12 research outputs found

    Logspace computations in graph products

    Full text link
    We consider three important and well-studied algorithmic problems in group theory: the word, geodesic, and conjugacy problem. We show transfer results from individual groups to graph products. We concentrate on logspace complexity because the challenge is actually in small complexity classes, only. The most difficult transfer result is for the conjugacy problem. We have a general result for graph products, but even in the special case of a graph group the result is new. Graph groups are closely linked to the theory of Mazurkiewicz traces which form an algebraic model for concurrent processes. Our proofs are combinatorial and based on well-known concepts in trace theory. We also use rewriting techniques over traces. For the group-theoretical part we apply Bass-Serre theory. But as we need explicit formulae and as we design concrete algorithms all our group-theoretical calculations are completely explicit and accessible to non-specialists

    Parabolic and quasiparabolic subgroups of free partially commutative groups

    Get PDF
    Let Γ be a finite graph and G be the corresponding free partially commutative group. In this paper we study subgroups generated by vertices of the graph Γ, which we call canonical parabolic subgroups. A natural extension of the definition leads to canonical quasiparabolic subgroups. It is shown that the centralisers of subsets of G are the conjugates of canonical quasiparabolic centralisers satisfying certain graph theoretic conditions

    The submonoid and rational subset membership problems for graph groups

    Get PDF
    We show that the membership problem in a finitely generated submonoid of a graph group (also called a right-angled Artin group or a free partially commutative group) is decidable if and only if the independence graph (commutation graph) is a transitive forest. As a consequence we obtain the first example of a finitely presented group with a decidable generalized word problem that does not have a decidable membership problem for finitely generated submonoids. We also show that the rational subset membership problem is decidable for a graph group if and only if the independence graph is a transitive forest, answering a question of Kambites, Silva, and the second author. Finally we prove that for certain amalgamated free products and HNN-extensions the rational subset and submonoid membership problems are recursively equivalent. In particular, this applies to finitely generated groups with two or more ends that are either torsion-free or residually finite

    Finding All Solutions of Equations in Free Groups and Monoids with Involution

    Full text link
    The aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups as well as the set of all solutions of equations in free monoids with involution in the presence of rational constraints. This became possible due to the recently invented emph{recompression} technique of the second author. He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is general enough to accommodate both extensions. In the end, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Gutierrez 2001). As a byproduct we obtain a direct proof that it is decidable in PSPACE whether or not the solution set is finite.Comment: A preliminary version of this paper was presented as an invited talk at CSR 2014 in Moscow, June 7 - 11, 201

    Elements of algebraic geometry and the positive theory of partially commutative groups

    Get PDF
    The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable

    Solutions of Word Equations over Partially Commutative Structures

    Get PDF
    We give NSPACE(n log n) algorithms solving the following decision problems. Satisfiability: Is the given equation over a free partially commutative monoid with involution (resp. a free partially commutative group) solvable? Finiteness: Are there only finitely many solutions of such an equation? PSPACE algorithms with worse complexities for the first problem are known, but so far, a PSPACE algorithm for the second problem was out of reach. Our results are much stronger: Given such an equation, its solutions form an EDT0L language effectively representable in NSPACE(n log n). In particular, we give an effective description of the set of all solutions for equations with constraints in free partially commutative monoids and groups
    corecore