41,743 research outputs found

    A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set

    Full text link
    An independent dominating set D of a graph G = (V,E) is a subset of vertices such that every vertex in V \ D has at least one neighbor in D and D is an independent set, i.e. no two vertices of D are adjacent in G. Finding a minimum independent dominating set in a graph is an NP-hard problem. Whereas it is hard to cope with this problem using parameterized and approximation algorithms, there is a simple exact O(1.4423^n)-time algorithm solving the problem by enumerating all maximal independent sets. In this paper we improve the latter result, providing the first non trivial algorithm computing a minimum independent dominating set of a graph in time O(1.3569^n). Furthermore, we give a lower bound of \Omega(1.3247^n) on the worst-case running time of this algorithm, showing that the running time analysis is almost tight.Comment: Full version. A preliminary version appeared in the proceedings of WG 200

    Maximum matching width: new characterizations and a fast algorithm for dominating set

    Get PDF
    We give alternative definitions for maximum matching width, e.g. a graph GG has mmw(G)k\operatorname{mmw}(G) \leq k if and only if it is a subgraph of a chordal graph HH and for every maximal clique XX of HH there exists A,B,CXA,B,C \subseteq X with ABC=XA \cup B \cup C=X and A,B,Ck|A|,|B|,|C| \leq k such that any subset of XX that is a minimal separator of HH is a subset of either A,BA, B or CC. Treewidth and branchwidth have alternative definitions through intersections of subtrees, where treewidth focuses on nodes and branchwidth focuses on edges. We show that mm-width combines both aspects, focusing on nodes and on edges. Based on this we prove that given a graph GG and a branch decomposition of mm-width kk we can solve Dominating Set in time O(8k)O^*({8^k}), thereby beating O(3tw(G))O^*(3^{\operatorname{tw}(G)}) whenever tw(G)>log38×k1.893k\operatorname{tw}(G) > \log_3{8} \times k \approx 1.893 k. Note that mmw(G)tw(G)+13mmw(G)\operatorname{mmw}(G) \leq \operatorname{tw}(G)+1 \leq 3 \operatorname{mmw}(G) and these inequalities are tight. Given only the graph GG and using the best known algorithms to find decompositions, maximum matching width will be better for solving Dominating Set whenever tw(G)>1.549×mmw(G)\operatorname{tw}(G) > 1.549 \times \operatorname{mmw}(G)

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density

    Collaborative Learning of Stochastic Bandits over a Social Network

    Full text link
    We consider a collaborative online learning paradigm, wherein a group of agents connected through a social network are engaged in playing a stochastic multi-armed bandit game. Each time an agent takes an action, the corresponding reward is instantaneously observed by the agent, as well as its neighbours in the social network. We perform a regret analysis of various policies in this collaborative learning setting. A key finding of this paper is that natural extensions of widely-studied single agent learning policies to the network setting need not perform well in terms of regret. In particular, we identify a class of non-altruistic and individually consistent policies, and argue by deriving regret lower bounds that they are liable to suffer a large regret in the networked setting. We also show that the learning performance can be substantially improved if the agents exploit the structure of the network, and develop a simple learning algorithm based on dominating sets of the network. Specifically, we first consider a star network, which is a common motif in hierarchical social networks, and show analytically that the hub agent can be used as an information sink to expedite learning and improve the overall regret. We also derive networkwide regret bounds for the algorithm applied to general networks. We conduct numerical experiments on a variety of networks to corroborate our analytical results.Comment: 14 Pages, 6 Figure
    corecore