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Abstract. Let Γ be a finite graph and G be the corresponding free
partially commutative group. In this paper we study subgroups gen-
erated by vertices of the graph Γ, which we call canonical parabolic
subgroups. A natural extension of the definition leads to canonical
quasiparabolic subgroups. It is shown that the centralisers of sub-
sets of G are the conjugates of canonical quasiparabolic centralisers
satisfying certain graph theoretic conditions.

1. Preliminaries

Free partially commutative groups arise naturally in many branches of
mathematics and computer science and consequently have many aliases:
they are known as semifree groups [1, 2], graph groups [14, 22, 24, 26, 31, 33],
right-angled Artin groups [4, 5, 6, 8, 10, 23, 30, 35], trace groups [13, 29],
locally free groups [9, 28, 34] and of course (free) partially commutative
groups [3, 7, 11, 12, 15, 17, 18, 21, 25, 27, 32]. we refer the reader to [5,
21, 13, 22] for further references, more comprehensive surveys, introductory
material and discussion of the various manifestations of these groups.

In this section we give a brief overview of some definitions and results
from [21, 20]. We begin with the basic notions of the theory of free partially
commutative groups: which, for the sake of brevity we refer to simply as
partially commutative groups. Let Γ be a finite, undirected, simple graph.
Let X = V (Γ) = {x1, . . . , xn} be the set of vertices of Γ and let F (X) be
the free group on X. Let

R={[xi, xj ]∈F (X) | xi, xj ∈X and there is an edge of Γ joining xi to xj}.
We define the partially commutative group with (commutation) graph Γ to
be the group G(Γ) with presentation 〈X | R〉. When the underlying graph
is clear from the context we write simply G.
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Denote by l(g) the minimum of the lengths words that represents the
element g. If w is a word representing g and w has length l(g) we call w
a minimal form for g. When the meaning is clear we shall say that w is a
minimal element of G when we mean that w is a minimal form of an element
of G. We say that w ∈ G is cyclically minimal if and only if

l(g−1wg) ≥ l(w)

for every g ∈ G. We write u◦w to express the fact that l(uw) = l(u)+ l(w),
where u,w ∈ G. We will need the notions of a divisor and the greatest
divisor of a word w with respect to a subset Y ⊆ X, defined in [21]. Let u
and w be elements of G. We say that u is a left (right) divisor of w if there
exists v ∈ G such that w = u ◦ v (w = v ◦ u). We order the set of all left
(right) divisors of a word w as follows. We say that u2 is greater than u1 if
and only if u1 left (right) divides u2. It is shown in [21] that, for any w ∈ G
and Y ⊆ X, there exists a unique maximal left divisor of w which belongs
to the subgroup G(Y ) < G which is called the greatest left divisor gdl

Y (w)
of w in Y . The greatest right divisor of w in Y is defined analogously. We
omit the indices when no ambiguity occurs.

The non-commutation graph of the partially commutative group G(Γ) is
the graph ∆, dual to Γ, with vertex set V (∆) = X and an edge connecting
xi and xj if and only if [xi, xj ] 6= 1. The graph ∆ is a union of its connected
components ∆1, . . . , ∆k and words that depend on letters from distinct
components commute. For any graph Γ, if S is a subset of V (Γ) we shall
write Γ(S) for the full subgraph of Γ with vertices S. Now, if the vertex set
of ∆k is Ik and Γk = Γ(Ik) then G = G(Γ1) × · · · × G(Γk). For g ∈ G let
α(g) be the set of elements x of X such that x±1 occurs in a minimal word
w representing g. It is shown in [21] that α(g) is well-defined. Now suppose
that the full subgraph ∆(α(w)) of ∆ with vertices α(w) has connected
components ∆1, . . . , ∆l and let the vertex set of ∆j be Ij . Then, since
[Ij , Ik] = 1, we can split w into the product of commuting words, w =
w1 ◦ · · · ◦ wl, where wj ∈ G(Γ(Ij)), so [wj , wk] = 1 for all j, k. If w is
cyclically minimal then we call this expression for w a block decomposition
of w and say wj a block of w, for j = 1, . . . , l. Thus w itself is a block if and
only if ∆(α(w)) is connected. In general let v be an element of G which is
not necessarily cyclically minimal. We may write v = u−1 ◦ w ◦ u, where w
is cyclically minimal and then w has a block decomposition w = w1 · · ·wl,
say. Then wu

j = u−1 ◦ wj ◦ u and we call the expression v = wu
1 · · ·wu

l the
block decomposition of v and say that wu

j is a block of v, for j = 1, . . . , l.
Note that this definition is slightly different from that given in [21].
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Let Y and Z be subsets of X. As in [20] we define the orthogonal com-
plement of Y in Z to be

OZ(Y ) = {u ∈ Z|d(u, y) ≤ 1, for all y ∈ Y }.
By convention we set OZ(∅) = Z. If Z = X we call OX(Y ) the orthogonal
complement of Y , and if no ambiguity arises then we write Y ⊥ instead of
OX(Y ) and x⊥ for {x}⊥. Let CS(Γ) be the set of all subsets Z of X of the
form Y ⊥ for some Y ⊆ X. The set CS(Γ) is shown in [20] to be a lattice,
the lattice of closed sets of Γ.

The centraliser of a subset S of G is

C(S) = CG(S) = {g ∈ G : gs = sg, for all s ∈ S}.
The set C(G) of centralisers of a group is a lattice. An element g ∈ G is
called a root element if g is not a proper power of any element of G. If
h = gn, where g is a root element and n ≥ 1, then g is said to be a root of h.
As shown in [16] every element of the partially commutative group G has a
unique root, which we denote r(g). If w ∈ G define A(w) = 〈Y 〉 = G(Y ),
where Y = α(w)⊥ \ α(w). Let w be a cyclically minimal element of G with
block decomposition w = w1 · · ·wk and let vi = r(wi). Then, from [16,
Theorem 3.10],

(1.1) C(w) = 〈v1〉 × · · · × 〈vk〉 ×A(w).

We shall use [19, Corollary 2.4] several times in what follows, so for ease of
reference we state it here: first recalling the necessary notation. It follows
from [19, Lemma 2.2] that if g is a cyclically minimal element of G and
g = u ◦ v then vu is cyclically minimal. For a cyclically minimal element
g ∈ G we define g̃ = {h ∈ G|h = vu, for some u, v such that g = u ◦ v}.
(We allow u = 1, v = g so that g ∈ g̃.)

Lemma 1.1. [19, Corollary 2.4] Let w, g be (minimal forms of) elements
of G and w = u−1 ◦ v ◦ u, where v is cyclically minimal. Then there exist
minimal forms a, b, c, d1, d2 and e such that g = a ◦ b ◦ c ◦d2, u = d1 ◦a−1,
d = d1◦d2, wg = d−1◦e◦d, ẽ = ṽ, e = vb, α(b) ⊆ α(v) and [α(b◦c), α(d1)] =
[α(c), α(v)] = 1.

Figure 1 expresses the conclusion of Lemma 1.1 as a Van Kampen dia-
gram. In this diagram we have assumed that v = b ◦ f and so e = f ◦ b.
The regions labelled B are tessellated using relators corresponding to the
relation [α(b ◦ c), α(d1)] = 1 and the region labelled A with relators corre-
sponding to [α(c), α(v)] = 1. Reading anticlockwise from the vertex labelled
0 the boundary label of the exterior region is g−1wg and the label of the
interior region (not labelled A or B) is ed.



4 A. J. DUNCAN, I. V. KAZACHKOV, AND V. N. REMESLENNIKOV

A

B B

d2

d1

f b

d1

b

b

c

c

c aa

b

f

c

b

d1

0

d2

d1
PSfrag replacements

a
b
c

d1

d2

f

0
A
B

Figure 1.1. A Van Kampen diagram for Lemma 1.1

2. Parabolic Subgroups

2.1. Parabolic and Block-Homogeneous Subgroups. As usual let Γ
be a graph with vertices X and G = G(Γ). If Y is a subset of X denote
by Γ(Y ) the full subgraph of Γ with vertices Y . Then G(Γ(Y )) is the free
partially commutative group with graph Γ(Y ). As Baudisch [1] observed
G(Γ(Y )) is the subgroup 〈Y 〉 of G(Γ) generated by Y . We call G(Γ(Y ))
a canonical parabolic subgroup of G(Γ) (in keeping with the terminology
for analogous subgroups of Coxeter groups) and, when no ambiguity arises,
denote it G(Y ). Note that such subgroups are called graphical in [31], full in
[23] and special in [5]. The elements of Y are termed the canonical generators
of G(Y ).

Definition 2.1. A subgroup P of G is called parabolic if it is conjugate to
a canonical parabolic subgroup G(Y ) for some Y ⊆ X. The rank of P is
the cardinality |Y | and Y is called a set of canonical generators for P .

To see that the definition of rank of a parabolic subgroup is well defined
note that if Y, Z ⊆ X and G(Y ) = G(Z)g, for some g ∈ G, then we have
y = g−1wyg, for some wy ∈ G(Z), for all y ∈ Y . It follows, from [21,
Lemma 2.5], by counting the exponent sums of letters in a geodesic word
representing g−1wg, that y ∈ α(wy), so y ∈ Z. Hence Y ⊆ Z and similarly
Z ⊆ Y so Y = Z.
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Definition 2.2. A subgroup H is called block-homogeneous if, for all h ∈
H, if h has block decomposition h = w1w2 . . . wk then wi ∈ H, for i =
1, . . . , k.

Lemma 2.3. An intersection of block-homogeneous subgroups is again a
block-homogeneous subgroup. If H is block-homogeneous and g ∈ G then
Hg is block-homogeneous. In particular parabolic subgroups are block-homo-
geneous.

Proof. The first statement follows directly from the definition. Let H be
block-homogeneous and g ∈ G and let wg ∈ Hg, where w ∈ H. Write
w = u−1 ◦ v ◦ u, where v is cyclically reduced and has block-decomposition
v = v1 · · · vk. Then the blocks of w are vu

j , so vu
j ∈ H, for j = 1, . . . , k. From

Lemma 1.1 there exist a, b, c, d1, d2, e such that g = a◦b◦c◦d2, u = d1◦a−1,
d = d1◦d2, wg = d−1◦e◦d, ẽ = ṽ, e = vb, α(b) ⊆ α(v) and [α(b◦c), α(d1)] =
[α(c), α(v)] = 1. As ẽ = ṽ it follows that ∆(α(e)) = ∆(α(v)) so e has
block-decomposition e = e1 · · · ek, where ẽj = ṽj . Therefore wg has block-
decomposition wg = ed = ed

1 · · · ed
k. Moreover e = vb so ej = vb

j . Thus

ed
j = ecd

j = vbcd
j = vd1bcd2

j = vug
j ∈ Hg,

which implies that Hg is block-homogeneous. It follows from [21, Lemma
2.5] that any canonical parabolic subgroup is block-homogeneous and this
gives the final statement. ¤

2.2. Intersections of parabolic subgroups. In this section we show that
an intersection of parabolic subgroups is again a parabolic subgroup. To
begin with we establish some preliminary results.

Lemma 2.4. Let Y,Z ⊆ X, let w ∈ G(Y ) and let g ∈ G(X) be such that

gd l
Y (g) = gd r

Z(g) = 1.

(1) If wg ∈ G(Z) then g ∈ A(w) and w ∈ G(Y ) ∩G(Z) = G(Y ∩ Z).
(2) If Y = Z and g ∈ C(w) then g ∈ A(w).

Proof. For 1, in the notation of Lemma 1.1 we have w = u−1 ◦ v ◦ u,
wg = d−1

2 ◦ d−1
1 ◦ e ◦ d1 ◦ d2 and g = a ◦ b ◦ c ◦ d2. Applying the conditions

of this Lemma we obtain a = b = d2 = 1, u = d1 and e = v so wg = w
and g = c. Moreover, from Lemma 1.1 again we obtain [α(g), α(w)] = 1. If
x ∈ α(w) ∩ α(g) this means that g = x ◦ g′, with x ∈ Y , contradicting the
hypothesis on g. Hence α(w)∩α(g) = ∅ and g ∈ A(w). Statement 2 follows
from 1. ¤

Corollary 2.5. Let Y, Z ⊆ X and g ∈ G. If G(Y )g ⊆ G(Z) and gdl
Y ⊥(g) =

1 then Y ⊆ Z and α(g) ⊆ Z.



6 A. J. DUNCAN, I. V. KAZACHKOV, AND V. N. REMESLENNIKOV

Proof. Assume first that gdl
Y (g) = gdr

Z(g) = 1. Let y ∈ Y and w = y in
Lemma 2.4; so yg ∈ G(Z) implies that g ∈ A(y) and y ∈ Z. This holds for
all y ∈ Y so we have Y ⊆ Z and g ∈ A(Y ). Hence, in this case, g = 1.
Now suppose that g = g1 ◦ d, where g1 = gdl

Y (g). Then gdl
Y ⊥(g) = 1

implies that gdl
Y ⊥(d) = 1. Now write d = e ◦ g2, where g2 = gdr

Z(d).
Then G(Y )g = G(Y )d and G(Y )d = G(Z) implies G(Y )e = G(Z). As
gdl

Y ⊥(d) = 1 the same is true of e and from the above we conclude that
e = 1 and that Y ⊆ Z. Now g = g1 ◦ g2, where α(g1) ⊆ Y ⊆ Z and
α(g2) ⊆ Z. Thus α(g) ⊆ Z, as required. ¤

Proposition 2.6. Let P1 and P2 be parabolic subgroups. Then P = P1∩P2

is a parabolic subgroup. If P1 * P2 then the rank of P is strictly smaller
than the rank of P1.

This lemma follows easily from the next more technical result.

Lemma 2.7. Let Y, Z ⊂ X and g ∈ G. Then

G(Y ) ∩G(Z)g = G(Y ∩ Z ∩ T )g2 ,

where g = g1 ◦ d ◦ g2, gdl
Z(d) = gdr

Y (d) = 1, g1 ∈ G(Z), g2 ∈ G(Y ) and
T = α(d)⊥.

Derivation of Proposition 2.6 from Lemma 2.7. Let P1 = G(Y )a and P2 =

G(Z)b, for some a, b ∈ G. Then P =
(
G(Y ) ∩G(Z)ba−1

)a

, which is para-

bolic since Lemma 2.7 implies that G(Y ) ∩G(Z)ba−1
is parabolic. Assume

that the rank of P is greater than or equal to the rank of P1. Let g = ba−1.
The rank of P is equal to the rank of G(Y ) ∩ G(Z)g and, in the notation
of Lemma 2.7, G(Y ) ∩ G(Z)g = G(Y ∩ Z ∩ T )g2 , where g = g1 ◦ d ◦ g2,
with T = α(d)⊥, g2 ∈ G(Y ) and g1 ∈ G(Z). Therefore Y ⊆ Y ∩ Z ∩ T
which implies Y ⊆ Z ∩ T . Thus G(Y ) ⊆ G(Z ∩ T ) = G(Z ∩ T )d so
G(Y ) = G(Y )g2 ⊆ G(Z ∩ T )dg2 ⊆ G(Z)dg2 = G(Z)g. Hence P1 ⊆ P2. ¤

Proof of Lemma 2.7. Let g1 = gdl
Z(g) and write g = g1 ◦ g′. Let g2 =

gdr
Y (g′) and write g′ = d ◦ g2. Then g1, g2 and d satisfy the conditions

of the lemma. Set T = α(d)⊥. As G(Y ) ∩ G(Z)g = G(Y ) ∩ G(Z)dg2 =
G(Y )g2 ∩ G(Z)dg2 =

(
G(Y ) ∩G(Z)d

)g2 it suffices to show that G(Y ) ∩
G(Z)d = G(Y ∩Z∩T ). If d = 1 then T = X and G(Y )∩G(Z) = G(Y ∩Z),
so the result holds. Assume then that d 6= 1. Let p = wd ∈ G(Y ) ∩G(Z)d,
with w ∈ G(Z). Applying Lemma 2.4 to wd ∈ G(Y ) we have d ∈ A(w)
and w ∈ G(Z) ∩ G(Y ) = G(Y ∩ Z). Thus w ∈ α(d)⊥ = T and so w ∈
G(Y ∩ Z ∩ T ). This shows that G(Y ) ∩G(Z)d ⊆ G(Y ∩ Z ∩ T ) and as the
reverse inclusion follows easily the proof is complete. ¤



SUBGROUPS OF FREE PARTIALLY COMMUTATIVE GROUPS 7

Proposition 2.8. The intersection of parabolic subgroups is a parabolic sub-
group and can be obtained as an intersection of a finite number of subgroups
from the initial set.

Proof. In the case of two parabolic subgroups the result follows from Propo-
sition 2.6. Consequently, the statement also holds for a finite family of
parabolic subgroups. For the general case we use Proposition 2.6 again,
noting that a proper intersection of two parabolic subgroups is a parabolic
subgroup of lower rank, and the result follows. ¤

As a consequence of this Proposition we obtain: given two parabolic
subgroups P and Q the intersection R of all parabolic subgroups containing
P and Q is the unique minimal parabolic subgroup containing both P and
Q. Define P ∨Q = R and P ∧Q = P ∩Q.

Corollary 2.9. The parabolic subgroups of G with the operations ∨ and ∧
above form a lattice.

2.3. The Lattice of Parabolic Centralisers. Let Z ⊆ X. Then the
subgroup CG(Z)g is called a parabolic centraliser. As shown in [20, Lemma
2.3] every parabolic centraliser is a parabolic subgroup: in fact CG(Z)g =
G(Z⊥)g. The converse also holds as the following proposition shows.

Proposition 2.10. A parabolic subgroup G(Y )g, Y ⊆ X is a centraliser
if and only if there exists Z ⊆ X so that Z⊥ = Y . In this case G(Y )g =
CG(Zg).

Proof. It suffices to prove the proposition for g = 1 only. Suppose that
there exists such a Z. It is then clear that G(Y ) ⊆ CG(Z). If w ∈ G, w is a
reduced word and α(w) * Y then there exists x ∈ α(w) and z ∈ Z so that
[x, z] 6= 1 and consequently, by [21, Lemma 2.4], [w, z] 6= 1. Assume further
that G(Y ) is a centraliser of a set of elements w1, . . . , wk written in a reduced
form. Since for any y ∈ Y holds [y, wi] = 1 then again, by [21, Lemma 2.4],

[y, α(wi)] = 1. Denote Z =
k⋃

i=1

α(wi). We have [y, z] = 1 for all z ∈ Z and

consequently Y ⊆ Z⊥. Conversely if x ∈ Z⊥ then x ∈ CG(w1, . . . , wk) so
x ∈ Y . ¤

We now introduce the structure of a lattice on the set of all parabolic
centralisers. As we have shown above the intersection of two parabolic
subgroups is a parabolic subgroup. So, we set P1 ∧ P2 = P1 ∩ P2. The
most obvious way to define P1 ∨ P2 would be to set P1 ∨ P2 = 〈P1, P2〉.
However, in this case P1 ∨ P2 is not necessarily a centraliser, though it
is a parabolic subgroup. For any S ⊆ G we define the S = ∩{P : P
is a parabolic centraliser and S ⊆ P}. Then S is the minimal parabolic
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centraliser containing S; since intersections of centralisers are centralisers
and intersections of parabolic subgroups are parabolic subgroups. We now
define P1 ∨ P2 = 〈P1, P2〉.

3. Quasiparabolic subgroups

3.1. Preliminaries. As before let Γ be a finite graph with vertex set X
and G = G(Γ) be the corresponding partially commutative group.

Definition 3.1. Let w be a cyclically minimal root element of G with block
decomposition w = w1 · · ·wk and let Z be a subset of X such that Z ⊆
α(w)⊥. Then the subgroup Q = Q(w, Z) = 〈w1〉 × · · · × 〈wk〉 × G(Z) is
called a canonical quasiparabolic subgroup of G.

Note that we may choose w = 1 so that canonical parabolic subgroups
are canonical quasiparabolic subgroups. Given a canonical quasiparabolic
subgroup Q(w, Z), with w and Z as above, we may reorder the wi so that
l(wi) ≥ 2, for i = 1, . . . , s and l(wi) = 1, for i = s + 1, . . . , k. Then setting
w′ = w1 · · ·ws and Z ′ = Z ∪ {ws+1, . . . , wk} we have Z ′ ⊆ α(w)⊥ and
Q(w, Z) = Q(w′, Z ′). This prompts the following definition.

Definition 3.2. We say that a canonical quasiparabolic subgroup Q =
〈w1〉 × · · · × 〈wk〉 × G(Z) is written in standard form if |α(wi)| ≥ 2, i =
1, . . . , k, or w = 1.

There are two obvious advantages to the standard form which we record
in the following lemma.

Lemma 3.3. The standard form of a canonical quasiparabolic subgroup Q
is unique, up to reordering of blocks of w. If Q(w, Z) is the standard form
of Q then Z ⊆ α(w)⊥ \ α(w).

Proof. That the standard form is unique follows from uniqueness of roots
of elements in partially commutative groups. The second statement follows
directly from the definitions. ¤
Definition 3.4. A subgroup H of G is called quasiparabolic if it is conjugate
to a canonical quasiparabolic subgroup.

Let H = Qg be a quasiparabolic subgroup of G, where Q is the canonical
quasiparabolic subgroup of G in standard form

Q = 〈w1〉 × · · · × 〈wk〉 ×G(Z).

We call (|Z|, k) the rank of H. We use the left lexicographical order on ranks
of quasiparabolic subgroups: if H and K are quasiparabolic subgroups of
ranks (|ZH |, kH) and (|ZK |, kK), respectively, then rank(H) < rank(K) if
(|ZH |, kH) precedes (|ZK |, kK) in left lexicographical order.
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The centraliser CG(g) of an element g ∈ G is a typical example of a
quasiparabolic subgroup [16]. We shall see below (Theorem 3.12) that the
centraliser of any set of elements of the group G is a quasiparabolic sub-
group.

Lemma 3.5. A quasiparabolic subgroup is a block-homogeneous subgroup
and consequently any intersection of quasiparabolic subgroups is again block-
homogeneous.

Proof. Let Q(w, Z) be a canonical quasiparabolic subgroup. Since w is a
cyclically minimal root element it follows that Q(w,Z) is block-homogene-
ous. An application of Lemma 2.3 then implies Q(w, Z)g is also block-homo-
geneous. ¤

We shall need the following lemma in Section 4.

Lemma 3.6. Let Q1 = Q(u, Y ) and Q2 = Q(v, Z) be canonical quasipar-
abolic subgroups in standard form and let g ∈ G. If Qg

2 ⊆ Q1, g ∈ G(Z⊥)
and gdr

Y (g) = 1 then Qg
2 is a canonical quasiparabolic subgroup.

Proof. Let u and v have block decompositions u = u1 · · ·uk and v = v1 · · · vl,
respectively. As g ∈ G(Z⊥) we have

Qg
2 = 〈vg

1〉 × · · · × 〈vg
l 〉 ×G(Z).

Therefore, for j = 1, . . . , l, either vg
j = ui for some i = 1, . . . , k, or vg

j ∈
G(Y ). If vg

j = ui then vg
j is a cyclically minimal root element. If, on the

other hand, vg
j ∈ G(Y ) then, from Lemma 1.1, there exist elements b, c, d

and e such that g = b ◦ c ◦ d, vg
j = d−1 ◦ e ◦ d and e = vb

j is a cyclically
minimal root element. As vg

j ∈ G(Y ) and gdr
Y (g) = 1 we have d = 1 and so

vg
j = e and is a cyclically minimal root element. Therefore Qg

2 is a canonical
quasiparabolic subgroup. ¤
3.2. Intersections of Quasiparabolic Subgroups. The main result of
this section is the following

Theorem 3.7. An intersection of quasiparabolic subgroups is a quasipar-
abolic subgroup.

We shall make use of the following results.

Lemma 3.8. Let A = A1 × · · · × Al and B = B1 × · · · × Bk, Ai, Bj, i =
1, . . . , l, j = 1, . . . , k be block-homogeneous subgroups of G and C = A ∩B.
Then

C =
∏

i = 1, . . . , l;
j = 1, . . . , k

(Ai ∩Bj).
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Proof. If C = 1 then the result is straightforward. Assume then that C 6= 1,
w ∈ C and w 6= 1 and let w = w1 . . . wt be the block decomposition of w.
Since C is a block-homogeneous subgroup, wi ∈ C, i = 1, . . . , t. As wi is
a block element we have wi ∈ Ar and wi ∈ Bs and consequently wi lies
in

∏
i,j(Ai ∩ Bj). As it is clear that C ≥ ∏

i,j(Ai ∩ Bj) this proves the
lemma. ¤

Lemma 3.9. Let Z ⊆ X, w ∈ G(Z), g ∈ G. Suppose that u = g−1wg is
cyclically minimal and gdl

α(w)(g) = 1, then g and w commute.

Proof. Let g = d ◦ g1, where d = gdl
α(w)⊥(g). If g1 = 1 then g ∈ C(w).

Suppose g1 6= 1. Then gdl
α(w)(g1) = 1 so we write g1 = x ◦ g2, where

x ∈ (X ∪ X−1) \ (α(w) ∪ α(w)⊥) and thus u = g−1
2 x−1wxg2 is written in

geodesic form. This is a contradiction for l(w) < l(u). ¤

Lemma 3.10. Let

Q1 = 〈u1〉 × · · · × 〈ul〉 ×G(Y ) and Q2 = 〈v1〉 × · · · × 〈vk〉 ×G(Z)

be canonical quasiparabolic subgroups in standard form and let g ∈ G such
that gdl

Z(g) = 1. Write g = d ◦ h, where h = gdr
Y (g) and set T = α(d)⊥.

Then, after reordering the ui and vj if necessary, there exist m, s, t such
that

(3.1) Q1 ∩Qg
2 =




s∏

i=1

〈vi〉 ×
t∏

i=s+1

〈vi〉 ×
m∏

j=s+1

〈ui〉 ×G(Y ∩ Z ∩ T )




g

and

(i) 〈ui〉 = 〈vi〉g, for i = 1, . . . , s;
(ii) 〈vi〉g ⊆ G(Y ), for i = s + 1, . . . , t; and
(iii) 〈ui〉 ⊆ G(Z), for i = s + 1, . . . ,m.

Proof. As Q1 ∩Qg
2 = (Q1 ∩Qd

2)
h we may assume that h = 1 and d = g, so

gdr
Y (g) = 1. As Q1 and Qg

2 are block-homogeneous we may apply Lemma
3.8 to compute their intersection. Therefore we consider the various possible
intersections of factors of Q1 and Qg

2.

(i) If 〈ui〉 ∩ 〈vj〉g 6= 1 then, as ui and vj are root elements, 〈ui〉 = 〈vj〉g.
Suppose that this is the case for u1, . . . us and v1, . . . , vs and that
〈ui〉 ∩ 〈vj〉g = 1, if i > s or j > s.

(ii) If 〈vj〉g ∩G(Y ) 6= 1 then, since vj is cyclically minimal, 〈vj〉g ⊂ G(Y ).
This cannot happen if j ≤ s so suppose it is the case for vs+1, . . . , vt,
and that 〈vj〉g ∩G(Y ) = 1, for j > t.
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(iii) If 〈ui〉 ∩ G(Z)g 6= 1 then ui = wg, w ∈ G(Z) and by Lemma 3.9, w
and g commute so does ui = w = ug

i . This cannot happen if i ≤ s so
suppose that it’s the case for us+1, . . . , um, and not for i > m.

(iv) Finally, using Lemma 2.7 and the assumption that gdr
Y (g) = gdl

Z(g) =
1, we have G(Y ) ∩ G(Z)g = G(Y ∩ Z ∩ T ) = G(Y ∩ Z ∩ T )g, where
T = α(g)⊥.

Combining these intersections (3.1) follows from Lemma 3.8. ¤

Corollary 3.11. Let H1 and H2 be quasiparabolic subgroups of G then
H1 ∩H2 is quasiparabolic and rank(H1 ∩H2) ≤ min{rank(H1), rank(H2)}.

Proof. Let H1 = Qf
1 and H2 = Qg

2, where Q1 = Q(u, Y ) and Q2 = Q(v, Z)
are quasiparabolic subgroups in standard form, as in Lemma 3.10. As in the
proof of Proposition 2.6 we may assume that f = 1 and gdl

Z(g) = 1 and so
Lemma 3.10 implies H1∩H2 is quasiparabolic. If rank(H1∩H2) ≥ rank(H1)
then |Y | ≤ |Y ∩Z∩T | so Y ⊆ Z∩T . In this case (ii) of Lemma 3.10 cannot
occur. Therefore, in the notation of Lemma 3.10, rank(H1 ∩H2) = s + m.
If rank(H1 ∩H2) ≥ rank(H1) then s + m ≥ l which implies m = l − s and
so ui ∈ G(Z)g, for i = s + 1, . . . , l. As ui = vg

i , for i = 1, . . . , s it follows
that H1 ⊆ H2. ¤

Proof of Theorem 3.7. Given Corollary 3.11 the intersection of an infinite
collection of quasiparabolic subgroups is equal to the intersection of a finite
sub-collection. From Corollary 3.11 again such an intersection is quasipar-
abolic and the result follows. ¤

3.3. A Criterion for a Subgroup to be a Centraliser.

Theorem 3.12. A subgroup H of G is a centraliser if and only if the two
following conditions hold.

(1) H is conjugate to some canonical quasiparabolic subgroup Q.
(2) If Q is written in standard form

Q = 〈w1〉 × · · · × 〈wk〉 ×G(Y ),

where w = w1 . . . wk is the block decomposition of a cyclically min-
imal element w, wi is a root element and |α(wi)| ≥ 2, i = 1, . . . , k,
then

Y ∈ CS(Γ) and Y ∈ CS(Γw) where Γw = Γ(α(w)⊥ \ α(w)).
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Proof. Let H = C(u1, . . . , ul). Then H =
k⋂

i=1

C(ui) and we may assume

that each ui is a block root element. Since C(ui) is a quasiparabolic sub-
group, then by Theorem 3.7, H is also a quasiparabolic subgroup and is con-
jugate to a canonical quasiparabolic subgroup Q = 〈w1〉×· · ·×〈wk〉×G(Y )
written in standard form. Thus condition 1 is satisfied.

Then H = Qg and, after conjugating all the ui’s by g−1 we have a
centraliser Hg−1

= Q. Thus we may assume that H = Q. Let w = w1 · · ·wk,

set Z = α(w)⊥ \ α(w) and T =
l⋃

i=1

α(ui). As w has block decomposition

w = w1 · · ·wk we have C(w) = 〈w1〉 × · · · × 〈wk〉 × G(Z). For all y ∈ Y
we have y ∈ C(ui) so and thus y ∈ C(α(ui)) and Y ⊆ T⊥. Conversely if
y ∈ T⊥ then y ∈ C(ui) so y ∈ Q and, by definition of standard form, y ∈ Y .
Therefore Y = T⊥. It follows that Y ∈ CS(Γ) and since by Lemma 3.3 we
have Y ∩ α(w) = ∅ we also have Y ⊆ Z.

It remains to prove that Y ∈ CS(Γw) = CS(Γ(Z)). Set W = α(w). We

show that T ∪Z ⊆ W ∪Z. Take t ∈ T =
l⋃

i=1

α(ui), t /∈ W and suppose that

t ∈ α(um). Since w ∈ C(ui), we have um ∈ C(w) = 〈w1〉×· · ·×〈wk〉×G(Z).
Now um is a root block element and C(w) is a block-homogeneous subgroup
so if um = w±1

j for some j then t ∈ W = α(w), contrary to the choice of t.
Therefore um ∈ G(Z), so t ∈ Z and T ∪ Z ⊆ W ∪ Z, as claimed.

Assume now that Y /∈ CS(Γ(Z)). In this case there exists an element
z ∈ Z \ Y such that z ∈ clZ(Y ). Since z /∈ Y = T⊥, there exists um such
that [um, z] 6= 1 and so there exists t ∈ α(um) such that [t, z] 6= 1. As
[z, W ] = 1, we have t /∈ W and since W ∪ Z ⊇ T ∪ Z, we get t ∈ Z. This
together with t ∈ α(um) ⊆ Y ⊥ implies that t ∈ OZ(Y ). Since [z, t] 6= 1, we
obtain z /∈ clZ(Y ), in contradiction to the choice of z. Hence clZ(Y ) = Y
and Y ∈ CS(Γ(Z)).

Conversely, let Q = 〈w1〉×· · ·×〈wk〉×G(Y ) be a canonical quasiparabolic
subgroup written in the standard form, Y ∈ CS(X) and Y ∈ CS(Γ(Z)),
where Z = α(w)⊥ \ α(w). We shall prove that Q = C(w, z1, . . . , zl), where
z1, . . . , zl are some elements of Z. If Y = Z then Q = C(w). If Y ( Z then,
since Y = clZ(Y ), there exist z1, u ∈ Z so that z1 ∈ OZ(Y ) and [z1, u] 6= 1.
In which case C(w, z1) = 〈w1〉× · · ·× 〈wk〉×G(Y1), Y ⊆ Y1 ( Z (the latter
inclusion is strict for u /∈ Y1). If Y1 = Y then Q = C(w, z1), otherwise
iterating the procedure above, the statement follows. ¤

A centraliser which is equal to a canonical quasiparabolic subgroup is
called a canonical quasiparabolic centraliser.
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4. Height of the Centraliser Lattice

In this section we will give a new shorter proof of the main theorem of
[19].

Theorem 4.1. Let G = G(Γ) be a free partially commutative group, let
C(G) be its centraliser lattice and let L = CS(Γ) be the lattice of closed sets
of Γ. Then the height h(C(G)) = m equals the height h(L) of the lattice of
closed sets L.

In order to prove this theorem we introduce some notation for the various
parts of canonical quasiparabolic subgroups.

Definition 4.2. Let Q = 〈w1〉× · · · × 〈wk〉×G(Z) be a quasiparabolic sub-
group in standard form. Define the block set of Q to be B(Q) = {w1 . . . , wk}
and the parabolic part of Q to be P(Q) = G(Z). Let Q′ be a quasiparabolic
subgroup with block set 〈v1〉 × · · · × 〈vl〉 and parabolic part G(Y ). Define
the block difference of Q and Q′ to be b(Q,Q′) = |B(Q) \ B(Q′)|, that is
the number of blocks occurring in the block set of Q but not Q′. Define the
parabolic difference of Q and Q′ to be p(Q,Q′) = |Z \ Y |.

The following lemma is the key to the proof of the theorem above.

Lemma 4.3. Let C and D be canonical quasiparabolic centralisers such
that C > D and b = b(D,C) > 0. Then p(C, D) > 0 and there exists a
strictly descending chain of canonical parabolic centralisers

(4.1) P(C) > Cb > · · · > C1 > P(D)

of length b + 1.

Proof. Let C and D have parabolic parts P(C) = G(Y ) and P(D) = G(Z),
for closed subsets Y and Z in CS(Γ). Let the block sets of C and D be
B(C) = {u1, . . . , uk} and B(D) = {v1, . . . , vl}. Fix i with 1 ≤ i ≤ l. As
D < C, either 〈vi〉 = 〈uj〉, for some j, or 〈vi〉 ⊆ G(Y ). As b(D,C) > 0 there
exists i such that 〈vi〉 ⊆ G(Y ). Moreover, for such i, we have α(vi) ⊆ Y \Z,
so p(C, D) > 0.

Assume that, after relabelling if necessary, 〈vi〉 = 〈ui〉, for i = 1, . . . , s,
and that 〈vs+1〉, . . . , 〈vl〉 ⊆ G(Y ), so b = l − s. Choose ti ∈ α(vs+i) and let
Yi = cl(Z∪{t1, . . . , ti}), for i = 1, . . . , l−s = b. Let Ci = G(Yi) = CG(Y ⊥

i ),
so Ci is a canonical parabolic centraliser. We claim that the chain (4.1) is
strictly descending. To begin with, as t1 ∈ Y1 \Z we have G(Z) < C1. Now
fix i and n such that 1 ≤ i < n ≤ b. If a ∈ α(vs+n) then a ∈ Z⊥ and
a ∈ α(vs+j)⊥ ⊆ t⊥j , for 1 ≤ j < n, by definition of the standard form of
quasiparabolic subgroups. Hence a ∈ (Z ∪ {t1, . . . , ti})⊥. Thus [a, b] = 1,
for all b ∈ Yi. This holds for all a ∈ α(vs+n) so Yi ⊆ α(vs+n)⊥. As vs+n is a
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block of length at least 2 we have α(vs+n)∩α(vs+n)⊥ = ∅, so Yi∩α(vs+n) =
∅. Hence tn /∈ Yi and it follows that Ci < Ci+1, i = 1, . . . , b−1. Now choose
c ∈ α(vs+1) such that [c, t1] 6= 1. Then c ∈ Y , as α(vs+1) ⊆ Y , however
c /∈ Yb, since t1 ∈ Z⊥ ∩ t⊥1 ∩ · · · ∩ t⊥b = Y ⊥

b and Yb = Y ⊥⊥
b . As D < C we

have Z ⊆ Y so Cb = G(Yb) < G(Y ). ¤

We can use this lemma to prove the following about chains of canonical
quasiparabolic subgroups.

Lemma 4.4. Let C0 > · · · > Cd be a strictly descending chain of canoni-
cal quasiparabolic centralisers such that C0 and Cd are canonical parabolic
centralisers. Then there exists a strictly descending chain C0 > P1 > · · · >
Pd−1 > Cd, of canonical parabolic centralisers.

Proof. First we divide the given centraliser chain into types depending on
block differences. Then we replace the chain with a chain of canonical
parabolic centralisers, using Lemma 4.3. A simple counting argument shows
that the new chain has length at least as great as the old one. In detail let
I = {0, . . . , d− 1} and

I+ = {i ∈ I : b(Ci+1, Ci) > 0},
I0 = {i ∈ I : b(Ci+1, Ci) = 0 and p(Ci, Ci+1) > 0} and

I− = {i ∈ I : b(Ci+1, Ci) = p(Ci, Ci+1) = 0}.

Then I = I+ t I0 t I−. For i ∈ I+ let ∆i be the strictly descending chain
of canonical parabolic centralisers of length b(Ci+1, Ci) + 1 from P(Ci)
to P(Ci+1), constructed in Lemma 4.3. For i ∈ I0 let ∆i be the length
one chain P(Ci) > P(Ci+1) and for i ∈ I− let ∆i be the length zero
chain P(Ci) = P(Ci+1). This associates a chain ∆i of canonical para-
bolic centralisers to each i ∈ I and we write li for the length of ∆i. If
∆i = P0 > · · · > Pli and ∆i+1 = P ′0 > · · · > P ′li+1

then by definition
Pli = P ′0, for i = 1, . . . , d − 1. We may therefore concatenate ∆i and ∆i+1

to give a chain of canonical parabolic centralisers

P0 > · · · > Pli = P ′0 > · · · > P ′li+1

of length li + li+1. Concatenating ∆1, . . . , ∆d−1 in this way we obtain a
strictly descending chain of canonical parabolic centralisers of length l =∑d−1

i=0 li. Moreover

l =
∑

i∈I+

b(Ci+1, Ci) + |I+|+ |I0|,
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since li = b(Ci+1, Ci) + 1, for all i ∈ I+, li = 1, for all i ∈ I0 and li = 0, for
all li ∈ I−. As |I| = d we have now

l − d =
∑

i∈I+

b(Ci+1, Ci)− |I−|.

To complete the argument we shall show that
∑

i∈I+

b(Ci+1, Ci) = | ∪d
i=0 B(Ci)| ≥ |I−|.

As B(C0) = ∅ we have b(C1, C0) = |B(C0) ∪ B(C1)|. Assume inductively
that

k∑

i=0

b(Ci+1, Ci) = | ∪k+1
i=0 B(Ci)|,

for some k ≥ 0. Then
k+1∑

i=0

b(Ci+1, Ci) = | ∪k+1
i=0 B(Ci)|+ |B(Ck+2) \ B(Ck+1)|.

Moreover, if w ∈ B(Ck+2) \ B(Ck+1) then w ∈ P(Cj), for all j ≤ k + 1, so
w /∈ B(Cj), for j = 0, . . . , k + 1. Hence

B(Ck+2) \ B(Ck+1) = B(Ck+2) \ ∪k+1
i=0 B(Ci)

and it follows that
k+1∑

i=0

b(Ci+1, Ci) = | ∪k+2
i=0 B(Ci)|.

As b(Ci+1, Ci) = 0 if i /∈ I+ it follows that
∑

i∈I+

b(Ci+1, Ci) = | ∪d
i=0 B(Ci)|,

as required. If i ∈ I− then b(Ci+1, Ci) = p(Ci, Ci+1) = 0, so b(Ci, Ci+1) > 0.
Therefore there is at least one element w ∈ B(Ci) \B(Ci+1). It follows that
w /∈ B(Cj), for all j ≥ i + 1 and so I− ≤ | ∪d

i=0 B(Ci)|. Therefore l − d ≥ 0
and the proof is complete. ¤

Proof of Theorem 4.1. Let

G = C0 > · · · > Cd = Z(G)

be a maximal descending chain of centralisers of G. By Theorem 3.12, each
of the Ci’s is a quasiparabolic subgroup. If each Ci is canonical then, since
G and Z(G) are both canonical parabolic centralisers the result follows from
Lemma 4.4.
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Suppose that now C1, . . . , Cs are canonical quasiparabolic and Cs+1 is
not: say Cs+1 = Qg, where Q is a canonical quasiparabolic subgroup. Let
Cs = Q(u, Y ) and Q = Q(v, Z) both in standard form. Write g = f ◦ h,
where f = gdl

Z⊥(g) and let f = e ◦ d, where d = gdr
Y (f), so d ∈ G(Y ∩Z⊥).

Then G(Z)h = G(Z)dh = G(Z)g ⊆ G(Y ) and α(h) ⊆ Y , from Corollary
2.5. Hence α(d ◦ h) ⊆ Y which implies that α(d ◦ h) ⊆ P(Cs) ⊆ · · · ⊆
P(C0). It follows that Cdh

r = Cr, for r = 0, . . . , s. Therefore conjugating
C0 > C1 > · · · > Cd by (dh)−1 we obtain a chain in which C0, . . . , Cs

are unchanged and Cs+1 = Qe = 〈v1〉e × 〈vl〉e × G(Z), with gdl
Z(e) =

gdr
Y (e) = 1, e ∈ G(Z⊥). As Lemma 3.6 implies that Qe is a canonical

quasiparabolic subgroup we now have a chain in which C0, . . . , Cs+1 are
canonical quasiparabolic. Continuing this way we eventually obtain a chain,
of length d, of canonical quasiparabolic centralisers to which the first part
of the proof may be applied. ¤
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