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Abstract

We show that the membership problem in a finitely generated submonoid of a graph group (also called a
right-angled Artin group or a free partially commutative group) is decidable if and only if the independence
graph (commutation graph) is a transitive forest. As a consequence we obtain the first example of a finitely
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problem for finitely generated submonoids. We also show that the rational subset membership problem is
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of Kambites, Silva, and the second author [M. Kambites, P.V. Silva, B. Steinberg, On the rational subset
problem for groups, J. Algebra 309 (2) (2007) 622–639]. Finally we prove that for certain amalgamated free
products and HNN-extensions the rational subset and submonoid membership problems are recursively
equivalent. In particular, this applies to finitely generated groups with two or more ends that are either
torsion-free or residually finite.
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1. Introduction

Algorithmic problems concerning groups are a classical topic in algebra and theoretical com-
puter science. Since the pioneering work of Dehn from 1910 [8], decision problems like the
word problem or the generalized word problem (which is also known as the subgroup member-
ship problem since it asks whether one can decide if a given group element belongs to a given
finitely generated subgroup) have been intensively studied for various classes of groups. A first
natural generalization of these classical decision problems is the submonoid membership prob-
lem: given a finite set S of elements of G and an element g ∈ G, does g belong to the submonoid
generated by S? Notice that g has finite order if and only if g−1 is in the submonoid generated
by g and so decidability of the submonoid membership problem lets one determine algorithmi-
cally the order of an element of the group G. A recent paper on the submonoid membership
problem is Margolis, Meakin, and Šuniḱ [27].

A further generalization is the rational subset membership problem: for a given rational subset
L of a group G and an element g ∈ G it is asked whether g ∈ L. The class of rational subsets
of a group G is the smallest class that contains all finite subsets of G, and which is closed
under union, product, and the Kleene hull (or Kleene star; it associates to a subset L ⊆ G the
submonoid L∗ generated by L). Equivalently, it consists of the all subsets of G recognizable by
finite automata. Rational subsets in arbitrary groups and monoids are an important research topic
in language theory, see, e.g., [3,24,31]. The rational subset membership problem generalizes the
submonoid membership problem and the generalized word problem for a group, because every
finitely generated submonoid (and hence subgroup) of a group is rational.

It is easy to see that decidability of the rational subset membership problem transfers to finitely
generated subgroups. Grunschlag has shown that the property of having a decidable rational
subset membership problem is preserved under finite extensions, i.e., if G has a decidable rational
subset membership problem and G � H , where the index of G in H is finite, then H also has
a decidable rational subset membership problem [20]. Kambites, Silva, and the second author
[24] proved that the fundamental group of a finite graph of groups [36] with finite edge groups
has a decidable rational subset membership problem provided all vertex groups have a decidable
rational subset membership problem. In particular, this implies that decidability of the rational
subset membership problem is preserved by free products, see also [31].

The main result of this paper is to characterize the decidability of the submonoid membership
problem and the rational subset membership problem for graph groups. In particular we provide
the first example, as far as we know, of a group with a decidable generalized word problem that
does not have a decidable submonoid (and hence rational subset) membership problem.

A graph group [13] G(Σ, I) is specified by a finite undirected graph (Σ, I), which is also
called an independence alphabet (or commutation graph). The graph group G(Σ, I) is formally
defined as the quotient group of the free group generated by Σ modulo the set of all relations
ab = ba, where (a, b) ∈ I . Graph groups are a group analogue to trace monoids (free partially
commutative monoids), which play a prominent role in concurrency theory [12]. Graph groups
are also called free partially commutative groups [10,39], right-angled Artin groups [6,7], and
semifree groups [2]. They are currently a hot topic of interest in group theory, in particular
because of the richness of the class of groups embeddable in graph groups. For instance, the
Bestvina–Brady groups, which were used to distinguish the finiteness properties Fn and FPn [4]
(and were also essential for distinguishing the finiteness properties FDT and FHT for string
rewriting systems [33]), are subgroups of graph groups. Crisp and Wiest show that the funda-
mental group of any orientable surface (and of most non-orientable surfaces) embeds in a graph
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group [7]. Another class of groups that embed into graph groups are fundamental groups of finite
state complexes [16].

Algorithmic problems concerning graph groups have been intensively studied in the past, see,
e.g., [10,11,15,24,25,39]. In [10,39] it was shown that the word problem for a graph group can be
decided in linear time (on a random access machine). A recent result of Kapovich, Weidmann,
and Myasnikov [25] shows that if (Σ, I) is a chordal graph (i.e., if (Σ, I) does not have an
induced cycle of length at least 4), then the generalized word problem for G(Σ, I) is decidable.
On the other hand, a classical result of Mihailova [30] states that already the generalized word
problem for the direct product of two free groups of rank 2 is undecidable. Note that this group
is the graph group G(Σ, I), where the graph (Σ, I) is a cycle on 4 nodes (also called C4). In
fact, Mihailova proves a stronger result: she constructs a fixed subgroup H of G(C4) such that
it is undecidable, whether a given element of G(C4) belongs to H . Recently, it was shown by
Kambites that a graph group G(Σ, I) contains a direct product of two free groups of rank 2 if
and only if (Σ, I) contains an induced C4 [23]. This leaves a gap between the decidability result
of [25] and the undecidability result of Mihailova [30].

In [24] it is shown that the rational subset membership problem is decidable for a free product
of direct products of a free group with a free Abelian group. Such a group is a graph group
G(Σ, I), where every connected component of (Σ, I) results from connecting all nodes of a
clique with all nodes from an edge-free graph. On the other hand, the only undecidability result
for the rational subset membership problem for graph groups that was known so far is Mihailova’s
result for independence alphabets containing an induced C4.

In this paper, we shall characterize those graph groups for which the rational subset member-
ship problem is decidable: we prove that these are exactly those graph groups G(Σ, I), where
(Σ, I) is a transitive forest (Theorem 2). The graph (Σ, I) is a transitive forest if it is the disjoint
union of comparability graphs of rooted trees. An alternative characterization of transitive forests
was presented in [38]: (Σ, I) is a transitive forest if and only if it neither contains an induced C4
nor an induced path on 4 nodes (also called P4). Graph groups G(Σ, I), where (Σ, I) is a tran-
sitive forest, have also appeared in [28]: they are exactly those graph groups which are subgroup
separable (the case of P4 appears in [32]). Recall that a group G is called subgroup separable if,
for every finitely generated subgroup H � G and every g ∈ G\H there exists a normal subgroup
N � G having finite index such that g /∈ NH . Subgroup separability implies decidability of the
generalized word problem.

One half of Theorem 2 can be easily obtained from a result of Aalbersberg and Hooge-
boom [1]: The problem of deciding whether the intersection of two rational subsets of the trace
monoid (free partially commutative monoid) M(Σ, I) is non-empty is decidable if and only if
(Σ, I) is a transitive forest. Now, L ∩ K �= ∅ for two given rational subsets L,K ⊆ M(Σ, I) if
and only if 1 ∈ LK−1 in the graph group G(Σ, I). Hence, if (Σ, I) is not a transitive forest, then
the rational subset membership problem for G(Σ, I) is undecidable. In fact, we construct a fixed
rational subset L ⊆ G(Σ, I) such that it is undecidable whether g ∈ L for a given group element
g ∈ G(Σ, I).

The converse direction in Theorem 2 is an immediate corollary of our Theorem 1, which is
one of the main group theoretic results of this paper. It states that the rational subset member-
ship problem is decidable for every group that can be built up from the trivial group using the
following four operations: (i) taking finitely generated subgroups, (ii) finite extensions, (iii) di-
rect products with Z, and (iv) finite graphs of groups with finite edge groups. Note that the only
operation that is not covered by the results cited earlier is the direct product with Z. In fact, it
seems to be an open question whether decidability of the rational subset membership problem
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is preserved under direct products with Z. Hence, we have to follow another strategy. We will
introduce a property of groups that implies the decidability of the rational subset membership
problem, and which has all the desired closure properties. Our proof of Theorem 1 uses mainly
techniques from formal language theory (e.g., semilinear sets, Parikh’s theorem) and is inspired
by the methods from [1,5].

It should be noted that due to the above reduction from the intersection problem for rational
trace languages to the rational subset membership problem for the corresponding graph group,
we also obtain an alternative to the quite difficult proof from [1] for the implication “(Σ, I) is a
transitive forest ⇒ intersection problem for rational subsets of M(Σ, I) is decidable.”

In Section 4 we consider the submonoid membership problem for groups. We prove that for an
amalgamated free product G ∗A H such that A is a finite proper subgroup of G and H and there
exist g ∈ G, h ∈ H with g−1Ag ∩ A = 1 = h−1Ah ∩ A, the rational subset membership problem
is recursively equivalent to the submonoid membership problem (Theorem 4). An analogous re-
sult is proved for certain HNN extensions with finite associated subgroups. As a consequence we
obtain that the rational subset membership problem is recursively equivalent to the submonoid
membership problem for a group with two or more ends that is either torsion-free or residually
finite (Corollary 2). Using similar techniques, we are also able to prove that the submonoid mem-
bership problem is undecidable for the graph group G(Σ, I), where (Σ, I) is P4 (Theorem 7).
The result of [25] shows that this graph group does have a decidable generalized word problem,
thereby giving our example of a group with a decidable generalized word problem but an unde-
cidable submonoid membership problem. Together with Mihailova’s undecidability result for C4
and our decidability result for transitive forests (Theorem 2) it also follows that the submonoid
membership problem for a graph group G(Σ, I) is decidable if and only if (Σ, I) is a transitive
forest (Corollary 3).

Another consequence of our results is that the rational subset membership problem for groups
is recursively equivalent to the submonoid membership problem if and only if a free product of
groups with decidable submonoid membership problems has a decidable submonoid membership
problem.

2. Preliminaries

We assume that the reader has some basic knowledge in formal language theory (see, e.g.,
[3,22]) and group theory (see, e.g., [26,35]).

2.1. Formal languages

Let Σ be a finite alphabet. We use Σ−1 = {a−1 | a ∈ Σ} to denote a disjoint copy of Σ . Let
Σ±1 = Σ ∪Σ−1. Define (a−1)−1 = a; this defines an involution −1 :Σ±1 → Σ±1, which can be
extended to the free monoid (Σ±1)∗ by setting (a1 · · ·an)

−1 = a−1
n · · ·a−1

1 . For a word w ∈ Σ∗
and a ∈ Σ we denote by |w|a the number of occurrences of a in w. For a subset Γ ⊆ Σ , we
denote by πΓ (w) the projection of the word w to the alphabet Γ , i.e., we erase in w all symbols
from Σ \ Γ .

Let N
Σ be the set of all mappings from Σ to N. By fixing an arbitrary linear order on the

alphabet Σ , we may identify a mapping f ∈ N
Σ with a tuple from N

|Σ |. For a word w ∈ Σ∗, the
Parikh image Ψ (w) is defined as the mapping Ψ (w) :Σ → N such that [Ψ (w)](a) = |w|a for all
a ∈ Σ . For a language L ⊆ Σ∗, the Parikh image is Ψ (L) = {Ψ (w) | w ∈ L}. For a set K ⊆ N

Σ

and Γ ⊆ Σ let πΓ (K) = {f �Γ ∈ N
Γ | f ∈ K}, where f �Γ denotes the restriction of f to Γ .
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We also need a notation for the composition of erasing letters and taking the Parikh image. So,
for L ⊆ Σ∗ and Γ ⊆ Σ , let ΨΓ (L) = πΓ (Ψ (L)) (= Ψ (πΓ (L))); it may be viewed as a subset
of N

|Γ |. A special case occurs when Γ = ∅. Then either Ψ∅(L) = ∅ (if L = ∅) or Ψ∅(L) is the
singleton set consisting of the unique mapping from ∅ to N.

A subset K ⊆ Nk is said to be linear if there are x, x1, . . . , x� ∈ Nk such that K = {x +
λ1x1 + · · ·+λ�x� | λ1, . . . , λ� ∈ N}, i.e. K is a translate of a finitely generated submonoid of N

k .
A semilinear set is a finite union of linear sets.

Let G = (N,Γ,S,P ) be a context-free grammar, where N is the set of non-terminals, Γ is
the terminal alphabet, S ∈ N is the start non-terminal, and P ⊆ N × (N ∪ Γ )∗ is the finite set
of productions. For u,v ∈ (N ∪ Γ )∗ we write u ⇒G v if v can be derived from u by applying a
production from P . For A ∈ N , we define L(G,A) = {w ∈ Γ ∗ | A ∗⇒G w} and L(G) = L(G, S).
Parikh’s theorem states that the Parikh image of a context-free language is semilinear [34].

We will allow a more general form of productions in context-free grammars, where the right-
hand side of a production is a regular language over the alphabet N ∪ Γ . Such a production
A → L represents the (possibly infinite) set of productions {A → s | s ∈ L}. Clearly, such an
extended context-free grammar can be transformed effectively into an equivalent context-free
grammar with only finitely many productions.

Let M be a monoid. The set RAT(M) of all rational subsets of M is the smallest subset of 2M ,
which contains all finite subsets of M , and which is closed under union, product, and Kleene hull
(the Kleene hull L∗ of a subset L ⊆ M is the submonoid of M generated by L). By Kleene’s
theorem, a subset L ⊆ Σ∗ is rational if and only if L can be recognized by a finite automaton.
If M is generated by the finite set Σ and h :Σ∗ → M is the corresponding canonical monoid
homomorphism, then L ∈ RAT(M) if and only if L = h(K) for some K ∈ RAT(Σ∗). In this
case, L can be specified by a finite automaton over the alphabet Σ . The rational subsets of the
free commutative monoid Nk are exactly the semilinear subsets of Nk [14].

2.2. Groups

Let G be a finitely generated group and let Σ be a finite group generating set for G. Hence,
Σ±1 is a finite monoid generating set for G and there exists a canonical monoid homomorphism
h : (Σ±1)∗ → G. The language

WPΣ(G) = h−1(1)

is called the word problem of G with respect to Σ , i.e., WPΣ(G) consists of all words over
the alphabet Σ±1 which are equal to 1 in the group G. It is well known and easy to see that if
Γ is another finite generating set for G, then WPΣ(G) is decidable if and only if WPΓ (G) is
decidable.

The submonoid membership problem for G is the following decision problem:

INPUT: A finite set of words Δ ⊆ (Σ±1)∗ and a word w ∈ (Σ±1)∗.
QUESTION: h(w) ∈ h(Δ∗)?

Note that the subset h(Δ∗) ⊆ G is the submonoid of G generated by h(Δ) ⊆ G. If we replace
in the submonoid membership problem the finitely generated submonoid h(Δ∗) by the finitely
generated subgroup h((Δ∪Δ−1)∗), then we obtain the subgroup membership problem, which is
also known as the generalized word problem for G. This term is justified, since the word problem
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is a particular instance, namely with Δ = ∅. A generalization of the submonoid membership
problem for G is the rational subset membership problem:

INPUT: A finite automaton A over the alphabet Σ±1 and a word w ∈ (Σ±1)∗.
QUESTION: h(w) ∈ h(L(A))?

Note that h(w) ∈ h(L(A)) if and only if 1 ∈ h(w−1L(A)). Since w−1L(A) is again a rational
language, the rational subset membership problem for G is recursively equivalent to the decision
problem of asking whether 1 ∈ h(L(A)) for a given finite automaton A over the alphabet Σ±1.
It should be noted that for all the computational problems introduced above the decidability is
independent of the chosen generating set for G.

In the rational subset (respectively submonoid) membership problem, the rational subset (re-
spectively submonoid) is part of the input. Non-uniform variants of these problems, where the
rational subset (respectively submonoid) is fixed, have been studied as well. More generally, we
can define for a subset S ⊆ G the membership problem for S within G:

INPUT: A word w ∈ (Σ±1)∗.
QUESTION: h(w) ∈ S?

The free group F(Σ) generated by Σ can be defined as the quotient monoid

F(Σ) = (
Σ±1)∗/{

aa−1 = ε
∣∣ a ∈ Σ±1}.

As usual, the free product of two groups G1 and G2 is denoted by G1 ∗ G2. We will always
assume that G1 ∩G2 = ∅. An alternating word in G1 ∗G2 is a sequence g1g2 · · ·gm with m � 0,
gi ∈ G1 ∪ G2, and gi ∈ G1 ⇔ gi+1 ∈ G2. Its length is m. The alternating word g1g2 · · ·gm is
irreducible if gi �= 1 for every 1 � i � m. Every element of G1 ∗ G2 can be written uniquely as
an alternating irreducible word. We will need the following simple fact about free products:

Lemma 1. Let g1g2 · · ·gm be an alternating word in G1 ∗G2. If g1g2 · · ·gm = 1 in G1 ∗G2, then
one of the following three cases holds:

(1) m � 1,
(2) there exists 1 � i < m such that g1g2 · · ·gi = gi+1 · · ·gm = 1 in G1 ∗ G2,
(3) there exist i ∈ {1,2}, k � 2, and 1 = j1 < j2 < · · · < jk = m such that gj1, gj2, . . . , gjk

∈ Gi ,
gj1gj2 · · ·gjk

= 1 in Gi , and gj�+1gj�+2 · · ·gj�+1−1 = 1 in G1 ∗ G2 for all 1 � � < k.

Proof. Case (3) from the lemma is visualized in Fig. 1 for k = 5. Shaded areas represent alter-
nating sequences, which are equal to 1 in G1 ∗G2. The non-shaded blocks are either all from G1
or from G2, and their product equals 1 in G1 or G2, respectively.

We prove the lemma by induction on m, the case m � 1 being trivial. So assume that m � 2.
Since g1g2 · · ·gm = 1 in G1 ∗G2, there must exist 1 � j � m with gj = 1. If j = 1 or j = m, then

Fig. 1. Case (3) in Lemma 1: we have g1gj2gj3gj4gm = 1 in either G1 or G2.
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we are in case (2) from the lemma. Hence, we may assume that m � 3 and that 2 � j � m − 1.
It follows

g1 · · ·gj−2(gj−1gj+1)gj+2 · · ·gm = 1

in G1 ∗ G2. Since the alternating word g1 · · ·gj−2(gj−1gj+1)gj+2 · · ·gm has length m − 2,
we can apply the induction hypothesis to it. If m − 2 = 1, i.e., m = 3, then we obtain
case (3) from the lemma (with k = 2, j1 = 1, and j2 = 3). If a non-empty and proper
prefix of g1 · · ·gj−2(gj−1gj+1)gj+2 · · ·gm equals 1 in the group G1 ∗ G2, then the same
is true for g1g2 · · ·gm. Finally, if case (3) from the lemma applies to the alternating word
g1 · · ·gj−2(gj−1gj+1)gj+2 · · ·gm, then again the same is true for g1g2 · · ·gm. �

Notice that (3) in Lemma 1 can only occur when m is odd.
Assume that A � G and B � H are groups and ϕ :A → B is an isomorphism. The amalga-

mated free product G ∗ϕ H is the quotient

(G ∗ H)/
{
a = ϕ(a)

∣∣ a ∈ A
}
.

Without loss of generality we may assume that A = G∩H and that ϕ is the identity map on A; in
this situation we briefly write G ∗A H for G ∗ϕ H . Every element of G ∗A H can be written as a
word c1 · · · cn, where n � 0, c1, . . . , cn ∈ G∪H , if n > 1 then c1, . . . , cn ∈ (G∪H) \A, if n = 1
then c1 �= 1, and ci ∈ G \ A ⇔ ci+1 ∈ H \ A for all 1 � i < n. Such a word is called a reduced
sequence. The normal form theorem for amalgamated free products states that every non-empty
reduced sequence represents a non-trivial element of G ∗A H [26, Chapter IV, Theorem 2.6].

If G is a group and ϕ :A → B is an isomorphism between subgroups A,B of G, then the
HNN extension ∗ϕ G, with base G, stable letter t , and associated subgroups A,B is the quotient
group

G ∗ 〈t〉/{t−1at = ϕ(a)
∣∣ a ∈ A

}

where t is the generator of an infinite cyclic group. Every element of ∗ϕ G can be written as
a word g0t

ε1g1 · · · tεngn, where n � 0, g0, . . . , gn ∈ G, and ε1, . . . , εn ∈ {1,−1}. Such a word
is referred to as a reduced sequence if it contains no factor of the form t−1at or tbt−1 with
a ∈ A, respectively b ∈ B . Britton’s lemma [26, Chapter IV] says that if w = g0t

ε1g1 · · · tεngn is
a reduced sequence with n � 1, then w represents a non-trivial element of ∗ϕ G.

We will also consider fundamental groups of finite graphs of groups, which is a group theoretic
construction generalizing free products, free products with amalgamation, and HNN-extensions,
see e.g. [36]. We omit the quite technical definition. In order to deal with the rational subset
membership problem for graph groups, free products suffice.

2.3. Trace monoids and graph groups

In the following we introduce some notions from trace theory, see [9,12] for more details. An
independence alphabet is just a finite undirected graph (Σ, I) without loops. Hence, I ⊆ Σ ×Σ

is an irreflexive and symmetric relation. The trace monoid M(Σ, I) is defined as the quotient

M(Σ, I) = Σ∗/
{
ab = ba

∣∣ (a, b) ∈ I
}
.
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Elements of M(Σ, I) are called traces. Note that M(Γ,J ) is a submonoid of M(Σ, I) in case
(Γ,J ) is an induced subgraph of (Σ, I). The latter means that Γ ⊆ Σ and J = I ∩ (Γ × Γ ).

Traces can be represented conveniently by dependence graphs, which are node-labeled di-
rected acyclic graphs. Let u = a1 · · ·an be a word, where ai ∈ Σ . The vertex set of the de-
pendence graph of u is {1, . . . , n} and vertex i is labeled with ai ∈ Σ . There is an edge from
vertex i to j if and only if i < j and (ai, aj ) /∈ I . Then, two words define the same trace in
M(Σ, I) if and only if their dependence graphs are isomorphic. The set of minimal (respectively
maximal) elements of a trace t ∈ M(Σ, I) is min(t) = {a ∈ Σ | ∃u ∈ M(Σ, I): t = au} (respec-
tively max(t) = {a ∈ Σ | ∃u ∈ M(Σ, I): t = ua}). A trace rewriting system R over M(Σ, I)

is just a finite subset of M(Σ, I) × M(Σ, I) [9]. We can define the one-step rewrite relation
→R⊆ M(Σ, I) × M(Σ, I) by: x →R y if and only if there are u,v ∈ M(Σ, I) and (�, r) ∈ R

such that x = u�v and y = urv in M(Σ, I). A trace t is irreducible with respect to R if there
does not exist a trace u with t →R u. The graph group G(Σ, I) is defined as the quotient

G(Σ, I) = F(Σ)/
{
ab = ba

∣∣ (a, b) ∈ I
}
.

If (Σ, I) is the empty graph, i.e., Σ = ∅, then we set M(Σ, I) = G(Σ, I) = 1 (the trivial group).
Note that (a, b) ∈ I implies a−1b = ba−1 in G(Σ, I). Thus, the graph group G(Σ, I) can be
also defined as the quotient

G(Σ, I) = M
(
Σ±1, I

)/{
aa−1 = ε

∣∣ a ∈ Σ±1}.
Here, we implicitly extend I ⊆ Σ × Σ to I ⊆ Σ±1 × Σ±1 by setting (aα, bβ) ∈ I if and only if
(a, b) ∈ I for a, b ∈ Σ and α,β ∈ {1,−1}. Note that M(Σ, I) is a rational subset of G(Σ, I).

Define a trace rewriting system R over M(Σ±1, I ) as follows:

R = {(
aa−1, ε

) ∣∣ a ∈ Σ±1}. (1)

One can show that for every trace t ∈ M(Σ±1, I ), there exists a unique normal form NFR(t)

such that t
∗→R NFR(t) and NFR(t) is irreducible with respect to R. Moreover, for all u,v ∈

M(Σ±1, I ), u = v in G(Σ, I) if and only if NFR(u) = NFR(v) (in M(Σ±1, I )) [10]. This leads
to a linear time solution for the word problem of G(Σ, I) [10,39].

If the graph (Σ, I) is the disjoint union of two graphs (Σ1, I1) and (Σ2, I2), then G(Σ, I) =
G(Σ1, I1) ∗ G(Σ2, I2). If (Σ, I) is obtained from (Σ1, I1) and (Σ2, I2) by connecting each
element of Σ1 to each element of Σ2, then G(Σ, I) = G(Σ1, I1) × G(Σ2, I2). Graph groups
were studied e.g. in [13]; they are also known as free partially commutative groups [10,39],
right-angled Artin groups [6,7], and semifree groups [2].

A transitive forest is an independence alphabet (Σ, I) such that there exists a forest F of
rooted trees (i.e., a disjoint union of rooted trees) with node set Σ and such that for all a, b ∈ Σ

with a �= b: (a, b) ∈ I if and only if a and b are comparable in F (i.e., either a is a proper
descendant of b or b is a proper descendant of a). It can be shown that (Σ, I) is a transitive
forest if and only if (Σ, I) does not contain an induced subgraph, which is a cycle on 4 nodes
(also called C4, see Fig. 2 on the left) or a simple path on 4 nodes (also called P4, see Fig. 2 on
the right) [38]. The next lemma follows easily by induction. We sketch the proof.

Lemma 2. The class C of all groups, which are of the form G(Σ, I) for a transitive forest (Σ, I),
is the smallest class such that:
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Fig. 2. The graphs C4 and P4.

(1) 1 ∈ C,
(2) if G1,G2 ∈ C, then also G1 ∗ G2 ∈ C,
(3) if G ∈ C then G × Z ∈ C.

Proof. First we verify that graphs groups associated to transitive forests satisfy (1)–(3). Case (1)
results from the empty graph. It is immediate that transitive forests are closed under disjoint
union, which implies (2). If F is a forest of rooted trees, then one can obtain a rooted tree by
adding a new root whose children are the roots of the trees from F . On the group level this
corresponds to (3).

For the converse, we proceed by induction on the number of vertices. If the forest (Σ, I)

consists of more than one rooted tree, then G(Σ, I) is the free product of the graph groups
associated to the various rooted trees in (Σ, I), all of which have a smaller number of vertices. If
there is a single tree, then in (Σ, I) the root is connected to every other vertex. Thus G(Σ, I) =
G × Z where G is the graph group corresponding to the transitive forest obtained by removing
the vertex corresponding to the root and making its children the roots of the trees in the forest so
obtained. �

Of course, a similar statement is true for trace monoids of the form M(Σ, I) with (Σ, I) a
transitive forest; one just has to replace in (3) the group Z by the monoid N.

3. The rational subset membership problem

Let C be the smallest class of groups such that:

– the trivial group 1 belongs to C,
– if G ∈ C and H � G is finitely generated, then also H ∈ C,
– if G ∈ C and G � H such that G has finite index in H (i.e., H is a finite extension of G),

then also H ∈ C,
– if G ∈ C, then also G × Z ∈ C,
– if A is a finite graph of groups [36] whose edge groups are finite and whose vertex groups

belong to C, then the fundamental group of A belongs to C (in particular, the class C is closed
under free products).

This last property is equivalent to saying that C is closed under taking amalgamated products
over finite groups and HNN-extensions with finite associated subgroups [36]. The main result in
this section is:

Theorem 1. For every group G ∈ C, the rational subset membership problem is decidable.

It is well known that decidability of the rational subset membership problem is preserved
under taking finitely generated subgroups and finite extensions [20]. Moreover, the decidability
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of the rational subset membership problem is preserved by graph of group constructions with
finite edge groups [24]. Hence, in order to prove Theorem 1, it would suffice to show that the
decidability of the rational subset membership problem is preserved under direct products by Z.
But currently we can neither prove nor disprove this. This forces us to adopt an alternate strategy:
we will introduce an abstract property of groups that implies the decidability of the rational subset
membership problem, and which has the desired closure properties.

Let L be a class of formal languages closed under inverse homomorphism. A finitely gener-
ated group G is said to be an L-group if WPΣ(G) belongs to L for some finite generating set Σ .
This notion is independent of the choice of generating set [17,21,24].

A language L0 ⊆ Σ∗ belongs to the class RID (rational intersection decidable) if there is an
algorithm that, given a finite automaton over Σ recognizing a rational language L, can determine
whether L0 ∩ L �= ∅. It was shown in [24] that the class RID is closed under inverse homomor-
phism and that a group G has a decidable rational subset membership problem if and only if it is
an RID-group. This follows from the fact that if L is a rational subset of a group G, then g ∈ L

if and only if 1 ∈ g−1L and that g−1L is again a rational subset.
Let K ⊆ Θ∗ be a language over an alphabet Θ . Then K belongs to the class SLI (semilinear

intersection) if, for every finite alphabet Γ (disjoint from Θ) and every rational language L ⊆
(Θ ∪ Γ )∗, the set

ΨΓ

({
w ∈ L

∣∣ πΘ(w) ∈ K
}) = ΨΓ

(
L ∩ π−1

Θ (K)
)

(2)

is semilinear, and the tuples in a semilinear representation of this set can be effectively computed
from Γ and a finite automaton for L. This latter effectiveness statement will be always satisfied
throughout the paper, and we shall not explicitly check it. In words, the set (2) is obtained by first
taking those words from L that project into K when Γ -letters are erased, and then erasing the
Θ-letters, followed by taking the Parikh image.

In a moment, we shall see that the class SLI is closed under inverse homomorphism, hence
the class of SLI-groups is well defined. In fact, we show more generally that the class SLI is
closed under inverse images by sequential functions [3]. This will imply, moreover, that the class
of SLI-groups is closed under taking finite extensions [17,21,24].

A sequential transducer A with input alphabet Σ and output alphabet Ω can be defined as
a finite state automaton with transitions labeled by elements from the set Σ × Ω∗ such that the
following restriction is satisfied: If there are states q, q1, q2 and a transition from q to qi (for
i ∈ {1,2}) with label (a,wi) ∈ Σ × Ω∗ then q1 = q2 and w1 = w2. This is not the standard
definition of a sequential transducer (see e.g. [3]), but it is easily seen to be equivalent. The
language defined by A is a relation R ⊆ Σ∗ × Ω∗, and it is easy to see that R is the graph of a
partial function f :Σ∗ → Ω∗. A sequential function is a partial function, which is computed by
a sequential transducer.

Lemma 3. Let K ⊆ Θ∗ belong to SLI and let f :Σ∗ → Θ∗ be a sequential function. Then
f −1(K) belongs to SLI. In particular, the class of SLI-groups is well defined and is closed under
taking finite extensions.

Proof. Let Γ be an alphabet disjoint from Σ and let L be a rational subset of (Γ ∪ Σ)∗. Let A

be a sequential transducer computing the sequential function f :Σ∗ → Ω∗. Define a transducer
A′ by adding to each state of A a loop with label (a, a) for each a ∈ Γ . Clearly, A′ is a sequential
transducer, which computes a sequential function F : (Γ ∪ Σ)∗ → (Γ ∪ Θ)∗.
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The following two observations are immediate from the fact that the only transitions of A′
involving letters from Γ are loops with labels of the form (a, a):

(a) ΨΓ F coincides with ΨΓ on the domain of F (we read the composition of functions from
right to left, i.e., in ΨΓ F we first apply F , followed by ΨΓ ),

(b) πΘF = f πΣ .

We now claim that the following equality holds:

F
(
L ∩ π−1

Σ

(
f −1(K)

)) = F(L) ∩ π−1
Θ (K). (3)

First note that L ∩ π−1
Σ (f −1(K)) = L ∩ F−1(π−1

Θ (K)) by (b). So if w belongs to the left-
hand side of (3), then w = F(u) with u ∈ L ∩ F−1(π−1

Θ (K)). Thus w ∈ F(L) ∩ π−1
Θ (K).

Conversely, if u ∈ F(L) ∩ π−1
Θ (K), then there exists w ∈ L such that F(w) = u. But then

w ∈ L ∩ F−1(π−1
Θ (K)) = L ∩ π−1

Σ (f −1(K)) and so u belongs to the left-hand side of (3).
Now, since L∩π−1

Σ (f −1(K)) = L∩F−1(π−1
Θ (K)) is contained in the domain of F , we may

conclude from (a) and (3) that

ΨΓ

(
L ∩ π−1

Σ

(
f −1(K)

)) = ΨΓ F
(
L ∩ π−1

Σ

(
f −1(K)

)) = ΨΓ

(
F(L) ∩ π−1

Θ (K)
)
. (4)

But F(L) is rational since the class of rational languages is closed under images via sequen-
tial functions [3]. Therefore, since K belongs to SLI, we may deduce that the Parikh-image
ΨΓ (F (L) ∩ π−1

Θ (K)) is semilinear. This completes the proof of the first statement from the
lemma in light on (4).

Since a homomorphism is a sequential function, the language class SLI is closed under inverse
homomorphism. Hence, the class of SLI-groups is well defined. Finally, let us assume that G is
an SLI-group and that G is a finite index subgroup of H . Let Σ (respectively Δ) be a finite
generating set for G (respectively H ). Then in [24, Lemma 3.3] it is shown that there exists a
sequential function f :Δ∗ → Σ∗ such that WPΔ(H) = f −1(WPΣ(G)). Hence, H is an SLI-
group. �

Let us quickly dispense with the decidability of the rational subset membership problem for
SLI-groups.

Lemma 4. The class of languages SLI is contained in the class of languages RID. In particular,
every SLI-group has a decidable rational subset membership problem.

Proof. Let K ⊆ Θ∗ belong to SLI. Let A be a finite automaton over the alphabet Θ . We have to
decide whether L(A) ∩ K �= ∅. Since K belongs to SLI, the set

Ψ∅
({

w ∈ L(A)
∣∣ πΘ(w) ∈ K

}) = Ψ∅
(
L(A) ∩ K

)

is effectively semilinear and so has a decidable membership problem (cf. [24]). As mentioned
earlier, Ψ∅(L(A) ∩ K) consists of the unique function ∅ → N if L(A) ∩ K is non-empty and is
empty otherwise. Thus we can test emptiness for L(A) ∩ K . �
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Having already taken care of finite extensions by Lemma 3, let us turn to finitely gener-
ated subgroups. We show that the language class SLI is closed under intersection with rational
subsets. This guarantees that the class of SLI-groups is closed under taking finitely generated
subgroups [21].

Lemma 5. Let K ⊆ Θ∗ belong to SLI and let R ⊆ Θ∗ be rational. Then R ∩ K belongs to SLI.
In particular, every finitely generated subgroup of an SLI-group is an SLI-group.

Proof. Let L ⊆ (Γ ∪ Θ)∗ be rational, where Γ is a finite alphabet disjoint from Θ . We have

L ∩ π−1
Θ (R ∩ K) = L ∩ π−1

Θ (R) ∩ π−1
Θ (K).

But rational languages are closed under inverse homomorphism and intersection, so ΨΓ (L ∩
π−1

Θ (R) ∩ π−1
Θ (K)) is semilinear as K belongs to SLI. This establishes the lemma. �

Next, we show that the class of SLI-groups is closed under direct products with Z:

Lemma 6. If G is an SLI-group, then G × Z is also an SLI-group.

Proof. Let Σ be a finite generating set for G. Choose a generator a /∈ Σ of Z. Then G × Z is
generated by Σ ∪ {a}. Let Γ be a finite alphabet (Γ ∩ (Σ±1 ∪ {a, a−1}) = ∅) and let L be a
rational subset of (Σ±1 ∪ {a, a−1} ∪ Γ )∗. We have

ΨΓ

({
w ∈ L

∣∣ πΣ±1∪{a,a−1}(w) ∈ WPΣ∪{a}(G × Z)
})

= πΓ

(
ΨΓ ∪{a,a−1}

({
w ∈ L

∣∣ πΣ±1(w) ∈ WPΣ(G)
})

∩ {
f ∈ N

Γ ∪{a,a−1} ∣∣ f (a) = f
(
a−1)}).

This set is semilinear, since {f ∈ N
Γ ∪{a,a−1} | f (a) = f (a−1)} is semilinear and semilinear sets

are closed under intersection and projection [18]. �
By Lemmas 3–6, Theorem 1 would be established, if we could prove the closure of C under

graph of groups constructions with finite edge groups. Unfortunately we are only able to prove
this closure under the restriction that every vertex group of the graph of groups is residually finite
(which is the case for groups in C). In general we can just prove closure under free product. This,
in fact, constitutes the most difficult part of the proof of Theorem 1.

Lemma 7. If G1 and G2 are SLI-groups, then G1 ∗ G2 is also an SLI-group.

Proof. Assume that Σi is a finite generating set for Gi . Thus, Σ = Σ1 ∪ Σ2 is a generating set
for the free product G1 ∗ G2. Let Γ be a finite alphabet (Γ ∩ Σ±1 = ∅) and let Θ = Σ±1 ∪ Γ .
Let L ⊆ Θ∗ be rational and let A = (Q,Θ, δ, q0,F ) be a finite automaton with L = L(A), where
Q is the set of states, δ ⊆ Q × Θ × Q is the transition relation, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states. For p,q ∈ Q and w ∈ Θ∗ we write p

w−→A q if there exists a path
in A from p to q , labeled by the word w.
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For every pair of states (p, q) ∈ Q × Q let us define the language

L[p,q] ⊆ (
Σ±1

1 ∪ Γ ∪ (Q × Q)
)∗ ∪ (

Σ±1
2 ∪ Γ ∪ (Q × Q)

)∗ ⊆ (
Θ ∪ (Q × Q)

)∗

as follows:

L[p,q] =
⋃

i∈{1,2}

{
w0(p1, q1)w1(p2, q2) · · ·wk−1(pk, qk)wk

∣∣

k � 1 ∧ (p1, q1), . . . , (pk, qk) ∈ Q × Q

∧ w0, . . . ,wk ∈ (
Σ±1

i ∪ Γ
)∗ ∧ π

Σ±1
i

(w0 · · ·wk) ∈ WPΣi
(Gi)

∧ p
w0−→A p1 ∧ q1

w1−→A p2 ∧ · · · ∧ qk−1
wk−1−−−→A pk ∧ qk

wk−−→A q
}
.

Since the language

{
w0(p1, q1)w1(p2, q2) · · ·wk−1(pk, qk)wk

∣∣
k � 1 ∧ (p1, q1), . . . , (pk, qk) ∈ Q × Q ∧ w0, . . . ,wk ∈ (

Σ±1
i ∪ Γ

)∗

∧ p
w0−→A p1 ∧ q1

w1−→A p2 ∧ · · · ∧ qk−1
wk−1−−−→A pk ∧ qk

wk−−→A q
}

is a rational language over the alphabet Σ±1
i ∪ Γ ∪ (Q × Q) for i ∈ {1,2} and Gi is an SLI-

group, it follows that the Parikh image ΨΓ ∪(Q×Q)(L[p,q]) ⊆ N
Γ ∪(Q×Q) is semilinear. Since the

semilinear subsets of N
Γ ∪(Q×Q) are the Ψ -images of rational subsets of (Γ ∪ (Q × Q))∗ (see

the last paragraph of Section 2.1), there exists a rational language K[p,q] ⊆ (Γ ∪ (Q × Q))∗
such that

Ψ
(
K[p,q]) = ΨΓ ∪(Q×Q)

(
L[p,q]). (5)

From the standard construction [14], it follows that an automaton for K[p,q] can be found
effectively. Next, we define a context-free grammar G = (N,Γ,S,P ) as follows:

– the set of non-terminals is N = {S} ∪ (Q × Q), where S is a new symbol not contained in
Q × Q,

– S is the start non-terminal,
– P consists of the following productions:

S → (q0, qf ) for all qf ∈ F,

(p,q) → K[p,q] for all p,q ∈ Q,

(q, q) → ε for all q ∈ Q.

By Parikh’s theorem, the Parikh image Ψ (L(G)) ⊆ N
Γ is semilinear. Thus, the following claim

proves the lemma:

Claim 1. Ψ (L(G)) = ΨΓ ({w ∈ L(A) | πΣ±1(w) ∈ WPΣ(G1 ∗ G2)}).
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Proof. We prove the following more general identity for all (p, q) ∈ Q × Q:

Ψ
(
L

(
G, (p, q)

)) = ΨΓ

({
w ∈ Θ∗ ∣∣ p

w−→A q ∧ πΣ±1(w) ∈ WPΣ(G1 ∗ G2)
})

.

For the inclusion

Ψ
(
L

(
G, (p, q)

)) ⊆ ΨΓ

({
w ∈ Θ∗ ∣∣ p

w−→A q ∧ πΣ±1(w) ∈ WPΣ(G1 ∗ G2)
})

(6)

assume that (p, q)
∗⇒G u ∈ Γ ∗. We show by induction on the length of the G-derivation

(p, q)
∗⇒G u that there exists a word w ∈ Θ∗ such that p

w−→A q , πΣ±1(w) ∈ WPΣ(G1 ∗ G2),
and Ψ (u) = ΨΓ (w).

Case 1. p = q and u = ε: We can choose w = ε.

Case 2. (p, q) ⇒G u′ ∗⇒G u for some u′ ∈ K[p,q]. By (5), there exists a word v ∈ L[p,q] such
that Ψ (u′) = ΨΓ ∪(Q×Q)(v). Since v ∈ L[p,q], there exist k � 1, (p1, q1), . . . , (pk, qk) ∈ Q×Q,
i ∈ {1,2}, and v0, . . . , vk ∈ (Σ±1

i ∪ Γ )∗ such that

– p
v0−→A p1, q1

v1−→A p2, . . . , qk−1
vk−1−−−→A pk , qk

vk−→A q,

– v = v0(p1, q1)v1(p2, q2) · · ·vk−1(pk, qk)vk , and
– π

Σ±1
i

(v0 · · ·vk) ∈ WPΣi
(Gi).

Since u′ ∗⇒G u ∈ Γ ∗ and Ψ (u′) = ΨΓ ∪(Q×Q)(v), there must exist u1, . . . , uk ∈ Γ ∗ such that

(pi, qi)
∗⇒G ui and Ψ (u) = ΨΓ (v0) + · · · + ΨΓ (vk) + Ψ (u1) + · · · + Ψ (uk)

for all 1 � i � k. By induction, we obtain words w1, . . . ,wk ∈ Θ∗ such that for all 1 � i � k:

– pi
wi−→A qi ,

– πΣ±1(wi) ∈ WPΣ(G1 ∗ G2), and
– Ψ (ui) = ΨΓ (wi).

Let us set w = v0w1v1 · · ·wkvk ∈ Θ∗. We have:

– p
v0−→A p1

w1−→A q1
v1−→A p2 · · ·pk

wk−−→A qk
vk−→A q , i.e., p

w−→A q ,
– πΣ±1(w) ∈ WPΣ(G1 ∗ G2), and
– Ψ (u) = ΨΓ (v0) + · · · + ΨΓ (vk) + Ψ (u1) + · · · + Ψ (uk) = ΨΓ (v0) + · · · + ΨΓ (vk) +

ΨΓ (w1) + · · · + ΨΓ (wk) = ΨΓ (w).

This concludes the proof of inclusion (6). For the other inclusion, assume that

p
w−→A q and πΣ±1(w) ∈ WPΣ(G1 ∗ G2)

for a word w ∈ Θ∗. By induction over the length of the word w we show that ΨΓ (w) ∈
Ψ (L(G, (p, q))).

We will make a case distinction according to the three cases in Lemma 1. Note that we either
have w ∈ Γ ∗ or the word w ∈ Θ∗ can be (not necessarily uniquely) written as w = w1 · · ·wn
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with n � 1 such that wi ∈ ((Γ ∪ Σ±1
1 )∗ ∪ (Γ ∪ Σ±1

2 )∗) \ Γ ∗ and wi ∈ (Γ ∪ Σ±1
1 )∗ ⇔ wi+1 ∈

(Γ ∪ Σ±1
2 )∗.

Case 1. w ∈ (Γ ∪Σ±1
1 )∗ (the case w ∈ (Γ ∪Σ±1

2 )∗ is analogous): Then π
Σ±1

1
(w) ∈ WPΣ1(G1).

Together with p
w−→A q , we obtain w(q,q) = w(q,q)ε ∈ L[p,q]. Since (p, q) → K[p,q] and

(q, q) → ε are productions of G, there exists a word u ∈ Γ ∗ such that (p, q)
∗⇒G u and Ψ (u) =

ΨΓ (w), i.e., ΨΓ (w) ∈ Ψ (L(G, (p, q))).

Case 2. w = w1w2 with w1 �= ε �= w2 and πΣ±1(w1),πΣ±1(w2) ∈ WPΣ(G1 ∗ G2). Then there
exists a state r ∈ Q such that

p
w1−→A r

w2−→A q.

By induction, we obtain

ΨΓ (w1) ∈ Ψ
(
L

(
G, (p, r)

))
and

ΨΓ (w2) ∈ Ψ
(
L

(
G, (r, q)

))
.

Hence, we get

ΨΓ (w) = ΨΓ (w1) + ΨΓ (w2)

∈ Ψ
(
L

(
G, (p, r)

)) + Ψ
(
L

(
G, (r, q)

))
⊆ Ψ

(
L

(
G, (p, q)

))
,

where the last inclusion holds, since (p, r)(r, q) ∈ L[p,q], and so either (p, q) → (p, r)(r, q) or
(p, q) → (r, q)(p, r) is a production of G.

Case 3. w = v0w1v1 · · ·wkvk such that k � 1,

– πΣ±1(wi) ∈ WPΣ(G1 ∗ G2) for all i ∈ {1, . . . , k}, and
– for some i ∈ {1,2}: v0, . . . , vk ∈ (Γ ∪ Σ±1

i )∗ \ Γ ∗ and π
Σ±1

i
(v0 · · ·vk) ∈ WPΣi

(Gi).

There exist states p1, q1, . . . , pk, qk ∈ Q such that

p
v0−→A p1

w1−→A q1
v1−→A p2 · · ·pk

wk−−→A qk
vk−→A q.

By induction, we obtain

ΨΓ (wi) ∈ Ψ
(
L

(
G, (pi, qi)

))
(7)

for all 1 � i � k. Moreover, from the definition of the language L[p,q] we obtain

v = v0(p1, q1)v1(p2, q2) · · ·vk−1(pk, qk)vk ∈ L[p,q].
Hence, by (5) there is a word u′ ∈ K[p,q] such that Ψ (u′) = ΨΓ ∪(Q×Q)(v) and (p, q) → u′ is a
production of G. With (7) we obtain

(p, q) ⇒G u′ ∗⇒G u
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for a word u ∈ Γ ∗ such that

Ψ (u) = ΨΓ (v0) + · · · + ΨΓ (vk) + ΨΓ (w1) + · · · + ΨΓ (wk) = ΨΓ (w),

i.e., ΨΓ (w) ∈ Ψ (L(G, (p, q))). This concludes the proof of Claim 1 and hence of the lemma. �
If we were to weaken the definition of the class C by only requiring closure under free products

instead of closure under finite graphs of groups with finite edge groups, then Lemmas 4–7 would
already imply Theorem 1. In fact, this weaker result suffices in order to deal with graph groups,
and readers only interested in graph groups can skip the following considerations concerning
graphs of groups.

To obtain the more general closure result for the class C concerning graph of group construc-
tions, we reduce to the case of free products. Recall that a group G is residually finite if, for each
g ∈ G \ {1}, there is a finite index normal subgroup N of G with g /∈ N . Now we use a standard
trick for graphs of residually finite groups with finite edge groups.

Lemma 8. Let A be a finite graph of groups such that the vertex groups are residually finite
SLI-groups and the edge groups are finite. Then the fundamental group of A is an SLI-group.

Proof. Let G be the fundamental group of A. Then G is residually finite [36, II.2.6 Proposi-
tion 12]. Since there are only finitely many edge groups and each edge group is finite, there is
a finite index normal subgroup N � G intersecting trivially each edge group, and hence each
conjugate of an edge group. Thus the finitely generated subgroup N � G acts on the Bass–Serre
tree for G [36] with trivial edge stabilizers, forcing N to be a free product of conjugates of sub-
groups of the vertex groups of G and a free group [36]. Since N is finitely generated, these free
factors must also be finitely generated. Since every finitely generated subgroup of an SLI-group
is an SLI-group (Lemma 5) and Z is an SLI-group (Lemma 6), we may deduce that N is a free
product of SLI-groups and hence is an SLI-group by Lemma 7. Since G contains N as a finite
index subgroup, Lemma 3 implies that G is an SLI-group, as required. �

Clearly, the trivial group 1 is an SLI-group. Also all the defining properties of C preserve
residual finiteness (the only non-trivial case being the graph of group constructions [36]). Hence,
Lemmas 4–6 and Lemma 8 immediately yield Theorem 1.

Our main application of Theorem 1 concerns graph groups:

Theorem 2. The rational subset membership problem for a graph group G(Σ, I) is decidable
if and only if (Σ, I) is a transitive forest. Moreover, if (Σ, I) is not a transitive forest, then
there exists a fixed rational subset L of G(Σ, I) such that the membership problem for L within
G(Σ, I) is undecidable.

Proof. If (Σ, I) is a transitive forest, then the graph group G(Σ, I) belongs to the class C, hence
its rational subset membership problem is decidable by Theorem 1.

Now assume that (Σ, I) is not a transitive forest. By [38] it suffices to consider the case that
(Σ, I) is either a C4 or a P4. For the case of a C4 we can use Mihailova’s result [30] on the unde-
cidability of the generalized word problem for G(C4). Now assume that (Σ, I) is a P4. We will
reuse a construction by Aalbersberg and Hoogeboom [1], which is based on 2-counter machines.
A 2-counter machine is a tuple C = (Q, Ins, q0, qf ) where Q is a finite set of states, q0 ∈ Q
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is the initial state, qf ∈ Q is the final state, and Ins ⊆ Q × {i1, i2, d1, d2, z1, z2,p1,p2} × Q

is the set of instructions. The set of configurations of C is Q × N × N. For two configura-
tions (q,n1, n2), (q

′,m1,m2) we write (q,n1, n2) ⇒C (q ′,m1,m2) if there exists an instruction
(q,αk, q ′) ∈ Ins, so α ∈ {i, d, z,p}, k ∈ {1,2}, such that m3−k = n3−k and one of the following
three cases holds:

– α = i and mk = nk + 1,
– α = d and mk = nk − 1,
– α = z and mk = nk = 0,
– α = p and mk = nk > 0.

Since Turing machines can be simulated by 2-counter machines [29], it is undecidable whether
for a given 2-counter machine C = (Q, Ins, q0, qf ) there exist m,n ∈ N with (q0,0,0) ⇒∗

C

(qf ,m,n). In [1], this problem is reduced to the question, whether L ∩ K = ∅ for given ra-
tional trace languages L,K ⊆ M(Σ, I), where Σ = {a, b, c, d} and I = {(a, b), (b, c), (c, d)}.
In fact, the language K is fixed, more precisely

K = ba
(
d(cb)+a

)∗
dc∗

= {[
abj0cj1dabj1cj2d · · ·abj�−1cj�d

]
I

∣∣ � � 1, j0 = 1, j1, . . . , j� � 1
}
.

The problem is that in the construction of [1] the language L is not fixed since it depends on the
2-counter machine C. Aalbersberg and Hoogeboom encode the pair of counter values (m,n) ∈
N × N by the single number 2m3n. The language L is constructed in such a way that K ∩ L

contains exactly those traces of the form [abj0cj1dabj1cj2d · · ·abj�−1cj�d]I , such that � � 1,
j0 = 1, and there exist states q1, . . . , q� and m1, n1, . . . ,m�,n� ∈ N with q� = qf , 2mi 3ni =
ji , and (q0,0,0) ⇒C (q1,m1, n1) ⇒C (q2,m2, n2) ⇒C · · · ⇒C (q�,m�,n�) (note that j0 = 1
encodes the initial counter values (0,0)).

In order to construct a fixed rational subset of G(Σ, I) with an undecidable membership
problem, we start with a fixed (universal) 2-counter machine C = (Q, Ins, q0, qf ) such that it
is undecidable whether ∃m′, n′ ∈ N : (q0,m,n) ⇒∗

C (qf ,m′, n′) for given natural numbers m,n.
Such a machine C can be obtained by simulating a universal Turing machine. Let L ⊆ M(Σ, I)

be the fixed rational trace language constructed by Aalbersberg and Hoogeboom from C, and let
us replace the fixed trace language K = ba(d(cb)+a)∗dc∗ by the (non-fixed) language

Km,n = b2m3n

a
(
d(cb)+a

)∗
dc∗

= {[
abj0cj1dabj1cj2d · · ·abj�−1cj�d

]
I

∣∣ � � 1, j0 = 2m3n, j1, . . . , j� � 1
}
.

Then it is undecidable, whether Km,n ∩ L �= ∅ for given m,n ∈ N. Hence, it is
undecidable, whether b−2m3n ∈ a(d(cb)+a)∗dc∗L−1 in the graph group G(Σ, I). Clearly,
a(d(cb)+a)∗dc∗L−1 is a fixed rational subset of the graph group G(Σ, I). �

We conclude this section with a further application of Theorem 1 to graph products
(which should not be confused with graphs of groups). A graph product is given by a tuple
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(Σ, I, (Gv)v∈Σ), where (Σ, I) is an independence alphabet and Gv is a group, which is associ-
ated with the node v ∈ Σ . The group G(Σ, I, (Gv)v∈Σ) defined by this tuple is the quotient

G
(
Σ,I, (Gv)v∈Σ

) = ∗
v∈Σ

Gv/
{
xy = yx

∣∣ x ∈ Gu, y ∈ Gv, (u, v) ∈ I
}
,

i.e., we take the free product ∗v∈Σ Gv of the groups Gv (v ∈ Σ ), but let elements from adjacent
groups commute. Note that G(Σ, I, (Gv)v∈Σ) is the graph group G(Σ, I) in the case every Gv

is isomorphic to Z. Graph products were first studied by Green [19].

Theorem 3. If (Σ, I) is a transitive forest and every group Gv (v ∈ V ) is finitely generated
and virtually Abelian (i.e., has an Abelian subgroup of finite index), then the rational subset
membership problem for G(Σ, I, (Gv)v∈Σ) is decidable.

Proof. Assume that the assumptions from the theorem are satisfied. We show that
G(Σ, I, (Gv)v∈Σ) belongs to the class C. Since (Σ, I) is a transitive forest, the group
G(Σ, I, (Gv)v∈Σ) can be built up from trivial groups using the following two operations:
(i) free products and (ii) direct products with finitely generated virtually Abelian groups. Since
the class C is closed under free products, it suffices to prove that if G belongs to the class C and
H is finitely generated virtually Abelian, then G × H also belongs to the class C. As a finitely
generated virtually Abelian group, H is a finite extension of a finite rank free Abelian group Z

n.
By the closure of the class C under direct products with Z, G × Z

n belongs to the class C.
Now, G × H is a finite extension of G × Z

n, proving the theorem, since C is closed under finite
extensions. �
4. The submonoid membership problem

Recall that the submonoid membership problem for a group G asks whether a given element
of G belongs to a given finitely generated submonoid of G. Hence, there is a trivial reduction
from the submonoid membership problem for G to the rational subset membership problem
for G. We will show that for every amalgamated free product G ∗A H such that:

1. A = G ∩ H is a finite, proper subgroup of G and H ;
2. there exist g ∈ G, h ∈ H with g−1Ag ∩ A = 1 = h−1Ah ∩ A,

there is in fact also a reduction in the opposite direction. Similarly, if ∗ϕ G is an HNN extension
with ϕ :A → B with

1. A is a finite subgroup of G;
2. there exists g ∈ G such that g−1Ag ∩ A = 1 or g−1Ag ∩ B = 1

then the rational subset problem reduces to the submonoid membership problem for ∗ϕ G. We
remark that in 2, one could by symmetry switch the roles of B and A.

Using the following lemma, it will suffice to consider a free product G ∗ F2, where F2 is a
free group of rank two.
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Lemma 9. Let G∗A H be an amalgamated free product such that H �= A, [G : A] � 5, and there
exists h ∈ H with h−1Ah ∩ A = 1. Then G ∗A H contains as a subgroup the free product G ∗ F2
of G with a free group of rank two.

Proof. Since [G : A] � 5, we can choose elements g1, g2, g3, g4 ∈ G \ A which belong to pair-
wise distinct left A-cosets. Moreover, choose an element h ∈ H \ A with h−1Ah ∩ A = 1. First
we claim that x = g1hg−1

2 and y = g3hg−1
4 freely generate a free subgroup of G ∗A H . For this,

note that g−1
i gj ∈ G \A if i �= j . Thus, every word over {x, x−1, y, y−1} which does not contain

a factor from {xx−1, x−1x, yy−1, y−1y} yields a reduced sequence for the amalgamated product.
The normal form theorem for amalgamated free products [26, Chapter IV, Theorem 2.6] then im-
plies that {x, y} is the base of a free subgroup of G ∗A H . Hence, the conjugates u = hxh−1 and
v = hyh−1 also form a base for a free subgroup of G ∗A H . Since h−1Ah ∩ A = 1 (and hence
if a ∈ A, then h−1ah ∈ H \ A) a word over G \ {1} ∪ {u,u−1, v, v−1}, which does not contain
a factor from (G \ {1})(G \ {1}) ∪ {uu−1, u−1u,vv−1, v−1v}, yields a reduced sequence for the
amalgamated product. Again, the normal form theorem for amalgamated free products implies
that the subgroup of G ∗A H generated by G ∪ {u,v} is isomorphic to G ∗ F2. �

We now prove the analogous result for HNN extensions.

Lemma 10. Let ∗ϕ G be an HNN extension with stable letter t and finite associated subgroups
A,B (so ϕ :A → B) such that [G : B] � 3 and there exists g ∈ G with g−1Ag ∩ A = 1 or
g−1Ag ∩ B = 1. Then ∗ϕ G contains as a subgroup the free product G ∗ F2 of G with a free
group of rank two.

Proof. By Lemma 9, it suffices to show that ∗ϕ G contains a subgroup G ∗ Z. We may assume
that A �= 1 �= B , because otherwise ∗ϕ G � G ∗ Z. Choose g1, g2 ∈ G \ B so that g1, g2 are
in different left cosets of B . Suppose first there exists g ∈ G with g−1Ag ∩ A = 1 and set x =
g1t

−1gtg−1
2 . Since g /∈ A (because otherwise A = 1) and g−1

2 g1 /∈ B , one easily deduces that
xn is a reduced sequence for the HNN extension for all n > 0 and hence x is of infinite order
by Britton’s lemma. Set y = t−1gtxt−1g−1t . Then y is of infinite order, being a conjugate of x.
We claim that G and 〈y〉 generate their free product inside of ∗ϕ G. We need to show that a
word over G \ {1} ∪ {y, y−1} with no factor from (G \ {1})(G \ {1}) ∪ {yy−1, y−1y} results in a
reduced sequence for the HNN extension. The key point is that if h ∈ G\B , then t−1g−1tht−1gt

is reduced. On the other hand, if b ∈ B \ {1}, then t−1g−1tbt−1gt = t−1g−1ϕ−1(b)gt−1, which
is reduced since g−1Ag ∩ A = 1.

Now assume that there exists g ∈ G with g−1Ag ∩ B = 1. The group A must be a proper
subgroup of G, because otherwise we have 1 = g−1Ag ∩ B = G ∩ B = B . So choose g0 ∈
G \ A and set x = g1t

−1g0tg
−1
2 . The same argument as above shows that x has infinite order.

Set y = t−1gt−1xtg−1t ; again y has infinite order, being a conjugate of x. Again, we claim
that G and 〈y〉 generate their free product in ∗ϕ G. Once more, we must prove that a word
over G \ {1} ∪ {y, y−1} with no factor from (G \ {1})(G \ {1}) ∪ {yy−1, y−1y} yields a reduced
sequence for the HNN extension. The key point is that if h ∈ G \ B , then tg−1tht−1gt−1 is
reduced. On the other hand, if b ∈ B \ {1}, then tg−1tbt−1gt−1 = tg−1ϕ−1(b)gt−1, which is
reduced since g−1Ag ∩ B = 1. �

The following lemma is crucial for us:
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Lemma 11.

(1) Let G and H be finitely generated groups such that the finite group A is a proper subgroup
of both G and H and there exists h ∈ H with h−1Ah∩A = 1. Then the rational subset mem-
bership problem for G can be reduced to the submonoid membership problem for G ∗A H .

(2) If ϕ :A → B is an isomorphism between finite subgroups of a finitely generated group G

and there exists g ∈ G with g−1Ag ∩ A = 1 or g−1Ag ∩ B = 1, then the rational subset
membership problem for G can be reduced to the submonoid membership problem for ∗ϕ G.

Remark 1. In our proof of Lemma 11 we will implicitly construct Turing machines that carry
out the reductions in (1) and (2). These machines will depend on the element g (and h) in (1),
respectively (2). Here one might argue that these elements are not known. But this is not a real
problem, since g and h are fixed elements which do not depend on the input for the reduction. So
there exists a Turing machine that can do the reduction, although we do not know which Turing
machine if we do not know the elements g and h.

Proof of Lemma 11. If G is finite, then the rational subset membership problem for G is decid-
able, so we may assume without loss of generality that G is infinite. Since A is finite, we have
[G : A] � 5 in (1), respectively [G : B] � 3 in (2). Then Lemmas 9 and 10 imply that G ∗ F2 is a
subgroup of G∗A H , respectively ∗ϕ G. Since the submonoid membership problem for a finitely
generated subgroup of a group K reduces to the submonoid membership problem for K itself, it
suffices to prove the following: the rational subset membership problem for G can be reduced to
the submonoid membership problem for G ∗ F2. Let Σ be a finite generating set for G and use
h : (Σ±1 ∪ Γ ±)∗ → G ∗ F2 for the canonical morphism. Let A = (Q,Σ±1, δ, q0,F ) be a finite
automaton and let t ∈ (Σ±1)∗. By introducing ε-transitions, we may assume that the set of final
states F consists of a single state qf �= q0. One can effectively find a subset Q̃ ⊆ F2 in bijection
with Q via q �→ q̃ such that Q̃ freely generates a free subgroup of F2.

We construct a finite subset Δ ⊆ (Σ±1 ∪ Γ ±1)∗ and an element u ∈ (Σ±1 ∪ Γ ±1)∗ such that
h(t) ∈ h(L(A)) if and only if h(u) ∈ h(Δ∗). Let

Δ = {
q̃cp̃−1

∣∣ (q, c,p) ∈ δ
}

and u = q̃0t q̃
−1
f . (8)

Note that in (8), we have c ∈ Σ±1 ∪ {ε}, since we introduced ε-transitions. Recall (q, c,p) ∈ δ

means q
c−→ p in A. We begin with a critical claim.

Claim 1. Suppose that in G ∗ F2, we have

q̃0t q̃
−1
f = (

p̃1v1q̃
−1
1

) · · · (p̃nvnq̃
−1
n

)
(9)

where pi
vi−→ qi in A, for i ∈ {1, . . . , n}. Then h(t) ∈ h(L(A)).

Proof. The claim is proved by induction on n. If n = 1, then since q0 �= qf , the normal form
theorem for free products easily implies q0 = p1, qf = q1 and t = v1 in G. Thus q0

v1−→ qf in A,
whence v1 ∈ L(A), and so h(t) ∈ h(L(A)). Next suppose the claim holds for n − 1 � 1 and
consider the claim for n > 1.
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First suppose that qi = pi+1 for some i. Then

q̃0t q̃
−1
f = (

p̃1v1q̃
−1
1

) · · · (p̃ivivi+1q̃
−1
i+1

) · · · (p̃nvnq̃
−1
n

)

in G ∗ F2 and pi
vivi+1−−−−→ qi+1 in A. Induction now gives the desired conclusion.

Next suppose that for some i, we have pi = qi and vi = 1 in G. Then

q̃0t q̃
−1
f = (

p̃1v1q̃
−1
1

) · · · (p̃i−1vi−1q̃
−1
i−1

)(
p̃i+1vi+1q̃

−1
i+1

) · · · (p̃nvnq̃
−1
n

)

in G ∗ F2 and we can again apply the induction hypothesis.
Finally, suppose pi = qi implies vi �= 1 in G and suppose qi �= pi+1, all i. Then we claim that

the right-hand side of (9) is already in normal form. Consider a typical window q̃−1
i−1p̃ivi q̃

−1
i p̃i+1

(where we take q̃0 = 1 = p̃n+1). Then no two neighboring elements belong to the same factor of
the free product G ∗ 〈Q̃〉 = G ∗ 〈̃s1〉 ∗ · · · ∗ 〈̃sm〉, where Q = {s1, . . . , sm}, since qj �= pj+1 for
j = i − 1, i and pi �= qi when vi = 1 in G. Since such windows cover the right-hand side of (9)
we may conclude that it is in normal form in G ∗ F2. Comparison with the left-hand side then
shows that n = 1, contradicting n > 1. So this case does not arise and the proof of the claim is
complete. �

Now we may prove that h(t) ∈ h(L(A)) if and only if h(u) ∈ h(Δ∗). Suppose first that h(t) =
h(t ′) with t ′ ∈ L(A). Write t ′ = a1 · · ·an with ai ∈ Σ±1 ∪{ε} and such that q0

a1−→ q1
a2−→ q2 −→

· · · −→ qn−1
an−→ qf . Then, as h(t) = h(t ′), clearly we have

u = q̃0t
′q̃f

−1 = (
q̃0a1q̃

−1
1

)(
q̃1a2q̃

−1
2

) · · · (q̃n−1anq̃
−1
f

) ∈ Δ∗

in G ∗ F2. Conversely, suppose h(u) ∈ h(Δ∗). Then we can write

u = q̃0t q̃
−1
f = (

p̃1a1q̃
−1
1

) · · · (p̃nanq̃
−1
n

)

in G∗F2, where pi
ai−→ qi are certain transitions of A. Claim 1 then implies h(t) ∈ h(L(A)). �

Theorem 4. Let G and H be finitely generated groups such that the finite group A is a proper
subgroup of both G and H and there exist g ∈ G, h ∈ H with g−1Ag ∩ A = 1 = h−1Ah ∩ A.
Then, for the amalgamated free product G ∗A H the rational subset membership problem and
the submonoid membership problem are recursively equivalent.

Proof. It suffices to show that the rational subset membership problem for G ∗A H can be
reduced to the submonoid membership problem for G ∗A H . The rational subset membership
problem for G ∗A H can be reduced to the rational subset membership problems for G and H

[24]. By Lemma 11 both these problems can be reduced to the submonoid membership problem
for G ∗A H . �

Note that the assumptions in Theorem 4 are satisfied for every free product G ∗ H of non-
trivial finitely generated groups G and H .

A similar result holds for HNN extensions:
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Theorem 5. Let G be a finitely generated group and let ϕ :A → B be an isomorphism between
finite subgroups of G. Suppose there exists g ∈ G, with g−1Ag ∩A = 1 or g−1Ag ∩B = 1. Then
the rational subset membership problem and the submonoid membership problem are recursively
equivalent for the HNN extension ∗ϕ G.

Proof. We just need to establish that the rational subset membership problem for ∗ϕ G can
be reduced to the submonoid membership problem. The rational subset membership problem
for ∗ϕ G can be reduced to the rational subset membership problem for G by the results of [24].
By Lemma 11 this problem can be reduced to the submonoid membership problem for ∗ϕ G.
This completes the proof. �

Let us say that a group G is virtually a free product if it has a finite index subgroup H that
splits non-trivially as a free product H = G1 ∗ G2.

Corollary 1. Let G be a finitely generated group that is virtually a free product. Then the rational
subset and submonoid membership problems are recursively equivalent.

Proof. Suppose G has decidable submonoid membership problem. We need to show that G

has decidable rational subset problem. Let H be a finite index subgroup of G that splits non-
trivially as a free product. Clearly H has decidable submonoid membership problem and hence
has decidable rational subset membership problem by Theorem 4. It then follows G has decidable
rational subset membership problem by [20,24]. �

In order for a finitely generated group to be virtually a free product, it must have two or more
ends. On the other hand, a group with two or more ends that is either virtually torsion-free or
residually finite is easily seen, via Stallings’ ends theorem [37], to be virtually a free product, as
we now show. First we recall the notion of ends of a locally finite graph.

Let Γ be a locally finite graph, i.e., every node of Γ has only finitely many neighbors.
Consider the inverse system Γ \ C where C runs over the finite subgraphs of Γ . Then the
sets of connected components π0(Γ \ C) form an inverse system of sets; the projective limit
Ends(Γ ) = lim←− π0(Γ \ C) is known as the set of ends of Γ . The number of ends of Γ is the car-
dinality of Ends(Γ ). The number of ends of a finitely generated group G is the number of ends
of the Cayley-graph of G with respect to any finite set of generators; this number is independent
of the finite generating set we choose for G and it is either 0, 1, 2 or ∞ [37]. Here are some
examples: (i) every finite group has 0 ends, (ii) Z × Z has one end, (iii) Z has two ends, and
(iv) F2 has infinitely many ends. Stallings’ famous ends theorem [37] says that if G is a finitely
generated group with two or more ends, then G splits non-trivially as an amalgamated product or
an HNN-extension over a finite subgroup. This can be reformulated in terms of actions on trees
via Bass–Serre theory [36].

A group acts non-trivially on a tree if it has no global fixed-point, i.e., there is no node v in the
tree with Gv = {v}. A group G is said to split over a subgroup H if there is a non-trivial action
of G on a tree T such that H is the stabilizer of an edge e and the orbit Ge consists of all edges
of T . This is equivalent to G splitting as an amalgamated product or HNN-extension with H as
the amalgamation base, respectively the associated subgroup [36]. We shall need the following
simple lemma.
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Lemma 12. Let G be a finitely generated group with a non-trivial action on a tree T and let
H � G be a finite index subgroup. Then H acts non-trivially on T .

Proof. Recall that if g is an automorphism of a tree T , then g is said to be elliptic if g fixes
some point of T . It is well known (this follows immediately from [36, I.6.4, Proposition 25], for
instance) that if gn (n � 1) is elliptic, then g is elliptic. Now if H has a global fixed point, then
H consists entirely of elliptic automorphisms of T . Let [G : H ] = n and g ∈ G. Then gn ∈ H

and hence is elliptic. It follows that every element of G is elliptic. But it is well known [36, I.6.5,
Corollary 3] that any finitely generated group of elliptic automorphisms of a tree has a global
fixed point, contradicting that the action of G is non-trivial. It follows that the action of H is
non-trivial. �
Theorem 6. Let G be a finitely generated group with two or more ends such that the intersec-
tion of all the finite index subgroups of G is torsion-free. Then G is virtually a free product and
hence the rational subset membership and submonoid membership problems for G are recur-
sively equivalent.

Proof. By Stallings’ ends theorem [37], G splits non-trivially over a finite subgroup. So by
Bass–Serre theory [36] G acts non-trivially on a tree T so that there is one orbit of edges and the
stabilizer of an edge is finite. Let H be an edge stabilizer; since H is a finite group, by hypothesis
there is a normal subgroup N � G of finite index such H ∩ N = {1}. By Lemma 12 the action
of N on T is non-trivial. Since each edge stabilizer in G is a conjugate of H , it follows no
element of N \ {1} fixes an edge. Therefore, N splits non-trivially as a free product [36]. This
completes the proof. �
Corollary 2. Let G be a finitely generated group with two or more ends which is either virtually
torsion-free or residually finite. Then the rational subset membership and submonoid member-
ship problems for G are recursively equivalent.

Proof. Clearly Theorem 6 applies under either of these hypotheses. �
Let us now come back to graph groups. Theorems 2 and 4 imply that the submonoid member-

ship problem is undecidable for every graph group of the form

G
(
Σ ∪ {a}, I) � G(Σ, I) ∗ Z,

where a /∈ Σ and (Σ, I) is not a transitive forest. In the rest of the paper, we will sharpen this
result. We show that for a graph group the submonoid membership problem is decidable if and
only if the rational subset membership problem is decidable, i.e., if and only if the independence
alphabet is a transitive forest. In fact, by our previous results, it suffices to consider a P4:

Theorem 7. Let Σ = {a, b, c, d} and I = {(a, b), (b, c), (c, d)}, i.e., (Σ, I) is a P4. Then there
exists a fixed submonoid M of G(Σ, I) such that the membership problem of M within G(Σ, I)

is undecidable.

Proof. We follow the strategy of the proof of Lemma 11, but working in the graph group G(Σ, I)

makes the encoding more complicated. Let R denote the trace rewriting system over the trace
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monoid M(Σ±1, I ) defined in (1), Section 2.3. As usual denote by h : (Σ±1)∗ → G(Σ, I) the
canonical morphism, which will be identified with the canonical morphism h : M(Σ±1, I ) →
G(Σ, I). Let us fix a finite automaton A over the alphabet Σ±1 such that the membership
problem for h(L(A)) within G(Σ, I) is undecidable; such an automaton exists by Theorem 2.
Without loss of generality assume that

A = ({1, . . . , n},Σ±1, δ, q0, {qf }),
where δ ⊆ {1, . . . , n} × (Σ±1 ∪ {ε}) × {1, . . . , n} and q0 �= qf (since we allow ε-transitions, we
may assume that there is only a single final state qf , which is different from the initial state q0).
For a state q ∈ {1, . . . , n}, define the trace q̃ ∈ M(Σ±1, I ) by

q̃ = (ada)qd(ada)−q = (ada)qd
(
a−1d−1a−1)q

.

Note that the dependence graph of q̃ is a linear chain. Moreover, every symbol from Σ±1 is
dependent on ad , i.e., does not commute with ad . The following statement is straightforward to
prove.

Claim 2. Let q1, . . . , qk ∈ {1, . . . , n}, ε1, . . . , εk ∈ {1,−1} such that qi �= qi+1 for all 1 � i �
k − 1. Then

NFR

(
q̃

ε1
1 q̃

ε2
2 · · · q̃εk

k

) = (ada)q1dε1(ada)q2−q1 · · ·dεk−1(ada)qk−qk−1dεk (ada)−qk .

Note that this trace starts (respectively ends) with a copy of ada (respectively a−1d−1a−1).

Proof. Let ϕ : (Σ±1)∗ → (Σ±1)∗ be the injective morphism defined by ϕ(x) = xx for x ∈ Σ±1.
Thus, w ∈ L(A) if and only if ϕ(w) ∈ ϕ(L(A)). Since (x, y) ∈ I implies that ϕ(x) and ϕ(y)

commute, ϕ can be lifted to an injective morphism ϕ : M(Σ±1, I ) → M(Σ±1, I ). The reader can
easily verify that, for every trace t ∈ M(Σ±1, I ), the equality NFR(ϕ(t)) = ϕ(NFR(t)) holds.
In particular, ϕ(t) is irreducible if and only if t is irreducible and h(t) = h(u) if and only if
h(ϕ(t)) = h(ϕ(u)).

Let us fix a trace t ∈ M(Σ±1, I ) and define

Δ = {
q̃ϕ(x)p̃−1

∣∣ (q, x,p) ∈ δ
} ⊆ M

(
Σ±1, I

)
and u = q̃0ϕ(t)q̃−1

f ∈ M
(
Σ±1, I

)
.

We will show that h(t) ∈ h(L(A)) if and only if h(u) ∈ h(Δ∗).
Let us define a 1-cycle to be a word in (Σ±1)∗ of the form

q̃1ϕ(v1)q̃
−1
2 q̃2ϕ(v2)q̃

−1
3 · · · q̃k−1ϕ(vk−1)q̃

−1
k q̃kϕ(vk)q̃

−1
1

such that k � 1, q1, . . . , qk ∈ {1, . . . , n}, v1, . . . , vk ∈ (Σ±1)∗, and v1 · · ·vk = 1 in G(Σ, I)

(hence, also ϕ(v1) · · ·ϕ(vk) = 1 in G(Σ, I)). Note that a 1-cycle equals 1 in G(Σ, I). We say
that a word of the form q̃1ϕ(v1)p̃

−1
1 q̃2ϕ(v2)p̃

−1
2 · · · q̃mϕ(vm)p̃−1

m , where q1,p1, . . . , qm,pm ∈
{1, . . . , n} and v1, . . . , vm ∈ (Σ±1)∗, contains a 1-cycle, if there are positions 1 � i � j � m

such that q̃iϕ(vi)p̃
−1
i · · · q̃j ϕ(vj )p̃

−1
j is a 1-cycle. If a word does not contain a 1-cycle, then it is

called 1-cycle-free. �
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Claim 3. Let m � 1 and

v = q̃1ϕ(v1)p̃
−1
1 q̃2ϕ(v2)p̃

−1
2 · · · q̃mϕ(vm)p̃−1

m ,

where q1,p1, . . . , qm,pm ∈ {1, . . . , n} and v1, . . . , vm ∈ (Σ±1)∗. If v = 1 in G(Σ, I), then v

contains a 1-cycle.

Proof. We prove Claim 3 by induction over m. Assume that v = 1 in G(Σ, I). If m = 1, then
we obtain the identity

q̃1ϕ(v1)p̃
−1
1 = (ada)q1d(ada)−q1ϕ(v1)(ada)p1d−1(ada)−p1 = 1 (10)

in G(Σ, I). Assume without loss of generality that v1, viewed as a trace, is irreducible with
respect to R. Then also ϕ(v1) is irreducible. If ϕ(v1) = ε and p1 = q1, then v is a 1-cycle. If
ϕ(v1) = ε, and p1 �= q1, then we obtain a contradiction, since NFR(q̃1p̃

−1
1 ) is non-empty by

Claim 2. Now assume that ϕ(v1) �= ε. In the trace

(ada)q1d(ada)−q1ϕ(v1)(ada)p1d−1(ada)−p1

only the last a−1 of the factor (a−1d−1a−1)q1 may cancel against the first a of ϕ(v1) (in case
a ∈ min(v1)) and the first a of the factor (ada)p1 may cancel against the last a−1 of ϕ(v1) (in
case a−1 ∈ max(v1)). To see this, note that if a /∈ min(v1), then (ada)−q1ϕ(v1) is irreducible
with respect to R. If a ∈ min(v1) then ϕ(v1) = aaϕ(t) for some trace t . Then

(
a−1d−1a−1)q1ϕ(v1) = (

a−1d−1a−1)q1aaϕ(t) →R

(
a−1d−1a−1)q1−1

a−1d−1aϕ(t).

Since a and d do not commute, we cannot have d ∈ min(aϕ(t)), hence cancellation stops and
NFR((a−1d−1a−1)q1ϕ(v1)) = (a−1d−1a−1)ka−1d−1aϕ(t) where k = q1 − 1 � 0. Moreover, if
a−1 is a maximal symbol of t , then ϕ(t) = ϕ(t ′)a−1a−1 for some trace t ′. Hence, by making a
possible cancellation with the first a in (ada)p1 , it follows finally that

NFR

(
q̃1ϕ(v1)p̃

−1
1

) = (ada)q1d(ada)−ka−1d−1xda(ada)�d−1(ada)−p1 �= ε

for some trace x, where � = p1 − 1 � 0. This contradicts again (10) and proves the inductive
base case m = 1 in Claim 3.

Now assume that m � 2.

Case 1. There is 1 � i < m such that pi = qi+1. Then v = 1 in G(Σ, I) implies

q̃1ϕ(v1)p̃
−1
1 · · · q̃i−1ϕ(vi−1)p̃

−1
i−1q̃iϕ(vivi+1)p̃

−1
i+1q̃i+2ϕ(vi+2)p̃

−1
i+2 · · · q̃mϕ(vm)p̃−1

m

is 1 in G(Σ, I). By induction, we can conclude that above word contains a 1-cycle. But then also
the word v must contain a 1-cycle.

Case 2. pi �= qi+1 for all 1 � i < m. If there is 1 � i � m such that vi = 1 in G(Σ, I) and qi = pi

then v contains the 1-cycle q̃iϕ(vi)p̃
−1. Now assume that qi �= pi whenever vi = 1 in G(Σ, I).
i
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Let v′ be the word that results from v by deleting all factors ϕ(vi), which are equal 1 in G(Σ, I).
In the following, we consider v′ as a trace. Consider a maximal factor of v′ of the form

p̃−1
i q̃i+1p̃

−1
i+1q̃i+2 · · · p̃−1

j−1q̃j (11)

where j � i+1 and ϕ(vi+1) = · · · = ϕ(vj−1) = 1, ϕ(vi) �= 1 �= ϕ(vj ) in G(Σ, I). Claim 2 shows
that the R-normal form of this trace starts (respectively ends) with a copy of ada (respectively
a−1d−1a−1), and similarly for maximal prefixes (respectively suffixes) of the form

q̃1p̃
−1
1 · · · q̃i−1p̃

−1
i−1q̃i

(
respectively p̃−1

i q̃i+1p̃
−1
i+1 · · · p̃−1

m q̃m

)
. (12)

In v′, factors of the form (11) and (12) are separated by traces ϕ(vi), where ϕ(vi) �= 1 in G(Σ, I).
Without loss of generality assume that each such trace ϕ(vi) is irreducible and hence non-empty.
As for the base case m = 1, one can show that in such a concatenation, only a single minimal
a and a single maximal a−1 of a trace ϕ(vi) �= ε may be canceled. It follows that NFR(v) �= ε,
which contradicts v = 1 in G(Σ, I). This concludes the proof of Claim 3.

Now we can prove h(t) ∈ h(L(A)) if and only if h(u) = h(q̃0ϕ(t)q̃−1
f ) ∈ h(Δ∗). First assume

that h(t) ∈ h(L(A)). Let a1 · · ·am ∈ L(A) such that (qi−1, ai, qi) ∈ δ for 1 � i � m, qm = qf ,
and a1 · · ·am = t in G(Σ, I). Then

h
(
q̃0ϕ(t)q̃−1

f

) = h
(
q̃0ϕ(a1)q̃

−1
1 q̃1ϕ(a2)q̃

−1
2 · · · q̃m−1ϕ(am)q̃−1

m

) ∈ h(Δ∗).

Now assume that h(q̃0ϕ(t)q̃−1
f ) ∈ h(Δ∗). Thus,

q̃0ϕ(t)q̃−1
f = q̃1ϕ(a1)p̃

−1
1 q̃2ϕ(a2)p̃

−1
2 · · · q̃mϕ(am)p̃−1

m

in G(Σ, I), where q1,p1, . . . , qm,pm ∈ {1, . . . , n}, a1, . . . , am ∈ Σ±1 ∪ {ε}, and (qi, ai,pi) ∈ δ

for 1 � i � m. Without loss of generality we may assume that the word q̃1ϕ(a1)p̃
−1
1 q̃2ϕ(a2)p̃

−1
2

· · · q̃mϕ(am)p̃−1
m is 1-cycle-free (otherwise we can remove all 1-cycles from this word; note that

a 1-cycle equals 1 in the group G(Σ, I)). Let

v = q̃f ϕ
(
t−1)q̃−1

0 q̃1ϕ(a1)p̃
−1
1 q̃2ϕ(a2)p̃

−1
2 · · · q̃mϕ(am)p̃−1

m .

Since v = 1 in G(Σ, I), Claim 3 implies that v contains a 1-cycle. We claim that this 1-
cycle must be the whole word v: first of all, the suffix q̃1ϕ(a1)p̃

−1
1 · · · q̃mϕ(am)p̃−1

m of v

is 1-cycle-free. If a prefix q̃f ϕ(t−1)q̃−1
0 q̃1ϕ(a1)p̃

−1
1 · · · q̃iϕ(ai)p̃

−1
i for i < m is a 1-cycle,

then q̃i+1ϕ(ai+1)p̃
−1
i+1 · · · q̃mϕ(am)p̃−1

m = 1 in G(Σ, I). Hence, Claim 3 implies that the word

q̃i+1ϕ(ai+1)p̃
−1
i+1 · · · q̃mϕ(am)p̃−1

m contains a 1-cycle, contradicting the fact that the word

q̃1ϕ(a1)p̃
−1
1 · · · q̃mϕ(am)p̃−1

m is 1-cycle-free. Thus, indeed, v is a 1-cycle. Hence, q0 = q1,
qf = pm, pi = qi+1 for 1 � i < m, and t−1a1 · · ·am = 1 in G(Σ, I), i.e., h(t) = h(a1 · · ·am) ∈
h(L(A)). This shows that the membership problem for the submonoid h(Δ∗) within G(Σ, I) is
indeed undecidable. �

Recall that a graph is not a transitive forest if and only if it either contains an induced C4 or P4
[38]. Together with Mihailova’s result for the generalized word problem of F({a, b})×F({c, d}),
Theorems 2 and 7 imply:
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Corollary 3. The submonoid membership problem for a graph group G(Σ, I) is decidable if and
only if (Σ, I) is a transitive forest. Moreover, if (Σ, I) is not a transitive forest, then there exists
a fixed submonoid M of G(Σ, I) such that the membership problem for M within G(Σ, I) is
undecidable.

Since P4 is a chordal graph (i.e., does not contain an induced cycle of length at least 4), the
generalized word problem for G(P4) is decidable [25]. Hence, G(P4) is an example of a group
for which the generalized word problem is decidable but the submonoid membership problem is
undecidable.

5. Open problems

The definition of the class C at the beginning of Section 3 leads to the question whether
decidability of the rational subset membership problem is preserved under direct products with Z.
An affirmative answer would lead in combination with the results from [24,31] to a more direct
proof of Theorem 1.

Concerning graph groups, the precise borderline for the decidability of the generalized word
problem remains open. By [25], the generalized word problem is decidable if the independence
alphabet is chordal. Since every transitive forest is chordal, Theorem 2 does not add any new
decidable cases. On the other hand, if the independence alphabet contains an induced C4, then
the generalized word problem is undecidable [30]. But it is open for instance, whether for a cycle
of length 5 the corresponding graph group has a decidable generalized word problem.

Another open problem concerns the complexity of the rational subset membership problem
for graph groups, where the independence alphabet is a transitive forest. If the independence
alphabet is part of the input, then our decision procedure does not yield an elementary algorithm,
i.e., an algorithm where the running time is bounded by an exponent tower of fixed height. This
is due to the fact that each calculation of the Parikh image of a context-free language leads to
an exponential blow-up in the size of the semilinear sets in the proof of Lemma 7. An NP lower
bound follows from the NP-completeness of integer programming.

Theorems 4 and 5 lead to various research directions. One might try to get rid of the restriction
that g−1Ag∩A = 1 = h−1Ah∩A for some g ∈ G, h ∈ H and the analogous restrictions for HNN
extensions. These two results together would imply that Corollary 2 holds for all groups with two
or more ends.

In fact it is natural to ask whether, for every finitely generated group G, the submonoid mem-
bership and rational subset membership problems are recursively equivalent. By Theorem 4, this
is equivalent to the preservation of the decidability of the submonoid membership problem un-
der free products (which is again not known to hold): simply choose for H in Theorem 4 any
non-trivial group with a decidable rational subset membership problem. Recall that the decid-
ability of the generalized word problem as well as the rational subset membership problem is
preserved under free products. Notice that for a torsion group, the submonoid membership prob-
lem is equivalent to the generalized word problem, while the rational subset membership problem
reduces to membership in products H1 · · ·Hn of finitely generated subgroups.
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