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INTRODUCTION 

The  past  decade  accounted  for  a  vast   literature  of 
techniques   and  algorithms   to   solve  numerically  a  variety 
of   two-point  boundary  value  problems.        A  rapid   glance 
through  any  prominent  journal   of  numerical   analysis   supports 
the  opinion  that  the  computer  user   is   confronted  with  a  wide, 
and  even  bewildering,   choice   of  possibilities.        Excluding 
the   literature   concerning   'shoting methods'‚ and 'non-local 
approximants'    (eg.   Chebyshev  series)   the  user  enters   the 
extensive  field  of  ' local   approximations '   encompassing  all 
the  documented  finite   difference   and   finite   element  schemes. 

The  subclass   of   finite  element  schemes   has   recently  received 
the  concerted  attention  of  numerical  analysts.        In  particular 
the  user  will  be   aware  of   the  existence  of  projection  methods 
(including  collocation  methods)   and  schemes   derived  from  a 
variational   formulation  of   the  problem.        This  variational 
formulation  was  derived  by  Ciarlet,   Schultz,   and  Varga  [4]  who 
established  that  the  analytic   solution  of   the  boundary  value 
problem  strictly  minimises  a  certain  functional.     Computational 
aspects   and  rates   of   convergence  are   considered  in   [4]  [10] and 
[17]   amongst  others.        The  nomenclature   'projection'   defines 
the  underlying  principle  of  projection  methods.     We  project 
the  problem  into  a  finite   dimensioned  subspace  of   an  appropriate 
Hilbert   space    by   some   technique,   and  derive   the   approximant   to 
the  remodelled  problem.        In  particular  we  may  view  the  Galerkin 
procedure   as   a  specific  example  of   a  projection  method.        The 
Galerkin  method  is   employed  by  Douglas   and  Dupont   [6]  ,    Wheeler 
[22]   to   investigate   a  class   of   linear   two-point  boundary  value 
problems.        A  superconvergence   result  at   the  knots   is   established 
in   [6].        Projection  schemes   of  a  collocation  type  for   classes 
of  non-linear  equations   are   studied  in  [8],[9],[11]   and   [13]. 
Collocation  methods   require   the   spline  approximant   to   satisfy 
the  differential  equation  at  certain  internal  points, 

We  illustrate   the  finite  difference   approach  by  mentioning 
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the   paper  by   Stepleman   [18] .      In  particular  for   the   two-point 
boundary  value  problem  independent   of   the   first   derivative,   and 
with   disjoint   boundary   conditions,    Stepleman  notes   that  his 
method  is   the   classical  Numerov  method. 

Of   fundamental   significance   is   the   structure   of   the 
appro ximant,   or   for   finite   differences,   the   structure  of   the 
difference   formula.   Independent   of   the   approach   employed   the 
numerical   solution  is   dependent   on  a  polynomial   structure. 
The   spline   function  spaces  used   in  projection  and   variational 
formulations   are   piece—wise   polynomials   satisfying  certain 
continuity   constraints.   Analogously,   the   finite   difference 
schemes   are  polynomial  based.        For   example  the   fourth  order 
Numerov   formula   is   derived  by   spanning   the   interval   [0,2h] 
by   a  quartic  polynomial,   and  collocating   the  values   of   the 
function  and  its   second  derivatives   at   the  knots     x=0,h,2h. 
Recently,   much  interest  has   surrounded   the   study   of   splines 
that   are   closer   in  structure   to   the   function  being  approxi- 
mated   than   the  more   conventional   polynomial   splines.   The 
classes   of   regular   splines  defined   in   chapter   2   are  but   one 
example   of   an   alternative   structure . 

The   intrinsic  characteristic  of   the   class   of   regular 
splines   of   chapter  2   is   a  twice   continuous   differentiability 
throughout   the   region  of   application.      Thus,   it   is   to  be 
expected  that   the  collocation  scheme  based  on  regular  splines 
is   a   generalisation  of   the  cubic   spline   collocation   scheme 
derived   from   the   cubic   spline's   consistency   relationship. 
For   schemes   utilising   the   cubic   spline   see   [2],[3],[12], 
[13] amongst   others. The  method   and   results   of   Sakai   [13] 
outlined   in  chapter   1   constitute   the  basis   of   the   existence 
and   convergence   proof   of   chapter   4.        Under   the assumption 
ensuing  the   existence  of  a   cubic   spline   collocation   solution 
we  establish   an  existence   and  convergence   result   for   the 
regular   spline   collocation   scheme   of   chapter   3.        We  note 
that   these   assumptions   are   arbitrary   and  others   of   identical 
consequence  may   be   substituted.        Finally,   in  Chapter   5, 
computational   aspects   of   the   regular   spline   collocation  are 
discussed   and  numerical   examples   evaluated  and   compared. 
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1. A  Two-Point  Boundary  Value  Problem

The  problem  studied  in   the   following  chapters   is 

y"(x)   =  f(x,y(x))       (1.1) 

y(a)   =   ya                                            (1.2) 

y(b)   =   yb                                            (1.3) 

where  ya and ya  are  constants   and  f(x,y)   is   twice  contin- 

uously  differentiable,   with  respect   to  x  and  y,   in  a  region  D 

of   the   (x,y)   plane   intercepted  by  two  lines  x=a  and  x=b. 

To   ensure   that   the   solution,   ŷ(x),   of   (1.1) - (1.3) ,  is 

unique   in  a  subregion  of  D,   we  follow  Urabe[19],[20],  who 

introduces   the   concept  of   an   'isolated  solution'.     The 

solution,    ŷ(x),   is   called   an  isolated  solution  if   and  only 

if   (b)   ≠  0      where   χ χ (x)  is the solution of  the   equation  of 

first  variation,   namely  

                   10 === )(')(,)())(ˆ,()(" aandaxxyxfa y χχχχ  

The  terminology   isolated  solution  is   associated  with  a 

proposition  by  Urabe   [20,pp  47]  which  states   that  ,    if  χ  (b)≠ 0, 

there   exists  no   other  solution  to   (1.1)-(1.3)  in  U,   where  

                      DbxaxyxyyxU ⊂≤≤<−≡ },|)(̂)(|),({ ζ  

and  ζ,   is  an  appropriately  chosen  positive  constant. 

  We  now  introduce  a  cubic  spline  collocation  solution, 

û  (x),   to   (1.1) - (1.3) which  is   defined  over   a  set  of   uniformly  

spaced knots  where   a=x1m
1ii}x{ +
= 1   <   x2   . . .   < xm+1    = b ,   and   h = (b-a)/m . 
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Sakai   [13]   uses   a  projection  method  and  cubic   spline   functions 

to   approximate   the   solution  of   the   two   point  boundary  value 

problem 

                        ba y)b(y,y)a(y,))x('y),x(y,x(g)x("y ===

 

Furthermore,   it  is  understood  that  for  an  equation  independent 

of  the   first  derivative  y'(x) the projection method  reduces 

to  a  collocation  method  based  on  the  consistency  relationship 

for  cubic  splines   [1,pp.284].     Thus,   the  result  of   Sakai   [13,pp.361] 

is  applicable   to   (1.1) - (1.3)   and  proves   the  existence  of  a  unique 

cubic  spline   'solution',   û(x),   in  a  region Ah ,  

    (1·4) UbxaxyxyyxA h ⊂≤≤<−≡ },|)(̂)(|),({ γ

where  γ      is  some  positive  constant  and  h     is   sufficiently 

small,   say  h  <  ho.     Furthermore,   û(x)   satisfies   the  error  bound 

                                        2Nh||)x(û)x(ŷ|| <− ∞                                 (1·5) 

where   
 
is   the  usual   supremun  norm  and  N  a  positive ∞||·||

constant   independent  of  h. 

Let  us  outline  the  construction  of   the  cubic   spline  û.(x). 

Denote  by û the  vector  whose  jth  element, jû ,
 
is   given  by 

  
                         1m....,,2,1j)x(ûû jj +==                              (1·6)

The  vector û  is   determined   as   the   solution  of   the  non-linear 
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system  of  equations o)u(Fs =    where   o)û(Fs =    is given by  

  

.0yû
)7.1(m,...,3,2j

0)ûû2û(
h
1)û,x(f6

1)û,x(f3
2)û,x(f6

1
0yû

b1m

1jj1j21j1jjj1j1j
a1

=−
=

=+−−++
=−

+

+−++−−

 

  

The  cubic  spline,  û(x),   is  determined  uniquely  over 

  ,       j = 1,2, ...,m,  by  the  knot  values   and ]x,x[ 1jj + 1jj u,û +
 
the  knot  values  of  the  second  derivative,  namely      and  )û,x(f jj

.)û,x(f 1j1j ++  
 

 

Finally,   we  note  that  the  Jacobian,  ,)u(Js of   the system 

 )u(Fs  is  non-singular  when u = û     and that   ∞
− ||)û(J|| 1
s is 

bounded   (see  [14]). 

The  non-zero  elements  of )û(Js    are  

 

1J

m,...,3,2j)û,x(f6
1

h
1J

m,...,3,2j)û,x(f3
2

h
2J

)8.1(

m,...,3,2j)û,x(f6
1

h
1J

1J

)1m,1m(s

1j1jy2)1j,j(s

jjy2)j,j(s

1j1jy2)1j,j(s

)1,1(s

=

=+−=

=+=

=+−=

=

++

+++

−−−
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2.     Regular   Splines

Regular   splines,   as   employed   in  the   following  context, 

were   introduced  by  Werner   [21].  ,bz...zzaLet 1n21 =<<= +  

and  consider  functions  defined  for ,)d,c,x(t̂l ,]z,z[x 1+∈ ll  

depending  on  two  parameters  c,d  where  c  and  d  are  in  certain 
prescribed  intervals,   for  example  �or  �† . The   functions, 

,t̂l  are  subject   to   conditions   defined  below. 

The   set  of   equally  spaced  knots 1m
1ii}x{ +
=  is   specified 

such  that  each coincides  with  a  knot ,1n,...,2,1,z +=ll

   for  some   1m
1i}i{p +
=∈   . Hence each  interval   I P,  where px

,]x,x[I 1ppp +≡ is  contained  in  exactly  one   interval 

.]z,z[ 1+ll  The  notation  tj(x,c,d)   is   used  to   denote   the 

restriction  of   (x,c,d)   to  Ilt̂ j .   In  this  way   the  functions 

tj(x,c,d)   are  well  defined  when  the  mesh  of  knots   is  refined. 

             For   a  given  set  of  knots  1m
1ii}x{ +
=  and  classes   of   functions 

n
1}t̂{ =ll which  are  twice  continuously  differentiable  with 

respect   to  x,   and  continuous  with  respect   to   c  and  d,   we 

define   a  spline  by 

(2.1)}m,...,2,1jandπjp

,)jd,jc(x,jtjp
jI

u,b][a,2Cu(x)|{u(x)x);1mx,...,2x,1(xη

=∈

+≡∈=+

 
 

where     π      is   the  set  of   linear  polynomials. 

In   the   context  of   this  paper  we  need  the   following 

assumptions  on  the  classes  of   functions   :)d,c,x(t j
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(Al )     The   classes   tj(x,c,d)   shall  be   regular. 

ie.   any  two  functions   of   the   same  class  either  coincide 

or   the   difference   of   their   second   derivatives   have   at 

most   one   zero   in   Ij. 
This   assumption  ensures   that   the   functions   tj(x,cj,dj)  j=,2,...,m 

can  be   parameterised   in   terms   of 
 
To   explain )1j(x"

jtand)j(x"
jt +

(Al)   in  greater  detail   it   is  necessary   to  quote   a  theorem  by 

Werner   [21],   namely 

' If   the   family  of   splines   is  made  up   of  regular   functions 

then   the   interpolating   spline  is   unique.' 

Thus   regularity   is   a  sufficient   condition  for   uniqueness   of   the 

spline   interpolating   the  data  produced  by   the   collocation  method 

of   chapter  3,   always   assuming  that   the   data  is  within  the   range 

of   the   spline. 

If   the   classes   of  functions   tj(x,c,d)   are  parameterised 

as   above  we  adopt   the  notation  

Where       
1j andjifor iMix;1jM,jM,1jx,j(xjt2dx

2d

x);1jM,jM,1jx(xj,jtjt

+==++

++≡

 

 (A2)     The   functions   tj   are   smooth  . 

ie.   the   functions   tj   are   four   times   continuously  differen— 

tiable  with  respect   to   x,   and  these   derivatives   are   twice 

continuously  differentiable  with  respect   to  Mj   and  Mj+1. 

(A3)      The   functions   tj   are   4-bounded  „ 

ie.   the   fourth  derivative, ,tivj  
of   tj   with  respect   to   x 

shall  be  a  twice   continuously  differentiable   function 

of  )MM(h
1

j1j −+ and either  Mj   or  Mj+1.  
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The   assumption   (A3)   is  motivated  by   the   fact   that  only   two 

parameters   are   needed   to   control   the  behaviour  of   the   second 

and  higher  derivatives  of   the   spline.      It  would  be   unwise   to 

use   bounds  on  Mj  and  Mj+1 , as  when h → O  the two parameters 

become   increasingly   identified  with   each   other.      However 

Mj  and h
1  (Mj+1, - Mj)   are  well   defined   as  h → O. 

Examples   of   admissible   classes   of   functions   tj   are   now 

given,   cf.[16,pp.176]. 

Example  1 tj  =   c(d-x+xj.)k k ≠ 0,l,2 

0Mwhenever)1k(k
dM

cand

M
M

1

hd.eg j

k2
j

2k
1

j
1j

≠−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
−

−+

The   above   classes   of   functions   yield   splines   of  various 

structures   for  different  values   of  k.      For   any  k  < 0  we  have 

a  rational   spline.     The   standard  cubic  spline   is  derived  by 

allocating   to   k  the  value   three.      The  condition  for   (Al)  -  (A3) 

to   hold   is   given  by 

          1jj1j
j MM,IRM

M
++

+
≠∈

 
unless   k  =    2n+l   where  n   is   any   positive   integer.      For   the 

latter   cases    (Al)   —    (A3)   hold  unconditionally.  

     

d2
j

j
1j

)jxx1(d
j

ed

M
candM

M
logh

1dwhere

ect                       2   Example

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

+

−+
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Once   again,   the   necessary   and   sufficient   condition  for 

(Al)  -  (A3)   to  hold   is 

)jxxlog(dcjt3Example

1jMjM,IR
1jM

jM

+−=

+≠+∈
+

 

2
j

2
1

1j
j

dMcand

M
M

1

hdwhere −=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

+

For   this   class   of   function   the   conditions   (Al)  -  (A3)   are 

satisfied  whenever 

                                         1M
M

0
1j

j <<
+

 

Example   4                          tj   =   c   sin(µ (x—xj )+d) µ ≠  O 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ−μ= +− )h(cosM

M
)hsin(

1cotd.eg
j
1j1

 
and        µ2  c    =  -Mj    cosec d whenever     M   ≠  o . j

  
Functions   of   this   class   satisfy   (Al) - (A3)   unconditionally . 

Following  Schaback [16] and  Werner [21]  we   define   the 

difference   operators  

⎥⎦
⎤

⎢⎣
⎡ Δ−Δ−=Δ

−
−

=Δ

)x(g)x,x()x(g)x,x(xx
1)x(g)x,x,x(

xx
)x(g)x(g)x(g)x,x(

21
1

32
1

13321
2

12
12

21
1

 

where  x1,x2 ,x3   are   piecewise   disjoint   and   g(x) ∈  C   [a,b]. 

If   the   function   g(x)   is   differentiable  we   may   allow  x1  and  x 2
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3. A  Regular  Spline  Collocation  Method

In  this  chapter  we  derive  a  collocation  method  that 

yields  a  regular  spline  as  an  approximate  solution  to  the 

problem   (1.1)  -  (1.3) . 

From  (2.1)   any  regular  spline,  u(x),   satisfying   (A l) 

can  be  expressed  by 

    m1,2,.....,j(x)jtxjbjajIu(x) =++=  

where  the  parameters   are  still  undetermined.     Following 

Werner  [21]     the  linear  parameters  aj   and  bj  may  be  determined 

in  terms  of  u(xj)  and  u(xj+1 )   giving  

         

        (3.1)
m1,2,....,j(x)jt

h
jxx

)1j(xjt

)j(xjt)ju(x)1ju(x)j(xjt)ju(xjIu(x)

=+
−

+−

+−++−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

The  function  u(x)   and  its  second  derivative  are  continuous 

for  x  ∈    [a,b].    Hence  the  conditions 

          
(3.2)

11,2,.....mj1jI)1j(xu'jI)1j(xu' −=++=+

are  necessary  and  sufficient  for  u(x)  ε  C2    [a,b] . The 

expression   (3.2)   applied  to   (3.1)   yields  a  relationship 

analogous   to   the  consistency  relationship  of  cubic  splines, 
namely 

p(xj ,xj_1,  Mj ,Mj-1 ) + P(xj ,xj+1 ,mj,mj+1  )   =2Δ2 (xj-1 , xj,xj+1)u(x)

j   =   2,3,...,m   (3.3) 
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A  collocation,  method  is  derived  by  fitting   the 

equation   (3·1)   to   the  problem   (1·1)—(1·3)   at  the  set  of 

knots  .  Setting  u1m
1jj}x{ +
= j= u(xj)   this   can  be  written  as 

Mj   =  f(xj,uj) j  - l,2,...,m+l                        (3·4) 

Equations   (3·3)   and   (3·4),  when  combined,   yield  a 

non—linear  system  of   equations,   F(u) =o,   from  which   the  knot 

values  of  the  regular  spline  collocation  solution  are  calcu- 

lated.      This   system  of  m-1  equations  in  m-1  unknowns   is 

given  by 

 

       

(3.5)0by1mu

m2,....,j0)1juj2u,1j(u2h
1

))1ju,1j)f(xju,jf(x,1jx,jp(x

)1ju,1jf(x),ju,jf(x,1jx,jp(x

0ay1u

=−+

==++−−−

++++
−−−

=−

 

Let  us   assume   that   the   system  of  equations   (3.5)   has 

a  unique   solution  u*   .     The  vector  u*       yields  values   at   the 

knots,   which,   combined  with   (3.1)   and   (3.4),   construct   a 

regular   spline  approximant,   y*(x) ,   to  ŷ(x). 

4.        An  Existence   Theorem

In  the   following  we  use  results   from  Urabe   [l9,pp.l23] 

and  Sakai   [13,14].       Firstly,  we  quote  a  proposition  by  Urabe 

as  its   implementation  establishes   the  required  theorem. 
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Proposition 

Let  F(α)   =  o  be   a  given  real  system  of  equations  where 

α  and  F(α)  are  the  vectors  of  the  same  dimension  and  F(α)   is  a 

continuously  differentiable   function  of   a  defined  in  some 

region  Ω  of  α .     Assume  that  F(α)=0   has   an  approximate 

solution  α  =  α  for  which  the  determinant  of   the  Jacobian 

matrix  J(α) of  F(α)  with  respect  to  α  does  not  vanish  at  α = α̂   , 

and  there  is  a  positive  constant  ρ    and  a  non-negative  constant 

  <    1,   such  that κ

ρ<κ−

Ω∈ακ≤α−α

Ω⊂ρ≤α−αα≡Ω

ρ∞

∞ρ

1
r'M)iii(

anyfor'M/||)ˆ(J)(J||)ii(

}||ˆ|||{)i(

  

where  r  and  M'   are  positive  constants  such  that ,r||)ˆ(F|| ≤α ∞  

and .'M||)ˆ(J|| 1 ≤α ∞
−  

Then  the  system  F(α)   =  0  has  one  and  only  one  solution 
 ρΩα= in*α  and

κ−≤α−α ∞ 1
r'M||ˆ*||  

In  our  implementation  of   the  above  proposition  we   take 

û  as   the  approximate  solution  to   the  system  of  equations 

F(u)  =O,   given  by   (3.5).     Our  first  intention  is  to  construct 

a  region  Ωh,  (û )   over  which  F(u)is  well-defined  and  differentiable. 
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Let   the   set Ωh(û)  ⊂   IRm+1   be   defined by 

}by1mu,ay1um,2,3,.....,jch,)j(xujuu{)u(hΩ =+==<−−≡−
ˆˆ                       (4·1) 

where  uj   is   the  jth  component  of   the  vector  u  ∈  IRm+1   , and 

 c  is  a  positive  constant   independent  of  h.  Also,   it  is 

necessary   to  define   the  region  Vh    by 

(4·2)hA}b][a,x,2Nhγ||(x)uy(x)|| )yx,{(hv ⊂∈−<∞−≡ ˆ

for  any h <  ho  ,  where the   constants  N  and  γ   are  explained 

in   (1.4)   and   (1.5).     Furthermore,   let     h be   sufficiently- 

small,   say  h < h1  <  ho  ,   such  that  the  points 

                    )u(hΩεuanyforhVεα),j(x,)1ju,( −−+
ˆη                                             (4·3) 

where   xj  <    <  xj+1    and  α  lies  between  uj   and  uj+1 , 

j  =  l,2,,..,m.     The  above  restriction  on    h     ensures   that, 

at   the  points   indicated  in   (4·3),   f(x,y)   is   twice   contin- 

uously  differentiable  with  respect  to  x  and  y  and  all   these 

derivatives  are  bounded. 

For  simplicity  of  notation  we   adopt 

                      M.  =    f(xJ,   û(x ))     and     M J.  =   f(xJ,uJ.).          

In  the   latter  uJ.   is   the  jth     component  of   an  arbitrary 

vector  u  ε  Ωh   (û),   h  <  h1   .    The  expression   (4·3) immediately 

yields   the  boundedness  of  Mj.   and  Mj.,   and   further  that 

                 ch|yf||ju)j(xu||α),j(xyf||jMjM <−≤− ˆˆ

for  some  a     between  û(xj)   and  uj     j  = 2,3,. .. ,m. 
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In  the  examples  of   chapter   2,   stipulations   guaranteeing 

the  fulfilment  of   (A1)-(A3)   imposed  restrictions  on  the 

values  M j   for  various  classes  of  functions   t j     Consequently, 

we  require  one  further  assumption,   namely 

(A4)      The   functions   t j,J=l,2,...,m,   are  admissible.

 ie.  the  admissible  values for  1m
1j}j{M +
=   include  the

set  m where 

               )}byf(b,1mM),ayf(a,1Mm,2,3,....,jch,LjMjMM{m =+==<−−≡ ˆ  

whenever  h < h 2 , for   some  h2   <  h1  .The constant  L   is   a  bound 

on  f y   (• ,  •)   over  U,   and  Mj =  (M)j   ,          

The  above   assumption  is   a  theoretical  restriction on the 

choice  of  classes   of   functions m
1j}j{t =  

and  dictates  that  the 

admissible  values   for m
1j}j{M =  

must  include  a  small   interval 

containing  the  values 
 
Hence,   from  (1.5) ,   M m

1j}jM{ =
ˆ

j .has f ( x j ,ŷ ( x j)  

as   an  admissible  value  whenever  h  is  sufficiently  small, and  thus 

the  choice  of   classes m
1j}j{t =  

is  well—defined  as  h→O. 

The   following  lemmas  are  essential   to  our  proof 

Lemma   (3)

Let  u(x)   be   the   function  derived  by  a  combination  of   (3·1) 

and   (3.4)  where   the  knot values,   u ( x J )  are replaced  by  the 

j th  component  of   an  arbitrary  vector  u  ε  Ω h    (û ) .   Then  for  h  suffi- 

ciently  small  u(x) |IJ  is  4-bounded. 
Proof. 

By   (A.4)   and   (4.3)   the   function  u(x)   is  well—defined 

over  Ω h (û )  whenever  h < h 2   .     The  assumption   (A3)   informs  us   that 

 is   4-bounded  if  M j  and  
h
1  (Mj+1  -M j )    are  bounded.       jIu(x)
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We  note  that,   whenever  h <  h2  , MJ.  =   f ( x j , u j )    is  bounded 

 by   (4.3),   and 

 

α)(xj,y
f

h

)ju1j(u

)1juη,(x
f

))ju,jf(x)1ju,1j(f(x
h
1

jM1jM

∂
∂−++

+∂
∂=

−++=−+
                    (4·4)  

Where  xj  <  η  <xj+1     and  α  lies  between uj  and  uj+1 .  The  

derivatives  of (4·4) are bounded by (4·3) .Using the triangle  

rule, u ε Ωh  and that ( )
−
û û (x) is a cubic spline solution  

to (1·1)-(1·3) we have  

           
.1jxξjx)('uh2ch

jujuju1ju1ju1juju1ju

+<<+≤

−+−+++−+≤−+

ξˆ

ˆˆˆˆ
 

Thus )jM1j(M
h
1 −+  

is  bounded  for  any )u(hΩu ˆ∈ whenever 

h  < h 2     and  the  proof  is  complete. 

Lemma  4

Let   w (x)  be  four times continuously differentiable 

over  Ij   and    be  the  cubic  polynomial   that  interpolates 

the  values  Then )ofw(x)1j(x)andw"j(xw"),1jw(x),jw(x ++

1jxξjxwherejI)x( ξ1vw
384

45h£w(x)w(x) +<<∈≤∞−  

Proof  

It  is  easily  seen  that£w(x)   can  be  expressed  by 
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(4·5))1jx(x2)jx)](xj(xw")1j(x[w"
6h
1

)1jx)(xjx)](x1j(xw")j(x[2w"
6
1

h

)jx(x
)1jw(x

h

x)-1j(x
)jw(x£w(x)

+−−−++

+−−+++

−

+++=

               

The interpolation is exact for any w(x) ε π3, the set of cubic 

polynomials. Applying the Peano kernel theorem, the interpo- 

lation  error,  Rw(x),   is  given  by 

  ∫
+ −

−
=−=

1jx

jx
(t)dtIVk(t)w£w(x)W(x)Rw(x)

where  k(t)  = Rx[(x-t) 3
+ ]/31.       The  notation   Rx [.]  implies 

an application of  the  functional  R  to  a  function  of  x,  and 

(x- t )+  =   k   
⎩
⎨
⎧

≤
>−

txif0
txift)(x

Note that Rw(x)   from Some 
∫
+−

−≤
1jx

jx
k(t)dt( 

IV
w ξ

.1jxξjxξ, +<<  

Evaluating the  above  integral  yields  a  bound  on  Rw(x),  and 

maximising  this  bound  over  Ij   gives  the  desired  result 

Lemma  5

The  non-linear  system  of  equations   (3·5)   is  well—defined, 

and  differentiable  with  respect  to  u,   over Ω h , (û)  whenever  h  is 

sufficiently  small. 

Proof

Let  u  be  an  arbitrary  vector  in Ω h (û) »  h  < h2 ,   and  u(x) 

be  the  function  derived  from  (3 ·1)    and  (3·4)when  the  knot  value 
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u(xj)   is  allocated  the  value  of  the  j th  component  of  u. 

Note  that  u(x)   coincides  with  a  regular  spline  over  each 

separate  interval  Ij   but  that  u'(x)   is  not  necessarily 

continuous   at  the  knots m

2jjx
=⎭

⎬
⎫

⎩
⎨
⎧

 
By  lemma   (3) 

jIu(x)   

is   4-bounded  for  j = l , 2 , . . . , m .  

          we bound    ||u(x) - (x)||û  ∞ , x , Ij ,  by  using

   ||u(x)- (x)||û ∞≤||u(x)- u(x)||£  ∞+|| u(x)- (x)||£ û  ∞                                                          (4·6) 

The   first  term  on  the  right  hand  side  of   (4.6)  may  be 

bounded  by  using  lemma   (4) ,    and  the   second  term  by  using 

(4·5)  whilst  remembering  that,   as  û(x)   is  a  cubic  spline, 

û (x)≡ u (x), x e Iˆ j, Hence, £

           jIx],||ûu||4c[h||(x)ûu(x)|| ∈∞−+<∞−                                            (4·7)

for  some  constant  C. 

Finally,   using  ( 4 . 1 )    and  taking  the  supremun  of 

the  bounds  for  j=l,2,...,m,   it  is  easy  to  see  that  for 

h  < h 2

b].[a,x0(h),||(x)ûu(x)|| ∈=∞−  

Consequently,   for  h  sufficiently  small,   say  h<h3<h,we 

have 

.2Nhγ(x)uu(x) −≤∞− ˆ  

and  hence,   for  any  u  ε  Ω h   (û) ,   h  <  h 3   the  function 
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u(x)  ε  A h  .  Thus F(u)   is well-defined and differentible 

with  respect  to  u  over  Ω h 
−
û , h < h 3

 

Remember  Û  is  an  initial  approximation  to  the  exact  solution, 

u * ,     of  the  non-linear  system  of  equations,  F(u)=0,   defined 

by   (3·5).     Let  us   define  ū (x)   to  be  the   function  derived  from  (3·1) 

and  (3·4)  when  the  knot  values  ū ( x j . )  = u ( x j )  for J  i=l,2,..,m+l. 

Note  that  ū' (x)   is  not  necessarily  continuous  at  the  knots 

unless  û  =  u*.       Set  (x).iv
iuT|(x)ivu ≡  

  
Now,  by  using 

lemma  (3)  we  see  that  jI|(x)u   is  4-bounded. 

The  lemma  (1),   and  the  aforementioned  4-bound,  yield  for 

x ε  l J

          

(x))iv
ju,1jxjR(x)1jû,1jf(x

6
1)jû,jf(x

3
1

))1jû,1jf(x),jû,jf(x,1jx,jp(x(x)u)1jx,jx,j(x2Δ

++++++=

+++≡+

  

(4·8) 

 .1jxξjx),(ξIV
ju

24

2h(x))IVu,1jx,jR(xwhere +<<−=+  

Using  (1·7),(3·5)  and  (4·8)  we  determine  F(u)  to  satisfy 

   Û1-ya=0 

   

m2,3,...,j )20(h)1juju21ju(2h
1

))1ju,1jf(x),ju,jf(x,1jx,jp(x)1ju,1jf(x),ju,jf(x,1jx,jp(x

==++−−−

++++−−−

ˆˆˆ

ˆˆˆˆ

 

 
Û m+1-yb = 0.  
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Hence,   for  some  positive  constant  R,   and  h < h 3

   2Rh||)û(F|| <∞        (4·9) 
 

To   simplify   the  notation,   we  utilise   corollary   (2)   to 

denote 

       etc.)jû,jf(xjM̂),1jM̂,jM̂R((x))
IV
ju,1jx,jR(x =+≡+  

                                                )1ju.,u(R +≡ ˆˆ~

  

and  D1, D 2     to  be   differential   operators   signifying 

differentiation  with  respect   to   the   first,   respectively 

second,   variable  of   the   above  functions. 

From  (3·5)   and   (4·8)   the  hon—zero  elements   of   the 

Jacobian,   J(û),of   the  vector  F(u)   can  be  expressed  as 

J(1,1)   =  1

)1ju,ju(R2D)1ju,1j(xyf
6
1

2h
1

1)j(j,J −+−−+−=−
~ˆ~ˆ  

))1jû,jû(R~)1jû,jû(R~(1D)jû,j(xyf
3
2

2h
2

j)(j,J ++−++=

(4·10)
)1ju,ju(R2D1)ju,1j(xyf

6
1

2h
1

1j(j,J +++++−=+
ˆˆ~ˆ

 
J
(m+l,m+l

)  =  1                                                   2,3……,m 

The   corollary   (2)   and   the  4-bound  on  ū (x) | I j      gives   us 

that 

D p  R~ (•,•)   =     0(h2)    p  =   1   and  2                            (4·11) 

A  direct  application  of   the  expressions   (1·8),   (4·10) 
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and  (4·11)  reveals  that,  for  some  positive  constant  T 

.3hh,2Th||)ûJ()û(sJ|| <≤∞−  

The  existence  and  boundedness  of  J-1 )û(    is  achieved 

by  applying  the  above  bound,  and  a  result  from  [7     ,pp. 365], 

to  the  expression 

( )û1
sJ1))]ûJ()û(s)(Jû(1

sJ[I)û(1J −−−−−=−  

Thus,   for    h    sufficiently  small,   say h < h4 ≤ h3 

J )û(    is  nonsingular  and 

0MM,||)û(1J|| >≤∞
−  (4·12) 

Next,  we  require  a  bound  on  E ≡ J(u) - J )û(  for  any 

u∈ Ωh )û( , h < h4.Using  (4·10),   the  non-zero  elements  of 

E  may  be  written  as 

))1jû,jû(R~)1ju,j(uR~(2D))1jû,1j(xyf)1ju,1j(xy(f
6
1

1)j(j,E −−−+−−−−−=−  

))1jû,jû(R~)1ju,j(uR~(1D

))1jû,jû(R~)1ju,j(uR~(1D))jû,j(xyf)ju,j(xy(f
3
2

j)(j,E

+−++

−−−+−=

 

))1jû,jû(R~)1ju,j(uR~(2D))1jû,1j(xyf)1ju,1j(xy(f
6
1

1)j(j,E +−++++−++=+  

j=2,3............... m (4·13) 

We  illustrate  the  construction  of  the  bound  on   (4·13) 

with  reference  to  the  element  E ( j , j + 1 )  .      The  line 
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is  contained  in ,1h3hh,hV ≤<1,α0),1jûα)(11jαu,1j(x ≤≤+−+++  

and  hence  we  can  apply  the  mean  value  theorem  to  obtain 

|1jû1ju|C|)1jû,1j(xyf)1ju,1j(xyf| +−+≤++−++               (4·14) 

for  some  positive  constant  C , 

Note   that   (x))IVu,1jx,j(xR)1ju,j(uR~ +≡+ where   the 
 
function  u(x)   is   that  of   lemma   (3)   and  hence     is jI|u(x)

4-bounded.     Now , 

⎥⎦
⎤

⎢⎣
⎡

+−+
+∂
∂≡+−+ )1jM,jM̂R()1jM,jR(M

1ju
))1ju,jû(R~)1ju,j(uR~(2D

 

  
  

⎥⎦
⎤

⎢⎣
⎡ −+−+

+∂
∂≡ )jM̂j)(M1jM,jM̂α)(1jR(α(1D

1ju
 

for  some  α ,0 <  α  <  1.        It  is  necessary   to  prove   the  4—boundedness 

of  a  spline  over  I j   when  M j  ≡  ),jû,jα)f(x(1)ju,jαf(x −+   and 

).1ju,1jf(x1jM ++≡+ The  bound  on  M J  or  MJ+1  is   trivial,   and 

⎥⎦
⎤

⎢⎣
⎡ −++−+−=

−+ )jM1j(Mα)jM̂1j(M)α(1
h
1

h
jM1jM

 

is  readily  bounded  by  similar  arguments   to  those used  to  bound       (4·4) 

We  may  now  consult  corollary   (2)   and  deduce  that 

0.c;|jûju|2Ch|))1ju,ju~(R~)1ju,j(uR~(2D| ≥−≤+−+ (4·15) 

Analogously  bounded  expressions  exist  for  the  other  terms  of 

(4·13)   and  the  combination  of   (4·13)-(4·15)   achieves   the 

desired  result,   namely 
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Th||ûu||
C
T||)ûJ()uJ(|| <∞−≤∞−                  (4·16) 

for  any  u  ε  Ωh   (û) ,   h <  h4    where  T  is  a  positive  constant. 

Collecting  together  the   relevant   results  we  may  now 

apply  Urabe's  proposition.     Note   that,   for  h  sufficiently 

small,   lemma   (5), (4 ·9),(4·12)   and   (4 ·l6)    satisfy   the 

prerequisite   conditions   over  Ωh (û) . 

ie           1k0,
M
kTh||)ûJ()uJ(|| <<<≤∞−

and                    ch
k1

2MRh ≤
−

Therefore,   we  have  proved   the  existence   of   the 

vector  u*     such   that  F (u*)  =   0  ,    and 

k1

2MRh||*uû||
−

≤∞−                                       (4.·17) 

To  determine  a  global   convergence  result  we  use 

(1·5),   lemma   (4),    (4·7),    (4·17)   and   the   bound 

  ||y*(x)- (x)||ŷ ∞ ≤ ||y*(x)- y£ *||∞+|| y£ *(x)- û(x)|| 

                +|| û(x)- (x)||ŷ  ∞   ,          x∈ Ij . 

to  prove   that 

m},1,2,j;jIx,||(x)ŷ(x)*y{||sup||(x)ŷ(x)*y|| K=∈∞−=∞−  

 =    0(h2). 

The   results   of   this   chapter  are   summarised   in   the 
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following  theorem; 

Theorem
Let   the  classes  of   functions   m

1j}j{t =  
satisfy  the 

conditions   (A1)-(A4),   then  in  a  sufficiently  small   neighbourhood 

of   the   isolated  solution,   ŷ (x),   of   the   problem   ( 1 ·I ) - ( 1 ·3 )  

there  exists   a  unique  regular  spline   solution  y *   (x)   such  that 

(i)     The  knot  values   
    

satisfy   the   determining 1m
1j)}j(x*{y +
=

system  of  equations  F(u)=  0. 

(ii)                         0.has)20(h||(x)*y(x)y|| →=∞−ˆ

5.        Computational  Aspects  and  Examples

The   selection  of   optimum  classes   of   functions   n
1i}it{ =

ˆ

is  of   fundamental   importance.     This  process  relies  heavily 

on  a  preconceived     notion    of   the  analytic  solution  from  the 

formulation  of   the  problem.     However,   for  a  particular   type 

of  equation,   we  can  be   considerably  influenced  by  the   structure 

of   the  function  f(x,y(x))   or  by  predetermining  a  characteristic 

of   the   analytic   solution.      A  possibility   is   to   asssume   a  power 

series  expansion  for  ŷ(x) 

            ie
             

                 (5·1) ))1a(x3a2(aα)1a(x(x)y KKK+−+−=ˆ

The exponent, α, is determined by substituting (5 ·1)  into 

equation (1·1) and equating the least exponents of (x-a1.) 

on  either  side  of   the  equation.        Consequently,   a  feasible 
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solution  may  incorporate   the  function 

1,2.α,αd)c(xd),(x,it ≠−=cˆ  

Flexibility of application is an important feature of 

regular splines and different classes may be deployed over 

consecutive  intervals   [zi -1 ,z i],[zi,zi+1]. Computationally, 
this   is   facilitated  by  expressing   (3.5)   in  a   simplified  form. 

For   an  arbitrary  regular  spline,   u(x),   defined  over   I j  we 

have  by   lemma   (1)   that 

.jA
6

1jM

3
jM

)u(x)1jx,jx,j(x2Δ +++=+                            (5·2) 

With  predetermined  expressions  for  m
1i}i{A =   the  terms 

(3·5)   and   (5·2)   yield  a  computationally  versatile  system 

of   equations,   namely 

U i  =  y a

)1juj2u1j(u2h
1)1ju,1jf(x

6
1)ju,jf(x

3
2)1ju,1jf(x

6
1

++−−−++++−−
 

+  A j-1    +A j.= 0 i=2,3,...,m 

u  m + l   =  y b                    (5·3) 

The   expressions   Aj   for   the   examples   of   chapter   2   are 

Example   1 

( ) ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ −+−

−
−−−+−

−
+=

3
1)k(kka2a

1kk
jM

6
1)k(k12a2a

1)k(k
1jM

jA  

2k
1

jM
1jM

1

1awhere
−+−

=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

 

When  K  = 3,   the   cubic  spline,   Aj  =0. 
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Example  2 

2n

4n jM
1jM

logjM
6.n!

n2n6
jA

−

∑
∞

=
++−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
 

Example  3. 

6
1jM

3
1a

1jM
jM

log
2

2a
jMjA +−++

+
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
 

                             

2
1

1jM
jM

1

1awhere

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+
−

=
 

Example  4

( )∑
∞

=
−

+
+−−= ⎥

⎦

⎤
⎢
⎣

⎡

1n 6.2n!
1

n)!(2n
12nhμ1n1)(jMjA  

( ) ( )∑
∞

= +
−

+
++−+−

+ ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

1n 1)!6.(2n
1

!32n
112nhμ1n1)(

hμsin
1jMhμcosjM

 

In  examples  2  and  A,   a  truncation  of  the  infinite  series 

for  A j   is  used  in  numerical  work. 

A  change  in  class  of  spline  is  frequently  necessitated  by 

the  nature  of  the  solution.     The  examples  of  chapter  2  illustrate 

that  some  classes  of  regular  splines  are  not  defined  for  all 

values  of  the  second  derivative.     A  common  occurrence  is   that 

the  sign  of  the  second  derivative  must  remain  constant  throughout 

the  region  of  application.     Such  a  spline,   t(x),   is  invalid  in 

a  small  neighbourhood  of  any  point,  η,  where  t"(η) =0.     The 

spline  t(x),   is  obviously  a  'bad  fit'   to  the  analytic  solution 

in  the  neighbourhood  of  the  point  x  =  η.      Consequently,  we  require 
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a  criterion  to  determine  the  deployment  of   the  spline  t (x). 

To  illustrate  how  a  regular  collocation  scheme  may  be  applied 

we   investigate  a  hypothetical  problem.     Assume   that  ŷ (x)   has   a 

singularity     at  x = a 1   ,   a1 ∉  [ a , b ] ,    but   is   regular  elsewhere, 

ie  ŷ (x)   is   given  by   (5 ·1)    with  appropriate   constants  ∞
= 2i}i{a  

The   exponent,   α,   is   determined  as.  previously  stated  and  hence 

the   splines   to  be   incorporated  in  the   solution  include   the 

rational  spline, 

                         jIxα)jxxj(d
jc

jxxjbjat(x) ∈
+−

+−+= ⎟
⎠
⎞

⎜
⎝
⎛  

The  effect  of  the   singularity  on  y(x),   x  ∈  [a,b],   whether 

significant  or  not,   lies   chiefly  in  the  region  of  a  boundary  point. 

The  scheme  proposed   is   to   apply   the   rational   spline  over 

[a,a'],[b’,b]   and  the  cubic   spline  over   [a',b'],   for  suitable 

a',b'.        In  this  way   the   spline   solution  can   '  f i t  '    the  effect  of 

the   singularity  and  rid  us   of   the  necessity   to   use   extremely 

small  values  of h  if  this  effect  is overwhelming   (cf.Problem  1). 

The   selection  of  a'   and  b'   will  be  influenced  by  the   function 

f(x,y(x))and  its  values   at  x = a  and  x=b. A  judicious   choice 

for  a',b'    removes   the   obstacle   associated  with   the   sign  of 

ŷ" (x) .      The   cubic   spline   is   only  one   possibility   for   the 

interval   [a', b'],   and  any  class  of  splines   that  is   defined 

unconditionally  may  be  used   instead   (eg.Examples   1   and  4). 

Solution  of   the  appropriate   system  of  equations   (5·3) 

will  yield  information  to   formulate  and  solve  a  refined  system. 

Using  this   information  it  is  possible   to  realize   the  character 
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of  ŷ(x)   by  evaluating  certain  structural  parameters, q j , 

derived  by  a  direct  comparison  of   the  supposed  structure  of 

the  analytic  solution  to   the   corresponding  regular  spline 

approximant.     We  qualify   this   process  by   referring  to  Examples  1.4 

of   chapter   2.     Assume   that   for  b],[a,]b,a[x ⊆∈  and  constants 
e,f,g   and  p: 

c f .Example   1. 

                       1,2kkx)g(pfxe~(x)ŷIf ≠−++  

       then for any j such that Ijxjdjq +−~ j ⊂ [a’,b’]. 

Similarly,   we  have 

Example   2 

jd~jqpxegfxe~(x)ŷ ++  

Example   3

jxjd~jqx)(ploggfxe~(x)ŷ +−++  

Example   4

jxμjd~jqp)x(μsingfxe~(x)ŷ −+++  

Returning   to  our  hypothetical  example,   let  us  assume 

that   the  parameters r
1j}j{q =  

of   the   rational   spline  are 

closely  grouped  but   for  every  other   class   of   splines   the 

associated  parameters, m
1rn}j{q +=   

vary   substantially.   We 

decide   that,   for  x  ∈  [a , x r+1],  
the   rational   spline   is   a 

good  ' fit '  whilst   the  cubic  spline   is  probably  best   for 

x ∈ [x r + 1 , b]. 
 
Numerical   criteria  implementing  the  above  ideas,   are 

as  follows:     Let m
1j}j{q =  

be  the  values  of  the  parameter  for 
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an  arbitrary  class  of  regular  splines 

(CI) 

Let  rJ  =
jq~

jq1jq −+  where  |}jq|{1,maxjq =

 
Then,  if 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>

≤

−+−≤≤=−+

napplicatio
notissplinethech,

napplicatio
issplinethech,

|}jr1jr{|1mj1min|pr1pr|

for  some  C    0 <  C  <
2
1  

Normalise   the  values m
1j}j{q =  by 

  

  

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤

=
1pqif

pq
jq

1pqifjq

jq̂  

(C2) 

Apply  the   spline  over  the  intervals   [xr ,xp+1] ,    and  [xp ,xs ]    
where   the  integers     r     and     s     satisfy 

1-s,2,p1,pj2|pqpq|

p,1,rr,j2pqjq|

K

K

++=•<−

+=•<−

ˆˆ

ˆˆ |
 

The  effect  on  the  solution  of  the  parameter  C  in  (C1) 

will  be   discussed  later. 

We  may  now  define   a  remodelled  system  of  equations   (5·3) 

based  on  the  criteria   ( C 1 )    and   (C2).     The  solution  of   the  first 

system  of  equations  is  an  excellent  initial  value  to  the 

remodelled  problem,   and  comparatively  little  extra  effort  is 

required  to  solve   this   additional  iterative  problem. 
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Four  problems   are   evaluated  by   the   above   criteria.   For 

comparative  purposes   the  problems   are  also  evaluated  by  the   cubic 

spline   collocation  method   and  by  Numerov's  method.     As   previously 

stated,   the   latter   is   a   fourth—order   finite   difference   scheme.   For 

simplicity  of  notation  we  define  by  E  the  absolute  error,  and  E r 

the  relative  error.     The  parameter  C  of   ( C 1 )    is   taken  to  be   C =
2
1 . 

Problem   1                               221.01

3)2x2(y(x)(x)y" −+=

         y(0)    =    101,        y(l)   =  0

  
2x

.01)(x
1.01(x)ŷ −+=  

 
 
Table  1               The  regular  spline  solution  y *   (x)   uses      the  rational 
                            spline   K =- 1,   and   the   cubic  spline. 

             
X   * 

y   (x) 
E Er h 

.05 16.8358 4 .97    x   10 -3 2.95    x   10-4 . 1 

 .2 4.7728 3.32   x   10 -3 6.96   x   I0 -4 . 1 
 .5 1.7331 2.68   x   10 -3 1.55    x   10 -3 . 1 
.025 28.8576 1.08   x    10 -3 3.76   x   10 -5 .05 
 .02 4.7703 8.21   x   10 -4 1.72   x   10 -4 .05 
 .5 1.7309 5.41   x   10 -4 3.13   x    10 -4 .05 

The  values  of   the  parameters    h  =   . 1 ,   are ,8
1j}jq̂{ =

                     =  -0.00999     ,          = -0.00947       ,                =    -0.00583 1q̂ 2q̂ 3q̂

               =     0.00589   ,                =  0.0330          ,                 =     0.0854 4q̂ 5q̂ 6q̂

        =     0.175 ,               =  0.318 7q̂ 8q̂

The   cubic  spline   and  Numerov's   solutions   are   too   inaccurate 

to   give   a  useful   comparison  with  the   above  values   of  h. 
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Problem2                             212x
50

3)4x(y(x)(x)y" −+= , y(-
2
1 ) = 19.9375,       

3
38y(2) −=  

                              4x
1x

10(x)ŷ −
+

=  

  
The  regular  spline  incorporated  the  rational  spline,  K = -1,the  cubic  spline 
and  the polynomial  spline,  K= 4. 

Regular     Spline Cubic   Spline Numerov's   Method  

x     h E         Er E          Er             E          Er

-·3 0·1 3·90  x  10 - 4 2·73  x 10 -5 3·90  x 10 -2 2.73  x  10 -3 1·23  x  10 -3 8.63  x 10 -5  

0·2 0·1 1·72  x  10 -4 2·07  x  10 -5 2·31  x  10 -2 2.78  x  10 -3 6·11  x 10 - 4 7·33  x  10 -5

310·8 0·1 1·05  x  10 - 4 2·04  x  10 - 5 7·039  x 10- 3 1·44  x 10 -3 2·67  x  10 - 4 5·19  x  10 -5

1·5 0·1 5·46  x  10 - 4 5·14  x  10 - 4 1·36  x  10 - 4 1.28  x  10 - 4 9·10  x  10 -5 8·57  x  10 -5

- ·3 0·05 1·01  x 10 - 4 7·04  x  10 -6 9·46  x  10 - 3 6.63  x 10 - 4 7·99  x  10 - 5 5·60  x  10 -6 

0·2 0·05 4·58 x  10 - 5 5·50  x  10 - 6 5·66  x  10 - 3 6.79  x  10 - 4 3·94  x   10 -5 4·73  x  10 -6

0·8 0·05 2·74  x  10 - 5 5·33  x  10 -5 1·80  x  10 - 3 3.49  x 10 - 4 1·72  x 10 -5  3·34  x  10 - 6

1·5 0·05 1·36  x  10 - 4 1·28  x  10 - 4 5·00  x  10 - 5 4.70 x  10 - 5 5·86  x  10 - 6 5·51  x  10 - 6

The parameters 
  
of  the  rational  spline with h =  .1 ,  are 5

1j}jq̂{ =

1.01435q̂1.0202,4q̂1.0123,3q̂1.00327,2q̂.99798,1q̂ −=−=−=−=−=  
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Problem  3               
3

40y(1)120,(y(0),12x)22(12x2)21)(x2x(y(x)
5
1(x)y" ==−+−−+=  

 

21)(x2x
2)

2
1(x

30(x)ŷ −−
+

=  

The  regular  spline  solution  incorporated  the  rational  spline,  K =2,  and  the 
cubic  spline. 

Regular    Spline Cubic    Spline Numerov ' s    Method  

X h E         Er E           Er E            Er

•2 

•5 

•8 

•1 

•1 

•1 

9·93  x  10 -4 

7·96  x  10 -6 

5·32  x  10 -4

1·62  x 10 -5 

2·66  x  10 -7 

3·00  x  10 -5

0·657 

0·360 

0·130 

1·07  x  10 -2 

1·20  x  10 -2 

7·34   x  10 -3

2·90  x  10 -2  

1·30  x  10 -2 

4·27  x  10 -3

4·74  x  10 -4 

4·34  x 10 -4 

2·41  x  10 -4

•2 

•5 

•8 

•05 

•05 

•05 

2.50  x  10 -4 

5.88  x   10 -6 

1·20  x  10 -4

4·09  x  10 -6 

1·96  x 10 -7 

6·75  x  10 -6

0·157 

8·71  x  10 -2

3·17  x  10 -2

2·56  x  10 -3 

2·91  x  10 -3 

1·79  x  10 -3

1·90  x  10 -3 

8·47  x  10 - 4 

2·77  x  10 -4

3·10  x  10 -5 

2·83  x  10 -5

1·57  x  10 -5
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Problem 4 

 

The  exponential  spline  comprised  the  regular  spline solution. 

Regular    Spline Cubic    Spline Numerov 's  Method  

X h E E 
r      E          Er E           Er

  1·2 

  1.5 

  1·8 

·1 

·1 

·1 

2·05 x  10 -3 

1·92  x  10 -3 

4·27  x  10 -3

1·69  x    10-5

4·76  x    10 -6

3·19  x    10 -6

1·96 

5·25 

7·21 

1·62  x  10 -2 

1·30   x    10 -2 

5·38  x   10 -3

1·54  x 10-2

4·12  x 10-2

 5·64      x 10-2

1·28  x  10-4 

1·02  x  10-4 

4·2f   x  10-5

1·2 

1·5 

1·8 

·05 

·05 

·05 

5·02  x  10 -3

4·84  x   10 -4

1·07  x  10 -3

4·15  x  10-6

1·20  x  10-6

7·99    x  10 -7

0·485 

1·30 

1·78 

4·01  x 10 -3 

3·23  x  10 -3 

1·33  x  10 -3

9·68   x   10-4

 2·59   x   10 -3

  3·54   x   10 -3  

8·01  x  10-6 

6·44  x  10-6 

2·65 x 10-6

8ey(2),4ey(1),xπ16)sin2(π16y(x)y" ==+−=  

xπsin4xe(x)ŷ +=  
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Synopsis
 
The  previous   chapters   generalise   the  well-established   theory 

of   the  cubic   spline   collocation  scheme   to  classes  of  regular  spline 
collocation  schemes.     We  have  proved  that   the  existence  and 
convergence  of   the   latter  schemes   is  implied  by   that  of   the   former. 
Consequently,  we  may  now  consider   classes  of  schemes  wherein,   formally, 
only   the   cubic  spline  collocation  option  existed. 

 
Numerically,   the  versatility  of   the  proposed  scheme  is   of  major 

importance.     The  classes  of  splines  utilised  depends  on  the  ingenuity 
of   the  user.     These  may   include   the  examples  of   chapter  2  or  a  class 
derived  from  an  intuitive   idea  of   the  dominent  terms   of   the   true 
solution.      Corresponding  to   the   classes  employed,   structural  parameters 
will  be   evaluated  and   these  may  yield  desirable  information  e.g.   the 
location  of  a  singularity.     The  numerical  examples  of   chapter  5 
illustrate   the   increased  accuracy  obtainable  by  a  judicious   application 
of   regular   splines   compared  with   the   cubic   spline.     Also,   the   results 
give   a  favourable  comparison  with  Numerov's  method,   for  the   specified 
values  of  h.     However,   as  h  →  O,   a  fourth  order  method  will   converge 
faster  than  the  second  order   collocation  scheme  and  the  comparison 
must   favour   the   former.   Yet,   cf.problem   1,   meaningful   results   may  be 
obtained  by  the  collocation  scheme  when  the   fourth  order,   polynomial 
based  methods  are  inapplicable. 

 
At  this   point  we   introduce   the  paper  by  Daniel   and  Swartz   [5]. 

They  derive  a  fourth-order,   cubic   spline  scheme  by  collocating  to  a 
perturbed  differential  equation  which  is   satisfied  by  the  cubic   spline 
interpolant  of   the  true   solution.     The  generalisation  of  their  work 
to  incorporate  regular  splines   is   a  research  possibility  for  the  future. 

 
We  now  consider  the  effect  of  varying  the  parameter  C  of   (CI), 

chapter   5.      Obviously  as   C → O    the  number  of   splines   satisfying (CI) 
will   decrease   and  may  equal   zero.      However,   a  small  value  of  C  will 
ensure  applicability  of   a  spline   that  imitates   the  dominant   structure 
of   the  true  solution  in  a  subregion  of   [a ,b].      In  particular  C = 1/16 
ensures   applicability  of   the   rational   splines   in  problem   1   and   2, 
whilst  C =  1/ 100   is  sufficient  for   the  rational   spline  in  problem  1 . 
Note   that   the  evaluation  of  problem  2  by  Numerov's  method   is  perfectly 
acceptable,   and  hence,   to  detect  problems   to  which  regular  splines   are 
especially   recommended,   we   suggest   a  value   of  C =  1/30 .      For 
comparison  with  the   cubic  spline   collocation  scheme   the  value   C=

2
1   

is   acceptable. 
 
Let   us   conclude  with   the   following  comments.     The   regular   spline 

collocation  scheme   is   meaningful   and   interesting   in  itself,   but  note 
that  the  convergence  is   second  order.     Taking  the  parameter  C =

2
  1

we  achieve  better  results  than  those  obtained  by  solely  considering 
the   cubic  spline.     However,   if   a  polynomial  based  spline   closely 
interpolates   the   true  solution,   without  requiring  excessively   small 
values  of  h,   it  appears   likely  that  a  fourth  order  scheme   is  preferable. 
Therefore,   an  interesting  possibility   is   the  production  of   computer 
packages   for   the  problem   (1.1)- (1 .3 )    involving  the  regular  spline 
collocation  scheme   and   some   fourth  order  method.     The   collocation 
scheme  may  be  applied,   with  C  =  1/30,   to   remove   the  necessity  of  using 
excessively  small  values  of  h.     Initially  we  employ  the  collocation 
scheme,   to   investigate   the   suitability  of   appropriate  classes   of 
regular  splines,   and  then  switch  to   the  fourth  order  scheme  if  none 
are   revealed. 
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	Proposition 
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	The   results   of   this   chapter  are   summarised   in   the 
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