learning problem can be defined as constrained
optimization by requiring the minimization of the following cost function.

C[ f ] =
J

∑
j=1
|| f j||2Hj

+
H

∑
h=1

λh(1−Φh( f )) ,
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where λh is the weight of the h-th constraint expressing which constraints are more
costly if violated. The constraints are generally enforced only over a finite sample of
input values. If we denote by f (X ) the set of all the possible grounding of functions
on the overall sample X , we get the following cost function:

C[ f (X )] =
J

∑
j=1
|| f j||2Hj

+
H

∑
h=1

λh(1−Φh( f (X ))) . (2.7)

However, the cost function in equation (2.7) is in general not convex, indeed
the functional constraints ΦH can represent arbitrary FOL formulas according to a
t-norm fuzzy logic semantics to be chosen (validated), e.g. Gödel, Łukasiewicz or
Product logic. The learning framework we will present in Chapters 4 and 5 can be
considered as an extension of SBR.

2.3.2 DeepProbLog
a-ProbLog Analyzing the probabilistic Prolog from an algebraic point of view
reveals that the probabilities associated to facts and queries are essentially elements
of R≥0 and the operations needed to compute the success probability of a query
are addition and multiplication, which means that one is operating in the semiring
(R≥0,+,×, 0, 1). This raises the question as to whether it is possible to generalize
these probabilistic Prologs to use labels from different semirings. Kimmig et al.
(2011) introduces aProblog, i.e. algebraic Problog, which generalizes the probabilistic
programming language ProbLog. An aProbLog program consists of a set of definite
clauses and a set of algebraic facts. These are facts that are labeled with elements of
a commutative semiringR. The label of a possible world is then simply the product
(inR) of the labels of the algebraic literals it contains. The label of a query is the sum
(inR) of the labels of the possible worlds in which the query succeeds.

One interesting labeling scheme is the the gradient of the success probability,
which makes use of the gradient semiring. The gradient of the success probability
is already used in parameter learning in ProbLog but aProblog provides a general
view of its computation.

DeepProbLog Manhaeve et al. (2018) introduced DeepProbLog, an extension of
ProbLog to allow the use of neural predicates. In DeepProbLog, the probabilities
given to probabilistic atoms can also be predicted by neural networks, which operates
on an input representation of the constant.

In contrast to the earlier approach for ProbLog parameter learning, DeepProbLog
uses gradient descent rather than EM, as this allows for a seamless integration with
neural network training. Given a LP program with neural predicates, its neural
network models, and a query used as training example, DeepProbLog first grounds
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the program with respect to the query, getting the current parameters of nADs from
the external models, then uses the ProbLog machinery to compute the loss and its
gradient, and finally uses these to update the parameters in the neural networks and
the probabilistic program.

In particular, the use of neural predicates as an interface between the logic and
the neural part allows both sides to treat the other as a black box. The logic side
can calculate the gradient of the loss w.r.t. the output of the neural network, but
is unaware of the internal parameters. However, the gradient w.r.t. the output is
sufficient to start backpropagation, which calculates the gradient for the internal
parameters. Then, standard gradient-based optimizers (e.g. SGD, Adam, ...) are
used to update the parameters of the network.

Discussion DeepProbLog is without no doubt one of the most promising frame-
work in the neuro-symbolic integration literature. However, in its current shape,
the framework suffers for several drawbacks which need to be tackled. By using
aProblog as basic recipe for probabilistic inference and gradient computation, Deep-
ProbLog cannot scale to problems of the size of current deep learning benchmarks.
According to the author of this thesis, this should never be a limit for a framework,
but a scheme, which gracefully degrades performance (in terms of approximation) in
favour of scalability should be taken into account. Another drawback of the system
is related to the Closed World Assumption, which makes it not ideal as a general
purpose AI framework. By moving to real world size, it is necessary to consider that
something is simply unknown but that it can still be true. The integration of priors
for unknown facts could be a very interesting evolution. Indeed, it has been shown
that the possibility of tuning priors in MLNs allows it to outperform ProbLog in a
link prediction task.

2.3.3 Lifted Relational Neural Networks
Sourek et al. (2015) propose a method combining relational-logic representations
with neural network learning. A general lifted architecture, possibly reflecting some
background domain knowledge, is described through relational rules which may be
handcrafted or learned. The relational rule-set serves as a template for unfolding
possibly deep neural networks whose structures also reflect the structures of given
training or testing relational examples. Different networks corresponding to different
examples share their weights, which co-evolve during training by stochastic gradi-
ent descent algorithm. The framework allows for hierarchical relational modeling
constructs and learning of latent relational concepts through shared hidden layers
weights corresponding to the rules.

A lifted relational neural network (LRNN)N is a set of weighted definite clauses,
i.e. pairs (Ri, wi) where Ri is a function-free definite clause and wi is a real number.
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When N is a set of weighted definite clauses, N ∗ will denote the corresponding set
of the definite clauses without weights, i.e. N ∗ = {C : (C, w) ∈ N}. The set N
must satisfy the following non-recursiveness requirement: there must exist a strict
ordering ≺ of predicates such that if there is a rule with a predicate p1 in the head
and a predicate p2 in the body then p1 ≺ p2.

Given a LRNNN , letH be the least Herbrand model ofN ∗. We define grounding
of the LRNN N as N = {(hθ ← b1θ ∧ · · · ∧ bkθ, w) : (h ← b1 ∧ · · · ∧ bk, w) ∈
N and {hθ, b1θ, . . . , bkθ} ⊆ H}. That is, N is defined as the set of ground definite
clauses which can be obtained by grounding rules from the LRNN and which are
active in the least Herbrand model of N ∗ (a rule is active inH if its body is true in
H). LRNNs are templates for creating ground neural networks. The requirement that
ground rules should be active inH is beneficial for practice because it provides us
with flexibility in controlling complexity of the constructed neural networks.

Definition 2.7. Let N be a LRNN, and let N be its grounding. Let g∨, g∧ and g∗∧ be
families of multivariate functions with exactly one function for each number of arguments.
The ground neural network of N is a feedforward neural network constructed as follows.

• For every ground atom h occurring in N , there is a neuron Ah, called atom neuron.
The activation functions of atom neurons are from the family g∨.

• For every ground fact (h, w) ∈ N , there is a neuron F(h,w), called fact neuron, which
has no input and always outputs a constant value.

• For every ground rule hθ ← b1θ ∧ · · · ∧ bkθ ∈ N ∗, there is a neuron Rhθ←b1θ∧···∧bkθ,
called rule neuron. It has the atom neurons Ab1θ, . . . , Abkθ as inputs, all with weight
1. The activation functions of rule neurons are from the family g∧.

• For every rule (h ← b1 ∧ · · · ∧ bk, w) ∈ N and every hθ ∈ H, there is a neu-
ron Agghθ

(h←b1∧···∧bk,w), called aggregation neuron. Its inputs are all rule neurons
Rhθ′←b1θ′∧···∧bkθ′ where hθ = hθ′ with all weights equal to 1. The activation functions
of the aggregation neurons are from the family g∗∧.

• Inputs of an atom neuron Ahθ are the aggregation neurons Agghθ
(h←b1∧···∧bk,w) and fact

neurons F(hθ,w). The weights of the input neurons are the respective w’s.

Depending on the used families of activation functions g∨, g∧ and g∗∧, one can
obtain neural networks with different behavior. For intuitiveness, in order for rules
(h ← b1 ∧ · · · ∧ bk, w) to behave similarly to “if-then” rules, we should prefer the
outputs of rule neurons to be high (e.g. close to 1) if and only if all the inputs from
the atom neurons corresponding to the literals from the body of the rule have high
outputs. Similarly, we should prefer the output of the atom neurons, which should
intuitively behave similarly to disjunction, to be high if and only if at least one of the
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rule neurons or fact neurons, which are inputs for the given atom neuron, has high
output. Logical operators from various fuzzy logics may serve as an inspiration for
selecting suitable activation functions.

Two particular collections of activation functions inspired by fuzzy logic are
introduced:

Definition 2.8 (Max-Sigmoid Activation Functions). The Max-Sigmoid (MS) collection
of activation functions is composed of the following three families of functions: g∧(b1, . . . , bk) =

sigm
(

∑k
i=1 bi − k + b0

)
, g∗∧(b1, . . . , bm) = maxi bi, and g∨(b1, . . . , bk) = sigm

(
∑k

i=1 bi + b0

)
.

The rationale for this family of activation functions is as follows. As already
mentioned, the activation function g∧ should have high output if and only if all
its inputs are high. To achieve this, we can crudely approximate Lukasiewicz
fuzzy conjunction, which is given as max{0, b1 + · · ·+ bk − k + 1}, by the function
sigm (b1 + · · ·+ bk − k + b0).

The activation function g∗∧ outputs the value equal to the highest of its inputs.
This can be seen as finding the best “match” of a pattern (rule).

The activation function g∨ should have high output if at least one of the inputs is
high or if all inputs are somewhat high. To satisfy this, one can crudely approximate
Lukasiewicz fuzzy disjunction, which is given asmin{1, b1 + · · ·+ bk} by the function
sigm (b1 + · · ·+ bk + b0).

The Max-Sigmoid activation function is obviously not the only one possible. It
is useful when we are interested in detecting one or more patterns but less useful
when we are more interested in a global view of all the patterns.

A family of activation functions which are more appropriate in these situations is
given by the next definition.

Definition 2.9 (Avg-SigmoidActivation Functions). The Avg-Sigmoid (AS) collection of
activation functions is composed of the following three families of functions: g∧(b1, . . . , bk) =

sigm
(

∑k
i=1 bi − k + b0

)
, g∗∧(b1, . . . , bm) = 1

m ∑m
i=1 bi, and g∨(b1, . . . , bk) = ∑k

i=1 bi +

b0.

Another advantage of the Avg-Sigmoid family of activation functions over the
Max-Sigmoid family is also that the functions from the Avg-Sigmoid family are
everywhere differentiable (which simplifies learning). We note that other activation
function families based on combinations of different aggregation functions might
also be exploited for LRNN learning.

Discussion Lifted Relation Neural Networks proposed a very interesting and origi-
nal way of integrating standard logical reasoning with neural components. However,
even though it is still possible, this model does not take into account the fact that
constants can have a perceptual description and that exploiting this description can
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strongly increase the reasoning capabilities of an intelligent agent. Moreover, the
per-example construction of neural networks does not allow the system to exploit
data-parallelism, which is a requirement of current GPU-computations.

2.3.4 Neural Theorem Provers
A very similar approach to LRNNs is the one proposed in Rocktäschel and Riedel
(2017), where they propose a new neural network model for end-to-end differentiable
proving of queries to knowledge base by operating on dense vector representation of
symbols.

The basic idea, derived for other works in the deep learning community like
Neural Turing Machines (Graves et al., 2014) or Memory Networks (Weston et al.,
2014), is that of replacing discrete algorithms and data structures by end-to-end
differentiable counterparts that operate on real valued vectors. In particular, they
applied this approach to basic symbolic theorem provers (in particular, Prolog), thus
combining their advantages (multi-hop reasoning, interpretability, easy integration
of domain knowledge) with the ability to reason with vector representations of
predicates and constants. They keep variable binding symbolic (discrete) but compare
symbols using their subsymbolic vector representations.

Concretely, they introduced Neural Theorem Provers (NTPs) which are end-to-
end differentiable provers for basic theorems formulated as queries to a KB. Prolog’s
backward chaining algorithm is used as the basic recipe for recursively constructing
a neural network that is capable of proving a query to a KB using subsymbolic
representations. The success score of this proof is differentiable with respect to vector
representations of symbols, which enables the model to learn such representations
for predicates and constants in ground atoms, as well as parameters of function-
free first-order logic rules of predefined structure. By doing so, NTPs learn to
place representations of similar symbols in close proximity in a vector space and to
induce rules given prior assumptions about the structure (i.e. template) of logical
relationships in a KB such as transitivity. Furthermore, NTPs can seamlessly reason
with provided domain-specific rules. AsNTPs operate on distributed representations
of symbols, a single hand-crafted rule can be leveraged for many proofs of queries
with symbols that have a similar representation. Finally, NTPs demonstrate a high
degree of interpretability as they induce latent rules that we can decode to human-
readable symbolic rules.

Discussion. Being very similar in spirit to LRNNs, NTPs suffer from similar prob-
lems. Another drawback of the system is concerned with the fact that, for answering
a given query, this model needs to consider all possible proof paths, and then ag-
gregate results. This quickly becomes infeasible even for small Knowledge Bases
(KBs). A recent contribution (Minervini et al., 2018) shows that one can accurately
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approximate the inference process in this model by considering only proof paths as-
sociated with the highest proof scores, enabling inference and learning on previously
impracticable KBs.

2.4 Other related approaches
ILP. One of the best known research area that combines logic programming with
machine learning techniques is Inductive Logic Programming (ILP) (Muggleton, 1991;
Muggleton and De Raedt, 1994). The general inductive problem is as follows: given
a set of positive P and negative N examples and a consistent background knowledge
B, find a hypothesis H such that the conjunction of H and B entails all the examples
of P and none of N. A large number of hypotheses typically fits such a definition.
For instance the Bayesian ILP setting (Muggleton, 1994) assumes a prior probability
distribution defined over the hypothesis space. In (De Raedt and Kersting, 2008)
clauses are given a probability value and two methods to estimate these parameters
and the hypothesis are provided. In addition, it is worth to mention some related
works on Inductive Logic Programming and kernel machines like (Landwehr et al.,
2010) and (Muggleton et al., 2005). In the first paper the learning algorithm first-order
inductive learner (FOIL) is combined with kernel methods by leveraging FOIL search
for a set of relevant clauses. In the second one a kernel, that is an inner product in the
feature space spanned by a given set of first-order hypothesized clauses, is proposed.

ProPPR An interesting extension of LP that enables efficient learning and inference
on graphs is given by ProPPR (Wang et al., 2013). ProPPR is a probabilistic logic
generating first-order theories via parameter learning, where inference can be carried
out restricting on small graphs of local groundings. This property guarantees the
scalability of the approach with respect to large database. For instance in (Wang and
Cohen, 2016), it is shown how to learn continuous low-dimensional embeddings for
first-order logic formulas from scratch, on two knowledge base completion tasks. In
particular, the training examples and inference formulas are mapped into a binary
matrix, then the latent continuous representations of examples and logical formulas
is learned via a low-rank approximation method of matrix factorization.

TensorLog In (Cohen, 2016) is presented a probabilistic deductive database, called
TensorLog, in which reasoning uses a differentiable process. TensorLog is shown
to be faster with large numbers of training examples while ProPPR should be faster
for very large database and small numbers of training examples. In TensorLog
logical inference is carried out by sequences of differentiable numerical operations
on matrices. However, this framework is limited to learning only the parameters of
the logical rules.
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Neural LP An extension to jointly learn the structure of the rules is proposed by
Neural Logic Programming (Neural LP) (Rocktäschel and Riedel, 2016) a completely
differentiable system for learning models defined by sets of first-order logic rules
exploiting gradient-based programming frameworks and optimization methods
for the inductive logic programming task. In Neural LP, parameters and structure
are simultaneously learned exploiting a neural controller system with an attention
mechanism and memory to perform TensorLog’s operations.

Integrating MLN and neural networks Lippi and Frasconi (2009) was an early
attempt to integrate MLNs with neural components. Here, an MLN was exploited to
describe a conditional distribution over ground atoms, given some features of the
constants. In particular, the MLN parameters were predicted by a neural network
evaluated on input features.

GNNs: extracting regularities in non-euclidean settings The idea of exploiting
neural networks to extract regularities in non-euclidean settings has been recently
revisited by the deep learning community in the context of Graph Neural Networks
(GNN) models (Scarselli et al., 2009; Defferrard et al., 2016; Xu et al., 2018). In GNNs,
latent representations of nodes are obtained by an aggregation of neighboring nodes
representation by means of an iterative diffusion mechanism. However, the inference
is performed only on neighborhoods induced by the actual connections of the graph,
preventing the exploitation of these models for modeling distributions of structural
properties of the graph.

Generative Energy-Based Models Generative Energy-Based models have been an
AI hot topic since the early days of the connectionism. Classical approaches are
Ackley et al. (1985); Salakhutdinov et al. (2007); Salakhutdinov and Hinton (2009).
The main drawback of these models is that, in generative tasks, commonly exploited
approximations tend to fail and thus their application is feasible only in restricted
domains. However, these models are gaining attention again nowdays (Du and
Mordatch, 2019) and they are starting to be applied to challenging generation tasks
(e.g. images).

MaxEnt modeling in the relational setting One important piece of the proposed
approach is the ability of modeling the feature binding problem of an exponential
distribution using the MaxEnt principle. This principle has been largely investigated
in the propositional setting, but few has been done in the relational setting. An inter-
esting recent analysis is the one in Kuželka et al. (2018), where MaxEnt distributions
in the relational setting are introduced. Here, authors showed how MLNs can be
analyzed as those distribution with maximum entropy subject to relational marginals
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constraints. The approach proposed in this thesis, in this regard, can be considered
an extension of Kuželka et al. (2018), where MinEnt allows for the feature selection
problem to be solved. Another related approach is the one in Kern-Isberner et al.
(2017), where MaxEnt is used as inspiration for modeling probabilistic conditionals.
While the premises are indeed related to the proposed method, the authors do not
exploit dual optimization techniques and they keep the problem in its primal for-
mulation. This will arguably prevent the application of this method to large scale
problems.



Chapter 3

A Mini-Max Entropy framework in
the relational setting

In this chapter, we show a general theory to integrate symbolic and subsymbolic
approaches, as motivated in Chapter 1.

The world wewant to describe and reason about is described in a relational nature
(Section 3.1) where elements of the domain of discourse are related to each other by
some properties.

One of the main ingredient of the proposed approach is reasoning and discussing
about the truth value of atomic elements of this relational structure, i.e. ground
atoms (Section 3.1). Examples of these facts can be: student(Giuseppe) = True,
advisorOf(Marco,Giuseppe) = True, red(Sky) = False. First Order Logic is a nat-
ural and expressive language to this end. A given truth assignment to all the facts
we want to reason about is called a possible world.

We inherently admit uncertainty in our statements and in our reasoning tasks. We,
then, assign probabilities to facts (Section 3.1). For example, p(blue(Sky) = True) =

0.99 and p(red(Sky) = True) = 0.01.
Structures guiding the reasoning process can be given or learned by complete or

partial examples of possible worlds.
It follows that the main goal is modelling a probability distribution over truth

assignments to all facts we can reason about, i.e. we want to model a probability
distribution p(y) over possible worlds y.

This Chapter is structured as follows. Section 3.1 introduces basic concepts of a
relational structure based on a FOL language, introducing the idea of factorization
using subsets of the constants. Section 3.2 formally introduces the principle of
MiniMax Entropy, both from an intuitive and formal viewpoint. On one side, the
Maximization of Entropy drives the feature binding problem, where features of the
relational structures are used as basic language to describe the provided data. On
the other side, the Minimization of Entropy drives the feature selection problem,
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where the most descriptive features are learned. In Section 3.3, we extend MiniMax
Entropy models to the case in which constants of the FOL language are attached with
a perceptual representation and it explores how we can exploit this representation
to improve reasoning over the relational structure. In Section 3.4, we show how
the theory of MiniMax Entropy nicely recovers standard learning settings in both
supervised and statistical relational learning, which is considered a mandatory
requirement of any theory aiming at merging symbolic and subsymbolic techniques
(DeRaedt et al., 2019). TheChapter is concludedwith Section 3.3.1, wherewe describe
a particular inference method in MiniMax Entropy models, i.e. MAP inference. It
is interesting both from a theoretical point of view, since it links some very distant
learning frameworks, from a computational viewpoint, since it implements a fast
inference scheme, and a motivational viewpoint, since it provides a potential link to
fast inference schemes in humans.

3.1 The relational setting

3.1.1 Constants and Predicates

We consider a function-free first-order logic language L. It is built from a set of
constants C and a set of predicatesR.

The set of constant C collects the inhabitants of the world we are describing. Let g
be a function from C to Rm. This is a function extracting a m-dimensional feature
representation of constants. When coupling the identifier j of a constant cj with its
feature representation xj = g(cj), we are modeling the fact that individuals of the
world exist per-se (by giving them an abstract identifier) but they can also be described
by some profile, i.e. by some collection of perceptual1 measures representing the
individual.

Example 3.1 (Constants). An example of constants can be the collection of people in a
university. So, C = {Giuseppe, Maria, Marco}. For each of these individuals, we could be
interested in reasoning about some (perceptual) data, for example, their age, their weight,
their height, the number of courses they passed, etc. All these pieces of information can be
encoded into a real vector, e.g. g(Giuseppe) = [28, 76, 180, 25].

The set of predicatesR can be defined asR =
⋃

iRi, whereRi contains the pred-
icates of arity i. In our language, we can relate multiple constants by stating the
validity of a certain property over them.

1With perceptual, we mean here coming from human-like senses or other measurements instru-
ments. Examples of this kind of data are images, sounds, temperature index, brightness index, ecc.
We use the perceptual word as a synonym of concrete.
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Definition 3.1 (Ground Atom). For c1, c2, . . . , cm ∈ C and R ∈ Rm, we define ground
atom the instantiation R(c1, c2, . . . , cm) .

Example 3.2 (Predicates and Ground Atoms). In our example of university people, we
can introduce a set of properties we want to reason about. So let us define a set of pred-
icates R = {student(1), professor(1), advise(2), sameAdvisor(2)}, where we put in
brackets their arity. By exploiting this set of relations we can state some facts about the
world, which are technically called ground atoms. For example, in the language defined up to
now, we can state that the following facts hold True: student(Giuseppe), student(Maria),

professor(Marco), advise(Marco, Giuseppe), where we are stating that Giuseppe and
Maria are students, Marco is a professor and Marco is the advisor of Giuseppe. Usually
when a fact is stated without a truth value, we are implicitly considering it as True.

Given a language L, and, thus, given a fixed set of constants and predicates, we
call Herbrand Base the set of all ground atoms constructed using all constants and
all the predicates in L. A given assignment of truth values to the Herbrand base is
called an Herbrand interpretation, commonly referred to as possible world.

We can use this language to describe many different worlds y. For example, in
a certain world y1, both Giuseppe and Maria are students, i.e. student(Giuseppe),

student(Maria). However, in another world, only Giuseppe is a student. In other
words, given a language, we can instantiate many different possible worlds.

Definition 3.2 (Herbrand Base and Possible World). We define the Herbrand Base of
a FOL language composed of a set C of constants and a set R of relations the set HB =

{R(c1, . . . , cn) : (c1, . . . , cn) ∈ Cn ∧ R ∈ Rn}, which is the set of all ground atoms de-
finable in L. A given truth assignment y to all the ground atoms in HB is said to be an
Herbrand Interpretation or possible world.

3.1.2 From structures to substructures
Suppose we are provided with a first-order language L = (C,R) as described in the
previous section. Suppose we are also provided with a specific world ŷ. Remember
our goal is the one of finding amodel for the probability distribution p(y) of a generic
world. Since we are provided with only one example of this relational structure,
i.e. ŷ, a pure and naive frequentist approach is doomed to fail. How can we spot
regularities or statistics of worlds if we are only provided by a single world? However,
if we consider the nature as we know it, it is a single instantiation of many potential
(possible) worlds, but we are still capable of extracting regularities which help us to
reason about things in this particular world.

The main idea, which is shared by the majority of statistical relational learning
approaches, to solve this dilemma is to consider our single world ŷ as composed by
multiple substructures. The problem is then translated from spotting regularities at
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the whole structure level to spotting regularities in the substructure level and exploit
these regularities to model the probability distribution p(y) of the entire structure.
Thus, it naturally emerges the need to refer to substructures of the general world. We
define these substructures as fragments of a possible world.

Definition 3.3 (Fragment). Let be S ⊂ C. A fragment y〈S〉 is defined as the restriction of y
to the constants in S. It can be considered a truth assignments to the subset of the restriction
HB〈S〉 of the HB, with HB〈S〉 = {R(c1, . . . , cn), ∀n ≤ |S| : ∀(c1, . . . , cn) ∈ Sn ∧ R ∈
Rn}

Fragments of a world are a first step towards enabling the possibility of spotting
regularities of substructures of possible worlds. However, until constants keep their
identity, their behaviour is still a singular one, denying any possibility of evaluating
statistics. A fundamental step in this direction is the anonymization of fragments.
When constants inside fragments are anonymized, only their relational structure
survives. Thus, fragments with the same relational structure cannot be distinguished
anymore, allowing us to compute statistics of the common relational patterns among
constants.

Definition 3.4 (Anonymization of fragments). Given a fragment y〈S〉 and k = |S|, we
define anonyzation the mapping of the constants in S to a permutation Ŝ of the integer set
{1, 2, ..., k}. We define y〈Ŝ〉 an anonymized fragment . Suppose we have a given world ŷ of
size n, we define Γk(ŷ) the collection of all the anonymized fragments of width k of ŷ.

It is easy verifiable that |Γk(ŷ)| = (n
k)k!. The collection Γk(ŷ) is a multiset, since,

after anonymization, multiple fragments could be identical. It is worth noticing that
it is exactly the multiplicity of this set to allow us to individuate some regularities
among small fragments of the data, which can be exploited to model the data distri-
bution. A representation of the process of anonymization and of the identification
of structural patterns among anonymized fragments is shown in Figure 3.1. An
example is provided instead in Example 3.3.

Example 3.3 (Fragments and Anonymization). Let define a set of constants C = {Alice,
Bob, Eve} and a set of relationsR = {smokes(1), friend(2)}. Consider the following pos-
sible world y = {smokes(Alice), friend(Alice,Bob), friend(Bob,Eve)}. Given a frag-
ment y〈S〉, with S = {Alice, Bob}, i.e. y〈S〉 = {smokes(Alice), friend(Alice,Bob)},
an example of anonymized fragment of y〈S〉 is Ŝ = {1, 2} and y〈Ŝ〉= {smokes(1), friend(1,2)},
which can be paraphrased as “ the first constant of the fragment smokes and it is a friend of
the second constant”.

It is evident that if multiple fragments share the same relational structures they are
not identifiable any more. Than, we can compute how many fragments share some
relational pattern and use these statistics to model the probability distribution. The
role of computing statistics is given to a class of functions, called potential functions.
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Figure 3.1: The process of individuating structural patterns in anonymized frag-
ments. White circles represent constants, while the two relations are represented as
solid and dashed arrows (absence of an arrow means that the relation is false). The
given world is shown on the left. Two possible fragments are shown in the middle.
All their possible anonymizations are shown on the right. Grey circles show two re-
peated anonymized fragments found in two different fragments. The model exploits
these regularities on fragments to model the distribution of the larger structure.

Potential functions A fundamental ingredient, in our approach, as it will be evi-
dent shortly, is the capability of measuring statistics of properties (or features) of the
worlds described by the language L. Indeed, in order to design good models of the
probability p(y) we would like that samples from the probability distribution model
show properties similar to the data we are observing.

The role of computing properties of worlds and fragments is given to a class of
functions, called potential or feature functions.

We define two types of potential functions:

• the global or world potential functions Φ, which are functions from the set Y of
the possible worlds to the real set R;

• the local or fragment potential functions φ, which are functions from the set of
fragments Γk to the real set R.

Potential functions computes the value of some properties (or features) of worlds
and fragments, respectively.

The definition of these potential functions is very general and this unconstraint-
ness is fundamental since potentials functions represent the alphabet for describing
our distribution. The finer their representativeness of the observed data, the best the
model can be.
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Example 3.4 (Potential Functions). Consider the set of constants C = {A,B,C,D} and two
possible worlds y1 and y2: y1 = {friend(A,B), friend(B,C), friend(C,D)} and y2 =

{friend(A,B), friend(C,D)}. A global potential function Φ f can compute the degree of
friendship of a world assigning a value Φ f (y1) = 3 to the first world and Φ f (y2) = 2 to
the second world.

This example gives us the opportunity to provide a first intuition behind our
approach. If we compute on our data that the average value of φ f on all the fragments
is, let’s say, 2.7, then we would like that our model will show an expected value of
φ f under the distribution exactly equal to 2.7. We see that the larger and finer these
potential functions are, the more our models will be adherent to the observed data
(i.e. the larger the number of properties which are required to match the data).

3.2 The Mini-Max Entropy problem in the relational
setting

3.2.1 Maximizing the entropy

The Maximum Entropy principle (Jaynes, 1957a,b) is one very interesting candidate
to solve the problem of modelling the probability distribution p(y) 2. In this context,
it is convenient to consider a possible world y as a vector of boolean random variables.
The MaxEnt principle states that among all the distributions satisfying a given set of
constraints, the only unbiased one is the one that, by making no assumptions on the
unknown (unconstrained), is the most informative one; i.e. the one with maximum
entropy.

In the scenario of machine learning, the maximum entropy principle is applied by
exploiting data to constraint the distribution. In other words, what we ask is to select
among all the distributions that “explain” the observed data the one with maximum
entropy. The principle of maximum entropy can be seen as a generalization principle,
because it gives a way to smoothly (i.e. in an uninformative way) interpolate among
observed data and to generalize to unseen data.

Let now state the Maximum Entropy problem in our relational scenario. Remem-
ber that our goal is to determine a model for the probability distribution p(y) over
possible worlds. Suppose we are provided with a single 3 observed world ŷ.

2In the following, when we need to distinguish the true probability distribution from the model
probability distribution we will use the explicit subscript pDATA and pMODEL, respectively. When the
subscript is not used, we refer to the model distribution.

3The same arguments hold in the simpler case in which we are provided with multiple observed
worlds. Here we decided to describe the problem with a single observed world in order to underline
the validity in the hardest case and to underline the importance to reason about substructures, which
will be a fundamental ingredient of our recipe.
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The key idea for learning a good distribution w.r.t. the observed data is that we
are looking for the maximum entropy distribution which is constrained to have the
same statistics of the observed data w.r.t. some properties of interests. To this end,
let introduce a collection of global potentials Φi, that we consider known. Than, we
can define a set of constraints:

Eŷ∼pDATA [Φi(ŷ)] = Ey∼pMODEL [Φi(y)] ∀i

where pDATA is the distribution induced by the observed data and pMODEL is the
distribution we are learning. In the case of a single observed world ŷ, the constraints
become:

Φi(ŷ) = Ey∼pMODEL [Φi(y)] ∀i (3.1)

As previously introduced and as it will become clear now, this last version of the
constraint is intrinsically ill-posed and we must recur to local potentials to constrain
our distribution. Indeed, we are constraining a distribution to model worlds with
expected values of potentials equal to the value of the potential of a single world,
which, clearly, does not represent any valuable statistics to match.

However, by assuming repeated regularities at the fragment level, we could
constraint our distribution over fragment-level statistics and not over world-level
statistic. This assumption is shared by mostly of the statistical relational learning
approaches and it is described by Kuželka et al. (2018) in the setting of maximum
entropy models. The idea used is to find a maximum-entropy distribution p(y) such
that the following two expected values are the same:

• the expected value of φ(γ) where γ is sampled uniformly from Γk(ŷ);

• the expected value of φ(γ′) where γ′ is sampled uniformly from Γk(y) and y is
sampled, in turn, from p(y).

The intuition here is that, at least on average, the fragments of the given training
example should look similar to the fragments of possible worlds sampled from the
distribution.

To achieve such goal, we need to define the constraint in Equation 3.1 in terms of
local potentials but we want to still constraint (and model) entire worlds. To this end,
we can factorize a global potential as an aggregation function A of local potentials.

Φ(y) = Aγ∈Γk(y)(φ(γ)) (3.2)
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whereAa∈A is a function aggregating its arguments evaluated on all the elements
a of a set A. We will come back to aggregation function in the next chapter where
we will see that multiple choices are possible. For the sake of this chapter, it will
be sufficient to think at the most common aggregation function, i.e. the average
operator:

Φ(y) =
1

|Γk(y)| ∑
γ∈Γk(y)

φ(γ)

Now that we know how to constraint our problem, even when only a single
observed world is available, we can exploit the maximum entropy principle to state
an optimization problem guiding the learning of the target distribution.

For the sake of simplicity and without loss of generality, let suppose the set Y of
all possible worlds to be discrete so that the function p(y) can be substituted with a
set of |Y| variables Py. Let us also assume that there exists at least one distribution
Py which is a model of the true distribution, i.e. the problem admits at least one
solution. Then, the MaxEnt problem is stated as follow:

max
Py
− ∑

y∈Y
Py log(Py) (3.3)

s.t. (1) ∑
y∈Y

Py = 1; (3.4)

(2) Φi(ŷ) = Ey∼Py [Φi(y)] ∀i (3.5)

where we are looking for the distribution values Py such that:

• the probability distribution has maximum entropy (Equation 3.3);

• it behaves like a probability (sums to 1)4 (Equation 3.4);

• the statistics of the given potentials on the samples from the distribution match
those on the observed data (Equation 3.5) .

As commonly done, we refer to this problem as the primal problem.
4In principle, a non negative constraint, Py ≥ 0 ∀y, should also be added to enforce probabilities

to be positive. However, the particular choice of Shannon entropy and its logarithmic shape implicitly
restrict the domain of the Py to R+ and, thus, implicitly enforce this constraint. This result will also
holds for any measure of the class dist(p, p0) = ∑i piφ(p0,i/pi) under linear constraints will satisfy
the result of pi ≥ 0 provided that φ−1 is an exponential. H(p) = KL(p||uni f orm) is a member of this
class of measures.
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3.2.2 The dual problem
In this section we show how we can move from the hard primal constrained problem
to a dual easier unconstrained problem. We can solve this problem using standard
convex optimization argument (Boyd and Vandenberghe, 2004). To this end, we
need to construct the Lagrangian L(P, β, z) of the maximum entropy problem, where
we define P the vector of all Py, β the vector of all the Lagrange multiplier βi for
the constraints in Equation 3.5 and z the Lagrange multiplier for the constraint in
Equation 3.4 . Moreover, let us omit the non negativity constraints as it will turn out
that they are enforced implicitly.

The Lagrangian corresponding to the MaxEnt problem is:

L(P, β, z) = − ∑
y∈Y

Py log(Py) + ∑
i

βi

(
∑

y∈Y
Φi(y)Py −Φi(ŷ)

)
+ z
(

1− ∑
y∈Y

Py

)
(3.6)

and the optimization problem is translated into the unconstrained maximization
of the Lagrangian:

max
P,β,z

L(P, β, z)

Now, holding β fixed, to find the stationary points of L(P, β, z) w.r.t. P, we take
the partial derivatives of the Lagrangian w.r.t. Py:

∂

∂Py
L(P, β, z) = − log Py + ∑

i
βiΦi(y)− z + 1

and set them equal zero:

− log Py + ∑
i

βiΦi(y)− z + 1 = 0

so we obtain:

Py = exp(∑
i

βiΦi(y)) exp(1− z)

By substituting this equation into the stationary point w.r.t. z, which is recovering
the normalization constraint, we obtain that exp(1− z) is simply the normalization
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factor. So we can state that, the solution to the MaxEnt problem, if exists, must have
the following form:

Py =
1

Zβ
exp(∑

i
βiΦi(y)) (3.7)

with Zβ being the normalization factor (or partition function):

Zβ = ∑
y∈Y

exp(∑
i

βiΦi(y)) (3.8)

So by analytical arguments, we showed that the MaxEnt problem has solutions
of the exponential form of Equation 3.7. By substituting the optimal P of Equation
3.7 (which are functions of the only unknown β) into Equation 3.6 , we obtain the
dual problem as:

max
β

L(β)

where, by some algebraic manipulation:

L(β) = ∑
i

βiΦi(ŷ)− ∑
y∈Y

log Zβ (3.9)

Due to the positivity assumption, Slater’s condition (Boyd and Vandenberghe,
2004) is satisfied and strong duality holds.

By moving to the dual problem, we have obtained multiple advantages that we
describe in turn:

• Reduction of parameter search space: indeed, we moved from a problem, the
primal, in which we needed to optimize n = |Y| values Py, to another problem,
the dual, where we need to optimize only m � |Y| values βi. Here m is the
number of features, and thus of constraints, we want our model distribution to
match the real distribution (i.e. 0 ≤ i < m)

• MaximumLog-Likelihood duality: by a carefully inspection, it is immediately
verifiable that the simplified Lagrangian in Equation 3.9 is the log-likelihood
of the optimal distribution Py of Equation 3.7 w.r.t the observed world ŷ.
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3.2.3 The correspondent Markov Random Field
The functional shape of the solution p(y) is clearly a distribution from the family
of exponential distribution. This allows us to interpret the correspondent model in
terms of a Markov Random Field (MRF), i.e. a probabilistic undirected graphical
model.

Here, the random variables under investigations are the truth values of the possi-
ble world y, which are then treated as boolean random variables. Sometimes, we need
to relax this discreteness and consider the y as continuous random variables in the
real interval [0, 1] (see Chapter 6).

The potentials Φ(y) clearly represents factors of the corresponding MRF. We
show a schematic view of the defined MRF in Figure 3.2.

It is interesting to analyse the role of fragmentation in terms of factorization.
Indeed, potentials in an undirected probabilistic graphical model are individuating
a conditional independence scheme. All the variables of a potential5 are condition-
ally dependent only on the other variables belonging to the same potential. This
independence is easily verifiable as a factorization of the distribution function:

p(y) =
1
Z

exp
(

βi ∑
i

Φi(y)
)
=

1
Z ∏

i
exp

(
βiΦi(y)

)
When a potential is modelled as an aggregation over fragments (see Equation

3.2), it is worth noticing that some aggregation scheme (e.g. sum, mean) increase
the degree of factorization of the corresponding MRF. In particular, factorizing the
potential Φ(y) as a sum over local potentials φ(γ) on fragments γ of y yields:

p(y) =
1
Z ∏

i
exp

(
βiΦi(y)

)
=

1
Z ∏

i
∏

γ∈Γk(y)
exp

(
βiφi(γ)

)

This is extremely beneficial from an inference viewpoint since exact inference
algorithms usually scale polynomially with the number of the factors and exponen-
tially with the size of the factors. Thus fragmenting the distribution into a larger
number of smaller factors allows a much easier inference.

3.2.4 Minimizing the Entropy
Potential Learning. In Section 3.2.1, we have seen that, given some statistics on
a given set of potentials on the training data, the MaxEnt principle allows us to
select the most simple distribution matching those statistics. This phase is often

5It is usually the case that potentials are function of only a subset of the possible world y
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yβi

Φi

Figure 3.2: The graphical model corresponding to the Max Entropy model in Equa-
tion 3.7.

referred as feature binding because given a set of features (i.e. potentials) we are
binding a distribution to these statistics. As we will see in the following Sections,
when potentials are given First-Order-Logic formulas, the MaxEnt model recovers a
very well known statistical relational approach, known as Markov Logic Network.

Even though MaxEnt models in the relational setting can be very useful in many
contexts (see (Richardson and Domingos, 2006)), their potential is limited in the fact
that they need to be provided with a set of potentials in advance. Thus, in the use
of these models, domain experts are required to design some useful features about
the domain of interest by hand (e.g. logical rules) or structure learning based on
combinatorial search needs to be performed. These requirements normally limit a
wide application of these models as out-of-the box tools. It is worth noticing that
overtaking the need of such “feature-engineering” is one of the reasons behind the
massive adoption of deep learning techniques.

In this Section, we remove the assumption of the potentials to be given andwewill
introduce a complementary principle where we would like to select the best features
by minimizing the entropy of the model probability distribution. This second phase
is usually referred to as feature selection, since we want to learn which are the features
that mostly characterize our observed data.

We will now provide the reader with an intuitive explanation of the minimization
principle that will be followed by a technical explanation

Theminimum entropy principle. To the sake of this explanation, suppose we have
the MaxEnt problem defined of Equation 3.3, but without constraints on the statistics
of potentials. It is easily verifiable that the only solution is the uniform distribution,
i.e. the distribution with maximum entropy among all the probability distributions.

Now, suppose we add a single constraint on the statistics using a potential Φ(y).
If this potential is informative and makes some worlds more likely than others, then
the solution moves from the uniform distribution to another distribution with lower
entropy. The more the feature is discriminative (i.e. informative) of the worlds (or
fragments) in the observed data, the more the reduction of the entropy will be. In
terms of information theory, the more the feature is discriminative of the data the
less our surprise when sampling a world from the distribution.

A very intuitive way of interpreting the potentials, according to this qualitative
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justification, is that the set of potentials can be considered a language we provide
to our MaxEnt optimization problem to describe the data we are analysing. The
richer the language the better the distribution we derive. Recovering basic concepts
from information theory (Shannon, 1948; Wiegand et al., 2011; Cover and Thomas,
2012), the entropy of a probabilistic source measures the minimum average bit-length
needed in order to compress the data generated by that source in a lossless manner.
Thus, in the selection of the potentials, which concur in modelling the probabilistic
source of the data we are observing, the minimum entropy distribution is the one
which recovers the most lossless compressive potentials.

So, the need for a principle to select the best feature to describe our data bring us
to selecting the features that minimize the most the entropy of the model distribution.

There is a interesting technical reason (Zhu et al., 1997) behind the minimization
of the entropy that we describe in turn. For the sake of simplicity in the proof,
suppose that we are provided with multiple worlds so that the constraint of statistics
explicitely show the underlying data probability distribution; i.e.:

EPDATA [Φi(y)] = EPMODEL [Φi(y)], 0 ≤ i < m (3.10)

Since our goal is to make an inference about the underlying data distribution
PDATA, we canmeasure the goodness of the currentmodel PMODEL using the Kullback-
Leibler divergence (Kullback and Leibler, 1951):

KL(PDATA||PMODEL) = ∑
y∈Y

Py,DATA log
Py,DATA

Py,MODEL

= EPDATA [log Py,DATA]−EPDATA [log Py,MODEL]

= −H(PDATA)−EPDATA [log Py,MODEL]

where H() is the entropy of the input probability distribution.
Let us perform some algebraic manipulations of the second term of the subtrac-

tion:

EPDATA [log Py,MODEL] = ∑
i

EPDATA [βiΦi(y)]−EPDATA [log Z]

= ∑
i

βiEPDATA [Φi(y)]− log Z

Now, by using the solution of the maximum entropy problem, we know that the
constraints on the expectations (Equation 3.10), whatever the constraints look like,
are satisfied. By using this result, we have:
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EPDATA [log Py,MODEL] = ∑
i

βiEPDATA [Φi(y)]− log Z

= ∑
i

βiEPMODEL [Φi(y)]− log Z

= EPMODEL [log Py,MODEL]

= −H(PMODEL)

Finally, we have shown what is reported in the Theorem 2.

Theorem 2 (KL divergence for maximum entropy models). Given a data distribution
PDATA and a target model distribution PMODEL, which is a solution to the maximum entropy
problem of Equation 3.3, we have:

KL(PDATA||PMODEL) = H(PMODEL)− H(PDATA)

Theorem 2 provides us with another viewpoint in justifying the principle of
minimum entropy. Indeed, it is evident that, by minimizing the entropy of the model
distribution, i.e. H(PMODEL), we are actually minimizing the KL divergence between
the underlying true distribution represented by our data samples and the distribution
we are modelling.

Corollary 1 (Equivalence of the minimization of entropy and KL divergence). If
PMODEL is the solution of the MaxEnt problem in Equation 3.3 under constraints in Equa-
tions 3.4 and 3.5, then, it follows from Theorem 2 that the minimization of its entropy
H(PMODEL) is equivalent to the minimization of the KL Divergence between this distri-
bution and the true data distribution it has been constrain on in Equation 3.5.

3.2.5 The mini-max entropy problem
In the previous sections, we have shown two interleaved principles for learning in
the relational setting, namely maximum and minimum entropy. Now, we try to put
them together in a uniform definition. We recall our goal of finding a probability
distribution Py that models the true, unknown, probability distribution represented
by some observed data samples.

In order to allow us to proceed in the feature selection enabled by the minimum
entropy principle, we need to introduce a new class of parametric fragment potential
functions, φ(γ; w), and their correspondent parametric global potential function:

Φ(y; w) = |Γk(y)|−1 ∑
γ∈|Γ|

φ(γ; w) (3.11)
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.
Here, w represents a set of parameters controlling the behaviour of φ. Thus,

selecting the correct features turns in selecting the right set of parameters w.
We have seen in Section 3.2.2, that we can move from maximizing the entropy

w.r.t. the probabilities Py to the maximization of the likelihood w.r.t. a new set β of
parameters controlling the distribution Py, under the exponential form in Equation
3.7, with fixed potentials. Let us define H(β) the entropy of the distribution Py

controlled by the parameters β. The primal problem can, thus, be reframed as:
maxβ H(β) subject to constraints in Equations 3.5 and 3.4. Up to this step, we are
facing only the problem of features binding; i.e. finding the best probability given
some fixed potentials.

Let us introduce parametric potentials Φ(y; w) on the distribution Py, which now
depends both on β and on w. The corresponding entropy is H(β, w). Thus, we can
improve our optimization problem by adding a feature selection capability by asking
that the same entropy should be minimized w.r.t. the parameters w controlling the
behaviour of the potentials.

Finally, we obtain our final problem ofMini-Max Entropy:

min
w

max
β

H(β, w) (3.12)

s.t. (1) ∑
y∈Y

Py = 1, Py ≥ 0∀y;

(2) Φi(ŷ, y) = Ey,w∼Py [Φi(y, w)] ∀i

Let us now fix the value of w. We can then tackle the maximization problem and,
exploiting the duality arguments of Section 3.2.2, we can state that the maximization
of the entropy is equivalent to maximization of the log-likelihood, max log Py, or
equivalently to the minimization of the negative log-likelihood. Let’s call the solution
of the MaxEnt problem with a particular value of w, P?

y (w), and the corresponding
set of optimal parameters β?. In other words:

β? = arg min
β
− log Py(w) (3.13)

with Py(w) =
1
Z

exp ∑
i

βiΦ(y; w) (3.14)

Now, we can fix the parameters β = β? and substitute this solution to the problem
in Equation 3.12, yielding:

min
w

min
β
− log Py (3.15)
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which is clearly equivalent to:

max
β,w

log Py

Thus we have an important result. The MiniMax Entropy problem is still equiva-
lent in maximizing the likelihood w.r.t. the set of both parameters β and w.

Finally, we want to give an intuition behind the coupled minimization and maxi-
mization of Entropy, in terms of development principle for an intelligent agent. Let
us resume both principles:

• The Maximization of Entropy is a principle that, among all the distributions
that satisfy a set of constraints, selects the most entropic one, that is the one that
makes less assumptions. In our setting, constraints are enforcing some features
to be equally distributed in the data and in the model. Thus, the entropy
here can be seen as a measure of confusion of an agent willing to describe the
observations of its environment. Given the current features, the most messy
explanation of the data is the one provided by the MaxEnt distribution. This
principle is selecting the worst-case distribution (in terms of confusion), which
is the simplest one and the one that requires no more assumptions.

• The Minimization of Entropy instead tries to select the most relevant features
to describe the data, thus minimizing the confusion of the artificial agent.

The MiniMax Entropy problem can thus seen in terms of the minimization of the
maximum confusion the agent can reach. We can rephrase the problem as follows:
find the distribution which minimize the maximum confusion of the agent.

3.2.6 Estimation and Computation

We have seen that the Mini-Max Entropy problem has again a Maximum Likelihood
problem as equivalent problem. A gradient based scheme would exploit gradients
w.r.t. the trainable parameters. Thus, let compute this derivatives first and, then,
describe the corresponding gradient ascent optimization.

Let wi,j the single j-th parameter of the i-th potential and βi the dual parameter
associated to the i-th constraint in Equation 3.12.

A gradient-based scheme will require to find a stationary point of the likelihood
w.r.t. to both these set of parameters. Then, let us make the derivative w.r.t. wi,j and
βi.
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∂ log(Pŷ)

∂wi,j
= βi

(
∂Φi(ŷ; wi)

∂wi,j
−Ey∼P

[
∂Φ(y; wi)

∂wi,j

])
(3.16)

∂ log(Pŷ)

∂βi
= Φi(ŷ; wi)−Ey∼P

[
Φ(y; wi)

]
(3.17)

Some comments of these derivatives are in order:

• Equation 3.17, at stationary conditions, recovers the original constraints in
Equation 3.5.

• Equation 3.16 is a consequence of the minimization of the entropy and requires
that, at stationary conditions, not only the values of the potentials shouldmatch,
but also their first derivatives. This could be an interesting alternative viewpoint
w.r.t. recent approaches in Sobolev Training in neural networks using derivable
target functions (Czarnecki et al., 2017). When the Φ functions are neural
functions (as it will be always in the rest of this dissertation), then the derivatives
on the right-hand side of the Equation will trigger a Backpropagation step.

• Both the derivatives require the computation of an expectation w.r.t. the tar-
get model probability distribution. Thus, the gradient descent scheme goes
implicitly in the ExpectationMaximization direction. In order to perform amax-
imization gradient step, we need to compute an expectation over the current
model, which means we need to infer from the model the expected value of the
potential functions. For any but trivial problems, an exhaustive computation of
this expected value is infeasible and one must recover to approximate inference
methods as we will show in the next Section.

Before going deeper into questions regarding inference in probabilistic models,
it is useful to depict a general algorithm (Algorithm 1) for the maximization of
the likelihood in a Mini-Max problem. Most of the steps of this algorithm will be
placeholders for specific strategies that we will propose in the rest of this thesis.

It interesting to note the EM structure of this algorithm: the computation of some
expectations is required for each maximization step (i.e. updates of parameters). In
particular, this algorithm retraces more a special case of EM, i.e. coordinate gradient
ascent for latent variable models, since the maximization step is not carried out
completely but only one update of the parameters per expectation.

3.2.7 A review of approximate inference in probabilistic models
In Section 7.2.1 we discussed how the computation of the gradients w.r.t. the distri-
bution parameters requires the computation of an expected value under the actual
distribution, whose exact computation is, in most of the interesting cases, infeasible.
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Data: Input data ŷ, potentials (parametric) functions Φ
Result: Trained model parameters β, w
Initialize k = 0, β = 0, random w;
while not converged ∧ k < max_iterations do

forall potential index i do
Compute potentials on data Φi(ŷ; wi);
Compute potentials gradients on data ∇wi Φi(ŷ; wi);
Compute potentials expected values E[Φ(y; wi)];
Compute potentials gradients expected values E[∇wi Φi(y; wi)];
Compute log-likelihood gradient ∇wi log(Pŷ)
Compute log-likelihood gradient ∇βi log(Pŷ)

Update wi via gradient ascent: wk+1
i = wk

i + λlr · ∇wi log(Pŷ);
Update βi via gradient ascent: βk+1

i = βk
i + λlr · ∇βi log(Pŷ);

end
Set k = k + 1;

end
Algorithm 1: Iterative gradient ascent algorithm to train aMini-Max entropymodel
parametrized by the training parameters wi and βi.

In this Section, we review two macro approaches to make approximate inference,
in particular Markov-Chain Monte Carlo and Variational Inference. Both these
methods will be exploited up to a certain degree in the following chapters.

Markov-Chian Monte Carlo When a sum or an integral cannot be computed ex-
actly (for example, the sum has an exponential number of terms, and no exact
simplification is known, as it is the case in most of the application of the proposed
model), it is often possible to approximate it usingMonte Carlo sampling. The idea is
to approximate the expectation by the corresponding empirical average over samples
from the distribution.

E[ f (x)] =
1
N

N

∑
i=1

f (xi)

where we have exploited N samples xi from the distribution for the sake of the
approximation. This can be showed to be an unbiased estimator for the expected
value. Moreover, the law of large numbers ensure that, if the samples are i.i.d., than
the correct expected values is recovered in the limit N → ∞ (Robert and Casella,
2013).

Clearly, Monte Carlo sampling has simply changed the problem from computing
expectation to sampling from the distribution. When we don’t have ways of directly
sampling from the distribution, a general approach is to form a sequence of estimators
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that converge toward the distribution of interest. This is known as Markov-Chain
Monte Carlo methods. The core idea of a Markov chain is to have a state x that begins
as an arbitrary value. Over time, we randomly update x repeatedly. Eventually, x
becomes (very nearly) a fair sample from p(x). Formally, a Markov chain is defined
by a random state x and a transition distribution T(x′|x) specifying the probability
that a random update will go to state x′ if it starts in state x. Running the Markov
chain means repeatedly updating the state x to a value x′ with probability T(x′|x).
When we have a countable finite number of states we can consider x the index of
the corresponding state and the transition probability can be analysed in terms
of a transition matrix. Running multiple times the chain will solve a fixed point
equation of the transition matrix and, by correctly choosing the T probability, the
corresponding fixed point is indeed our target distribution and we are sampling
from it.

Variational Inference Another way of making (exact) inference in probabilistic
models is to treat the inference problem as an optimization problem. This will allow
to easily find new ways of approximating the inference as approximations to the
correspondent optimization process.

The general idea is to introduce a set of latent variables, z, and to reason about
the joint distribution p(y, z; β, w) instead of the marginal p(y; β, w). In particular,
one will evaluate the conditional probability p(y|z; β, w) and it recovers the joint
by exploiting the relation p(y, z; β, w) = p(z; β, w)p(y|z; β, w) and the marginal
p(y; β, w) by marginalizing the joint distribution w.r.t. z. For the sake of simplicity
in the notation, let call all the parameters of the model, i.e. β and w, simply as θ.

Another hypothesis, which will be easily explainable in exponential family mod-
els, like our MiniMax entropy model, is that the direct optimization of the log-
likelihood p(ŷ; θ) is difficult, but that the optimization of the complete-data likelihood
function p(ŷ, z; θ) is much easier.

Then we introduce a new distribution q(z) defined over the latent variables only.
For any choice of q(z), the following decomposition holds:

log p(ŷ; θ) = L(q; θ) + KL(q||p)

where KL(q||p) is the Kullback-Leibler divergence between q(z) and the posterior
distribution p(z|x; θ), while L(q; θ) is defined as:

L(q; θ) = ∑
z

q(z) log
(

p(y, z; θ)

q(z)

)
Since, by definition, KL(q||p) ≥ 0, then L(q; θ) ≤ log p(ŷ; θ). In other words,

L(q; θ) is a lower bound on log p(ŷ; θ). Thus, we can maximize the lower bound
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L(q; θ)with respect to the distribution q(z), which is equivalent tominimizing the KL
divergence. If we allow any possible choice for q(z), then the maximum of the lower
bound occurs when the KL divergence vanishes, which occurs when q(z) equals the
posterior distribution p(z|y; θ).

However, we shall suppose the model is such that working with the true posterior
distribution is intractable. We therefore consider instead a restricted family of distri-
butions q(z) and then seek the member of this family for which the KL divergence
is minimized. Our goal is to restrict the family sufficiently that they comprise only
tractable distributions, while at the same time allowing the family to be sufficiently
rich and flexible that it can provide a good approximation to the true posterior
distribution. More details on classical variational inference in Bishop (2006).

3.3 The conditional case
In the previous Section, we introduced and discussed the principle of Mini-Max
Entropy and its corresponding problem in the case of a standard relational setting,
where ground atoms are simply boolean random variables, expressing symbolic
knowledge. Modelling probability distribution over these symbolic worlds, as de-
scribed in the previous Sections, enables different symbolic reasoning tasks to be
designed. However as discussed in Chapter 1, neuro-symbolic approaches shine in
their capability to merge reasoning at the symbolic level with reasoning at the sub-
symbolic (or perceptual) level. In this section we are going to enhance our approach
to foresee both symbolic reasoning and subsymbolic reasoning, where perceptual
features of the constants6 are exploited.

The simple key idea to move to the conditional case is that the model probability
distribution p(y)7 is substituted with a conditional probability distribution p(y|xy).
Here xy is the collection of feature representations of constants; i.e. xy = {g(c) ∀c ∈
C}, where C is the constant set of the given world y. In the following, we will drop
the subscript y in xy when it is clear from the context that x is referred to the current
evaluated world y. In terms of probabilistic graphical models, the random variable x
is an observed variable which we don’t want to infer about but we want to exploit in
the inference about ground atoms of y.

A fundamental ingredient in the extension to the conditional case is the definition
of a new class of potentialswhich are able to exploit also the perceptual representation
of the constants. In particular, we define conditional (parametric) global potential func-
tion Φ(y|xy; w) and its corresponding conditional (parametric) local potential functions
φ(γ|xγ; w).

6In principle, also features of the relations can be modeled in the same way but we do not consider
this casuistry in this thesis.

7In this section we will exploit again a continuous probability distribution.
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An important question that need to be answered in order to extend our model to
the conditional case is: how can we constraint the statistics of the potentials of our model?.
Indeed, suppose we have a dataset D of pairs (x̂, ŷ) . They are samples of the joint
distribution pDATA(y, x), which we suppose to be too difficult to be modeled directly.
Thus, constraints can only be expressed on this joint distribution in the following
way:

EpDATA(y,x)[Φ(y|x; w)] = EpMODEL(y,x)[Φ(y|x; w)]

1
|D| ∑

(x̂,ŷ)∈D
Φi(ŷ|x̂; w) = ∑

x
∑

y∈Y
Φ(y|x; w)pMODEL(y, x)

But we still want to use our data to constraint the conditional distribution. We can
express the joint distribution as p(y, x) = p(y|x)p(x) and, since we are not interested
in modeling p(x), we can use the observed data to have an approximation of p(x).
Thus:

1
|D| ∑

(x̂,ŷ)∈D
Φi(ŷ|x̂; w) =

1
|D| ∑

x̂∈D
∑

y∈Y
Φ(y|x̂; w)pMODEL(y|x̂)

Finally, we are ready to express the Mini-Max Entropy principle in the conditional
case as:

min
w

max
β

H(β, w) (3.18)

s.t. (1) ∑
y∈Y

p(y|x) = 1, p(y|x) ≥ 0 ∀y;

(2)
1
|D| ∑

(x̂,ŷ)∈D
Φi(ŷ|x̂; w) =

1
|D| ∑

x̂∈D
∑

y∈Y
Φi(y|x̂; w)p(y|x̂)

The same arguments of the non conditional case hold and the solution to the
mini-max entropy problem is also the solution to an equivalent maximum likelihood
problem for models of the same exponential form.

3.3.1 MAP Inference
We usually use the term inference to refer to computing the probability distribution
over one set of variables given another. When training probabilistic models with
latent/output variables, we are usually interested in computing p(y|x; θ), where,
again, θ refers to the set of parameters β and w.

An alternative form of inference is to compute the single most likely value of
the missing variables, rather than to infer the entire distribution over their possible
values. In the context of latent variable models, this means computing
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y? = arg max
y

p(y|x; θ)

This is known as maximum a posteriori inference, abbreviated asMAP inference.
By looking for a single value instead of inferring an entire distribution, MAP

inference in some cases can be an easier task than full inference, even though it is not
always the case. It is interesting to refer to one of these cases since, in Chapter 6, it
will be an important ingredient to make the learning procedure faster. In particular,
let us have a look at a generic exponential family distribution, like the Mini-Max
entropy models introduced in this chapter:

p(x) =
eφ(x)

∑x̂∈X eφ(x̂)

A MAP inference task would look for the single x? which maximises p(x). How-
ever, by summing over all the possible values of x̂, the partition function in the
denominator is not a function of x. Thus maximising the p(x) is equal to maximizing
the numerator only, and, in particular, only the exponent, since the exponential is a
strictly increasing monotonic function. Thus:

x? = arg max
x

p(x) = arg max
x

φ(x)

In this case, we can exploit some features of φ function to make theMAP inference
faster. For example, for differentiable and convex φ function, the MAP inference task
is extremely fast if comparedwith naive approaches that would require an exhaustive
search in the variable space.

3.3.2 Bridging symbolic and subsymbolic reasoning
In this Section, we are going to give the reader an intuition about the way MiniMax
Entropy models in the conditional case could represent a bridge between symbolic
reasoning and subsymbolic reasoning.

To this end, let us look more carefully at the general shape of the conditional
global potential function Φ(y|xy; w). It is a function which should assign an higher
potential value to those configurations of y which are more representative of the data
they are learned on, given some evidence xy.

For the sake of clarity, let us suppose that the Φ(y|xy; w) can take two different
shapes8:

8This decomposition into two layers will be a leitmotiv of the entire dissertation, since it highlights
the double nature, symbolic and subsymbolic, of the reasoning process that can be carried on in
MiniMax Entropy models in the relational setting
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• On one hand we have Φ(y|xy; w) = 1
N ∑c Φ(y(c)|x(c)y ; w). This class of poten-

tials is the responsible of the conditioning of our distribution w.r.t. the feature
representation x of constants. They should be responsible of telling how much
some given truth assignments y(c) to the ground atoms (symbolic) of a constant
c are compatible with the feature representation of c, i.e. x(c)y . For example,
suppose constants c represent people and we have a feature representation of
people (g(c)) telling us the age of individuals. Then, if we are reasoning about a
constant LittleJohnwhose age is 1 (g(LittleJohn) = 1), then we can promptly
affirm that p(smokes(LittleJohn)=True) should be low, by a simple association
between the feature representation of the constants and some of the ground
truth fact about those constants. Without any claim of formality and generality,
we can say that these potentials often concern single individuals and only few
ground atoms of the current world, generally related to that individual only.
This is related to what is generally referred to as subsymbolic reasoning or fast
thinking (Kahneman, 2011)

• On the other hand we have Φ(y|xy; w) = Φ(y; w). This class of potentials are
the responsible of the evaluation of the symbolic relational structure of data.
They should be responsible of telling how much some given truth assignments
y are compatible with each other given the underlying relational structure. For
example, in the setting in which constants represent people, potentials should
assign low probability to all those configuration of truth assignments to ground
atoms where both young(LittleJohn) and old(LittleJohn) are assigned a True

value. Here the reasoning process acts completely at the symbolic level without
any need of recurring to the feature representation of constants. Clearly, the
symbolic reasoning can take much more difficult forms. This is sometimes
referred to as slow thinking (Kahneman, 2011).

These two class of potentials clearly show how the MiniMax entropy framework
allows two very different reasoning process to take place. Obviously, while these two
class of potential purposely encapsulate very distinct reasoning processes, in real
settings, we expect potentials to take a behaviour that can be somewhere in the mid-
dle, where there is not anymore a clear distinction between subsymbolic/symbolic
(fast/slow) reasoning.

3.4 Connection with classical settings

3.4.1 Supervised Learning
In a classical and pure supervised learning setup, the patterns x are i.i.d.. It is
therefore possible to split the y into disjoint fragments γc of size k = 1, grouping the
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atoms of a single constant c. Let us indicate as γc the fragment of the possible world
restricted to a unique constant c, with xc = g(c).

A single parametrized conditional global potential ΦS is needed to represent
supervised learning, and this potential decomposes over correspondent fragment
potentials as:

ΦS(y|x; w) = ∑
c

φS(γc, xc; w)

Yielding,

p(y|x, w, β) =
1
Z

exp

(
β ∑

c
φS(γc, xc; w)

)
(3.19)

A possible implementation of the fragment potential φS is the dot product between
the fragment γc and the output of a parametric model f (xc; w), for example a neural
network. In this way, we are asking our MiniMax Entropy optimization problem to
select the function f which mostly match the γc of our data, i.e.:

φS(γc|xc; w) = ∑
i

γci fi(xc; w) (3.20)

One-label classification. One-label classification is the task of assigning a single
pattern to one and only one class over n possible classes. In the relational setting, we
can say that we have c constants and n unary relations over them. Thus, requiring
that only one unary relation can be True on a given constant c corresponds to a
mutual exclusivity rule, which should assign a zero probability to worlds stating
that a pattern can belong to more than one class.

Thus, we can add to the conditional potential above, representing supervised
learning, another (non-conditional, non-parametrized) potential ΦME enforcing
mutual-exclusivity, i.e.:

ΦME = ∑
c

φME(γc) (3.21)

with:

φME(γc) =

{
−∞ if ∃i, j : γc,i = γc,j = True;

0 elsewhere
(3.22)

Therefore, the corresponding model is:

p(y|x, w, β) =
1
Z

exp

(
βS ∑

c
φS(γc, xc; w) + βME ∑

c
φME(γc)

)
(3.23)
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where the partition function factorizes w.r.t. the single constants due to the
independence of single constant in the supervised settings (i.e. the i.i.d. assumption).

Z = ∑
y′∈Y

exp

(
βS ∑

c
φS(γ

′
c, xc; w) + βME ∑

c
φME(γ

′
c)

)
(3.24)

= ∑
y′∈Y

∏
c

exp
(

βSφS(γ
′
c, xc; w) + βMEφME(γ

′
c)
)

(3.25)

=∏
c

∑
γ′c∈Γ

exp
(

βSφS(γ
′
c, xc; w) + βMEφME(γ

′
c)
)

(3.26)

=∏
c

Zc (3.27)

The factorization of the partition function makes the entire model factorize w.r.t.
the single constants:

p(y|x, w, β) = ∏
c

1
Zc

exp (βSφS(γc, xc; w) + βMEφME(γc)) (3.28)

= ∏
c

pc(γc|xc; w, β) (3.29)

Now, we can focus on two γ′c in the partition functions Zc:

• γ′c where more than one atom is True: here, φME(γc) = −∞ and thus they do
not count in the computation of the partition function;

• γ′c where only one atom i is True. Let us call γ′c,i the fragment γ′c on the constant
c with only one i-th ground atom set to True. These are the only fragments
of the partition function Zc that survive. It is easy to see that they are only n,
where n was the number of unary predicates over constants. Thus:

Zc =
n

∑
i=1

exp(βSφS(γ
′
c,i, xc; w)) (3.30)

Finally, we obtained:

pc(γc|xc; w, β) =


0 if ∃i, j : γc,i = γc,j = True;

exp (βSφS(γc, xc; w))
n

∑
j=1

exp(βSφS(γ
′
c,j, xc; w))

only γc,i = True (3.31)

This is clearly a softmax distribution over the n relations defined on each constant
c. The equality is even more evident if we substitute the functional form of φS:
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pc(γc|xc; w, β) =


0 if ∃i, j : γc,i = γc,j = True;

exp (βS fi(xc; w))
n

∑
j=1

exp(βS f j(xc; w))

only γc,i = True (3.32)

which is the softmax activation function exploited on the linear outpur layer of a
neural network f having xc as inputs. This is arguably the most common setting of
supervised learning in the modern deep learning scenario.

Multi-label. Suppose again we have multiple constants c and only unary relations.
However, this time, we have only the supervised potential ΦS and no other potentials
creating dependence among the the different relations defined of a constant c. Here,
all assignments to the fragment γc of a constant c are admissible, but they are com-
pletely independent from each other. We obtain a distribution which decomposes on
all the constants and on all the relations.

By exploiting, φS(γc|xc; w) = ∑i γci fi(xc; w), we have:

p(y|x, w, β) =

exp

(
∑

c

n

∑
i=1

fi(xc; w) · γc,i

)

∑
y′

exp

(
∑

c

n

∑
i=1

fi(xc; w) · γ′c,i

) = (3.33)

= ∏
c

n

∏
i=1

exp ( fi(xc; w) · γc,i)

∑
γ′c,i∈{0,1}

fi(xc; w) · γ′c,i
(3.34)

= ∏
c

n

∏
i=1

exp ( fi(xc; w) · γc,i)

1 + exp ( fi(x))
= (3.35)

= ∏
x∈S

 ∏
i:γc,i=True

σ( fi(x)) · ∏
i:γc,i=False

(1− σ( fi(x)))

 (3.36)

where σ()̇ is the sigmoid or logistic function. This distribution is indeed a sigmoid
distribution over both positive andnegative examples. When learningwithmaximum
likelihood, this scheme will recover exactly logistic regression learning.

3.4.2 Pure Logic reasoning
The mutual exclusivity potential ΦME(y), by acting only on the y variables, is a
member of a larger class of potentials which extends the relational nature of the y
variable and allows to describe symbolic features of data (see Section 3.3.2).
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We can think the ΦME(y) as an n-ary exclusive or (XOR) over all the unary relation
Ri of a constant c and thus thinking of the potential ΦME(y) as the one corresponding
to a logical rule:

∀c : R1(c)⊕ R2(c)⊕ · · · ⊕ Rn(c)

First Order Logic is a very powerful language to describe relational features of
data and multiple rule-to-potential translation scheme could be designed. Chapters
4, 5 and 6 will share a specific scheme which allows FOL formulas to be translated
into real-valued functions by means of fuzzy logic.

In this Section, we can show that a counting scheme of FOL formulas evaluation al-
lowsMiniMax Entropymodel to recover exactlyMarkov Logic Networks (Richardson
and Domingos, 2006) (see Section 2.2).

In particular, in a counting scheme, each FOL formula is considered universally
quantified w.r.t. all its variables. Then, a potential can be designed to return, given
an input possible world, the number of groundings which evaluates to True given
the formula. In other worlds, let r be a FOL formula. Let γ be a fragment of y
containing the groud atoms of a single grounding9 of r. Finally let 1r(γ) be the
indicator functions, which returns 1 if the formula evaluates to True for that particular
grounding γ, returns 0 otherwise. Then, the potential Φr(y) = ∑γ∈Γr 1r(γ).

Finally, given a collection R of rules, we can define the MiniMax Entropy model
which exploit the counting scheme for FOL formulas as:

p(y; β) =
1
Z

exp(∑
r∈R

βt ∑
γ∈Γ

1r(γ)) (3.37)

which is exactly a Markov Logic Network.

3.5 Learning MiniMax Entropy models with MAP
inference

3.5.1 Maximization as Expectation: a learning scheme for the
conditional case

In Section 7.2.1, we have seen that themaximization of the log-likelihood of aMiniMax
Entropy model requires the computation of the expected value of the potentials and
of their gradients, whose exact computation is infeasible in most of the interesting
cases.

9The close connection between groundings and fragments has been the one inspiring factorization
over fragments.
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We have also introduced (Section 3.2.7) some general methods to tackle the ap-
proximation of such expectations.

In this Section, we will see that MAP inference could provide us with a very
simple (and strong) way of approximating expectations under the model. In the
following Section, we will see how the same approximation can be interpreted in
terms of variational inference.

The main argument of this approximation is that we assume that, given the
feature representation of an unknown world (so it is restricted to the conditional
case), the correspondent probability distribution will have a single predominant
mode, i.e. the probabilitymass ismostly concentrated around a singlemaximumstate.
This is a meaningful hypothesis (Salakhutdinov and Hinton, 2009) for applications
such as the interpretation of images or speech, where it can be also useful. Indeed,
sacrificing some log-likelihood in order to make the true posterior unimodal could be
advantageous for a system that must use the posterior to control its actions. Having
many quite different and equally good representations of the same sensory input
increases log-likelihood but makes it far more difficult to associate an appropriate
action with that sensory input.

When this hypothesis is meaningful, then we can hypothesize that, for the sake
of the evaluation of the expected value (so as an inference method only), the model
probability distribution p(y|x; θ) can be approximated by a δ of Dirac centred around
the MAP state of the distribution p; i.e.:

p(y|x; θ) ≈ δ(y− yMAP)

where yMAP = arg maxy p(y|x; θ) is the solution of the MAP inference.
It becomes immediately evident that this particular choice of the approximation

turns the computation of expectations into a maximization problem aimed at finding
the map state of the distribution. Indeed:

Ep[ f (y, x)] = ∑
y∈Y

f (y, x)p(y|x)

= ∑
y∈Y

f (y, x)δ(y− yMAP)

= f (yMAP, x)

Using this approximation, we can rewrite the gradients of Section 7.2.1 as:

∂ log(p(ŷ|x))
∂wi,j

= βi

(
∂Φi(ŷ|x; wi)

∂wi,j
− ∂Φ(yMAP|x; wi)

∂wi,j

)
(3.38)

∂ log(p(ŷ|x))
∂βi

= Φi(ŷ|x; wi)−Φi(yMAP|x; wi) (3.39)
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We can now devise a new learning scheme which recalls the one in Algorithm 1,
but substitutes the expectations step, with a maximization step.

To this end, it is interesting to underline an interpretation of MAP inference as
approximate inference, as we will describe in the following Section.

3.5.2 MAP inference as approximated inference
MAP inference is usually not thought of as approximate inference - it does compute
the exact most likely value of y?. However, following variational inference principle,
if we want to develop a learning process based on maximizing the variational lower-
bound L(q) then it would be helpful to think of MAP inference as a procedure that
provides a value of q. In this sense, we can think of MAP inference as approximate
inference, because it does not provide the optimal q.

From Section 3.2.7, exact inference consists of maximizing

log p(x; θ) = L(q) + KL(q||p)

with respect to q over an unrestricted family of probability distributions, using an
exact optimization algorithm. Since the left-hand side of this equation is constantw.r.t.
q, maximizing L(q) means minimizing the KL divergence between q and p(y, x; θ)).
We can derive MAP inference as a form of approximate inference by restricting the
family of distributions q may be drawn from. Specifically, in the setting of MAP
inference as approximated inference, we require q to take on a Dirac distribution, as
done in the previous Section:

q(y) = δ(y− µ)

This means that we can now control q entirely via µ. Dropping terms of L that
do not vary with µ, we are left with the optimization problem

y? = arg max
y

p(y|x; θ)

which is equivalent to the MAP inference problem.
We can thus justify a learning procedure in which we alternate between per-

forming MAP inference to infer y? and then update θ to increase log p(y?|v). This
recovers a different interpretation of Expectation Maximization algorithm, given
by Neal and Hinton (1998). Here, the expectation step is interpreted as the process
aimed at finding a q(y|x) = p(y|x; θ̂), where θ̂ is the current estimation of the pos-
terior parameters. Therefore, the E step can be carried out by variational inference
procedures.
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Thus, the maximization of the likelihood of our MiniMax Entropy model has
automatically pointed to an algorithm for its optimization. This algorithm retraces a
standard EM algorithm for graphical model learning. When coupled with varational
inference methods, this algorithm recovers another interpretation of the E step, in
terms of inferring a proposal distribution for the current estimated posterior.

No matter which interpretation we are going to give to the algorithm, this scheme
captures the intrinsic nature of the learning process (Goodfellow et al., 2016). Indeed,
we update the model parameters to improve the likelihood of a complete dataset,
where all missing variables have their values provided by an estimate of the posterior
distribution. This particular insight is not unique to the EM algorithm. For example,
using gradient descent to maximize the log-likelihood also has this same property;
the log-likelihood gradient computations require taking expectations with respect to
the posterior distribution over the hidden units.

3.5.3 MAP approximation with functional approximation
We can think of the MAP inference in Section 3.3.1 as a function M(x) that, given the
feature representation of constants x, provides the MAP state under the distribution;
i.e.:

yMAP = M(x) (3.40)

Now, let us suppose that this function M can be approximated by a universal
approximator f (e.g. a neural network), giving:

yMAP = M(x) ≈ f (x; q) (3.41)

with q the set of parameters of the approximator f .
Gradients of Section 7.2.1 now become:

∂ log(p(ŷ|x))
∂wi,j

= βi

(
∂Φi(ŷ|x; wi)

∂wi,j
− ∂Φi( f (x; q)|x; wi)

∂wi,j

)
(3.42)

∂ log(p(ŷ|x))
∂βi

= Φi(ŷ|x; wi)−Φi( f (x; q)|x; wi) (3.43)

Since the f should approximate aMAP inference step, its training can be described
in terms of the following optimization problem:

max
q ∑

i
βiΦi( f (x; q)|x; wi)
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3.5.4 Learning from constraints
In this Section, we aim at showing that the framework of learning from constraints
(LfC) (Gori, 2017) can be interpreted as a very particular instantiation of a MiniMax
Entropy model, even if starting from a completely different viewpoint.

Indeed, the framework of learning from constraints does not make any assump-
tion about the existence of a probabilistic distribution over possible worlds. The
framework is instead based on regularization theory, classically exploited in the SVM
literature. The main ingredients are:

• The learning process aims at finding good approximators of the predicate
functions under a regularization principle. Ground atoms are then seen as
predictions of some functions f working on the feature representation of con-
stants.

• Potentials are considered as constraints of the world, describing some known
behaviour (i.e. prior knowledge) of the data. Therefore, they are always consid-
ered known and valid everywhere, and then any potential evaluated on the data
Φ(ŷ) is equal to its maximum value. As a direct consequence, the role of the β

parameters should be considered as a relative weight between different Φi to
guide the learning process, and not as a likelihood degree, otherwise they will all
take a very large value. In this framework, they are treated as hyperparameters.

We will go into much more details in Chapter 4. However, it is useful in this
context to examine the shape of the objective function of the LfC framework, in order
to better analyse the links with the MiniMax Entropy framework.

In the LfC framework, one builds a loss function of the following shape:

L(x, y, w) = ∑
i
Cost( f (xi; w), yi) + λr(w) + ∑

k
βkΨk( f (x)),

where Cost is a classical cost function penalizing truth degree predicted by the f
functions far from the ground truth, r()̇ is a regularization term penalizing func-
tions which are too complex, and Ψk are constraints10 specifying a specific expected
behaviour of the functions (i.e. of the ground atoms) and penalizing behaviours
different from the expected one.

However, even if very different in nature, there are similarities that can be shown,
linking the LfC framework and the MiniMax Entropy framework.

By asking some functions to approximate the truth degree of some atoms, the
LfC framework is implicitely assuming that, given some feature representation,
there is a unique predominant explanation. This is indeed exactly what the MAP

10They have an inverse role of potentials and, thus, they can be interpreted in terms of energies.
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approximation is doing. Thus, the predicate approximators f of the LfC framework
can be seen as the MAP approximators of Section 3.5.3.

Suppose we design a MiniMax Entropy model where we design a specific poten-
tial Φr(y|x; w) = −Dist(y, h(x; w)). The idea is that our model wants to consider
more likely those worlds that can be inferred simply by the constants feature repre-
sentations by means of a non-linear function h. Moreover, let us assume that there
are also other known potentials defined only on the symbolic domain and expressed
as negative cost function; i.e. Φk(y) = −Ψk(y).

The corresponding model is:

p(y|x; w) =
1
Z

exp(Φr(y|x; w) + ∑
k

βkΦk(y))

=
1
Z

exp
(
−
(
Dist(y, h(x; w)) + ∑

k
βkΨk(y)

))
Then, under the functional approximation of the MAP inference, the gradients in

Equation 3.43 becomes:

∂ log(p(ŷ|x))
∂wi,j

= βi

(
∂Φi(ŷ|x; wi)

∂wi,j
− ∂Φi( f (x; q)|x; wi)

∂wi,j

)
=

∂

∂wi,j

(
Dist( f (x; q), h(x; w))− Dist(ŷ, h(x; w))

)
Since this gradient are exploited in a gradient step for maximizing the log-

likelihood, we can identify an equivalent objective:

min
w

[
Dist(ŷ, h(x; w))− Dist( f (x; q), h(x; w))

]
On the other end, as shown previously, the f (x; q) functions are trained to con-

verge to the MAP state, which is equivalent to minimizing the negative exponent of
the MiniMax Entropy distribution:

min
q

[
Dist( f (x; q), h(x; w)) + ∑

k
βkΨk( f (x; q))

]
Now, if we look carefully, we have here two function approximators which ac-

complish two different tasks.
First, the function h(x; w) is shaping the potential Φr in order to maximize the

likelihood of the training data. It is the only responsible formaximizing the likelihood
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since the other potentials have no parameters (the β here is considered a constant for
the model). Indeed, they provide a probability mass which is independent of the
likelihood. No matter what the data shows, the states, which satisfy the constraints,
get always an higher probability than those who do not satisfy them.

Second, the function f (x; q) is approximating a MAP inference step, thus it tries
to predict states which are close to the h(x; q) function (close to the data and thus
maximizing the likelihood) but at the same time satisfying the constraints.

What one could do, since f are asked to match h, is to impose f (x; q) = h(x; w).
Then, we can merge the two optimization problems above into a unique one, which
concerns only the set q of parameters and where all the terms bringing f and h close
to each other clearly cancel.

min
q

Cost(ŷ, f (x; q)) + ∑
k

βkΨk( f (x; q)) (3.44)

Interestingly, this is exactly the objective function of the LfC framework, apart
from the regularization term that clearly comes from a prior p(q) on the parameters
of the functions f . Indeed, it can be easily recovered by moving MiniMax Entropy
models to a more Bayesian approach where we provide priors to all the parameters.
Weight decay is usually recovered by applying a gaussian prior on q (see Chapter 6).

3.6 Discussion
As a final discussion, it is worth noticing that the MiniMax Entropy models intro-
duced in this chapter are an extremely large class of learning models that, as shown
in Section 3.5.4, can incorporate also very different theories. The main reason is
that the optimization problem merging learning (e.g. minimization of entropy) and
generalization (e.g. maximization of entropy) is likely to be a fundamental ingredient
of all intelligent behaviours.

It is clear that there existmultipleways aMiniMax Entropymodel can be exploited
in an effective learning algorithm. In this chapter, we want to focus to two design
choices usually fundamental in instantiating the MiniMax Entropy theory into an
effective algorithm, i.e. potential design and inference algorithm. These design choices
require sometime assumptions and sometime approximations of the problem under
investigation.

Potential Design In the rest of the chapter, it has been shown that potentials are a
fundamental ingredient of the overall theory. When known ( given), they correspond
to the words of a language we provide our MaxEnt model to describe the data we
are observing. When unknown (to be learned), we are asking our MinEnt model to
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find those words which are more expressive of the phenomenon under investigation.
Therefore, a clear distinction must be done between given and trainable potentials.

Another design choice regarding potentials is their factorization properties. This
choice is deeply connected to the choice of the inference algorithm. Most of the
methods for making inference in probabilistic graphical models scalable rely on
some assumptions about the factorization properties of potentials and, thus, of the
partition function.

Finally, potentials differ for their differentiability properties. We have seen that
some inference algorithm (e.g. variational inference) are based on the possibility of
translating the inference problem into an optimization problem. Thus, differentiable
potentials allow the exploitation of a wider class of inference methods.

Inference Algorithm If given with infinite time, a naive computation of the expec-
tations in Equations 3.17 and 3.16 would provide a perfect learning algorithm for
the maximization of the likelihood on some given data. However, apart for very
trivial problem, an exact computation of those expectations is not feasible with the
modern hardware and we must rely on smarter or approximate ways of computing
the expectations. Thus, the learning capability of our MiniMax Entropy model by a
specific algorithm strongly depend on the choice of the inference methods.

In the following chapters, we will see how different (but correlated) choices of the
potentials and the inference algorithm give raise to different algorithms for learning
in the relational setting. In particular, Chapters from 4 to 6 show as we can exploit
conditional MiniMax entropy models and known potentials derived from logical
arguments to augment the possibilities of standard neural learners. Chapter 7 shows
how we can exploit the representative power of neural networks to learn complex
potentials on the relational setting.



Chapter 4

T-Norm Fuzzy Logic Potentials

In this Chapter, we introduce a novel method to define potentials based on prior
knowledge on the problem expressed using logic formalism. The use of fuzzy logics
allows us to obtain differentiable potentials, which enables the use of MAP inference
as inference method. As showed in Section 3.5.4, this particular instantiation of the
MiniMax Entropy setting recovers the learning from constraints LfC (Gori, 2017)
setting, where potentials with fixed weights can be considered constraints on the
learning process. In this Chapter, we exploit this last interpretation since it is has
been the inspiring one. In Section 4.1, we will first describe the Learning From
Constraint framework under the original interpretation of parsimonious learning.
Then, in Section 4.2 we introduce the fundamentals of t-norm fuzzy logic, the un-
derlying mathematical theory allowing the translation of logical formulas into real
valued functions. Then, we show how t-norm formulas can be exploited to design
differentiable constraints and how generators of Archimedean t-norms turn out to
be a natural ingredient of this design. Finally, we show how a logic theory can be
exploited to constrain a learning problem under the LfC framework.

4.1 Learning From Constraints
In this section, we recall a formulation of learning from constraints (Gnecco et al.,
2015; Gori, 2017) based on a variational formulation of the parsimony principle,
which aims at keeping small a functional that involves the function to be learned and
its derivatives up to some order via suitable linear differential operators.

In this setting, the presence of a perceptual space X ⊂ Rd is assumed. The
goal of the learning is interpreted as learning the behaviour on an intelligent agent
implementing a vectorial function f := [ f1, ..., fn] ∈ F ,whereF is a space of functions
from X to Rn. The function f j, j = 1, . . . , n is called the j-th task of the agent and F
the task space.

The link with the relational setting in Section 3.1 is recovered once one thinks

69
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at the task functions f j as a functional implementation of the predicates of a FOL
language, thus f j : X → {0, 1}. By relaxing the logic to the fuzzy case, as will be the
case of this Chapter, f j : X → [0, 1].

The interaction between the agent and the environment is modeled by constraints
that have to be strictly satisfied (hard constraints) or constraints that can be violated,
at the cost of some penalization quantified by a loss (soft constraints).

In order for the theory for being well defined, one has to assure that the task space
F belongs to a specific Sobolev space. In particular, ∀j ∈ Nn := {1, ..., n} and some
positive integer k, the function f j : X → R belongs to the Sobolev spaceW k,2(X),
that is, the subset of L2(X) whose elements f j have weak partial derivatives up to
the order k with finite L2(X)- norms.

To define the learning model, a parsimony index is introduced, defined via a
differential operator. We consider linear-differential operators that are invariant
under spatial shift and have constant coefficients. In particular, the vectorial finite-
order linear differential operator P := [P0, . . . , Pl−1] as the l-tuple of operators Pi ,
i = 0, . . . , l − 1, acting on the Sobolev spaceW k,2(X) and such that:

Pi := ∑
|α|≤ki

bi,αDα

where α is a multi-index with n nonnegative components αj, Dα f = ∂|α|
∂α1...∂αn

f .
Let P be a finite-order linear differential operator. Let be || f j||2P be a norm under

this differential operator; i.e. || f j||2P := 〈P f j, P f j〉. Let γ ∈ Rn a vector of positive
components.

Definition 4.1 (Parsimony Index). The parsimony index over a vectorial function f =

[ f1, ..., fn] ∈ F is defined as:

E := || f ||P,γ =
n

∑
j=1

γj|| f j||2P

Thus, the general principle for learning the behaviour of a parsimonious agent can
be formulated

Definition 4.2 (Parsimonious agent). A parsimonious agent that interacts with the envi-
ronment aims at minimizing over the task space the functional E . More specifically, in the
case of hard constraints, the functional E has to be minimized on the subset of F of the task
space that satisfies the hard constraints, whereas in the soft case, one has to minimize on the
entire F the sum of equation E and a suitable penalty term, which quantifies the violation of
the given set of soft constraints. In the case of hard constraints mixed with soft ones, the sum
above is minimized on the subset of F of the task space that satisfies the hard constraints.
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In particular, let ψc( f ) : F → R be a penalty term which penalizes violation of
the given set of functions f with respect to a given constraint c. Let C = Ch ∪ Cs be a
collection of hard (h) and soft (s) constraints, whose definition is not important if,
for each c ∈ C, ψc( f ) is unambiguously defined. Then, the learning problem can be
stated as:

min
f
E( f ) + ∑

c∈Cs

λcψc( f ) (4.1)

s.t. ψc( f ) = 0, ∀c ∈ Ch

with λ = {λc} a set of suitable real coefficients, referred to as beliefs of the soft
constraints.

4.2 Fundamentals of T-Norm Fuzzy Logic

Many-valued logics have been introduced in order to extend the admissible set of
truth values from true (1), false (0) to a scale of truth-degree having absolutely true
and absolutely false as boundary cases. In particular, in fuzzy logic the set of truth
values coincides with the real unit interval [0, 1]. In this section, the basic notions of
fuzzy logic together with some remarkable examples are introduced. According to
(Hájek, 2013), a fuzzy logic can be defined upon a certain t-norm (triangular norm)
representing an extension of the Boolean conjunction.

Definition 4.3 (t-norm). T : [0, 1]2 → [0, 1] is a t-norm if and only if for every x, y, z ∈
[0, 1]:

T(x, y) = T(y, x), T(x, (T(y, z)) = T(T(x, y), z),
T(x, 1) = x, T(x, 0) = 0,

x ≤ y −→ T(x, z) ≤ T(y, z) .

T is a continuous t-norm if it is continuous as function.

Table 4.1 reports the algebraic definition of t-norms and other logical operators
definable by the chosen t-norm for Gödel, Łukasiewicz and Product logics respec-
tively, which are referred as the fundamental fuzzy logics because all the continuous
t-norms can be obtained by ordinal sums (Mostert and Shields, 1957; Jenei, 2002).
The notation of the logical operators in Table 4.1 is given by the following definitions
according to a certain t-norm T:
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Gödel Łukasiewicz Product
x⊗ y min{x, y} max{0, x + y− 1} x · y
x ⇒ y x ≤ y?1 : y min{1, 1− x + y} x ≤ y?1 : y

x
x ⇔ y x ≤ y?x : y 1− |x− y| x = y?1 : min{ x

y , y
x}

x ∧ y min{x, y} min{x, y} min{x, y}
x ∨ y max{x, y} max{x, y} max{x, y}
∼ x x = 0?1 : 0 1− x x = 0?1 : 0
¬x 1− x 1− x 1− x

x⊕ y max{x, y} min{1, x + y} x + y− x · y
x → y max{1− x, y} min{1, 1− x + y} 1− x + x · y

Table 4.1: The truth functions for the residuum, bi-residuum, weak conjunction, weak
disjunction, residual negation, strong neation, t-conorms and material implication of
the fundamental fuzzy logics.

Definition 4.4 (definable connectives from a t-norm).

(t-norm) x⊗ y = T(x, y)
(residual-impl) x ⇒ y = max{z : x⊗ z ≤ y}
(bi-residuum) x ⇔ y = (x ⇒ y)⊗ (y⇒ x)
(weak-conj) x ∧ y = x⊗ (x ⇒ y)
(weak-disj) x ∨ y=((x⇒y)⇒ y)⊗ ((y⇒ x)⇒ x)
(residual-neg) ∼ x = x ⇒ 0
(strong-neg) ¬x = 1− x
(t-conorm) x⊕ y = ¬(¬x⊗¬y)
(material-impl) x → y = ¬x⊕ y

4.2.1 Archimedean T-Norms

In mathematics, t-norms (Klement et al., 2004a, 2013) are a special kind of binary
operations on the real unit interval [0, 1] especially used in engineering applications
of fuzzy logic. Table 4.1 reports the fundamental continuous t-norms, however in the
literature a wide class of t-norms has been considered. In addition, there are several
techniques to construct customized t-norms that are more suitable to deal with a
certain problem by rotations or ordinal sums of other t-norms or defining parametric
classes. This section introduces Archimedean t-norms (Klement et al., 2004c), a special
class of t-norms that can be constructed by means of unary monotone functions,
called generators.

Definition 4.5. A t-norm T is said to beArchimedean if for every x ∈ (0, 1), T(x, x) < x.
In addition, T is said strict if for all x ∈ (0, 1), 0 < T(x, x) < x otherwise is said nilpotent.
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For instance, the Łukasiewicz (TL) and Product (TP) t-norms are respectively
nilpotent and strict, while the Gödel (TG) t-norm is not archimedean, indeed it is
idempotent (TG(x, x) = x, for all x ∈ [0, 1]). In addition, Łukasiewicz and Product t-
norms are enough to represent the whole classes of nilpotent and strict Archimedean
t-norms (Klement et al., 2013).

Theorem 3. Any nilpotent t-norm is isomorphic to TL and any strict t-norm is isomorphic
to TP.

A fundamental result for the construction of t-norms by additive generators is based
on the following theorem (Klement et al., 2004b).

Theorem 4. Let g : [0, 1] → [0,+∞] be a strictly decreasing function with g(1) = 0 and
g(x) + g(y) ∈ Range(g)∪ [g(0+),+∞] for all x, y in [0, 1], and g(−1) its pseudo-inverse.
Then the function T : [0, 1]→ [0, 1] defined as

T(x, y) = g−1 (min{g(0+), g(x) + g(y)}
)

. (4.2)

is a t-norm and g is said an additive generator for T. T is strict if g(0+) = +∞, otherwise
T is nilpotent. .

Example 4.1. If we take g(x) = 1− x, we get TL

T(x, y) = 1−min{1, 1− x + 1− y} = max{0, x + y− 1} ,

while taking g(x) = − log(x), we get TP

T(x, y) = e−(min{+∞,− log(x)−log(y)}) = x · y .

An interesting consequence of equation (4.2) is that it allows us to define also the
other fuzzy connectives, deriving from the t-norm, as depending on the additive
generator. For instance:

x ⇒ y = g−1 (max{0, g(y)− g(x)})
x ⇔ y = g−1 (|g(x)− g(y)|) (4.3)
x⊕ y = 1− g−1 (min{g(0+), g(1− x) + g(1− y)}

)
The isomorphism between addition on [0,+∞] and multiplication on [0, 1] by the

logarithm and the exponential functions allows two-way transformations between
additive and multiplicative generators of a t-norm. If g is an additive generator
of a t-norm T, then the strictly increasing function h : [0, 1] → [0, 1] defined as
h(x) = e−g(x) is a multiplicative generator of T, namely:

T(x, y) = h−1(max(h(0), h(x) · h(y)))
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On the opposite, if h is a multiplicative generator of T, then g(x) = − log(h(x)) is an
additive generator of T. For instance, h(x) = ex−1 and h(x) = x are multiplicative
generators of TL and TP, respectively. Additive and multiplicative generators are
isomorphic and we decide to focus on the former for simplicity. We only mention
that both multiples of additive generators and positive powers of multiplicative
generators determine the same t-norm.

4.2.2 Parameterized classes of t-norms

Given a generator of a t-norm depending on a certain parameter, we can define a class
of related t-norms depending on such parameter. For instance, given a generator
function g of a t-norm T and λ > 0, then Tλ, corresponding to the generator function
gλ(x) = (g(x))λ denotes a class of increasing t-norms. In addition, let TD and TG
denote the Drastic (defined by TD(x, y) = (x = y = 1)?1 : 0) and Gödel t-norms
respectively, we get:

limλ→0+Tλ = TD and limλ→∞Tλ = TM .

On the other hand, several parameterized families of t-norms have been intro-
duced and studied in the literature (Klement et al., 2013). In the following we recall
some prominent examples we will exploit in the experimental evaluation.

Definition 4.6 (The Schweizer-Sklar family). For λ ∈ (−∞,+∞), consider:

gSS
λ (x) =

{
− log(x) if λ = 0
1−xλ

λ otherwise.

The t-norms corresponding to this generator are called Schweizer-Sklar t-norms, and they
are defined according to:

TSS
λ (x, y) =



TG(x, y) if λ = −∞

(xλ + yλ − 1)
1
λ if −∞ < λ < 0

TP(x, y) if λ = 0

max{0, xλ + yλ − 1} 1
λ if 0 < λ < +∞

TD(x, y) if λ = +∞

A Schweizer-Sklar t-norm TSS
λ is Archimedean if and only if λ > −∞, continuous if

and only if λ < +∞, strict if and only if −∞ < λ ≤ 0 and nilpotent if and only if
0 < λ < +∞. This t-norm family is strictly decreasing for λ ≥ 0 and continuous with
respect to λ ∈ [−∞,+∞], in addition TSS

1 = TL.
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Definition 4.7 (Frank t-norms). For λ ∈ [0,+∞], consider:

gF
λ(x) =


− log(x) if λ = 1

1− x if λ = +∞

log( λ−1
λx−1) otherwise.

The t-norms corresponding to this generator are called Frank t-norms and they are strict if
λ < +∞. The overall class of Frank t-norms is decreasing and continuous.

TF
λ (x, y) =


TG if λ = 0

TP if λ = 1

TL if λ = +∞

logλ

(
1 + (λx−1)(λy−1)

λ−1

)
otherwise.

4.2.3 Loss Functions by T-Norms Generators
In this section, we present a novel approach to combine the choice of both the fuzzy
conversion of formulas and the penalty map according to a unified principle. In
particular, we investigate the mapping of formulas into constraints by means of
generated t-norm fuzzy logics, and we exploit the same additive generator of the
t-norm to map the formulas to be satisfied into the functional constraints to be
minimized, i.e. we consider L = g. Moreover, since the quantifiers can be seen
as generalized AND and OR over the grounded expressions (see Remark 1), we
show that the same fuzzy conversion, so as the overall loss function, as expressed in
Equation 4.6, only depends on the chosen t-norm generator.

Remark 1. Given a formula ϕ(x) defined on X , the role of the quantifiers have to be inter-
preted as follows,

∀x ϕ(x) ' ϕ(x1) AND . . . AND ϕ(xN)

∃x ϕ(x) ' ϕ(x1) OR . . . OR ϕ(xN)

where X = {x1, . . . , xN} denotes the available samples.

Given a certain formula ϕ(x) depending on a variable x that ranges in the set
X and its corresponding functional representation fϕ(x, p), the conversion of any
universal quantifier may be carried out by means of an Archimedean t-norm T, while
the existential quantifier by a t-conorm. For instance, given the formula ψ = ∀x ϕ(x),
we have:

fψ(X , p) = g−1

(
min

{
g(0+), ∑

x∈X
g
(

fϕ(x, p)
)})

(4.4)

where g is an additive generator of the t-norm T.
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Since any generator function is decreasing and g(1) = 0, the generator function
is a very natural choice to be used as loss L which can be used to map the fuzzy
conversion of the formula, as reported in Equation 4.4, in a constraint to beminimized.
By exploiting the same generator of T tomap into a loss function, we get the following
term L

(
fψ(X , p)

)
to be minimized:

L
(

fψ(X , p)
)
=


min

{
g(0), ∑

x∈X
g( fϕ(x, p))

}
T nilpotent

∑
x∈X

g( fϕ(x, p)) T strict

(4.5)

As a consequence, the following result can be provided with respect to the con-
vexity of the loss L

(
fψ(X , p)

)
.

Proposition 1. If g is a linear function and fϕ is concave, L
(

fψ(X , p)
)
is convex. If g is a

convex function and fϕ is linear, L
(

fψ(X , p)
)
is convex.

Proof. Both the arguments follow since if fϕ is concave (we recall that a linear function
is both concave and convex, as well) and g is a convex non-increasing function defined
over a univariate domain, then g ◦ fϕ is convex.

Proposition 1 establishes a general criterion to define convex constraints according
to a certain generator depending on the fuzzy conversion fϕ and, in turn, by the
logical expression ϕ. In Example 4.2 are reported some application cases.

g−1

∑
x

g


g−1

max

0, g(p3(x))− g

g−1(g(p1(x)) + g(p2(x)))︸ ︷︷ ︸
conjunction





︸ ︷︷ ︸
implication




︸ ︷︷ ︸

quanti f ier

= g−1

(
∑
x

max {0, g(p3(x))− g(p1(x))− g(p2(x))}
)

Table 4.2: Example of the translation of ∀x p1(x)⊗ p2(x) ⇒ p3(x) with respect to
the selection of a t-norm generator g. The simplification expressed on the right side
is general and can be applied for a wide range of logical operators.

Example 4.2. If g(x) = 1− x we get the Łukasiewicz t-norm, that is nilpotent. Hence,
from Equation 4.5 we get:

L
(

fψ(X , p)
)
= min(1, ∑

x∈X
(1− ( fϕ(x, p))) .
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In case fϕ is concave (Giannini et al., 2018), this function is convex.
If g(x) = − log(x) (Product t-norm) from Equation 4.5 we get a generalization of the

cross-entropy loss:
L
(

fψ(X , p)
)
= − ∑

x∈X
log( fϕ(x)) .

In case fϕ(x) is linear (e.g. a literal), this function is convex.

So far, we only considered the case of a general formula ϕ. In the following,
different cases of interest for ϕ are reported. Given an additive generator g for a
t-norm T, additional connectives may be expressed with respect to T, as reported
e.g. by Equation 4.3. If p1, p2 are two unary predicate functions sharing the same
input domain X , the following formulas yield the following penalty terms, where
we supposed T strict for simplicity:

∀x p1(x) −→ ∑
x∈X

g(p1(x))

∀x p1(x)⇒ p2(x) −→ ∑
x∈X

max{0, g(p2(x))− g(p1(x))}

∀x p1(x)⇔ p2(x) −→ ∑
x∈X
|g(p1(x))− g(p2(x))|

According to a certain generator, different loss functions may arise from the
same FOL formula. Further, one may think to consider customized loss components
that are more suitable for a certain learning problem or exploiting the described
construction to get already known machine learning loss, as for the cross-entropy
loss (see Example 4.2).

Example 4.3. If g(x) = 1
x − 1, with corresponding strict t-norm T(x, y) = xy

x+y−xy , the
functional constraint 4.5 that is obtained applying g to the formula ∀x p1(x) ⇒ p2(x) is
given by

L
(

fψ(X , p)
)
= ∑

x∈X
max

{
0,

1
p2(x)

− 1
p1(x)

}
.

While if g(x) = 1− x2, with corresponding nilpotent t-norm T(x, y) = min{1, 2− x2 −
y2}, the constraint is given by

L
(

fψ(X , p)
)
=min

{
1, ∑

x∈X
max

{
0, (p1(x))2 − (p2(x))2

}}
.

4.2.4 The simplification property
An interesting property of this method consists in the fact that, in case of compound
formulas, some occurrences of the generator may be simplified. For instance, this is
shown in Table 4.2 for the formula ∀x p1(x)⊗ p2(x)⇒ p3(x). However, this property
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does not hold for all the connectives that are definable upon a certain generated
t-norm (see Definition 4.4). For instance, ∀x p1(x)⊕ p2(x) becomes:

g
(

1− g−1(min{g(0+), ∑
x

g(1− p1(x)) + g(1− p2(x))})
)

This suggests to identify the connectives that, on one hand allow the simplification
of any occurrence of g−1 by applying g in its corresponding functional expression,
and on the other hand allow the evaluation of g only on grounded predicates. For
short, in the following we say that the formulas build upon such connectives have
the simplification property.

Lemma 1. Any formula ϕ, whose connectives are restricted to {∧,∨,⊗,⇒,∼,⇔}, has
the simplification property.

Proof. The proof is by induction with respect to the number l ≥ 0 of connectives
occurring in ϕ.

• If l = 0, i.e. ϕ = pj(xi) for a certain j ≤ J, xi ∈ X ; then g( fϕ) = g(pj(xi)),
hence ϕ has the simplification property.

• If l = k + 1, then ϕ = (α ◦ β) for ◦ ∈ {∧,∨,⊗,⇒,∼,⇔} and we have the
following cases.

– If ϕ = (α ∧ β), then we get g(min{ fα, fβ}) = max{g( fα), g( fβ)} and the
claim follows by inductive hypothesis on α, β whose number of involved
connectives is less or equal than k. The argument still holds replacing ∧
with ∨ and min with max.

– If ϕ = (α⊗ β), then we get

g(g−1(min{g(0+), g( fα) + g( fβ)})) =
= min{g(0+), g( fα) + g( fβ)} .

As in the previous case, the claim follows by inductive hypothesis on α, β.
– The remaining of the cases can be treated at the same way and noting that
∼ α = α⇒ 0.

The simplification property provides several advantages from an implementation
point of view. On one hand it allows the evaluation of the generator function only on
grounded predicate expressions and avoids an explicit computation of the pseudo-
inverse g−1. In addition, this property provides a general method to implement n-ary
t-norms, of which universal quantifiers can be seen as a special case since we only
deal with finite domains (see more in Section 4.3.2).
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The simplification property yields an interesting analogy between truth functions
and loss functions. In logic, the truth degree of a formula is obtained by combining
the truth degree of its sub-formulas by means of connectives and quantifiers. At the
same way, the loss corresponding to a formula that satisfies the property is obtained
by combining the losses corresponding to its sub-formulas and connectives and
quantifiers combine losses rather than truth degrees.

4.3 Logic and Learning
This Chapter presents a theoretical apparatus that may be exploited in different
learning settings, especially in contexts where some relational knowledge about the
task is available, and the input patterns are not assumed to be independent and
identically distributed. According to the learning from constraints paradigm in Section
4.1 (from (Gnecco et al., 2015)), knowledge is represented by a set of constraints
and the learning process is conceived as the problem of finding the task functions
(implementing FOL predicates) that best satisfy the constraints. In particular in
multi-task learning, additional information can be expressed by logical constraints,
and supervisions are a special class of constraints forcing the fitting of the positive
and negative examples for the task. An example for extra prior knowledge that may
be available about a learning task, could be the statement like “any pattern classified
as a cat has to be classified as an animal”, where cat and animal have to be thought of as
the membership functions of two classes to learn. In such a sense, symbolic logic
provides a natural way to express factual and abstract knowledge about a problem
by means of logical formulas.

Now, we brefly introduce how the logic knowledge describable using the pro-
posed theory can be attached to a neuro-symbolic learning task. This will be much
more deeply investigated in the following Chapter, where an entire programming
framework implementing the theory will be shown. Let us consider a multi-task
learning problem, where p = (p1, . . . , pJ) denotes the vector of real-valued func-
tions (task functions) to be determined. Given the set X ⊆ Rn of available data, a
supervised learning problem can be generally formulated as minp L(X , p) where
L is a positive-valued functional denoting a certain loss. In this framework, this
setup is expanded assuming that the task functions are FOL predicates and all the
available knowledge about these predicates, including supervisions, is collected into
a knowledge base expressed via a set of FOL formulas KB = {ψ1, . . . , ψH}. The
learning task is generally expressed as:

min
p
L(X , KB, p) .

The link between FOL knowledge and learning can be summarized as follows.
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• Each Individual is an element of a specific domain, which can be used to ground
the predicates defined on such domain. Any replacement of variables with
individuals for a certain predicate is called grounding.

• Predicates express the truth degree of some property for an individual (unary
predicate) or group of individuals (n-ary predicate).

• The knowledge base (KB) is a collection of FOL formulas expressing the learning
task. The integration of learning and logical reasoning is achieved by compiling
the logical rules into continuous real-valued constraints, which correlate all the
defined elements and enforce some desired behaviour on them.

For a given rule in the KB, individuals, predicates, logical connectives and quan-
tifiers can all be seen as nodes of an expression tree. The translation to a constraint
corresponds to a post-fix visit of the expression tree, where the visit action builds
the correspondent portion of computational graph. In particular:

• visiting a variable substitutes the variable with the corresponding feature repre-
sentation of the individual to which the variable is currently assigned;

• visiting a predicate computes the output of the predicate with the current input
groundings;

• visiting a connective combines the grounded predicate values by means of the
real-valued operations associated to the connective;

• visiting a quantifier aggregates the outputs of the expressions obtained for the
single individuals (variable groundings).

Thus, the compilation of the expression tree allows us to convert formulas into
real-valued functions, represented by a computational graph, where predicate func-
tions are composed by means of the truth-functions corresponding to connectives
and quantifiers. Given a generic formula ϕ, we call the corresponding real-valued
function its functional representation fϕ. This representation is tightly dependent on
the particular choice of the translating t-norm. For instance, given two predicates
p1, p2 and the formula ϕ(x) = p1(x)⇒ p2(x), the functional representation of ϕ in
Łukasiewicz logic is given by fϕ(x, p) = min{1, 1− p1(x) + p2(x)}.

A special note concerns quantifiers that have to be thought of as aggregating oper-
ators with respect to the predicate domains. For instance, according to Novak (Novák
et al., 2012), that first proposed a fuzzy generalization of first–order logic, the univer-
sal and existential quantifiersmay be converted as the infimum and supremum over
a domain variable (or minimum and maximum when dealing with finite domains)
that are common to any t-norm fuzzy logic. In particular, given a formula ϕ(x)
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depending on a certain variable x ∈ X , where X denotes the available samples for
one of the involved predicates in ϕ, the semantics of the quantifiers are fuzzified as:

ψ = ∀x ϕ(x) −→ fψ(X , p) = min
x∈X

fϕ(x, p),

ψ = ∃x ϕ(x) −→ fψ(X , p) = max
x∈X

fϕ(x, p).

As shown in the next section, this quantifier translation is not well justified for all
t-norms and the proposed method enables a more principled approach to perform
this translation.

Once all the formulas in KB are converted into real-valued functions, their distance
from satisfaction (i.e. distance from 1-evaluation) can be computed according to
a certain decreasing mapping L expressing the penalty for the violation of any
constraint. Assuming rule independence, learning can be formulated as the joint
minimization over the single rules using the following loss function factorization:

L(X , KB, p) = ∑
ψ∈KB

βψL
(

fψ(X , p)
)

(4.6)

where any βψ denotes the weight for the logical constraint ψ in the KB, which can be
selected via cross-validation or jointly learned (Kolb et al., 2018; Marra et al., 2019a),
fψ is the functional representation of the formula ψ according to a certain t-norm
fuzzy logic and L is a decreasing function denoting the penalty associated to the
distance from satisfaction of formulas, so that L(1) = 0. This proposed method will
show that the selected semantics of the fψ converting a generic formula ψ and the
choice of the L loss are intrinsically connected, and they can be both derived by the
selection of a t-norm generator.

4.3.1 Example
Let’s consider a simple multi-label classification task where the objects A, B must be
detected in a set of input images I , represented as a set of features. The learning task
consists in determining the predicates pA(i), pB(i), which return true if and only if
the input image i is predicted to contain the object A, B, respectively. The positive
supervised examples are provided as two sets (or equivalently their membership
functions) PA ⊂ I , PB ⊂ I with the images known to contain the object A, B, respec-
tively. The negative supervised examples for A, B are instead provided as two sets
NA ⊂ I , NB ⊂ I . Furthermore, the location where the images have been taken is
assumed to be known, and a predicate SameLoc(i1, i2) can be used to express the
fact whether images i1, i2 have been taken in the same location. It is finally assumed
that it is known as prior knowledge that two images taken in the same location are
likely to contain the same object. The semantics of the above learning task can be
expressed using FOL via the statement declarations shown in Table 4.3, where it was
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∀i1, i2 : SameLoc(i1, i2) ∧ A(i1)⇒ A(i2)
∀i1, i2 : SameLoc(i1, i2) ∧ B(i1)⇒ B(i2)
∀i : PA(i)⇒ A(i) ∧ NA(i)⇒ ¬A(i)
∀i : PB(i)⇒ B(i) ∧ NB(i)⇒ ¬B(i)
PA(i10) = 1, PA(i101) = 1, NB(i11) = 1, PB(i103) = 1
SameLoc(i23, i60) = 1

Table 4.3: Example of the declarative a learning task expressed using FOL.

assumed that images i23, i60 have been taken in the same location and it holds that
PA = {i10, i101}, PB = {i103}, NA = {i11} and NB = ∅. The statements define the
constraints that the learners must respect, expressed as FOL rules. Please note that
also the fitting of the supervisions are expressed as constraints, .

Given a selection of t-norm generator g and a set of images I, this DFL program
is compiled into the following optimization task:

argmin
p

β1 ∑
i∈PA

g(pA(i)) + β2 ∑
i∈NA

g(1− pA(i))+

β3 ∑
i∈PB

g(pB(i))+

β4 ∑
(i1,i2)∈Isl

[
max(0, g(pA(i1))− g(pA(i2))

]
+

β5 ∑
(i1,i2)∈Isl

[
max(0, g(pB(i1))− g(pB(i2))

]
where βi is a meta-parameter deciding how strongly the i-th contribution should
be weighted, Isl is the set of image pairs having the same location Isl = {(i1, i2) :
SameLoc(i1, i2)} and the first two elements of the cost function express the fitting of
the supervised data, while the latter two express the knowledge about co-located
images.

4.3.2 Discussion
The presented framework can be contextualized among a new class of learning
frameworks, which exploit the continuous relaxation of FOL provided by fuzzy
operators to integrate logic knowledge in the learning process (Diligenti et al., 2017;
Serafini and Garcez, 2016a; Marra et al., 2019b). All these frameworks require the
user to define all the operators of a given t-norm fuzzy logic. On the other hand, the
presented framework requires only the generator to be defined. This provides several
advantages like a minimum implementation effort, and an improved numerical stability.
Indeed, it is possible to apply the generator only on grounded atoms by exploiting the
simplification property and this allows to apply the non-linear operation (generator)
to the atoms, whereas all compositions are performed via stable operators (e.g.
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min,max,sum). On the contrary, the previous FOL relaxations correspond to an
arbitrary mix of non-linear operators, which can potentially lead to numerically
unstable implementations.

The presented framework provides a fundamental advantage in the integration
with the tensor-based machine learning frameworks like TensorFlow (Abadi et al.,
2016) or PyTorch (Ketkar, 2017). Modern deep learning architectures can be effec-
tively trained by leveraging tensor operations performed via Graphics Processing
Units (GPU). However, this ability is conditioned on the possibility of concisely
express the operators in terms of simple parallelizable operations like sums or prod-
ucts over n arguments, which are often implemented as atomic operation in GPU
computing frameworks and do not require to resort to slow iterative procedures.
Fuzzy logic operator can not be easily generalized to their n-ary form. For example,
the Łukasiewicz conjunction TL(x, y) = max{0, x + y − 1} can be generalized to
n-ary form as TL(x1, x2, . . . , xn) = max{0, ∑n

i=1(xi) − n + 1}. On the other hand,
the general SS t-norm for −∞ < λ < 0, TSS

λ (x, y) = (xλ + yλ − 1)
1
λ , does not have

any generalization and the implementation of the n-ary form must resort to an
iterative application of the binary form, which is very inefficient in tensor-based
computations. Previous frameworks like LTN and SBR had to limit the form of the
formulas that can be expressed, or carefully select the t-norms in order to provide
efficient n-ary implementations. However, the presented framework can express
operators in n-ary form in terms of the generators. Thanks to the simplification
property, n-ary operators for any Archimedean t-norm can always be expressed as
T(x1, x2, . . . , xn) = g−1(∑n

i=1 g(xi)).





Chapter 5

LYRICS

In this Chapter, we proposed LYRICS, a Tensorflow-based programming framework
exploiting the t-norm theory of the previous chapter to integrate machine learning
with logic programs describing constraints over the learning problem. In Section
5.1, we show the details of the framework, giving a general overview of its syntax
and showing how to integrate elements of an external learning problem into the
framework. Moreover, in Section 5.1.2, some design choices are discussed and
some best practices introduced. Then, in Section 5.2, we describe multiple very
different learning problems implemented in LYRICS, showing the extreme flexibility
of the framework. In Section 5.3, we investigate how exploiting generated t-norm
from a parametric family allow us to switch smoothly among very different t-norms,
providing a very viable tool for compromising between convergence rate and stability,
soft and hard penalization of constraint un-satisfaction. Finally, in Section 5.4, we
show a very peculiar application of LYRICS in image to image translation tasks,
showing how the use of logic descriptions allows a much cleaner and understandable
description of generative adversarial learning tasks.

5.1 The framework

5.1.1 Integrating Logic and Learning

This Section presents how LYRICS defines an TensorFlow environment in which
learning and reasoning can take place at the same time.

Domains and Individuals The definition of the knowledge in the LYRICS envi-
ronment starts by defining a certain number of domains in the considered world.
A domain determines a collection of individuals of the world that share the same
representation space and, thus, can be analyzed and manipulated in a homogeneous
way. For example, a domain can collect the set of considered 30× 30 pixel images, or

85
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the sentences of a book as bag-of-words, or all the points of the plane in their (x, y)
form. The domains are then filled with their “inhabitants”, on which the learning
and reasoning will be carried.

Domains of individuals allow users to provide data to the framework as tensors
that represent the leaves of the computational graph. A Domain Di is always bound
to a tensor Xi ∈ Rdi×ri , where di denotes the number of individuals in the i-th
domain and ri denotes the dimension of the representation of the data in the i-th
domain1. Thus, individuals correspond to rows of the Xi tensor. Individuals can
be represented by both constant and variable feature tensors. By taking into account
partially or totally variable features for the individuals, LYRICS allows to consider
individuals as learnable objects too. For example, given two individuals Marco and
Michelangelo bound to a constant and a variable tensor respectively, we may want to
learn the representation of Michelangelo by exploiting some joint piece of knowledge
(e.g. fatherOf(Marco, Michelangelo) -> similarTo(Michelangelo, Marco)).

In LYRICS, a domain can be defined using the Domain construct. It takes two
arguments as input:

• label , it is a unique string identifier of a given label;

• data , it is a rank 2 tensor, where rows represent different individuals and
columns range over their numerical features. If a domain is temporarily empty
(e.g. it will be filled afterwards), then a 0 row tensor must be provided.

For example, a domain called Points can be defined as:

Domain(label=’Points’, data=data)

where data is the placeholder of the input data. The elements of a domain are a
sort of “anonymous” individuals that are collectively processed. In Section 4.2,
we underlined the double description of individuals, i.e. a symbolic label and a
numerical feature representations. In LYRICS domains, the row index is the label,
while the row values represent its feature representation.

Sometimes, we have domains of individuals with no feature representation but
we still want to use them to express relational knowledge. For these cases, LYRICS
provides a special construct, RangeDomain , which simply allows the user to define a
certain number of individuals without the need to specify their features. It accepts
two attributes:

• label , it is a unique string identifier of a given label;

• max_range , it is the number of individuals of this domain.
1Here, we assume that the feature representation is given by a vector. However, the system also

allows the individuals to be represented by a generic tensor.
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An individual of a domain can also be separately specified, and a specific behavior
can be defined for it. In particular, specific individuals can be added to a domain
using the Individual construct. It accepts as input attributes:

• label , it is a unique string identifier of this individual in the entire program;

• domain , it is the domain it belongs to;

• value , it is an (optional) feature representation.

For example, a point ’p0’ can be defined as follows:

Individual(label=’p0’, domain=(’Points’), value=p0)

This allows the user to give more intelligible labels to some individual.
It is important to note that the feature representation of an individual can be

omitted. This happens in two cases: (i) when we are dealing with some label-only
reasoning task where we are not interested in the feature representation, (ii)when
this representation is unknown. In this last case, a random variable representation
is assigned to the individual and this variable will be optimized in the overall opti-
mization problem in such a way as the constraint to be mostly satisfied.

Functions and Relations A LYRICS function can be defined to map elements from
the input domains into an element of an output domain. In particular, a unary
function takes as input an element from a domain and transforms it into an element
of the same or of another domain, while an n-ary function takes as input n elements,
mapping them into an output element of its output domain. For example, it is
possible to define arithmetic functions to operate over number domains, encoding
functions to transform elements of a domain into a latent space, etc. LYRICS allows
also to define a set of relations or predicates, which are functions mapping elements of
the input domains to truth values, as for example: isCat(x), or f (x) > 3.

FOL functions allow the mapping between individuals of the input domains
to an individual of the output domain, i.e. fi : D f

i1
× · · · × D f

im → D f
i , where

D f
i1

, . . . , D f
im are the input domains and D f

i is the output domain. On the other hand,
FOL predicates allow to express the truth degree of some property for individuals
of the input domains; i.e. pi : Dp

i1
× . . .× Dp

im → {true, f alse}, where Dp
ij
is the j-th

domain of the i-th predicate. Functions and predicates are implemented using a
TF architecture as explained in the following. If the graph does not contain any
variable tensor (i.e. it is not parametric), then we say it to be given; otherwise it will
contains variables which will be automatically learned to maximize the constraints
satisfaction. In this last case, we say the function/predicate to be learnable. Learnable
functions can be (deep) neural networks, kernel machines, radial basis functions, etc.
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The evaluation of a function or a predicate on a particular tuple x1, . . . , xm of input
individuals (i.e. fi(x1, . . . , xm) or pi(x1, . . . , xm)) is said a grounding for the function
or for the predicate, respectively. LYRICS, like related frameworks (?Serafini and
Garcez, 2016b), follows a fully grounded approach, which means that all the learning
and reasoning processes take place only once functions and predicates have been
fully grounded over all the possible input tuples (i.e. on the entire Cartesian product
of the correponding input domains).

Let us indicate as Xk the set of patterns in the domain Dk, then X
f

i = X f
i1
×

· · · × X f
im is the set of groundings of the i-th function. Similarly, X p

i is the collection
of groundings for the i-th predicate. Finally, F (X ) = { f1(X

f
1 ), f2(X

f
2 ), . . . , } and

P(X ) = {p1(X
p

1 ), p2(X
p

2 ), . . .} are the outputs for all function and predicates over
their corresponding groundings, respectively.

The Function construct accepts as input attributes:

• label , it is a unique string identifier of this function in the entire program;

• domains , they are the inputs domains of the function;

• function , it is an instance of a Function object, which is the Tensorflow imple-
mentation od the function. See Section 5.1.2 for a detailed description.

The following example defines a LYRICS “encoder” function:

Function(label="encoder",domains=("Images"),function=CNNEncoder)

where the FOL function is bound to its TF implementation, which in this case is the
CNNEncoder function.

The Relation construct accepts as input attributes:

• label , it is a unique string identifier of this relation in the entire program;

• domains , they are the inputs domains of the relation;

• function , it is an instance of a Function object, which is the Tensorflow imple-
mentation od the function. See Section 5.1.2 for a detailed description.

• features it is a boolean which declares if this relation operates either on the
features (features=True, default) or on the label only (features=False).

For example, a predicate A approximated by a neural network NN, taking as
input the patterns in the domain Points can be defined as:

Predicate("A", domains=("Points"), function=NN)



5.1. THE FRAMEWORK 89

Constraints Finally, it is possible to state the knowledge about the world by means
of a set of constraints. Each constraint is a generic FOL formula using as atoms the
previously defined functions and relations.

If formulas contains variables, they need to be existentially or universally quanti-
fied (closed formulas). Even though this is a best practice for describing constraints
which describe the learning problem, sometimes one wants to simply check the va-
lidity of a formula. In this case open formulas (not quantified variables) are allowed
and the system provides all the truth values for all the grounding belonging to the
not quantified variables.

The Constraint construct accepts as inputs:

• description , it is a string containing the formula declaration;

• weight , it is a real value which weights the constraint in the overall optimiza-
tion.

For instance, if we are given the domain Animals and two predicates bird and flies
defined on it, the user can express the knowledge that all the birds fly by means of
the constraint:

Constraint("forall x: bird(x) -> flies(x))

The Constraint construct is extremely general. By a correct definition of domains,
functions and relations, any constraint can be implemented. However, it is often the
case that functions and relations are mplemented by well-known learning models
(e.g. neural networks, auto-encoders) for which TensorFlow provides already-built
loss-functions or regularization functions. In these cases, LYRICS provides two
ad-hoc constraints, namely PointwiseConstraint and RegularizationConstraint ,
which allows

Integration of learning and logical reasoning is achieved by translating logical
expressions into continuous real-valued constraints. The logical expressions correlate
the defined elements and enforce some desired behaviour on them.

Variables, functions, predicates, logical connectives and quantifiers can all be seen
as nodes of an expression tree. The real-valued constraint is obtained by a post-fix
visit of the expression tree, where the visit action builds the correspondent portion
of computational graph. In particular:

• visiting a variable xi substitutes the variable with the tensor Xi bound to the
domain it belongs to;

• visiting a function or predicate corresponds to the grounding operation, where,
first, the Cartesian product of the input domains is computed and, then, the
TF models implementing those functions are evaluated on all gorundings (i.e.
f (X ) or p(X ))
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CNNCNN

 forall x: dog(x) -> mammal(x)

ForAll(Quantifier)
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Compiling with Lukasiewicz(FuzzyLogic)

Figure 5.1: The translation of the FOL formula ∀x dog(x)→ mammal(x) into a Lyrics
expression tree and then its mapping to a TF computational graph.

• visiting a connective combines predicates bymeans of the real-valued operations
associated to the connective by the considered t-norm fuzzy logic;

• visiting a quantifier aggregates the outputs of the expressions obtained for the
single variable groundings.

Figure 5.1 shows the translation of a logic formula into its expression tree and
successively into a TensorFlow computational graph.

A similar construct to the Constraint one is the Query . It receives as input a FOL
formula, exactly like a constraint, but the compilation process is aimed at computing
only the truth value of the corresponding query, without any interaction with the
optimization process. Its use is commonly linked with the need to ask questions to
the system after the learning process has been carried out.

Optimization Problem. As deeply described in Chapter 4, the theoretical frame-
work implemented by LYRICS is aimed at designing an optimization process where
a set of task functions (which are implementing Function s and Predicate s) is opti-
mized so as to maximize the satisfaction of a collection of Constraint s.

The framework provides different ways to interact with an optimization routine:

• Get the loss connected to each constraint. Each Constraint , once compiled, returns
the value of the loss correspondent to the chosen t-norm (or generator). The
user is then allowed to exploit this loss in their own optimization process (for
example, by integrating in an existing learning process).

• Get the total constraint loss of Equation 4.6. A unique pointer to a total loss is
constantly incremented with the losses of every single added Constraint

weighted by their parameter βψ.
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• Run a default training routine. In this case, the actual constraint loss is added
to all the pointwise constraints and all the regularization constraints into a
unique objective. This objective is minimize by running a gradient descent
scheme using Adam as parameter update algorithm. Learning rate, number of
iterations and other optimization hyperparameters can be set by the user, in
order to allow their validation.

5.1.2 Implementation Details
Functions API

Our framework reveals one of this primary strength in its declarativeness. The user is
allowed to simply declare what the problem must do and it is the framework which
takes care of implementing how itwill do it. For this reason, all the algorithmic details,
concerning how functions and predicates behaves and how they are optimized, are
as hidden as possible.

To reach such degree of abstractness, the framework provides multiple pre-built
constructs that the user is allowed to exploit in solving their problem. For example,
the system provides already pre-built neural network classifiers for implementing
trainable predicates, distance functions to implement given predicates, and a gra-
dient descent optimization algorithm. All these constructs give a certain degree of
customization; for example, the number and size of layers of a neural network.

Even though in many cases the provided constructs are sufficient, it is clear that
a specific application could need some customization of these constructs.

In this document, we will show the Function API. This component of the frame-
work provides both pre-built constructs and base classes for custom implementation
and in this description we show both of them. This is important because, besides
showing how to implement a custom function or predicate, we show some already
implemented ones, allowing the user to understand the philosophy behind their
design.

It is important to remember that the framework defines two different functional
construct:

• Relation s, which are functions from domains to truth values, i.e. need to map
inputs to a value between 0 and 1;

• Function s, which are functions from domains to domain, i.e. need to map
inputs to the feature representation of an individual of a certain output domain.

When constructing both these objects, the user must provide the function at-
tribute, which refers to the Function object which implements that relation or that
function.
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In this document we will show how the Function API is implemented and how
the user can use it to define its own functions.

As a final remark, it is important to remember that this is the component of the
framework which mostly depend on Tensorflow. Thus a deep understanding of this
module requires some knowledge of Tensorflow, especially its low level API.

The Function class The base class of this module is the abstract class Function ,
which is implemented as follows.

class Function(object):
__metaclass__ = abc.ABCMeta

@abc.abstractmethod

def __call__(self, *a):

raise NotImplementedError()

This class exploits the abc module to be defined as abstract as in the OOmeaning
of the term, i.e. it defines at least one not implemented method (abstract method).
Any object extending this class, must define a method __call__ which represents
the execution of this function on its inputs. This is a very natural definition of what
a object representing a function would behave.

The reader is invited to look carefully at the fact that the method __call__ of this
class is not a generic one, but it is exactly the internal method __call__ of the Python
superclass object . This leads to a very nice feature of the Function API. Indeed,
Python internally translate each function (as defined by the def operator) into a
callable object (i.e. an object with an implemented __call__ method). This means
that every Python function, which uses only Tensorflow code, is a valid Function of
our framework. Moreover, this also includes functions defined by means of lambda

expressions.
For the sake of completeness, let us provide three examples on how to define

functions in the framework. In particular, let us see how to implement a simple
function adding two inputs.

• Class Definition

class Add(Function):

def __call__(self, a ,b):

return tf.add(a,b)

add = Add()
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• Function Definition
def add_f(a ,b):

return tf.add(a,b)

add = add_f

• Lambda Expression
add = lambda a,b: tf.add(a,b)

From a Python point of view, all three methods make add a callable object and,
since only Tensorflow code is exploited, they are all valid ways of defining Functions
in the framework.

Here, some examples on how to define FOL Relation and Function in the
framework are provided, supposing the previous definition of a Domain ’Numbers’

representing real numbers.
Function(label=’add’,

domains=(’Numbers’, ’Numbers’),

function = Add())

Relation(label=’equal’,

domains=(’Numbers’, ’Numbers’),

function = lambda a,b: tf.cast(tf.equal(a,b), tf.float32))

About inputs to function When compiling formulas, the system will take care
of calling the functions defined above on their inputs. However, it is extremely
important, for users willing to design a new function, to know how inputs are shaped
and passed to the function by the system.

It is really simple and it is based on some simple rules:

1. The system works with linearized inputs (as seen when Domains are described).
This means that when providing data to the system the user is asked to provide
them shaped as matrices with rows ranging over samples and columns ranging
over features.

2. The system provides linearized inputs to functions. From the point above, the sys-
tem will also call functions on linearized inputs. So each input to the function
has to be thought as a a matrix with rows ranging over samples and columns
ranging over features. The user pays attention that even with domains con-
stituted by a unique feature the corresponding tensor will also have 2-sized
shape [M, 1] (i.e. it will be shaped as a matrix).
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3. The system takes care of performing the cartesian product for n-ary functions, with
n > 1. For n-ary functions, the system computes the cartesian product in
advance and provides inputs already tupled. This extremely simplifies the task
of the user which can then write the logic of the function on a per-row basis.

Let’s provide an example. Consider the following function:
def isClose(a,b):

sqd = tf.squared_difference(a,b)

return tf.cast(tf.reduce_sum(sqd, axis=1)<0.5, tf.float32)

which is used to implement a relation which checks if two vectors x and y are close
according to a squared euclidean distance. Then, consider the following program:
Domain(label=’Points’, data=X) # with X.shape = [M,N]

Relation(label=’A’, domains=(’Points’), function=someOtherFunction)

Relation(label=’isClose’,

domains=(’Points’, ’Points’),

function=isClose)

Constraint(’forall x: forall y: isClose(x,y) -> A(x) <-> A(y))’)

The question we want to answer here is: when ’isClose(x,y)’ is compiled,
which inputs a and b will the Function isClose be called on?

The answer is that both a and b will be two tensors of shape [M × M, N],
obtained by repeating M times the rows of their domain tensor X according to
the cartesian product order. This is induced by the fact that variables are always
quantified, then all pairs need to be evaluated. This is illustrated in Figure 5.2

Thus, as the reader can observe, the function isClose can be defined on a per-
row basis (i.e. axis=1 ) and this leads to very natural code for the functions. The
user can avoid to take care of details which regard mostly the tensorial nature of the
implementation.

x1
x2
x3

x1
x1
x1
x2
x2
x2
x3
x3
x3

X

isClose(a,b)

x1
x2
x3
x1
x2
x3
x1
x2
x3

Figure 5.2: A picture illustrating how inputs get reshaped before being provided to
the system
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Learners and Regularized Learners The framework main construct Constraint ,
which guides both learning and inference, is paired with other two more specific
constructs: PointwiseConstraint and RegularizationConstraint . These constructs
are a shortcut to provide to the system faster ways to learn functions exploiting
well-know deep learning loss functions without the need to explicity define them
but simply using the tools provided by TensorFlow. We recall their syntax.

• PointwiseConstraint:

PointwiseConstraint(function=f, inputs=X, labels=y)

where f is a special function, called Learner, which we will describe shortly,
and X and y are tensors pairing inputs to their labels.

• RegularizationConstraint:

RegularizaionConstraint(function=f)

where f is a special function, called RegularizedFunction.

As we pointed out, in order to enable the use of these special constructs, the f

function to learn must belong to two special subclasses of Function , Learner and
RegularizedFunction , for PointwiseConstraint and RegularizationConstraint respec-
tively.

• Learner. A Learner is a abstract subclass of Function . As so, any instance of
this class must declare a __call__ method. Moreover, they must implement
another method cost with the following signature:

def cost(self, labels, *inputs)

A PointwiseConstraint acts by calling the cost method of its function at-
tribute on its inputs and labels attributes.

• RegularizedFunction. A RegularizedFunction is a abstract subclass of Function .
As so, any instance of this class must declare a __call__ method. Moreover,
they must implement another method
regularization_cost with the following signature:

def regularization_cost(self)

A RegularizationConstraint acts by calling the regularization_cost method
of its function attribute. This method does not operate on any input, but only
on the internal behaviour of the function (e.g. on its parameters by constraining
their norm)
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Indexing Functions In using the framework, it is common to define a Domain of
individuals which do not have a feature representation. For example, this happens
when we want to describe relational data, where individuals are simple identifiers
and we know only some relationships among them.

Also in these cases the user would like to express the knowledge about these
individuals and, therefore, it would like to define Relation s on them. How to
handle this? The theoretical answer has to be found in statistical relational learning
frameworks which exploit logic to define relationships (e.g. Markov Logic Network
(MLN), Probabilistic Soft Logic (PSL), etc.). The implementation answer is, instead,
the Indexing Function pattern.

In frameworks like MLN and PSL, it is clear that the atomic pieces of knowledge
to reason about are ground atoms, i.e. relations with a specific tuple of constants as
arguments (no variables). Then, each ground atom is attached to its truth values if it
is known or to a trainable variable if it is unknown. Indexing functions simply collect
all the truth values (known or variable) of a specific relation in a big tensor and,
when called, they return only the values corresponding to the provided inputs. Their
are a wrapper for a tensorial indexing function which allows the parallel retrivial of
several variables given tensorial indices as inputs.

The signature of an indexing function can be described by this snippet:

class IndexingFunction(Function):

def __init__(self, tensor):

pass

def __call__(self, *idx):

pass

The only attribute of this class is likely to be the tensor which contains all the truth
values for the relation and it is passed in the constructor. The __call__ method
uses tensorial indexing operations (like tf.gather or tf.gather_nd ) to return only
those truth values corresponding to input indices. The user must assure that in-
puts are integers (since the standard fixed data type of all the framework is float).
Relations using indexing functions usually are defined on RangeDomain s or with
features=False attribute (see the documentation about Domain and Relation to
see how they construct integer tensors for indexing use.)

In the following, we will show some examples of IndexingFunction with their
use in simple programs.

Binary Indexing Function with internal Variable. This binary indexing function
is exploited when the relation is completely unknown and, thus, all its groundings
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are mapped to trainable variables. Note the use of the sigmoid as thresholding
function, to ensure the [0, 1] range. The variables are alla initialized to a value of −4,
which corresponds nearly to a 0 value for the sigmoid (i.e. we are assuming a closed
world for this relation).

class BinaryIndexFunction(Function):

def __init__(self, name, size_x=None,size_y=None):

super(BinaryIndexFunction, self).__init__()

self.var = tf.get_variable(name, initializer= -4 * tf.ones([size_x,size_y

]))

def __call__(self, idx1, idx0):

idx0 = tf.cast(idx0, tf.int64)

idx1 = tf.cast(idx1, tf.int64)

idx = tf.concat((idx1, idx0), axis=1)

res = tf.gather_nd(params=self.var, indices=idx)

return tf.sigmoid(res)

An example of a program using this function is shown. Here, we have the domain
of People. There exists two relations.

Domain(’People’)

Individual(’Marco’, (’People’))

Individual(’Giuseppe’, (’People’))

Individual(’Francesco’, (’People’))

fo = BinaryIndexFunction(name=’fo’,size_x=n_people,sixe_y=n_people)

gfo = BinaryIndexFunction(name=’gfo’,size_x=n_people,sixe_y=n_people)

Relation(’fatherOf’, (’People’, ’People’), fo, features=False)

Relation(’grandFatherOf’, (’People’, ’People’), gfo, features=False)

Constraint(’fatherOf(Marco,Giuseppe)’)

Constraint(’fatherOf(Giuseppe,Francesco)’)

Constraint(’forall x: forall y: forall z:

fatherOf(x,y) and fatherOf(y,z) -> grandFatherOf(x,z)’)

Static Binary Indexing Function (with external Variable). This static binary in-
dexing function is exploited when the tensor containing the truth values for every
grounding is defined outside. This is the case when for example some values are
known (and thus do not need to be optimized, are constant) while others are un-
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known (need to be optimized, are variables). This allows the concatenation of the
known values with the unknown variables outside the code.

class StaticBinaryIndexFunction(Function):

def __init__(self, var):

super(StaticBinaryIndexFunction, self).__init__()

self.var = var

def __call__(self, idx1, idx0):

idx0 = tf.cast(idx0, tf.int64)

idx1 = tf.cast(idx1, tf.int64)

idx = tf.concat((idx1, idx0), axis=1)

res = tf.gather_nd(params=self.var, indices=idx)

return res

Here the same example as before, even though this time fatherOf is completely
known in advance and its values are passed from outside. In this case ’fatherOf’

will not be optimized but will be a given label-only predicate.

Domain(’People’)

Individual(’Marco’, (’People’)) # id:0

Individual(’Giuseppe’, (’People’)) # id:1

Individual(’Francesco’, (’People’)) # id:2

fatherOf_np = np.zeros([3,3])

fatherOf_np[0,1] = 1 # fatherOf(Marco,Giuseppe)

fatherOf_np[1,2] = 1 # fatherOf(Giuseppe,Francesco)

fo = StaticBinaryIndexFunction(var=fatherOf_np)

gfo = BinaryIndexFunction(name=’gfo’,size_x=n_people,sixe_y=n_people)

Relation(’fatherOf’, (’People’, ’People’), fo, features=False)

Relation(’grandFatherOf’, (’People’, ’People’), gfo, features=False)

Constraint(’forall x: forall y: forall z:

fatherOf(x,y) and fatherOf(y,z) -> grandFatherOf(x,z)’)

Equality Functions

• DifferentiableUsed to train functions or features on the basis of some similarities

class L2SimilarityFunction(Function):
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def __call__(self, x, y):

return 1 - tf.tanh(tf.reduce_sum(tf.squared_difference(x,y),axis

=1))

• Not Differentiable Usually used to compare labels of individuals.

class NotDifferentiableEqual():

def __call__(self, a, b):

return tf.cast(tf.equal(a,b), tf.float32)

TensorFlow Learners: FeedForward Neural Network Classifier Here we can see
how to incorporate an entire TensorFlow model as a Learner.

class FFNClassifier(Learner):

def __init__(self, name, input_size, n_classes, hidden_layers = (10,)):

super(FFNClassifier, self).__init__()

self.name = name

self.output_size = n_classes

self.hidden_layers = hidden_layers

self.input_size = input_size

self._reuse = False

def _internal_(self,x):

with tf.variable_scope(self.name, reuse = self._reuse):

for hidden_size in self.hidden_layers:

x = tf.layers.dense(x, hidden_size, activation=tf.nn.sigmoid)

x = tf.layers.dense(x, self.output_size)

activation = tf.nn.softmax if self.output_size > 1 else tf.sigmoid

y = activation(x)

return y,x

def __call__(self,x):

x = tf.reshape(x, [-1, self.input_size])

y,logits = self._internal_(x)

self._reuse = True

return y

def cost(self, labels, input):

y, logits = self._internal_(input)



100 CHAPTER 5. LYRICS

if self.output_size > 1:

loss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=

labels)

else:

loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=

labels)

return tf.reduce_mean(loss)

5.2 Learning and Reasoning with LYRICS
This section presents a list of examples illustrating the range of learning tasks that
can be expressed in the proposed framework. In particular, it is shown how it is
possible to force label coherence in semi-supervised or transductive learning tasks,
how to implement collective classification over the test set and how to perform
model checking. Moreover, we applied the proposed framework to two standard
benchmarks: document classification in citation networks and term chunking in
natural language text. The examples are presented using LYRICS syntax directly to
show that the final implementation of a problem fairly retraces its abstract definition.

5.2.1 Semi-Supervised Learning

In this task we assume to have available a set of 420 points distributed along an
outer and inner circle. The inner and outer points belong and do not belong to some
given class A, respectively. A random selection of 20 points is supervised (either
positively or negatively), as shown in Figure 5.3a. The remaining points are split
into 200 unsupervised training points, shown in Figure 5.3b and 200 points left as
test set. A neural network is assumed to have been created in TF to approximate the
predicate A.

The network can be trained by making it fit the supervised data. So, given the
vector of data X, a neural network NN_A and the vector of supervised data X_s, with
the vector of associated labels y_s, the supervised training of the network can be
expressed by the following:

# Definition of the data points domain.

Domain(label="Points", data=X)

# Approximating the predicate A via a NN.

Predicate("A", ("Points"), NN_A)

# Fit the supervisions

PointwiseConstraint(A, y_s, X_s)
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Figure 5.3: Semi-supervised Learning: (a) data that is provided with a positive and
negative supervision for class A; (b) the unsupervised data provided to the learner;
(c) class assignments using only the supervised examples; (d) class assignments
using learning from examples and constraints.

Let’s now assume that we want to express manifold regularization for the learned
function: e.g. points that are close should be similarly classified. This can be ex-
pressed as:

# Predicate stating whether 2 patterns are close.

Predicate("Close", ("Points","Points"), f_close)

# Manifold regularization constraint.

Constraint("forall p:forall q: Close(p,q)->(A(p)<->A(q))")

where f_close is a given function determining if two patterns are close. The training
is then re-executed starting from the same initial conditions as in the supervised-only
case.

Figure 5.3c shows the class assignments of the patterns in the test set, when using
only classical learning from supervised examples. Finally, Figure 5.3d presents the
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assignments when learning from examples and constraints.

5.2.2 Collective Classification

Collective classification (Sen et al., 2008) performs the class assignments exploiting
any known correlation among the test patterns. This paragraph shows how to exploit
these correlations in LYRICS. Here, we assume that the patterns are represented as
R2 datapoints. The classification task is a multi-label problem where the patterns
belongs to three classes A, B, C. In particular, the class assignments are defined by
the following membership regions: A = [−2, 1]× [−2, 2],B = [−1, 2]× [−2, 2],C =

[−1, 1]× [−2, 2]. These regions correspond to three overlapping rectangles as shown
in Figure 5.4a. The examples are partially labeled and drawn from a uniform distri-
bution on both the positive and negative regions for all the classes.

In a first stage, the classifiers for the three classes are trained in a supervised
fashion using a two-layer neural network taking four positive and four negative
examples for each class. This is implemented via the following declaration:

Domain(label="Points", data=X)

Predicate(label="A",domains=("Points"),NN_A)

Predicate(label="B",domains=("Points"),NN_B)

Predicate(label="C",domains=("Points"),NN_C)

PointwiseConstraint(NN_A, y_A, X_A)

PointwiseConstraint(NN_B, y_B, X_B)

PointwiseConstraint(NN_C, y_C, X_C)

The test set is composed by 256 random points and the assignments performed
by the classifiers after the training are reported in Figure 5.4b. In a second stage,
it is assumed that it is available some prior knowledge about the task at hand. In
particular, any pattern must belongs to (at least) one of the classes A or B. Further-
more, it is known that class C is defined as the intersection of A and B. The collective
classification step is performed by seeking the class assignments that are close to the
initial classifier predictions but also respect the logical constraints on the test set:

Constraint("forall x: A(x) or B(x)")

Constraint("forall x:(A(x) and B(x)) <->

C(x)")

# Minimize the distance from prior values

PointwiseConstraint(A, priorsA, X_test)

PointwiseConstraint(B, priorsB, X_test)

PointwiseConstraint(C, priorsC, X_test)
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Figure 5.4: Collective classification: (a) classes assignments; (b) the predictions
after the supervised step; (c) the predictions with collective classification and rules
satisfaction (best viewed in colors).

where X_test the set of test datapoints and the outputs priorsA, priorsB, priorsC of
the classifiers act as prior for the final assignments. As we can see from Fig.5.4c, the
collective step fixes some wrong predictions.

5.2.3 Model checking
In this example, we show how the framework can be used to performmodel checking.
Let us consider a simple multi-label classification task where the patterns belong to
two classes A and B, and B is contained in A. This case models a simple hierarchical
classification task. In particular, the classes are defined by the following membership
regions: A = [−2, 2]× [−2, 2], B = [−1, 1]× [−1, 1]. A set of points X is drawn
from a uniform distribution in the [−3, 3]× [−3, 3] region. Two neural network
classifiers are trained to classify the points using the vectors of supervisions yA and
yB for the predicates A and B, respectively:

Domain(label="Points", data=X)

Predicate(label="A", domains=("Points"),NN_A)

Predicate(label="B", domains=("Points"),NN_B)

PointwiseConstraint(NN_A, y_A, X)

PointwiseConstraint(NN_B, y_B, X)

It could be interesting to check if some given rule has been learned by the classifiers.
To this hand, LYRICS allows to mark a set of constraints as test only, in order to
performmodel checking. In this case, constraints are only used to compute the degree
of satisfaction of the corresponding FOL formulas over the data. For example, we
checked the degree of satistaction of all possible formulas inDisjunctiveNormal Form
(DNF) that are universally quantified with a single variable. Only the constraint:

Constraint("forall x: (not A(x) and not B(x)) or (A(x) and not B(x)) or (A

(x) and B(x))")
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has a high truth degree (0.9997). As one could expect, the only fully-satisfied con-
straint (translated from DNF to its minimal form) is indeed ∀xB(x) → A(x), that
states the inclusion of B in A. Model checking can be used as a fundamental step to
perform rule deduction using the Inductive Logic Programming techniques (Mug-
gleton and De Raedt, 1994).

5.2.4 Chunking

Given a sequence of words, term chunking (or shallow parsing) is a sequence tag-
ging task aiming at linking constituent parts of sentences (nouns, verbs, adjectives,
etc.) into phrases that form a single semantic unit. Following the seminal work
by Collobert et al. (Collobert et al., 2011), many papers have applied deep neural
networks to text chunking. Here, the deep learner is used to learn from examples as
in classical supervised learning. Then we perform collective classification to fix some
misclassification made by the network, according to certain logical rules expressing
available prior knowledge.

We used the CoNLL 2000 shared task dataset (Tjong Kim Sang and Buchholz,
2000) to test the proposed methodology. The dataset contains 8936 training and 893
test English sentences. The task uses 12 different chunk types, which correspond to
22 chunk labels when considering the position modifiers. In particular, some labels
have a B and I modifier to indicate for beginning and intermediate position in the
chunk, respectively. For example, BVP indicates the start of a verbal phrase and IVP
an intermediate term of the verbal phrase. The final performance is measured in
terms of F1-score, computed by the public available script provided by the shared
task organizers.

We selected the classifier proposed by Huang et al. (Huang et al., 2015) as our
baseline, which is one of the best performers on this task. We used a variable portion
of training phrases from the training set, ranging from 5% to 100%, to train the clas-
sifier, reusing the same parameters reported by the authors. The trained networks
have then been applied on the test set providing an output score for each label for
each term. It is well known that the output of the trained networks may not respect
the semantic consistencies of the labels. For example, an intermediate token for a
label must follow either a begin or intermediate one for the same label. For exam-
ple, ∀ x ∀ t BNP(x, t)⇒ ¬IVP(x, t + 1) ∧ ¬IPP(x, t + 1) ∧ ¬IADVP(x, t + 1) ∧ . . .
expresses that if the t-th token ismarked as the begin of a nominal phrase BNP the fol-
lowing token can not be an intermediate verbal IVP, intermediate prepositional IPP
or intermediate adverbial IADVP phrase. A small sample of the constraints stating
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% data in training set
5 10 30 50 100

F1 NN 87.39 89.55 92.15 93.31 94.18
LYRICS 87.75 89.78 92.26 93.53 94.27

F1(rare tags) NN 56.24 60.84 75.19 76.74 79.42
LYRICS 57.65 61.36 75.68 77.45 79.71

Table 5.1: CoNLL2000 evaluation script on all the classes and on the less common
pos tags that have an initial lower performance.

the output consistency can be expressed in FOL using the following statements:

∀ x ∀ t BNP(x, t)⇒ ¬IVP(x, t + 1) ∧ ¬IPP(x, t + 1) ∧ ¬IADVP(x, t + 1) ∧ . . .
∀ x ∀ t BVP(x, t)⇒ ¬INP(x, t + 1) ∧ ¬IPP(x, t + 1) ∧ ¬IADVP(x, t + 1) ∧ . . .
∀ x ∀ t BPP(x, t)⇒ ¬IVP(x, t + 1) ∧ ¬INP(x, t + 1) ∧ ¬IADVP(x, t + 1) ∧ . . .
∀ x ∀ t INP(x, t)⇒ [¬IVP(x, t + 1) ∧ ¬IPP(x, t + 1) ∧ ¬IADVP(x, t + 1) ∧ . . .
∀ x ∀ t IVP(x, t)⇒ [¬INP(x, t + 1) ∧ ¬IPP(x, t + 1) ∧ ¬IADVP(x, t + 1) ∧ . . .
∀ x ∀ t IPP(x, t)⇒ [¬IVP(x, t + 1) ∧ ¬INP(x, t + 1) ∧ ¬IADVP(x, t + 1) ∧ . . .
∀ x ∀ t INP(x, t + 1)⇒ BNP(x, t) ∨ INP(x, t)
∀ x ∀ t IVP(x, t + 1)⇒ BVP(x, t) ∨ IVP(x, t)
∀ x ∀ t IPP(x, t + 1)⇒ BPP(x, t) ∨ IPP(x, t)
. . .

where P(x, t) indicates the output of the network associated to label P for the phrase
x and the t-th term in the phrase.

In order to evaluate the proposed methodology, collective classification is per-
formed to assign the labels in order to minimize the distance from the network
outputs, acting as priors, while maximizing the verification of the constraints built
from the previously reported rules. Table 5.1 reports the F1 results for the different
percentages of supervised phrases used to train the network. The results have been
evaluated both on all classes, and then zooming in for some of the rare classes that
are often wrongly classified. The effect of the rules is overall mildly positive as most
of the tags can be correctly predicted by the supervised examples. However, the
effect of the knowledge is more clear when zooming in to see the effect on the some
of the less common tags (ADJ, ADV, PRT, SBAR): since not enough examples are
observed for these tags, the extra knowledge allows to improve their classification.
Since these tags are relatively rare the overall effect on the metrics is not large on
this dataset, but it is a very promising start to allow the application of pos tagging to
challenging domains.
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5.2.5 Document Classification on the Citeseer dataset
This section applies the proposed framework to a standard ML dataset. The CiteSeer
dataset2 (Lu and Getoor, 2003) consists of 3312 scientific papers, each one assigned
to one of 6 classes: Agents, AI, DB, ML and HCI. The papers are not independent as
they are connected by a citation network with 4732 links. Each paper in the dataset is
described via its bag-of-word representation, which is a vector having the same size
of the vocabulary with the i-th element having a value equal to 1 or 0, depending on
whether the i-th word in the vocabulary is present or not present in the document,
respectively. The dictionary consists of 3703 unique words. This learning task is
expressed as:

Domain(label="Papers", data=X)

Predicate("Agents",("Papers"), Slice(NN, 0))

Predicate("AI",("Papers"), Slice(NN, 1))

Predicate("DB",("Papers"), Slice(NN, 2))

Predicate("IR",("Papers"), Slice(NN, 3))

Predicate("ML",("Papers"), Slice(NN, 4))

Predicate("HCI",("Papers"), Slice(NN, 5))

where the first line defines the domain of scientific articles to classify, and one
predicate for each class is defined and bound to an output of a neural network NN,
which features a softmax activation function on the output layer.

The domain knowledge that if a paper cites another one, they are likely to share
the same topic, is expressed as:

Predicate("Cite",("Papers","Papers"),f_cite)

Constraint("forall x: forall y: Agent(x) and Cite(x, y) -> Agent(y)")

Constraint("forall x: forall y: AI(x) and Cite(x, y) -> AI(y)")

Constraint("forall x: forall y: DB(x) and Cite(x, y) -> DB(y)")

Constraint("forall x: forall y: IR(x) and Cite(x, y) -> IR(y)")

Constraint("forall x: forall y: ML(x) and Cite(x, y) -> ML(y)")

Constraint("forall x: forall y: HCI(x) and Cite(x, y) -> HCI(y)")

where f_cite is a given function determining whether a pattern cites another one.
Finally, the supervision on a variable size training set can be provided by means of:

PointwiseConstraint(NN, y_s, X_s)

where X_s is a subset of the domain of papers where we enforce supervisions y_s.
Table 5.2 reports the accuracy obtained by a neural network with one hidden

layer (200 hidden neurons) trained in a supervised fashion and by training the same
network from supervision and logic knowledge in LYRICS, varying the amount of

2https://linqs.soe.ucsc.edu/data

https://linqs.soe.ucsc.edu/data
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% data in training set
10 30 50 70 90

NN 60.08 68.61 69.81 71.93 72.59
LYRICS 67.39 72.96 75.97 76.86 78.03

Table 5.2: Citeseer dataset: comparison of the 10-fold average accuracy obtained by
supervised training of a neural network (NN), and by learning the same NN from
supervision and logic knowledge in LYRICS for a variable percentage of training
data. Bold values indicate statistically significant improvements.

Method Accuracy
Naive Bayes 74.87
ICA Naive Bayes 76.83
GS Naive Bayes 76.80
Logistic Regression 73.21
ICA Logistic Regression 77.32
GS Logistic Regression 76.99
Loopy Belief Propagation 77.59
Mean Field 77.32
NN 72.59
LYRICS 78.03

Table 5.3: Citeseer dataset: comparison of the 10-fold average accuracy obtained by
content based and network based classifiers and by learning from supervision and
logic knowledge in LYRICS.

available training data and averaged over 10 random splits of the training and test
data. The improvements over the baseline are statistically significant for all the tested
configurations. Table 5.3 compares the neural network classifiers against other two
content-based classifiers, namely logistic regression (LR) and Naive Bayes (NB), and
against collective classification approaches using network data: Iterative Classifi-
cation Algorithm (ICA) (Neville and Jensen, 2000) and Gibbs Sampling (GS) (Lu
and Getoor, 2003) both applied on top of the output of LR and NB content-based
classifiers. Furthermore, the results against the two top performers on this task:
Loopy Belief Propagation (LBP) (Sen et al., 2008) and Relaxation Labeling through
Mean-Field Approach (MF) (Sen et al., 2008) are reported. The accuracy values are
obtained as average over 10-folds created by random splits of size 90% and 10% of
the overall data for the train and test sets, respectively. Unlike the other network
based approaches that only be run at test-time (collective classification), LYRICS can
distill the knowledge in the weights of the neural network. The accuracy results are
the highest among all the tested methodologies in spite that the underlying neural
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network classifier trained only via the supervisions did perform slightly worse than
the other content-based competitors.

5.3 Investigating generated t-norms
The experimental results have been carried out using the Deep Fuzzy Logic (DFL)
software framework3, which is an extension of LYRICS with generated t-norms. The
formulas are compiled into a learning task using the theory of generators described
in the previous Chapter. In the following of the section, it is assumed that each FOL
constant corresponds to a tensor storing its feature representation.

5.3.1 The learning task
The CiteSeer dataset (Fakhraei et al., 2015) consists of 3312 scientific papers, each one
assigned to one of 6 classes: Agents, AI, DB, IR, ML and HCI. The papers are not
independent as they are connected by a citation network with 4732 links. This dataset
defines a relational learning benchmark, where it is assumed that the representation
of an input document is not sufficient for its classification without exploiting the cita-
tion network. The citation network is typically employed by assuming that two papers
connected by a citation belong to the same category. This knowledge can be expressed
by providing a general rule of the form: ∀x ∀y cite(x, y)⇒

(
p(x) ⇐⇒ p(y)

)
where

cite is a binary predicate encoding the fact that x is citing y and p is a task function
implementing the membership function of one of the six considered categories. This
logical formula expresses a general concept called manifold regularization, which
often emerges in relational learning tasks. Indeed, by linking the prediction of two
distinct documents, the behaviour of the underlying task functions is regularized
enforcing smooth transition over the manifold induced by the cite relation.

Each paper is represented via its bag-of-words, which is a vector having the
same size of the vocabulary with the i-th element having a value equal to 1 or 0,
depending on whether the i-th word in the vocabulary is present or not present in
the document, respectively. The dictionary consists of 3703 unique words. The set
of input document representations is indicated as X, which is split into a training
and test set Xtr and Xte, respectively. The percentage of documents in the two
splits is varied across the different experiments. The six task functions pi with
i ∈ {Agents, AI, DB, IR, ML, HCI} are bound to the six outputs of a Multi-Layer-
Perceptron (MLP) implemented in TF. The neural architecture has 3 hidden layers,
with 100 ReLU units each, and softmax activation on the output. Therefore, the task
functions share the weights of the hidden layers in such a way that all of them can
exploit a common hidden representation. The cite predicate is a given (fully known

3http://sailab.diism.unisi.it/deep-logic-framework/

 http://sailab.diism.unisi.it/deep-logic-framework/
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Figure 5.5: Learning Dynamics in terms of test accuracy on a supervised task when
choosing different t-norms generated by the parameterized SS and Frank families.
(5.5a) and (5.5b) are learning processes optimized with Vanilla Gradient Descent,
while (5.5c) and (5.5d) are learning processes optimizedwithAdamGradientDescent.

a prior) function, which outputs 1 if the document passed as first argument cites the
document passed as second argument, otherwise it outputs 0. Furthermore, a given
function Pi is defined for each pi, such that it outputs 1 iff x is a positive example for
the category i (i.e. it belongs to that category). A manifold regularization learning
problem can be defined in DFL by providing, ∀i ∈ {Agents, AI, DB, IR, ML, HCI},
the following two rules:

∀x ∀y cite(x, y) ⇐⇒
(

pi(x)⇒ pi(y)
)

(5.1)
∀x Pi(x)⇒ pi(x) (5.2)

where only positive supervisions have been provided because the trained networks
for this task employ a softmax activation function on the output layer, which has
the effect of imposing mutually exclusivity among the task functions, reinforcing
the positive class and discouraging all the others. While this behaviour could have
been trivially expressed using logic, this network architecture provides a principled
baseline to compare against and it was therefore used across all the experiments for
this dataset.

DLF allows the users to specify theweights of formulas, which are treated as hyper-
parameters. Since we use at most 2 constraints per predicate, the β weight of the con-
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straint expressing the fitting of the supervisions (Equation 5.2) is set to a fixed value
equal to 1, while the weight of the manifold regularization rule expressed by Equa-
tion 5.1 is cross-validated from the grid of values {0.1, 0.01, 0.006, 0.003, 0.001, 0.0001}.

5.3.2 Results
Convergence rate

this experimental setup aims at verifying the relation between the choice of the
generator and speed of convergence of the training process. In particular, a simple
supervised learning setup is assumed for this experiment, where the leaning task is
defined by Equation 5.2 by simply enforcing the fitting of the supervised examples.
The training and test sets are composed of 90% and 10% of the total number of
papers, respectively. Two parametric families of t-norms have been considered: the
SS family (Definition 4.6) and the Frank family (Definition 4.7). Their parameter λ

was varied to construct classical t-norms for some special values of the parameter
but also to evaluate some intermediate ones. In order to keep a clear intuition behind
the results, optimization was initially carried out using simple Gradient Descent
with a fixed learning rate equal to η = 10−5. Results are shown in Figures (5.5a)
and (5.5b): it is evident that strict t-norms tend to learn faster than nilpotent ones
by penalizing more strongly highly unsatisfied ground formulas. This difference is
still remarkably present, although slightly reduced, by exploiting the state-of-the-
art dynamic learning rate optimization algorithm Adam (Kingma and Ba, 2014) as
shown in Figures 5.5c and 5.5d. This finding is consistent with the empirically well
known fact that the cross-entropy loss performs well in supervised learning tasks
for deep architectures, because it is effective in avoiding gradient vanishing in deep
architectures. The cross-entropy loss corresponds to a strict generator with λ = 0
and λ = 1 in the SS and Frank families, respectively. This selection corresponds to a
fast and stable converging solution when paired with Adam, while there are faster
converging solutions when using a fixed learning rate.

Classification accuracy

the effect of the selection of the generator on classification accuracy is tested on a
classification task with manifold regularization in the transductive setting, where all
the data is available at training time, even if only the training set supervisions are
used during learning. In particular, the data is split into different datasets, where
{10%, 25%, 50%, 75%, 90%} of the available data is used a test set, while the remain-
ing data forms the training data. During training, the fitting of the supervised data
defined by Equation 5.2 can be applied only for the training data, while manifold
regularization (Equation 5.1) can be enforced on all the available data. In this ex-
periment, the Adam optimizer and the SS family of parametric t-norms have been
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% Test λ
Supervised Manifold

Avg Accuracy Stddev Avg Accuracy Stddev

10%

-1.5 72.44 0.8 79.07 1.07
-1.0 72.26 0.96 79.37 0.68
0.0 71.63 0.74 79.37 0.84
1.0 71.57 0.88 78.58 0.69
1.5 71.93 1.11 77.77 0.89

25%

-1.5 72.22 0.46 77.17 0.70
-1.0 72.02 0.52 77.51 0.72
0.0 71.35 0.56 77.39 0.50
1.0 71.22 0.47 77.36 0.64
1.5 71.51 0.77 76.41 0.57

50%

-1.5 70.94 0.56 75.52 0.46
-1.0 70.98 0.51 76.16 0.32
0.0 70.49 0.52 75.71 0.39
1.0 70.07 1.71 76.39 0.46
1.5 70.09 0.47 75.97 0.55

75%

-1.5 67.06 0.58 72.25 0.50
-1.0 66.96 0.44 72.48 0.50
0.0 67.02 0.54 72.73 0.61
1.0 66.34 0.29 73.77 0.34
1.5 65.93 0.64 73.37 0.37

90%

-1.5 61.09 0.78 66.02 2.51
-1.0 61.59 0.44 67.24 1.72
0.0 61.52 0.33 68.60 0.75
1.0 61.31 0.52 70.69 0.52
1.5 61.17 0.84 70.32 0.89

Table 5.4: Test accuracy of collective classification in transductive setting on the
Citeseer dataset for different percentages of available training data and different
selections of the parameter λ of the SS generator family.

employed. Table 5.4 shows the average test accuracy and its standard deviation over
10 different samples of the train/test splits. As expected, all generator selections im-
prove the final accuracy over what obtained by pure supervised learning, as manifold
regularization brings relevant information to the learner.

Table 5.4 also shows test accuracy when the parameter λ of the SS parametric
family is selected from the grid {−1.5,−1, 0, 1, 1.5}, where values of λ ≤ 0 move
across strict t-norms (with λ = 0 being the product t-norm), while values greater
than 0 move across nilpotent t-norms. (with λ = 1 being the Łukasiewicz t-norm).
Strict t-norms seem to provide slightly better performances than nilpotent ones on
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supervised task for almost all the test set splits. However, this does not hold in
learning tasks using manifold regularization and a limited number of supervisions,
where nilpotent t-norms perform better. An explanation of this behaviour can be
found in the different nature of the two constraints, i.e. the supervision constraint
of Equation 5.2 and the manifold regularization constraint of Equation 5.1. Indeed,
while supervisions provide hard constraint that need to be strongly satisfied, man-
ifold regularization is a general soft rule, which should allow exceptions. When
the number of supervision is small and manifold regularization drives the learning
process, the milder behaviour of nilpotent t-norms is better, as it more closely models
the semantics of the prior knowledge. Finally, it is worth noticing that very strict t-
norms (e.g. λ = −1.5 in the provided experiment) provide high standard deviations
compared to other t-norms, especially in the manifold regularization setup. This
shows the presence of a trade-off between the improved learning speed provided by
strict t-norms and the instability due to their extremely non-linear behaviour.

Competitive evaluation

Table 5.5 compares the accuracy of the selected neural model (NN) trained only
with supervised constraint against other two content-based classifiers, namely lo-
gistic regression (LR) and Naive Bayes (NB). These baseline classifiers have been
compared against collective classification approaches using the citation network
data: Iterative Classification Algorithm (ICA) (Neville and Jensen, 2000) and Gibbs
Sampling (GS) (Lu and Getoor, 2003) applied on top of the output of the LR and
NB content-based classifiers. Furthermore, the results are compared against the two
top performers on this task: Loopy Belief Propagation (LBP) (Sen et al., 2008) and
Relaxation Labeling through Mean-Field Approach (MF) (Sen et al., 2008). Finally,
the results of DFL built by training the same neural network with both supervision
and manifold regularization constraints, for which it was used a generator from
the SS family with λ = −1. The accuracy values are obtained as an average over
10-folds created by random splits of 90% and 10% of the data for the train and test
sets, respectively. Unlike the other relational approaches that can only be executed
at inference time (collective classification), DFL can distill the knowledge in the
weights of the neural network. The accuracy results are the highest among all the
tested methodologies in spite of the fact that the neural network trained only on the
supervisions performs slightly worse than the other content-based competitors.

5.4 Generative Learning with Logic
In the last few years the systematic adoption of deep learning to visual generation has
produced impressive results that, amongst others, definitely benefit from the massive
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Classification
Method Accuracy
Naive Bayes 74.87
ICA Naive Bayes 76.83
GS Naive Bayes 76.80
Logistic Regression 73.21
ICA Logistic Regression 77.32
GS Logistic Regression 76.99
Loopy Belief Propagation 77.59
Mean Field 77.32
NN 72.26
DFL 79.37

Table 5.5: Comparison of the accuracy on the Citeseer dataset obtained by content
based and relational classifiers against supervised and relational learning expressed
using DFL. All reported results are computed as average over 10 random splits of the
train and test data. The bold number indicates the best performer and a statistically
significant improvement over the competitors.

exploration of convolutional architectures. In this Section, we propose a general
approach to visual generation where generation is driven by logic descriptions of the
target to be generated. The process of generation is regarded as a constrained satis-
faction problem, where the constraints describe a set of properties that characterize
the target.

A special generation task is image-to-image translation, which learns to map each
image for an input domain into an image in a (possibly different) output domain.
In most real-world domains, there are no pairs of examples showing how to trans-
late an image into a corresponding one in another domain, yielding the so called
UNsupervised Image-to-image Translation (UNIT) problem. In an UNIT problem,
two independent sets of images belonging to two different domains (e.g. cats-dogs,
male-female, summer-winter, etc.) are given and the task is to translate an image
from one domain into the corresponding image in the other domain, even though
there exist no paired examples showing this mapping. Unfortunately, estimating
a joint distribution of the images in the two domains from the distributions in the
original single domains is known to have infinite possible solutions. Therefore, one
possible strategy consists in mapping pairs of corresponding images to the same
latent space using auto-encoders and then learning to reconstruct an image from
its representation in latent space. Combining auto-encoders with GANs has been
proposed in (Rosca et al., 2017; Li et al., 2017) and outstanding results on image
translation have been reported by (Zhu et al., 2017; Liu and Tuzel, 2016; Liu et al.,
2017).
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5.4.1 UNIT via logic description
This section shows how the discriminative and generative parts of an image-to-image
translation system can be formulated by merging logic and learning, yielding a more
understandable and easier to extend setup.

Let us assume to be given a set of images I . There are two components of a
translator framework. First, a set of generator functions gj : I → I , which take as
input an image representation and generate a corresponding image in the same
output domain, depending on the semantics given to the task. Second, a set of
discriminator functions di : I → [0, 1] determining whether an input image x ∈ I
belongs to class i (i.e. stating if an image has got or not a given property) and, thus,
they must be intended in a more general way than in traditional GANs. Interestingly,
all learnable FOL functions (i.e. functions mapping input elements into an output
element) can be interpreted as generator functions and all learnable FOL predicates
(i.e. functions mapping input elements into a truth value) can be interpreted as
discriminator functions.

The discriminators can be trained by providing some examples as:

∀x Si(x)⇒ di(x), i = 1, 2, . . .

where Si(x) is a given function returning true if and only if an image is a positive
example for the i-th discriminator. These constraints allow to transfer the knowledge
provided by the supervision (i.e. the Si(x)) inside the discriminators, which play a
similar role. However, di(x) functions are differentiable and can be exploited to train
the generators functions. To this end, assuming that a given function has to generate
an image with a certain property, we can force the corresponding discriminator
function for such a property to positively classify it. Therefore, assuming that the
semantic of the j-th generator is to generate images of class j, this can be typically
expressed by a rule taking the form:

∀x dj(gj(x)), j = 1, 2, . . .

In perspective, the logical formalism could provide a simple way to describe complex
behavior of generator functions by interleaving multiple positive or negative discrim-
inative atoms (i.e di(g(x))). By requiring that a given image should be classified as
realistic, the GAN framework implements a special case of these constraints, where
the required property is the similarity with real images.

Cycle consistency (Zhu et al., 2017) is also commonly employed to impose that
by translating an image from a domain to another one and then translating it back
to the first one, we should recover the input image. Cycle consistency allows to
further restrict the number of possible translations. Assuming the semantic of the
i-th generator is to generate images of class i, this can be naturally formulated as:

∀x Si(x)⇒ gi(gj(x)) = x i = 1, 2, . . . , j = 1, 2, . . .
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Clearly, in complex problems, the chain of functions intervening in these constraints
can be longer.

The images in different domains are typically required to share the same latent
space. Let us indicate e : I → Rn an encoding function mapping the image into a
latent space. This encoding function must be jointly learned during the learning
phase. In this special case, the generators must be re-defined as decoder functions
taking as input the latent representation of the images, namely: gj : Rn → I . The
auto-encoding constraints can be expressed using FOL as follows:

∀x Si(x)⇒ gi(e(x)) = x, i = 1, 2, . . .

Up to now, the described constraints are very general and they can be exploited
in almost all generative translation tasks. However, the logical formalism (and the
LYRICS environment) allows the enforcement of any complex available knowledge
about the task at hand. We will see some examples in the following experiment.

Next and Previous Digits Generation

As a toy example, we show a task in which we are asked to learn two generative
functions, next and previous, which, given an image of a 0, 1, 2 digit, will produce
an image of the next and previous digit, respectively. In order to give each image
a next and a previous digit in the chosen set, a circular mapping was used such
that 0 is the next digit of 2 and 2 is the previous digit of 0. The functions next and
previous are implemented by feedforward neural networks with 50 neurons and 1
hidden layer. Since the output of such functions are still images, the output size of
the networks is equal to the input size. A 1-hidden layer RBF with a 3-sized softmax
output layer is used to implement the zero, one and two discriminators bound to the
three outputs of the network, respectively. The RBF model, by constructing closed
decision boundaries, allows the generated images to resemble the input ones. Finally,

Figure 5.6: The first column pictures represents the input images. The second and
third column pictures show the outputs of the functions next and previous, respec-
tively, computed on the input image.
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let isZero, isOne and isTwo be three given functions, defined on the input domain,
returning 1 only if an image is a 0, 1 or 2, respectively. They play the role of the Si(x)
in the general description.

The idea behind this task is to learn generative functions without giving any
direct supervision to them, but simply requiring that the generation is consistent
with the classification performed by some jointly learned classifiers. The problem
can be described by the following constraints to learn the discriminators

∀x isZero(x)⇒ zero(x), ∀x isOne(x)⇒ one(x), ∀x isTwo(x)⇒ two(x)

and the following constraints to express that the generation functions are constrained
to return images which are correctly recognized by the discriminators.

∀x zero(x)⇒ one(next(x)) ∧ two(previous(x))
∀x one(x)⇒ two(next(x)) ∧ zero(previous(x))
∀x two(x)⇒ zero(next(x)) ∧ one(previous(x))

In addition, in order to force the generated images to be similar to at least one digit
in the domain, we enforce the following constraints:

∀x ∃y (isZero(x) ∧ isOne(y))⇒ next(x) = y
∀x ∃y (isZero(x) ∧ isTwo(y))⇒ previous(x) = y
∀x ∃y (isOne(x) ∧ isTwo(y))⇒ next(x) = y
∀x ∃y (isOne(x) ∧ isZero(y))⇒ previous(x) = y
∀x ∃y (isTwo(x) ∧ isZero(y))⇒ next(x) = y
∀x ∃y (isTwo(x) ∧ isOne(y))⇒ previous(x) = y .

Finally, the cycle consistency constraints can be expressed by:

∀x next(previous(x)) = x ∀x previous(next(x)) = x .

We test this idea by taking a set of around 15000 images of handwritten characters,
obtained extracting only the 0, 1 and 2 digits from the MNIST dataset. The above
constraints have been expressed in LYRICS and the model computational graphs
have been bound to the predicates. Figure 5.6 shows an example of image translation
using this schema, where the image on the left is an original MNIST image and the
two right images are the output of the next and previous generators.

Before proceeding, we want to dwell on the possibilities of this approach after an
example has been provided. The declarative nature of the logical formalism and its
subsequent translation into real-valued constraints, exploited as loss functions of an
optimization problem, enable the construction of very complex generative problems
by means of only an high-level semantic description. By exploiting models inherited
from the literature, a final user is allowed to face the most different problems with
the minimum implementation effort.
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Figure 5.7: Face Gender Translation: male to female. The top row shows input male
images, the bottom row shows the correspondent generated female images.

Figure 5.8: Face Gender Translation: female to male. The top row shows input
female images, the bottom row shows the correspondent generated male images.

In the following section, we show a real image-to-image translation task applying
the general setup described in this section, including auto-encoders, GANs and cycle
consistency. The declarative nature of the formulation makes very easy to add an
arbitrary number of translation problems and it allows to easily learn them jointly.

Experiments on Image Translation

UNIT translation tasks assume that there are no pairs of examples showing how to
translate an image into a corresponding one in another domain. Combining auto-
encoders with GANs is the state-of-the-art solution for tackling UNIT generation
problems (Zhu et al., 2017; Liu and Tuzel, 2016; Liu et al., 2017). In this section, we
show how this adversarial setting can be naturally described and extended by the
proposed logical and learning framework. Furthermore, we show how the logical
formulation allows a straightforward extension of this application to a greater number
of domains.

The CelebFaces Attributes dataset (Liu et al., 2015) was used to evaluate the
proposed approach, where celebrities face images are labeled with various attributes
gender, hair color, smiling, eyeglasses, etc. Images are defined as 3D pixel tensors
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with values belonging to the [0, 1] interval. The first two dimensions represent width
and height coordinates while the last dimension indexes among the RGB channels.

In particular, we used the Male attribute to divide the entire dataset into the
two input categories, namely male and female images. In the following SM(x) and
SF(x) (such that ∀x SF(x) ⇔ ¬SM(x)) are two given predicates holding true if
and only if an image x is or is not tagged with the male tag. Let e be an encoding
function mapping images into the the latent domain Z = Rn. The encoders are
implemented as multilayer convolutional neural networks with resblocks (He et al.,
2016), leaky-ReLU activation functions and instance normalization at each layer
(see (Liu et al., 2017) for a detailed description of the architecture). The generative
functions gM and gF map vectors of the domain Z into images. These functions are
implemented as multilayer transposed convolutional neural networks (also called
“deconvolutions”) with resblocks, leaky-ReLU activation functions and instance
normalization at each layer. To implement the shared latent space assumption, gM
and gF share the parameters of the first layer.

The functions dM and dF are trained to discriminate whether an image is real or
it has been generated by the gM and gF generator functions. For example, if x and y
are two images such that SM(x), SF(y) hold true, then dM(x) should return 1 while
dM(gM(e(y))) should return 0.

The architectures of the models implementing e, dM, dF, gM, gF are replicated
from some state-of-the-art models (Zhu et al., 2017; Liu and Tuzel, 2016; Liu et al.,
2017). All these papers show that the use of convolutional models in conjunction
with resblocks and instance normalization allows to obtain truly realistic and high
definition images.

The problem can be described as follows. First, we look at the logical constraints
the encoding and generation functions need to satisfy. We ask the encoder and
generator of the same domain to be circular, that is to map the input into itself, as in
the autoencoding scheme proposed by Liu et al. (Liu et al., 2017):

∀x SM(x)⇒ gM(e(x)) = x (5.3)
∀x SF(x)⇒ gF(e(x)) = x (5.4)

where the equality operator comparing two images in equations 5.3 and 5.4 is bound
to a continuous and differentiable function computing a pixel by pixel similarity
between the images, defined as 1− tanh( 1

P ∑p |xp − yp|) where xp and yp are the
p-th pixel of the x and y images and P is the total number of pixels.

Cycle consistency is also imposed as described in the previous section as:

∀x SM(x)⇒ gM(e(gF(e(x))) = x (5.5)
∀x SF(x)⇒ gF(e(gM(e(x))) = x (5.6)

where the same equality operator is used to compare the images.
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Finally, the generated images must fool the discriminators so that they will be
detected as real ones as:

∀x SM(x)⇒ dF(gF(e(x))) (5.7)
∀x SF(x)⇒ dM(gM(e(x))) (5.8)

On the other hand, the discriminators must correctly discriminate real images
from generated ones by the satisfaction of the following constraints:

∀x SM(x)⇒ dM(x) ∧ ¬dF(gF(e(x))) (5.9)
∀x SF(x)⇒ dF(x) ∧ ¬dM(gM(e(x))) (5.10)

Using logical constraints allows us to give a clean and easy formulation of the
adversarial setting. These constraints force the generation function to generate
samples that are categorized in the desired class by the discriminator. Moreover, the
decoupling between the models, used to implement the functions and which can
be inherited from the previous literature, and the description of the problem makes
really straightforward to extend or transfer this setting.

We implemented this mixed logical and learning task using LYRICS. The Product
t-norm was selected to define the underlying fuzzy logic problem. This selection
of the t-norm is particularly suited for this task because, as shown earlier, it defines
a cross-entropy loss on the output of the discriminators, which is the loss that was
used to train these models in their original setup. The e, gM, gF functions are trained
to the satisfaction of the constraints defined in Equations (5.3) to (5.8), while dM and
dF are trained to satisfy Equations (5.9) and (5.10). Weight learning for the models
was performed used the Adam optimizer with a fixed learning rate equal to 0.0001.
Some male-to-female and female-to-male translations are shown in Figures 5.7 and
5.8 respectively.

Adding Eyeglasses

Given this setting, we can integrate a third domain in the overall problem adding the
corresponding constraints for this class. Let SE(x) be a given predicate holding true
if and only if an image x is tagged with the eyeglasses tag in the dataset. Let gE(x)
be the corresponding generator and dE(x) the corresponding discriminator for this
property. The same network architectures of the previous description are employed
to implement dE and gE. The addition of this third class requires to add the following
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constraints for the generators, to be integrated with the male and female classes,

∀x SM(x)⇒ dE(gE(e(x)))

∀x SF(x)⇒ dE(gE(e(x)))

∀x SE(x)⇒ gE(e(x)) = x

∀x SM(x) ∧ SE(x)⇒ dE(gF(e(x)))

∀x SF(x) ∧ SE(x)⇒ dE(gM(e(x)))

∀x SM(x) ∧ SE(x)⇒ gE(e(gF(e(x))) = gF(e(x))

∀x SF(x) ∧ SE(x)⇒ gE(e(gM(e(x))) = gM(e(x))

∀x SM(x) ∧ ¬SE(x)⇒ gM(e(gE(e(x))) = gE(e(x))

∀x SF(x) ∧ ¬SE(x)⇒ gF(e(gE(e(x))) = gE(e(x))

and to add the following for the discriminator:

∀x SE(x)⇒ dE(x)

∀x SM(x) ∧ ¬SE(x)⇒ ¬dE(gE(e(x)))

∀x SF(x) ∧ ¬SE(x)⇒ ¬dE(gE(e(x)))

We note that in this case, the class eyeglasses is not mutually exclusive neither with
male nor female class. This is the reason why we have to consider some constraints
with a conjunction on premises. In addition, we have to distinguish how the male
and female generators behave in presence of the attribute eyeglasses. In particular we
enforce that translating a gender attribute does not affect the presence of eyeglasses.
Figure 5.9 shows some examples of the original face images, and the corresponding
generated images of the faces with added eyeglasses.

As we already said, the proposed approach is very general and can be exploited to
manage possibly several attributes in a visual generation task combining a high-level
logical description with deep neural networks. The most distinguishing property
is the flexibility of describing new generation problems by simple logic descrip-
tions, which leads to attack very different problems. Instead of looking for specific
hand-crafted cost functions, the proposed approach offers a general scheme for their
construction that arises from the t-norm theory. Moreover, the interleaving of dif-
ferent image translations tasks allows us to accumulate a knowledge base that can
dramatically facilitate the construction of new translation tasks. The experimental
results shows the flexibility of the proposed approach, which makes it possible to
deal with realistic face translation tasks.

5.5 Conclusions
This Chapter introduced and analyzed LYRICS as aMiniMax Entropymodel based on
fuzzy potentials and a functional approximation of MAP inference. We can resume
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Figure 5.9: FaceGender Translation: male/female to eyeglasses. The top row shows
input male/female images whereas the bottom row shows the correspondent gener-
ated faces with eyeglasses.

the main contribution of the chapter as follows:

• the differentiability of fuzzy potentials allows the use of variational methods
for inference;

• it proposes a more general exploitation of t-norms fuzzy theory for the descrip-
tion of the logic potentials (e.g. generated t-norms);

• it provides an actual programming framework implementing the theory;

• it shows the great expressivity of LYRICS in very different tasks;

• it shows improvements over standard neural networks when structure knowl-
edge is known (e.g. chunking)

• it shows similar results with standard statistical relational learning approaches
(LBP) stacked on top of classifiers (e.g. link prediction)

However, LYRICS still come with some limitations:

• the distribution is not trained (β must be validated);

• the propagation of information at the purely symbolic level needs to detach
the networks (i.e. collective classification)

The DLM model proposed in the following Chapter provides a solution for those
cases in which the previous limitations prevent users to apply LYRICS.





Chapter 6

Deep Logic Models

In Chapter 3, we introduced a large class of learning models based on the principle of
MiniMax Entropy. In Section 3.5, we showed as MAP inference can be exploited not
only as an inference scheme, but also as a atomic step of a larger learning algorithm.
This choice is justified in the setting of Variational EM (Neal and Hinton (1998)).

In this Chapter, we propose DLM, a class of probabilistic graphical models aiming
at bridging classical supervised learning techniques with logical reasoning. Indeed,
DLMs are MiniMax Entropy models where potentials are defined exploiting fuzzy
logic potentials (Chapter 4). MAP inference is the key ingredient to carry on the
learning process with Fuzzy potentials being the key design choice to allow an easy
and fast MAP inference step that can be carried on by simple gradient-based schemes.

6.1 Model
We indicate as θ the model parameters, with θ = {w, β}, and x the collection of input
sensory data. We indicate by y = {y1, . . . , yn} the multivariate random variables
corresponding to the ground atoms of a possible world , where n > 0 denotes the
number of ground atoms. Here, in order to be able to exploit fuzzy logic potentials,
we relax the boolean logic in the continuous case, thus y ∈ [0, 1]n.

A Deep LogicModel assumes that p(y|x, β, w) is modeled via aMiniMax Entropy
model, such that:

p(y|x, β, w) =
1
Z

exp(Φr(y, x, w) + ∑
c

βcΦc(y)) (6.1)

where Φr and Φc are two classes of potentials, whose description will be provided in
the rest of the Section. Z is the classical partition function:

Z =
∫

y′
exp(Φr(y′, x, w) + ∑

c
βcΦc(y′))dy′

123
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Figure 6.1: The DLM graphical model assumes the presence of two maximal cliques.
The first one, concerning β and y, models the behaviour of y independently from
the sensorial data x by providing multiple constraints c. The second one, concerning
w, x and y models the behaviour of y when conditioned on a particular sensorial
data x.

Before going into more details, Figure 6.1 shows the graphical dependencies
among the variables that are involved in our model. The first layer (Φr) processes
the inputs using a model with parameters w and predicts y. The second layer (Φc)
takes as input y and applies reasoning using a set of constraints, whose parameters
are indicated as β.

6.1.1 Symbolic and Sub-symbolic reasoning
Deep Logic Models are conditional MiniMax Entropy models. By conditioning
the distribution on a sensorial representation x1, we are enabling the possibility of
exploiting MiniMax Entropy models for facing neuro-symbolic integration tasks.

In DLM, the neural and the symbolic components can be easily individuated in
the two potentials exploited to design the distribution

The subsymbolic potential The sub-symbolic potential Φr(y, x, w) is the respon-
sible of the neural component, in the sense that it is expected to exploit neural
computation to process raw/sensorial data to compute statistics over the variables of
interests, i.e. y.

In principle, one can think at a very general potential taking as inputs both y
and x and to learn parameters w to provide a likelihood score to a given assignment
of y given the observed data x. This is the main role of the sub-symbolic potential.
However, this unconstrained form, though correct, could be extremely complex to
learn.

In DLM, we focus on a particular factorization of the Φr potential as:

Φr(y, x, w) = −Dist(y, f (x; w)) (6.2)

1Remember that x is a feature representation of the constants in a given world y; i.e. x = g(y).
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where f (x; w) is a generic neural network taking x as input and parametrized by the
set of parameters w. An example of Dist(x, y) is the quadratic penalty Dist(x, y) =
1
2 ||x− y||2 .

There are multiple reasons for the choice of this factorization that we show in
turn. f is designed to be defined on the input space X and to return values in fuzzy
n-dimensional simplex [0, 1]n, i.e. f : X → [0, 1]n. In other words, f (x; w) has the
same dimensionality of y. This creates a very strong link between the sub-symbolic
part and the classical learning of neural networks. Indeed, f can be thought as a
neural network trying to predict the ground atoms y by looking only at x.

Φr is the only statistics of the DLMmodel that is learned by minimum entropy
arguments, i.e. it is the only parametric potential. In other words, we are asking to
themodel to learn the neural network which predicts, given x, the y whichminimizes
the entropy, i.e. the best neural network to maximize the likelihood.

This provides us with a very powerful inference tool. Indeed, we are enabling
the system to have a double layer mechanism of inference. There is a fast inference
mechanism (encoded inside the neural network), which allows a fast prediction of the
ground atoms by simple association with the perceptual data. On top of this, there is
the inference of the complete probabilistic model, which “corrects”, i.e. improve, the
initial predictions by asking coherence with the rest of the model (encoded inside the
symbolic potentials Φc). This is an interpretation of DLM models that finds multiple
links with current theories outside the computer science community about intelligent
thinking (e.g. Kahneman (2011)).

The symbolic potentials Potentials Φc take care of the symbolic component of the
reasoning. In fact, they only depend on the variables y.

The DLM model focuses on potentials expressed on the space y by means of
first–order logic (FOL) formulas, translated into real valued function by the t-norm
theory. Instead of going into the details of this translation, which is identical to the
one described in Chapter 4, we describe how this translation can be exploited to
derive the symbolic potentials of the DLM model and which is the link with the
general potentials of a MiniMax Entropy model. In particular, we want to see which
is the general shape of a symbolic logic potential Φc which is responsible of providing
the degree of satisfaction of y given a formula c. As seen in previous Chapters, the
degree of satisfaction of a FOL formula c is obtained by:

• Grounding the formula by substituting its variables with a given assignment of the
constant. In particular, let us define with k the number of variables of c. For
any assignment A to the k variables of c with k constants, let γA,c be the subset
of ground atoms of y that are referred to the constants A and are present in c.
For example, if we have three constants C = {Giuseppe, Maria, Marco} and a
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formula c : ∀x∀z married(x, z) =⇒ sameFamily(x, z), a possible assignment is
A = {(x, Giuseppe), (z, Maria)}. Than,

γA,c = {ymarried(Giuseppe,Maria), ysameFamily(Giuseppe,Maria)}

• Computing the truth degree of single groundings. Let φc be the t-norm translation
of the formula c up to the innermost quantifier. Than, for an assignment A and
the restriction γA,c of y, we compute φc(γA,c). In the previous case, given the
Łukasiewicz t-norm, we have φc(γ) = min(1, 1− ymarried_x_z + ysameFamily_x_z)
and thus:

φc(γA,c) = min(1, 1− ymarried(Giuseppe,Maria) + ysameFamily(Giuseppe,Maria))

• Aggregating the truth degree of the formula over all groundings. Let Γc(y) the set of
all the restrictions γA,c of y for all possible assignments A to the k variables of
c. The aggregation scheme is clearly defined by the quantifiers of the formula.
Thus, the final shape of the subsymbolic potential is:

Φc(y) = AγA,c ∈ Γc(y)[φc(γA,c)]

The choice of the notation is clearly not casual but retraces the one exploited in
Chapter 3, Section 3.2.1, which the reader is invited to revise.

The link should be clear now. The number k of variables of a formula is indicating
the size of the corresponding fragment. Quantifiers suggest the aggregation method,
which clearly strongly influences the class of statistics our method evaluates. γA,c is
a special fragment which restricts y not only to a given choice of k constants but also
to those relations indicated by the formula c.

Finally, we see that the general fragmentation principle, described in Section 3.2.1,
whose ratio should be individuated in expressing global statistics as aggregation over
local statistics, finds a natural case in quantified logical formulas.

6.1.2 Inference and Learning in DLM
MAP Inference The probability distributionmodelled by aDLM ismostly designed
for decision tasks, where the user is asked to take a decision on which assignment of
y is mostly explaining the observed x. In this tasks, the primary inference method is
clearly MAP inference, which we now describe.
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MAP inference assumes that the model parameters are known and it aims at
finding the assignment maximizing p(y|x, β, w). MAP inference does not require
to compute the partition function Z which acts as a constant when the weights are
fixed. Therefore:

yM = argmax
y

log p(y|x, β, w) = argmax
y

[
Φr(y, x, w) + ∑

c
βcΦc(y)

]
. (6.3)

The above maximization problem can be optimized via gradient descent by com-
puting:

∇y log p(y|x, β, w) = ∇yΦr(y, x, w) + ∑
c

βc∇yΦc(y) .

Learning As pointed out in Chapter 3, learning is framed into a MiniMax Entropy
problem, which has a dual representation in a Maximum Likelihood problem. Thus,
training can be carried out by maximizing the likelihood of the training data.

To this end, DLM takes a more Bayesian approch, thus maximizing the complete
posterior over the parameters. Bayes theorem allows us to express this posterior as
proportional to the posterior over y and the priors of the parameters; i.e.:

p(w, β|y, x) ∝ p(y|w, β, x)p(β)p(w) . (6.4)

As pointed out in Section 3.5.4, the use of a Bayesian approach expressing priors
over parameters leads to consequences which are extremely related to expressing a
specific parsimony principle over the model (see Kaipio and Somersalo (2006) for
more details in case of Gaussian priors).

Thus the maximization of the likelihood is:

max
β,w

log p(w, β|ŷ, x) = max
β,w

log p(ŷ|w, β, x) + log p(β) + log p(w) (6.5)

In particular, assuming that p(ŷ|w, β, x) follows the MiniMax Entropy model
defined in Equation 6.1 and the parameter priors follow Gaussian distributions,
yields:

log p(w, β|ŷ, x) = −α

2
||w||2 − λ

2
||β||2 −Φr(ŷ, x, w) + ∑

c
βcΦc(ŷ)− log Z ,

where α, λ are meta-parameters determined by the variance of the selected Gaussian
distributions. Also in this case the likelihood may be maximized by gradient descent
(Section 7.2.1) using the following derivatives with respect to the model parameters:

∂ log p(θ|ŷ,X)
∂βc

= −λβc + Φc(ŷ)− Ep [Φc]

∂ log p(θ|ŷ,X)
∂wi

= −αwi +
∂Φr(ŷ,x,w)

∂wi
− Ep

[
∂Φr
∂wi

]
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Unfortunately, as any other MiniMax Entropy model, the direct computation of the
expected values in the above derivatives is not feasible. DLM can exploit the MAP
inference approximation of Section 3.3.1, since as pointed out in the previous Section
MAP inference is very fast due to the differentiability of the potentials. So, let yM be
the solution of the MAP inference problem (Equation 6.5).

The derivatives under the MAP approximation are:

∂ log p(θ|ŷ,X)
∂βc

= −λβc + Φc(ŷ)−Φc(yM)

∂ log p(θ|ŷ,X)
∂wi

= −αwi +
∂Φr(ŷ,x,w)

∂wi
− ∂Φr(yM,x,w)

∂wi

We can think the MAP approximation to operate directly on the log-likelihood,
thus maximizing an approximated objective function leading to the same derivatives.
In particular, the approximated log-likelihood log p̃(ŷ|x, β, w) is:

log p(ŷ|x, β, w) ≈ log p̃(ŷ|x, β, w) (6.6)
= Φr(ŷ, x, w)−Φr(yM, x, w) + ∑

c
βc (Φc(ŷ)−Φc(yM)) (6.7)

From the above approximation, it emerges that the likelihood tends to be maxi-
mized when the MAP solution is close to the training data, namely if Φr(ŷ, x, w) '
Φr(yM, x, w) and Φc(ŷ) ' Φc(yM) ∀c. Furthermore, the probability distribution is
more centered around the MAP solution when Φr(yM, x, w) is close to its maximum
value. We assume that Φr is negative and have zero as upper bound: Φr(y, x, w) ≤
0 ∀y, x, like it holds for example for the already mentioned negative quadratic po-
tential Φr(y, x, w) = −1

2 ||y − f (x, w)||2. Therefore, the constraint Φr(ŷ, x, w) '
Φr(yM, x, w) is transformed into the two separate constraints Φr(ŷ, x, w) ' 0 and
Φr(yM, x, w) ' 0.

Therefore, given the current MAP solution, it is possible to increase the log
likelihood by locally maximizing (one gradient computation and weight update)
of the following cost functional: log p(w) + log p(β) + Φr(ŷ, x, w) + Φr(yM, x, w) +

∑
c

βc [Φc(ŷ)−Φc(yM)]. In this Chapter, a quadratic form for the priors and the

potentials is selected, but other choices are possible. Therefore, replacing the selected
forms for the potentials and changing the sign to transform a maximization into a
minimization problem, yields the following cost function, given the current MAP
solution:

Cθ(ŷ, yM, X) =
α

2
||w||2 + β

2
||β||2 + 1

2
||ŷ− f (x, w)||2 +

+
1
2
||yM − f (x, w)||2 + ∑

c
βc [Φc(ŷ)−Φc(yM)] .
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Data: Input data X, output targets ŷ, function models with weights w
Result: Trained model parameters θ = {β, w}
Initialize i = 0, β = 0, random w;
while not converged ∧ i < max_iterations do

Compute function outputs x, w on X using current function weights w;
Compute MAP solution yM = argmaxy log p(y|x, β, w);
Compute gradient ∇θCθ(ŷ, yM, X);
Update θ via gradient descent: θi+1 = θi − βlr · ∇θCθ(ŷ, yM, X);
Set i = i + 1;

end
Algorithm 2: Iterative algorithm to train the function weights w and the constraint
weights β.

Minimizing Cθ(ŷ, yM, X) is a local approximation of the full likelihood maximiza-
tion for the current MAP solution. Therefore, the training process alternates the
computation of the MAP solution, the computation of the gradient for Cθ(ŷ, yM, X)

and one weight update step as summarized by Algorithm 2. For any constraint c, the
parameter βc admits also a negative value. This is in case the c-th constraint turns
out to be also satisfied by the actual MAP solution with respect to the satisfaction
degree on the training data.

6.2 Experimental Results

6.2.1 The PAIRS artificial dataset
Consider the following artificial task. We are providedwith 1000 pairs of handwritten
digits images sampled from the MNIST dataset. The pairs are not constructed
randomly but they are compilied according to the following structure:

1. pairs with mixed even-odd digits are not allowed;

2. the first image of a pair represents a digit randomly selected from a uniform
distribution;

3. if the first image is an even (resp. odd) digit, the second image of a pair
represents one of the five even (resp. odd) digits with probabilities p1 ≥ p2 ≥
p3 ≥ p4 ≥ p5, with p1 the probability of being an image of the same digit, p2

the probability of being an image of the next even/odd digit, and so on.

For example, if the first image of a pair is selected to be a two, the second image will
be a twowith probability p1, it will be a fourwith probability p2, a sixwith probability
p3 and so on, in a circular fashion. An example is shown in Figure 6.2. A correct
classification happens when both digit in a pair are correctly predicted.
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Figure 6.2: A sample of the data used in the PAIRS experiment, where each column
is a pair of digits.

To model a task using DLMs there are some common design choices regarding
these two features that one needs to take. We use the current example to show
them. The first choice is to individuate the constants of the problem and their sensory
representation in the perceptual space. Depending on the problem, the constants can
live in a single or multiple separate domains. In the pairs example, the images are
constants and each one is represented as a vector of pixel brightnesses like commonly
done in deep learning.

The second choice is the selection of the predicates that should predict some
characteristic over the constants and their implementation. In the pairs experiment,
the predicates are the membership functions for single digits (e.g. one(x), two(x),
etc.). A single neural network with 1 hidden layer, 10 hidden neurons and 10 outputs,
each one mapped to a predicate, was used in this toy experiment. The choice of a
small neural network is due to the fact that the goal is not to get the best possible
results, but to show how the prior knowledge can help a classifier to improve its
decision. In more complex experiments, different networks can be used for different
sets of predicates, or each use a separate network for each predicate.

Finally, the prior knowledge is selected. In the pairs dataset, where the constants
are grouped in pairs, it is natural to express the correlations among two images in a
pair via the prior knowledge. Therefore, the knowledge consists of 100 rules in the
form ∀(x, y) D1(x) → D2(y), where (x, y) is a generic pair of images and (D1, D2)

range over all the possible pairs of digit classes.
We performed the experiments with p1 = 0.9, p2 = 0.07, p3 = p4 = p5 = 0.01.

All the images are rotated with a random degree between 0 and 90 anti-clockwise to
increase the complexity of the task. There is a strong regularity in having two images
representing the same digit in a pair, even some rare deviations from this rule are
possible. Moreover, there are some inadmissible pairs, i.e. those containing mixed
even-odd digits. The train and test sets are built by sampling 90% and 10% image
pairs.

The results provided using a DLM have been compared against the following
baselines:

• the same neural network (NN) used by DLM but with no knowledge of the
structure of the problem;

• Semantic Based Regularization/Logic Tensor Networks (SBR/LTN), which
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Model NN SBR DLM-NN DLM
Accuracy 0.62 0.64 0.65 0.76

Table 6.1: Comparison of the accuracy metric on the PAIRS dataset using different
models.

are equivalent on this specific task. These frameworks employ the logical
rules to improve the learner but the rule weights are fixed parameters, which
are not jointly trained during learning. Since searching in the space of these
parameters via cross-validation is not feasible, a strong prior was provided to
make SBR/LTN prefers pairs with the same image using 10 rules of the form
∀(x, y) D(x) → D(y), for each digit class D. These rules hold true in most
cases and improve the baseline performance of the network.

Table 6.1 shows how the neural network output of a DLM (DLM-NN) already
beats both the same neural model trained without prior knowledge and SBR. This
happens because the neural network in DLM is indirectly adjusted to respect the
prior knowledge in the overall optimization problem. When reading the DLM output
from the MAP solution (DLM), the results are significantly improved.

6.2.2 Link Prediction in Knowledge Graphs

Neural-symbolic approaches have been proved to be very powerful to perform ap-
proximated logical reasoning Trouillon et al. (2016). A common approach is to assign
to each logical constant and relation a learned vectorial representation Bordes et al.
(2013). Approximate reasoning is then carried out in this embedded space. Link
Prediction in Knowledge Graphs is a generic reasoning task where it is requested
to establish the links of the graph between semantic entities acting as constants.
Rocktaschel et al. Rocktäschel and Riedel (2017) shows state-of-the-art performances
on some link prediction benchmarks by combining Prolog backward chain with a
soft unification scheme.

This section shows how to model a link prediction task on the Countries dataset
using a Deep Logic Models, and compare this proposed solution to the other state-
of-the-art approaches.

Dataset. The Countries dataset Bouchard et al. (2015) consists of 244 countries (e.g.
germany), 5 regions (e.g. europe), 23 sub-regions (e.g. western europe, northern
america, etc.), which act as the constants of the KB. Two types of binary relations
among the constant are present in the dataset: locatedIn(c1, c2), expressing that c1 is
part of c2 and neighborOf(c1, c2), expressing that c1 neighborswith c2. The knowledge
base consists of 1158 facts about the countries, regions and sub-regions, expressed
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in the form of Prolog facts (e.g. locatedIn(italy,europe)). The training, validation
and test sets are composed by 204, 20 and 20 countries, respectively, such that each
country in the validation and test sets has at least one neighbor in the training set.
Three different tasks have been proposed for this dataset with an increasing level
of difficulty. For all tasks, the goal is to predict the relation locatedIn(c, r) for every
test country c and all five regions r, but the access to training atoms in the KB varies,
as explained in the following:

• Task S1: all ground atoms locatedIn(c, r), where c is a test country and r is
a region, are removed from the KB. Since information about the sub-region
of test countries is still contained in the KB, this task can be solved exactly by
learning the transitivity of the locatedIn relation.

• Task S2: like S1 but all grounded atoms locatedIn(c, s), where c is a test country
and s is a sub-region, are removed. The location of test countries needs to be
inferred from the location of its neighbors. This task is more difficult than S1,
as neighboring countries might not be in the same region.

• Task S3: like S2, but all ground atoms locatedIn(c, r), where r is a region and c
is a training country with either a test or validation country as a neighbor, are
removed. This task requires multiple reasoning steps to determine an unknown
link, and it strongly exploits the sub-symbolic reasoning capability of the model
to be effectively solved.

Model. Each country, region and sub-region corresponds to a constant. Since the
constants are just symbols, each one is assigned to an embedding, which is learned
together with the other parameters of the model. The predicates are the binary
relations locatedIn and neighborOf, which connect constants in the KB. Each relation
is learned via a separate neural network with a 50 neuron hidden layer taking as
input the concatenation of the embeddings of the constants. In particular, similarly
to Bordes et al. (2013), the constants are encoded into a one-hot vector, which is
processed by the first layer of the network, outputting an embedding composed by 50
real number values. As commonly done in link prediction tasks, the learning process
is performed in a transductive mode. In particular, the input X consists of all possible
constants for the task, while the train examples ŷ will cover only a subset of all the
possible grounded predicates, leaving to the joint train and inference process the
generalization of the prediction to the other unknown grounded relations. Indeed,
the output of the train process in this case is both the set of model parameters and
the MAP solution predicting the unknown grounded relations that hold true.

Multi-step dependencies among the constants are very important to predict the
existence of a link in this task. For example in task S1, the prediction of a link among
a country and a region can be established via the path passing by a sub-region,
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Task ComplEx NTP NTPβ DLM
S1 99.37 90.83 100.00 100.00
S2 87.95 87.40 93.04 97.79
S3 48.44 56.68 77.26 91.93

Table 6.2: Comparison of the accuracy provided by different methods on link pre-
diction on the Countries dataset. Bold numbers are the best performers for each
task.

once the model learns a rule stating the transitivity of the locatedIn relation (i.e.
locatedIn(x, y) ∧ locatedIn(y, z) → locatedIn(x, z)). Exploiting instead the rule
neighborOf(x, y) ∧ locatedIn(y, z)→ locatedIn(x, z), the model should be capable
of approximately solving task S2.

All 8 rules ∀x ∀y ∀z A(x, y) ∧ B(y,z) → C(y, z), where A, B and C are either
neighborOf or locatedIn are added to the knowledge base for this experiment. These
rules represent all the 2-steps paths reasoning that can be encoded, and the strength
of each rule needs to be estimated as part of the learning process for each task. The
training process will iteratively minimize Equation 6.8 by jointly determining the
embeddings and the network weights such that network outputs and the MAP solu-
tion will correctly predict the training data, while respecting the constraints on the
MAP solution at the same level as on the train data.

Results. Table 6.2 compares DLM against the state-of-the-art methods used by
Rocktaschel et al. Rocktäschel and Riedel (2017), namely ComplEx, NTP and NTPβ.
Task S1 is the only one that can be solved exactly when the transitive property of
the locatedIn relation has been learned to always hold true. Indeed, most methods
are able to perfectly solve this task, except for the plain NTP model. DLM is capable
perfectly solving this task by joining the logical reasoning capabilities with the
discriminative power of neural networks. DLMs perform better than the competitors
on tasks S2 and S3, thanks to additional flexibility obtained by jointly training the
relation functions using neural networks, unlike the simple vectorial operations like
the cosine similarity employed by the competitors.

6.3 Conclusions
This Chapter presented DLMs, MiniMax Entropy models, where the use of fuzzy
logic potentials allows for variational MAP inference.

The main contributions of this Chapter can be resumed as follows:

• DLMs can learn the relative weight (β) of each logical potential, which cannot
be done in very similar approaches (i.e. SBR, LTN, LYRICS).
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• As opposed to LYRICS, the neural component represent an initial (fast) starting
point to fully symbolic inference to take place

• DLMs can improve w.r.t. to both neural networks (by allowing the use of
structure) and to related approaches by being capable of weighting correctly
each of the (possibly large number of ) pieces of logical knowledge

• DLMs compare favourably alsow.r.t. state-of-the-art neuro-symbolic approaches
(Neural Theorem Provers and ComplEx) in link prediction tasks.

However, some improvements are still in order:

• Logic Knowledge, in the shape of FOL formulas, must be provided in advance.
The disadvantages of this issue have been discussed in Chapter 3.

• MAP inference can be a rough approximation in not-decision-oriented tasks
(e.g. generative tasks)

NMLNs, introduced in the next Chapter, will provide a solution to both issues.



Chapter 7

Neural Markov Logic Networks

In this Chapter, we exploit the MiniMax Entropy framework to propose Neural
Markov Logic Networks (NMLN). Here, the statistics which are used to model the
probability distribution are not known in advance, but are modelled as neural net-
works trained together with the probability distribution model. This is extremely
powerful when compared to classical MLNs, where either domain experts are re-
quired to design some useful statistics about the domain of interest by hand (i.e.
logical rules) or structure learning based on combinatorial search needs to be per-
formed. These requirements normally limit a wide application of these models as
out-of-the box tools. It is worth noticing that overtaking the need of such “feature-
engineering” is one of the reasons behind the massive adoption of deep learning
techniques. However, not much has been done in the same direction by the statistical
relational learning community. Moreover, designing statistics as neural networks
allows a more fine-grained description of the data, opening the doors to applications
of our model to the generative setting.

In this Chapter, (i) we introduce a new statistical relational model, which over-
comes actual limitations of both classical and recent related models such as (Richard-
son and Domingos, 2006; Rocktäschel and Riedel, 2017; Sourek et al., 2018); (ii)we
propose a theoretical justification of the model as naturally emerging from a principle
of Min-Max-entropy; and (iii) we showcase its effectiveness on two quite diverse
problems: knowledge-base completion and generative modelling of small molecules.

7.1 Neural Markov Logic Networks

7.1.1 The Model

Neural Markov Logic Networks are a direct application of the MiniMax Entropy
principle introduce in Chapter 3.

In particular, here we are not interested in modeling the link between the sub-
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symbolic reasoning operating on the perceptual level and the symbolic reasoning
operating on the abstract level as in the other Chapters. Instead, the integration of
subsymbolic techniques and symbolic techniques is reached by exploiting models
usually exploited for subsymolic reasoning (i.e. neural networks) to learn potentials
on the symbolic level. In other words, the logic layer of the previous Chapter is
completely substituted with a more complex (but expressive) neural layer.

The probability distribution p(ω) takes the following shape:

p(ω; w) =
1
Z

exp(βΦ(ω; w)) =
1
Z

exp(β ∑
γ∈Γk(ω)

φ(γ; w)) (7.1)

Here, we assume no perceptual data x is conditioning the distribution. We assume
the factorization of the potential Φ(ω; w) as a sum over anonymized fragments
φ(γ; w) as in Section 3.2.1.

Now, that we have discussed logical aggregators and quantifiers, it is easy to see
the analogy between all the groundings of a formula with k quantified variables
and all the fragments of size k of a possible world. When restricting the size of a
fragment, we are focusing on local properties (i.e. local rules) tomodel the probability
distribution. The connection between potentials in NMLN and logical rules is also
analyzed in Section 7.1.4, where we show the clear link between a NLML and a
standard Markov Logic Network.

7.1.2 Vector Embeddings of Domain Elements
By anonymizing a fragment, the model loses any trace of the identity of the constants
involved in it, preserving only their structural behaviours. While this feature is
essential to allow the identification of structural patterns also inside a single possible
world, it prevents the model from having different behaviour on specific constants.
This, instead, is a basic feature of many existing transductive models, like NTP
(Rocktäschel and Riedel, 2017), which exploit the geometry of a latent representation
space of constants to improve their prediction capabilities.

To this end, we define an embedding fragmented neural potential φe(γ, Ŝ; w, Θ),
which is function of the anonymized fragment but also of the specific constants
involved in it (i.e. the list of constants Ŝ). In particular, in transductive settings, we
always have a possible world ω̂ and we use the same constant set S both during
learning and inference. Let Θ ∈ Rn×d be a variable embedding matrix. It can be con-
sidered a map from the constant set S to a latent real domain Rd, i.e. the embedding
space. Let c(Ŝ, Θ) be a function that concatenates the k rows of Θ corresponding to
the k constants in the restricted set Ŝ. Thus, the embedding fragmented neural poten-
tial φe can be seen as a function of both γ, which encodes the structural properties of
the fragment and c(Ŝ, Θ), which encodes the identity of constants by providing a
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latent representation for them. In other words, φe(γ, Ŝ; w, Θ) = f (γ, c(Ŝ, Θ); w) for
some neural function f parameterized by w. This is inspired by works in the NLP
community (Mikolov et al., 2013; Mnih and Kavukcuoglu, 2013), where the c function
can have different forms than concatenation. The components of the embedding
vectors are treated as any other weights of the potential functions and are updated
using gradients computed according to Section . Intuitively, the contrastive nature of
the learning (Bordes et al., 2013; Trouillon et al., 2017), leads to the development of
similar embeddings for similar constants. As we show in Section 7.2.2, the addition
of embedding of constants helps improving the prediction capability of our model
in transductive settings.

7.1.3 Inference
In order to design an optimization procedure to learnNeuralMarkov Logic Networks,
we need to rely on some methods to sample from the distribution. In this Chapter,
we exploit MCMC methods, in particular approximate Gibbs Sampling (Robert and
Casella, 2013), to sample from Neural Markov Logic Networks. The approximation
comes from the fact that GS requires a large number of steps before converging to the
target distribution. However, we run it only for a limited number of steps t, which, in
some cases, is restricted to t = 1. When this happens, our method recovers a discrete
version of the Contrastive Divergence (CD) algorithm (Hinton, 2002).

Gibbs sampling cannot effectively handle distributions with a lot of determinism.
In normal Markov logic networks, sampling from such distributions may be tackled
by an algorithm called MC-SAT (Poon and Domingos, 2006). However, MC-SAT
requires an explicit logical encoding of the deterministic constraints, which is not
available in Neural Markov Logic Networks where deterministic constraints are
implicitly encoded by the potential functions. In fact, only constraints that are almost
deterministic, i.e. having very large weights, can occur in Neural Markov Logic
Networks but, at least for Gibbs sampling, the effect is the same. Such distributions
would naturally be learned in our framework on most datasets. Our solution in this
model is to simply avoid learning distributions with determinism by adding noise
during training. In particular, we set a parameter πn ∈ [0, 1] and, at the beginning of
each training epoch, we inverted each ground atom of the input possible worlds (True
to False and vice versa) with probability πn.Moreover, this added noise prevents the
model to perfectly fit training data, acting as a regularizer (Bishop, 1995).

7.1.4 Connections to Markov Logic Networks
Markov logic networks are a popular statistical relational framework. It turns out that
every Markov logic network can be represented as a Neural Markov Logic Network
with a single carefully selected potential function.
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Kuželka et al. (2018) studies two maximum-entropy models, Model A, which is
close to the model that we study in this Chapter, and Model B, which is the same as
Markov logic networks. Syntactically, both models are encoded as sets of weighted
first order logic formulas, e.g. Φ = {(α1, w1), . . . , (αM, wm)}. In particular, given a
positive integer k, Model A defines the following distribution:

pA(ω) =
1
Z

exp

 ∑
(α,w)∈ΦA

w · #k(α, ω)


where Z is the normalization constant and #(α, ω) is the fraction of size-k subsets
S of constants in the possible world ω for which ω〈S〉 |= α (i.e. the formula α is
classically true in the fragment of ω induced by S). Let us first define

φα,w(γ) =

{
w γ |= α

0 γ 6|= α

It is then easy to see that the distribution pA(ω) can also easily be encoded as aNeural
Markov Logic Network by selecting the potential function φ(γ) = ∑(α,w)∈ΦA

φα,w(γ)

and by carefully selecting the weights βi in the Neural Markov Logic Network.
Next we show that all distributions in Model B can be translated to distributions

in Model A. First we will assume that the formulas αi do not contain any constants.
Model B is given by

pB(ω) =
1
Z

exp

 ∑
(β,v)∈ΦB

v · n(β, ω)


where n(β, ω) is the number1 of true injective groundings of the formula β in the
possible world ω. Hence, Model B is exactly the same as Markov logic networks up
to the requirement on injectivity of the groundings. However, as shown in (Buchman
and Poole, 2015), any Markov logic network can be translated into such modified
Markov logic network with the injectivity requirement on the groundings.

Let k be an integer greater or equal to the number of variables in any formula
in ΦB. Now, let Γ be the set of all size-k fragments. For every formula β in ΦB, we
introduce a partition P on Γ induced by the equivalence relation ∼β defined by:
γ ∼β γ′ iff n(β, γ) = n(β, γ′). Since β is assumed to not contain any constants, we
can capture each of these equivalence classes C by a (possibly quite big) first-order
logic sentence without constants βC. Let Ci be the equivalence class that contains

1In (Kuželka et al., 2018), Model B is defined using fractions of true grounding substitutions instead
of numbers of true grounding substitutions. However, these two definitions are equivalent up to
normalizations and both work for our purposes but the latter one is a bit more convenient here. Hence
we choose the latter one here.



7.2. EXPERIMENTS 139

fragments γ such that n(β, γ) = i. Let m(β, ω) = ∑Ci∈P ∑γ∈Γk(ω) i · 1(γ |= βC). By
construction, it holds m(β, ω) = ∑γ∈Γk(ω) n(β, γ). Every true injective grounding of
the formula β, having l variables, is contained in (n−l

k−l) different size-k fragments of
ω, each of which gives rise to k! anonymized fragments in the multi-set Γk(ω). So
m(β, ω) is over-counting the number of true groundings n(β, ω) by a constant factor.
It follows that, by carefully selecting the weights of the formulas βC we can encode
the distribution pB(ω) also in Model A. Although this particular transformation that
we have just sketched is not very efficient, it does show that Neural Markov Logic
Networks with potential functions of width k can express all distributions that can be
expressed by Markov logic networks containing formulas with at most k variables.

First-order logic formulas defining Markov logic networks may also contain
constants. In Neural Markov Logic Networks we may represent constants using
vector-space embeddings as described in the main text. One can then easily extend
the argument sketched above to the case covering Markov logic networks with
constants.

7.2 Experiments

7.2.1 Implementation Details

We implemented Neural Markov Logic Networks in Tensorflow. In order to maxi-
mally exploit the parallel computations capabilities of GPUs, multiple Markov chains
are run in parallel. This is also useful because expected values of gradients (see
Section ) are computed on uncorrelated samples, while sequential samples sampled
from a unique chain are known to be highly correlated.

In experiments, the different global neural potentials Φi can rely on fragments
of different sizes k so that for small k, the model can focus on learning very local
statistics of the data, while, for large k, the model can focus on learning statistics on
larger substructures. For example, if we represent molecules as a relational structure
(see Section 7.2.3), rings are inherently global statistics which cannot be captured
by local properties. This example underlines the importance of the choice of k for
a correct modeling of the data distribution. However, since a single evaluation of
Φi(w) requires a summation over d = (n

k)k! number of terms, the number of elements
of the sum grows exponentially with k (and polynomially, but very fast, with n). So
exploiting large k is usually admissible only for small domain sizes n.

7.2.2 Knowledge Base Completion

In Knowledge Base Completion (KBC), we are provided with an incomplete Knowl-
edge Base (KB) and asked to complete the missing part.
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The KBC task is inherently in the transductive setting, since all the constants are
exploited both during the training and testing phase. Moreover, data are provided
in a positive-only fashion: we only know what is true and we cannot distinguish
between unknown and false facts. Kuželka and Davis (2019) studied KBC tasks
under the missing-completely-at-random assumption and showed consistency of
learning by maximum-likelihood where both missing and false facts are treated in
the same way as false. Hence, here we also provide both unknown and false facts as
false facts during the training procedure.

Smokers. The “Smokers” dataset (Richardson and Domingos, 2006) is a classical
example in statistical relational learning literature. Here, two relations are defined
on a set of constants representing people: the unary predicate Smokes identifies those
people who smoke, while the binary predicate friendOf maps people to their friend.
This dataset is often used to show how a statistical relational learning algorithm
can model a distribution by finding a correlation of smoking habits of friends. For
example, in MLNs, one typically uses weighted logical rules such as:

∀x ∀y friendOf(x, y)→ smokes(x)↔ smokes(y)

We learned a NMLN on the small smokers dataset. Since no prior knowledge
about the type of rules that are relevant was used by NMLNs, the model itself had
to identify which statistics are mostly informative of the provided data by learning
the neural potential functions.

Here we use the Smokers dataset to define a Knowledge Base Completion task
and to provide some basic intuitions about what kind of rules the model could
have learned. In Figure 7.1, we show the setting before and after completion. In
Figure 7.1b, we highlight only new facts whose marginal probability after training is
significantly higher than the others, even though other facts has probabilities higher
than the prior.

Nations. The Nations dataset (Kok and Domingos, 2007) provides information
about properties and relations among countries as ground facts, like economicaid(usa,
israel) or embassy(israel,poland). There are n = 14 constants (i.e. nations), 56
relations and 2565 true facts. This dataset has been recently exploited for a KBC task
by Rocktäschel and Riedel (2017), where some facts were removed from the dataset
and the task was to predict them. The authors compared the performances of the
state-of-the-art ComplEx neural model (Trouillon et al., 2017) with their proposed
differentiable end-to-end neural theorem prover, showing that the combination of
the two was able to outperform both of the models. Unary predicates were removed
since the ComplEx model cannot deal with them. In this section, we show how we
can use NMLNs to tackle a KBC task on the Nations dataset.
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(b) The completed KB.

Figure 7.1: Knowledge Base Completion in the Nations dataset. Circles represent
constants. A grey circle means that the predicate smokes is True. A white circle means
that the value of the predicate smokes is unknown. Links represent the relation
friendOf (absence of an arrow means that the relation is False). The given world is
shown on the top (7.1a), while the completed knowledge base is shown on the bottom
(7.1b). The system learnt the symmetric nature of the friendship relation. It learnt
that a friend of at least two smokers is also a smoker, and that two smokers, who are
friends of the same person, are also friends.

We implemented the fragmented neural potentials φ(γ) as 2 hidden-layer neural
networks, with sigmoidal hidden activations and linear output layer. The selection
of the hyperparameters and the early-stopping epoch have been selected by means
of a held-out validation set (the splits are same as the ones in Rocktäschel and Riedel
(2017)). The size of layers has been selected from the interval [75, 100, 150] for the
first layer and [30, 50, 100] for the second layer. The embedding size has been selected
from the interval [2, 3, 5, 10]. The noise probability πn has been selected from the
interval [0, 0.01, 0.02, 0.03]. The number of parallel chains has been selected from the
interval [10, 20, 30].

We followed the evaluation procedure in Rocktäschel and Riedel (2017). In par-
ticular, we took a test fact and corrupted its first and second argument in all possible
ways such that the corrupted fact is not in the original KB. Subsequently, we predicted
a ranking of every test fact and its corruptions to calculate MRR and HITS@m. The
ranking is based on marginal probabilities estimated by running Gibbs sampling on
the Neural Markov Logic Network; while training the network, we also run a parallel
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Table 7.1: MRR and HITS@m on Nations.

Metric Model
ComplEx NTP NTPλ NMLN NMLN-Emb

MRR 0.75 0.75 0.74 0.77 0.810.810.81
HITS@1 0.62 0.62 0.59 0.64 0.710.710.71
HITS@3 0.84 0.86 0.890.890.89 0.86 0.890.890.89
HITS@10 0.990.990.99 0.990.990.99 0.990.990.99 0.990.990.99 0.990.990.99

Gibbs sampling chain on a state in which we fix the known part of the KB as true.
Here, we compare the ComplEx model, the plain Neural Theorem Prover (NTP), the
composition of the previous two (NTPλ), our plain model (NMLN) and our model
when using potentials with embeddings (NMLN-Emb). In Table 7.1 we report the
results of the KBC task on Nations. Both our models outperform competitors on the
HITS@1metric, withNMLN-Emb having a large gap over all the other models. It is in-
teresting to note that the plainNMLN still performs better than differentiable provers,
even if it is the only model which cannot exploit embeddings to perform reasoning
and that has to rely only on the relational structure of fragments to make predictions.
Finally, NMLN-Emb performs equally to or better than all the competitors in all the
other metrics.

7.2.3 Graph generation
One of the main features differentiating our model from standard MLNs is that
we learn the statistics φ(γ) in a differentiable manner. The obtained probability
distribution is then often far more fine grained than using predefined or hand-made
statistics, that are limited to what the user considers important and do not search
for other interesting regularities in the data. This opens the doors to the application
of NMLNs to generative tasks in non-euclidean settings, which are receiving an
increasing interest recently (You et al., 2018; Li et al., 2018).

In generation tasks, our model is asked to learn the probability distribution of
the relational structures induced by a graph. Indeed, any FOL-description can be
considered a multi-hyper graph; thus generating in the FOL setting is applicable to
generating in any graph domain. In particular, to generate graphs, we can just use
the same sampling technique used during training (i.e. Gibbs Sampling) to extract
new samples.

In this section, we describe a molecule generation task. We used as training data
the ChEMBL molecule database (Gaulton et al., 2016). We restricted the dataset
to molecules with 8 heavy atoms. We used the RDKit framework 2 to get a FOL

2https://rdkit.org/
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Figure 7.2: An example of molecule

representation of the molecules from their SMILES encoding.
Even though molecules can be described with a high level of precision, using

both spatial features (i.e. atoms distances, bond length etc.) and chemical features
(i.e. atom charge, atom mass, hybridization), in this work, we focused mainly on
structural symbolic descriptions of molecules.

In particular, we described a molecule using two sets of FOL predicates:

• Atom-type unary predicates: these are C, N, O, S, Cl, F, P.

• Bond-type binary predicate: these are SINGLE and DOUBLE.

An example of a molecule FOL description can be:

O(0), C(1), C(2), C(3), N(4), C(5), C(6), C(7), O(8), O(9)

SINGLE(0,1), SINGLE(1,0), SINGLE(1,2), SINGLE(2,1), SINGLE(2,3)

SINGLE(3,2), SINGLE(3,4), SINGLE(4,3), SINGLE(4,5), SINGLE(5,4)

SINGLE(5,6), SINGLE(6,5), SINGLE(5,7), SINGLE(7,5), DOUBLE(7,8)

DOUBLE(8,7), SINGLE(7,9), SINGLE(9,7), SINGLE(6,1), SINGLE(1,6)

We implemented the fragmented neural potentials φ(γ) as neural networks with
sigmoidal hidden activations and linear output layer. The hyperparameters were
selected from the following ranges: the number of layers in [1, 2]; the hidden sizes of
the layers in [30, 100, 150, 200]; the number of fragmented potentials in [1, 2], the size
k of potentials in [2, 3, 4, 5, 6]. The number of parallel chains was set to 5.

In Figure 7.3, we show a comparison between a sample of training data and
a (random) sample of molecules generated by the proposed model. In particular,
20 generated samples are chosen randomly from the last 1000 samples extracted
during the training procedure. By choosing them randomly, we avoided to have
very correlated samples, which is inherent in the Gibbs sampling procedure. The
generated samples resembles training data both in structural patterns and variety
fairly well. Furthermore, in Figure 7.4, we compare the statistics, used in Li et al.
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Figure 7.3: Molecules generation. A comparison between a sample of training
data and a (random) sample of molecules generated by the proposed model. The
generated samples fairly resembles training data both in structural patterns and
variety. Better viewed in color.

0 10 20
0

200

400

Number of Bonds

0 2 4
0

250

500

750

Average Node Degree

0 1 2 3
0

200

400

Number of Rings

0 2 4 6
0

100

200

300
HBD

0.0 2.5 5.0 7.5
0

200

400
HBA

0 25 50 75
0

50

100

150

200
TPSA

generated training
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(2018) for a similar task, on a sample of 1000 training and generated molecules. These
statistics represent both general structural properties applicable to any graph as well
as chemical structural properties of molecules (e.g. the topological polar surface
area (TPSA) is a topological indicator of the capability of a molecule to permeate a
membrane as a function of the number of polar atoms it contains). These statistics
were computed using the RDkit framework.

7.3 Conclusions
NMLNs are a MiniMax Entropy model, where we use trainable neural potentials
and Gibbs Sampling inference.

The main contributions of this Chapter are:

• NMLNs are one of the few models where we can learn efficiently the structure
(i.e. the potentials) of the distribution.

• NMLNs allow for the joint distribution to be learned.

• The obtained distribution is far more precise than those with hand-made po-
tentials.

• This accuracy is showed in link prediction tasks, where NMLNs outperform
Neural Theorem Provers and ComplEx.

• The precision opens the door to relational generative tasks, like molecule gen-
eration, where samples from NMLN are showed to match true data on several
structural and chemical properties

However, there are still room for improvements. Indeed, in NMLNs:

• Even though being applicable in settings where exact inference is not allowed,
this model is still applicable only in small domains (i.e. hundreds of constants);
thus it suffers from scalability issues;

• Learning potentials as neural networks does not allow a direct interpretation
of learned rules. Still, we can apply methods for interpreting neural networks.

For a certain perspective, DLMs and NMLNs represent two complementary
approaches and MiniMax Entropy represent the common field allowing, in the
future, their integration.





Chapter 8

Conclusions and Future Works

This chapter summarizes the work presented in this thesis, by enlightening both the
main contributions of the research and some related consequences. In addition, some
possible future directions are discussed as well as some promising development of
the presented framework.

8.1 Conclusions
MiniMax Entropy Models In this thesis we presented MiniMax Entropy principle
together with the correspondent optimization problem. The solution to this problem
gives raise to a broad class of relational models, called MiniMax Entropy models.
We have shown as this models recover classical settings in corner cases but they
encompass all the intermediate variations. We showed that when conditioning
MiniMax Entropy models on available perceptual data about symbolic entities, these
models represent a candidate solution for a unifying theory of integration of symbolic
and subsymboli reasoning. MiniMax Entropymodels still remain a too general theory
and they need a much better investigation in different instantiations, as the ones
presented in this thesis.

LYRICS This thesis also presented a novel and general framework, called LYRICS,
to bridge logic reasoning and deep learning. Its connection with MiniMax Entropy
models comes when interpreting inference in neural networks as providing the one
most probable explanation of some evidence on a probability distribution. This
interpretation nicely recovers the learning from constraints paradigm when features
are interpreted as constraints and regularization is interpreted as priors on the
probability distribution. The framework is directly implemented in TensorFlow,
allowing a seaming-less integration that is architecture agnostic. The frontend of
the framework is a declarative language based on first–order logic. In particular,
we present a set of examples illustrating the generality and expressiveness of the
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framework that can be applied to a large range of tasks, including classification,
pattern generation and symbolic reasoning. A nice property of the approach is that it
allows the definition of generative (adversarial) problems using the simple language
of logic, allowing us to tackle very different translation problems with little effort.

Deep Logic Models. Deep Logic Models shows as MAP inference coupled with
fuzzy logic potentials instantiate a MiniMax Entropy models capable of performing
multiple neuro-symbolic tasks but still keeping tractability. Fuzzy t-norm theory rep-
resents a fundamental choice to make potentials differentiable w.r.t. states, allowing
the exploitation of variational methods for inference. Moreover, logic potentials are
shown to be a particular instance of a more general class of potentials working on
fragments on the whole relational structure.

Neural Markov Logic Network. Neural Markov Logic Network fully exploits the
potentiality of the Minimization of Entropy principle to learn the structure of the
probability distribution under investigation. Indeed, Neural Markov Logic Networks
are MiniMax Entropy models where parametric potential are defined on the entire
relational structure. This allows features of the probability distribution to be learned
from data and not provided by the user as in the inspiring Markov Logic Networks.
By still beign able to reach state-of-the-art in link prediction, these models show
that MiniMax Entropy models open the doors to generative tasks in the relational
settings.

8.2 Future Works
MiniMax Entropy models are an extremely large class of models. The general al-
gorithm for learning parameters of this model is extremely general and it can be
instantiated into multiple more specific models. It simply encompasses the idea that
learning can be guided by looking for explainations that are higly descriptive of the
data we are observing but at the same time less biased towards anything that we do
not observe.

Balancing exact and approximate inference MiniMax Entropy models are a first
step towards a more general theory of relational reasoning and, in perspective, of
artificial intelligence itself. However, from a foundational viewpoint, it has to be
much more deeply investigated which is and how to manage the balance between
approximated and exact reasoning. Indeed, MiniMax Entropy models allow any infer-
ence algorithm on the corresponding probability distribution to be exploited. Even
though this allows a very broad tuning of the algorithms to the specific needs of a
user, it still provides no insight on how we can reach the great balance that humans
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show in handling the intervention of intuitive or conscious reasoning processes. We
believe that a unique inference scheme (i.e. algorithm) should exist which is the
superposition of an approximated scheme (e.g. a neural approximation) and an exact
scheme (e.g. a search algorithm in the state space).

We are currently working on an inference scheme where exact processes delegate
approximated schemes in all the cases they can not exactly carry on the inference
process. This is motivated by the need for a trade-off between exact reasoning and
scalability. In particular, we are looking a for a unique scheme which gradually pass
from an exact computation to an approximate one when the exact computation is
not feasible, and we would like that the degree of approximation to be proportional
to the degree of infeasibility

Variational Inference andHybridMCMC Inference Another line of research that
we are considering is to recur to more advanced variational methods for inference.
Indeed, MAP inference can be considered the simplest case of inference and it is
clearly very limited when the distribution under investigation does not meet the
unimodality feature discussed in Chapter 3. However, MiniMax Entropymodels with
differentiable features potentially allow us to investigate any variational inference
scheme.

Variational Inference techniques could also represent a valid candidate for build-
ing proposal distribution in a more general MCMC scheme, e.g. Metropolis Hastings.

Graph Neural Networks. Graph Neural Networks (GNN) represent nowadays an
alternative to SRL methods to deal with relational data. Even though, they are very
powerful in learning diffusion mechanisms on large networks, computing complex
features on relational structures, they still struggle in modeling uncertainty over
the structure. An intuitive reason behind this is that they consider the structure (i.e.
edges) of the graph as an input of the algorithm. On the contrary, MiniMax Entropy
schemes explicitly model uncertainty over relations. However, GNNs could find
a very interesting place inside MiniMax Entropy distributions, as a powerful and
efficient way to compute statistics on fragments. In fact, NMLNs do learn statistics
on fragments represented as boolean vectors (i.e. a given portion of the Herbrand
Interpretation). This is indeed a flat representation that is not able to exploit its
relational nature. On the contrary, GNNs encoding mechanism can allow for an
efficient weight sharing scheme to be exploited in potential learning.
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Publications

Journal papers
1. Information diffusion in a multi-social-network scenario: framework and ASP-based

analysis - G Marra, D Ursino, F Ricca, G Terracina - Knowledge and Information
Systems 48, 2016 - Candidate’s contributions: formulation of the problem,
formulation of the solution and design of the experimental campaign.

2. M Maggini,GMarra, S Melacci, A Zugarini Learning in Text Streams: Discovery
and Disambiguation of Entity and Relation Instances - Transaction of Neural Net-
works and Learning Systems, (2020, to appear) - Candidate’s contributions:
joint definition of the method, design and implementation of the agent, joint
design and implementation of the experiments.

Peer reviewed conference papers
1. G Marra, F Giannini, M Diligenti, M Gori, M Maggini Relational Neural Ma-

chines - European Conference of Artificial Intelligence (ECAI 2020)Candidate’s
contributions: joint definition of the method, design and implementation of
both the framework and the experiments.

2. M Tiezzi, G Marra, M Maggini, M Gori Lagrangian Propagation Graph Neural
Networks - European Conference of Artificial Intelligence (ECAI 2020) Candi-
date’s contributions: joint definition of the method, joint design of the experi-
ments.

3. GMarra FGiannini, MDiligenti, MGori Integrating Learning and Reasoning with
Deep Logic Models - European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases, ECML PKDD, Wurzburg,
Germany2019- Candidate’s contributions: carried out inspiring studies, joint
definition of the theory, design and implementations of the experiments.
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4. G Marra, F Giannini, M Diligenti, M Gori - LYRICS: a General Interface Layer
to Integrate AI and Deep Learning - European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases, ECML
PKDD, -Wurzburg, Germany 2019 - Candidate’s contributions: design, devel-
opment and testing of the overall framework, design and implementations of
the experiments.

5. F Giannini, G Marra M Diligenti, M Maggini, M Gori On the relation between
Loss Functions and T-Norms - International Conference on Inductive Logic Pro-
gramming, ILP, 2019 - Candidate’s contributions: design and development of
the experiments.

6. G Marra, D Zanca, A Betti, M Gori - Learning Neuron Non-Linearities with
Kernel-Based Deep Neural Networks - International Conference Of The Italian
Association for Artificial Intelligence, AI*IA 2019 - Candidate’s contributions:
design and development of the experiments.

7. G Marra F Giannini, M Diligenti, M Gori Constraint-Based Visual Generation -
International Conference on Artificial Neural Networks, ICANN, 2019 - Can-
didate’s contributions: definition of the method, design and development of
the experiments.

8. G Marra, A Zugarini, S Melacci, M Maggini - An Unsupervised Character-Aware
Neural Approach to Word and Context Representation Learning - International Con-
ference on Artificial Neural Networks, ICANN, 2018 - Candidate’s contribu-
tions: formulation of the problem, formulation of the solution, design and
development of the experimental campaign.

9. A Betti, M Gori, G Marra - A Constrained-Based Approach to Machine Learning -
14th International Conference on Signal-Image Technology & Internet, SIT, 2018
Candidate’s contributions: implementation of proof-of-concepts experiments.

10. G Marra, A Nocera, F Ricca, G Terracina, D Ursino, Investigating Node Influ-
ence Maximization and Influential Node Characterization in a Multi-Social-Network
Scenario via Disjunctive Logic Programming. - SEBD, 2014 - Candidate’s contri-
butions: formulation of the problem, formulation of the solution and design
of the experimental campaign.

11. D Leggio, G Marra, D Ursino, Defining and investigating the scope of users and
hashtags in Twitter - OTM Confederated International Conferences, 2014 - Can-
didate’s contributions: formulation of the problem, supporting experimental
evaluation.
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12. G Marra, A Nocera, F Ricca, G Terracina, D Ursino - Investigating information
diffusion in a multi-social-network scenario via answer set programming - Interna-
tional Conference on Web Reasoning and Rule Systems, 2014 - Candidate’s
contributions: formulation of the problem, formulation of the solution and
design of the experimental campaign.

Workshop papers
1. GMarra, OKuželkaNeuralMarkov LogicNetworks - (NeurIPSWorkshopKR2ML,

2019 ) - Candidate’s contributions: joint definition of theory, desing and im-
plementation of the framework and of the experiments.

2. G Marra, F Ricca, G Terracina, D Ursino Exploiting answer set programming
for handling information diffusion in a multi-social-network scenario - - European
Workshop on Logics in Artificial Intelligence, 2014 - Candidate’s contribu-
tions: formulation of the problem, formulation of the solution, design of the
experimental campaign.

3. M Tiezzi, G Marra, M Maggini, M Gori Lagrangian Propagation Graph Neu-
ral Networks - Deep Learning on Graphs: Methodologies and Applications
(DGLMA-AAAI 2020)Candidate’s contributions: joint definition of themethod,
joint design of the experiments.

Papers under review
1. M Tiezzi, G Marra, S Melacci, M Maggini Deep Constraint-based Propagation

in Graph Neural Networks - (Submitted at TPAMI - Under Review) Candidate’s
contributions: joint definition of the method, joint design of the experiments.

2. GMarra, F Giannini, M Diligenti, M Maggini, M Gori Learning and T-Norms
Theory - Candidate’s contributions: desing and implementation of the frame-
work and of the experiments.
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