3,516 research outputs found

    Positivity of Continuous-Time Descriptor Systems With Time Delays

    Get PDF
    This technical note is concerned with positivity characteristic of continuous-time descriptor systems with time delays. First, a set of necessary and sufficient conditions is presented to check the property. Then, considering a descriptor time-delay system with two assumptions, a new time-delay system is established whose positivity is equivalent to that of the original system. Furthermore, a set of necessary and sufficient conditions is provided to check the positivity of the new system. Finally, a numerical example is given to illustrate the validity of the results obtained

    Inverse Quantum Chemistry: Concepts and Strategies for Rational Compound Design

    Full text link
    The rational design of molecules and materials is becoming more and more important. With the advent of powerful computer systems and sophisticated algorithms, quantum chemistry plays an important role in rational design. While traditional quantum chemical approaches predict the properties of a predefined molecular structure, the goal of inverse quantum chemistry is to find a structure featuring one or more desired properties. Herein, we review inverse quantum chemical approaches proposed so far and discuss their advantages as well as their weaknesses.Comment: 43 pages, 5 figure

    Stabilising Model Predictive Control for Discrete-time Fractional-order Systems

    Full text link
    In this paper we propose a model predictive control scheme for constrained fractional-order discrete-time systems. We prove that all constraints are satisfied at all time instants and we prescribe conditions for the origin to be an asymptotically stable equilibrium point of the controlled system. We employ a finite-dimensional approximation of the original infinite-dimensional dynamics for which the approximation error can become arbitrarily small. We use the approximate dynamics to design a tube-based model predictive controller which steers the system state to a neighbourhood of the origin of controlled size. We finally derive stability conditions for the MPC-controlled system which are computationally tractable and account for the infinite dimensional nature of the fractional-order system and the state and input constraints. The proposed control methodology guarantees asymptotic stability of the discrete-time fractional order system, satisfaction of the prescribed constraints and recursive feasibility

    Realization and partial fractions

    Get PDF
    AbstractWe discuss the relation between two intrinsically different proposals that have been made in the literature concerning the representation by constant matrices of rational matrices given in fractional form. It turns out that the relation is most naturally studied in the framework of partial-fraction decompositions. We develop the realization theory for decompositions with respect to arbitrary complementary parts of the extended complex plane which may, for instance, correspond to stability and instability. An isomorphism is obtained which connects the spaces used in the two methods, and several identities relating to the McMillan degree are derived in a direct way. Finally, a new computational procedure is given to obtain the partial-fraction decomposition of a rational matrix given in fractional form

    Numerical Investigation of Two-Phase Flow through a Fault

    Get PDF
    Imperial Users onl

    Results on the controllability of Caputo’s fractional descriptor systems with constant delays

    Get PDF
    The paper investigates the controllability of fractional descriptor linear systems with constant delays in control. The Caputo fractional derivative is considered. Using the Drazin inverse and the Laplace transform, a formula for solving of the matrix state equation is obtained. New criteria of relative controllability for Caputo’s fractional descriptor systems are formulated and proved. Both constrained and unconstrained controls are considered. To emphasize the importance of the theoretical studies, an application to electrical circuits is presented as a practical example

    Bounded real lemmas for positive descriptor systems

    Get PDF
    A well known result in the theory of linear positive systems is the existence of positive definite diagonal matrix (PDDM) solutions to some well known linear matrix inequalities (LMIs). In this paper, based on the positivity characterization, a novel bounded real lemma for continuous positive descriptor systems in terms of strict LMI is first established by the separating hyperplane theorem. The result developed here provides a necessary and sufficient condition for systems to possess H?H? norm less than ? and shows the existence of PDDM solution. Moreover, under certain condition, a simple model reduction method is introduced, which can preserve positivity, stability and H?H? norm of the original systems. An advantage of such method is that systems? matrices of the reduced order systems do not involve solving of LMIs conditions. Then, the obtained results are extended to discrete case. Finally, a numerical example is given to illustrate the effectiveness of the obtained results
    • …
    corecore