22,906 research outputs found

    Constraint logic programming for fault-tolerant distributed systems

    Get PDF
    This paper presents key notions of Constraint Logic Programming (CLP), which is a young programming paradigm oriented toward solving difficult discrete highly combinatorial problems by making active use of constraints on the basis of mechanisms of Logic Programming. Being the subject of intensive research all over the world, CLP has already been used successfully in a large variety of application areas. As one of the important applications where CLP demonstrates its potential, we propose CLP-based procedures of solving the problems of optimal resource and task allocation at the stages of design and operation of Fault-Tolerant Distributed Technical Systems.Peer Reviewe

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    Logic Programming Applications: What Are the Abstractions and Implementations?

    Full text link
    This article presents an overview of applications of logic programming, classifying them based on the abstractions and implementations of logic languages that support the applications. The three key abstractions are join, recursion, and constraint. Their essential implementations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of applications are database queries, inductive analysis, and combinatorial search, respectively. We also discuss language extensions and programming paradigms, summarize example application problems by application areas, and touch on example systems that support variants of the abstractions with different implementations

    Logic Programming Approaches for Representing and Solving Constraint Satisfaction Problems: A Comparison

    Full text link
    Many logic programming based approaches can be used to describe and solve combinatorial search problems. On the one hand there is constraint logic programming which computes a solution as an answer substitution to a query containing the variables of the constraint satisfaction problem. On the other hand there are systems based on stable model semantics, abductive systems, and first order logic model generators which compute solutions as models of some theory. This paper compares these different approaches from the point of view of knowledge representation (how declarative are the programs) and from the point of view of performance (how good are they at solving typical problems).Comment: 15 pages, 3 eps-figure
    • …
    corecore