9,252 research outputs found

    High-order numerical solutions using cubic splines

    Get PDF
    The cubic spline collocation procedure for the numerical solution of partial differential equations was reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy for a nonuniform mesh and overall fourth-order accuracy for a uniform mesh. Application of the technique was made to the Burger's equation, to the flow around a linear corner, to the potential flow over a circular cylinder, and to boundary layer problems. The results confirmed the higher-order accuracy of the spline method and suggest that accurate solutions for more practical flow problems can be obtained with relatively coarse nonuniform meshes

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe

    Conservative and non-conservative methods based on hermite weighted essentially-non-oscillatory reconstruction for Vlasov equations

    Get PDF
    We introduce a WENO reconstruction based on Hermite interpolation both for semi-Lagrangian and finite difference methods. This WENO reconstruction technique allows to control spurious oscillations. We develop third and fifth order methods and apply them to non-conservative semi-Lagrangian schemes and conservative finite difference methods. Our numerical results will be compared to the usual semi-Lagrangian method with cubic spline reconstruction and the classical fifth order WENO finite difference scheme. These reconstructions are observed to be less dissipative than the usual weighted essentially non- oscillatory procedure. We apply these methods to transport equations in the context of plasma physics and the numerical simulation of turbulence phenomena

    Navier-Stokes calculations with a coupled strongly implicit method. Part 2: Spline solutions

    Get PDF
    A coupled strongly implicit method is combined with a deferred-corrector spline solver for the vorticity-stream function form of the Navier-Stokes equation. Solutions for cavity, channel and cylinder flows are obtained with the fourth-order spline 4 procedure. The strongly coupled spline corrector method converges as rapidly as the finite difference calculations and also allows for arbitrary large time increments for the Reynolds numbers considered. In some cases fourth-order smoothing or filtering is required in order to suppress high frequency oscillations
    corecore