1,851 research outputs found

    Exact solution of lossy asymmetrical coupled dielectric slab waveguides

    Get PDF
    This paper gives an exact characteristic equation for asymmetrical coupled dielectric slab waveguides with losses in both the guiding and surrounding regions. For the lossless case the solution of a single transcendental equation is all that is required for the evaluation of the propagation constant

    Formation Mechanism of Guided Resonances and Bound States in the Continuum in Photonic Crystal Slabs

    Get PDF
    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry-P\'erot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. We show BICs at the center and on the edge of the Brillouin zone protected by symmetry, as well as BICs at generic wave vectors not protected by symmetry.Comment: 12 pages, 3 figure

    Extreme nonlinear electrodynamics in metamaterials with very small linear dielectric permittivity

    Full text link
    We consider a sub-wavelength periodic layered medium whose slabs are filled by arbitrary linear metamaterials and standard nonlinear Kerr media and we show that the homogenized medium behaves as a Kerr medium whose parameters can assume values not available in standard materials. Exploiting such a parameter availability, we focus on the situation where the linear relative dielectric permittivity is very small thus allowing the observation of the extreme nonlinear regime where the nonlinear polarization is comparable with or even greater than the linear part of the overall dielectric response. The behavior of the electromagnetic field in the extreme nonlinear regime is very peculiar and characterized by novel features as, for example, the transverse power flow reversing. In order to probe the novel regime, we consider a class of fields (transverse magnetic nonlinear guided waves) admitting full analytical description and we show that these waves are allowed to propagate even in media with ϵ0\epsilon0 since the nonlinear polarization produces a positive overall effective permittivity. The considered nonlinear waves exhibit, in addition to the mentioned features, a number of interesting properties like hyper-focusing induced by the phase difference between the field components.Comment: 12 pages, 7 figure

    The exact theory for scattering of waves by thick holes in a slab and other objects with non-separable geometries

    Get PDF
    The theory for scattering of electromagnetic waves is developed for scattering objects for which the natural modes of the field inside the object do not couple one-to-one with those outside the scatterer. Key feature of the calculation of the scattered fields is the introduction of a new set of modes. As an example, we calculate the reflected and transmitted fields generated by an electromagnetic plane wave that impinges upon a multilayer slab of which the layers are stacked perpendicular to the boundary planes. As this is the geometry of a thick plate with slits our theory encompasses the exact scattering theory of electromagnetic waves by a thick plate with slits.

    On wave propagation in inhomogeneous systems

    Full text link
    We present a theory of electron, electromagnetic, and elastic wave propagation in systems consisting of non-overlapping scatterers in a host medium. The theory provides a framework for a unified description of wave propagation in three-dimensional periodic structures, finite slabs of layered structures, and systems with impurities: isolated impurities, impurity aggregates, or randomly distributed impurities. We point out the similarities and differences between the different cases considered, and discuss the numerical implementation of the formalism.Comment: 12 page

    Spontaneous-emission rates in finite photonic crystals of plane scatterers

    Get PDF
    The concept of a plane scatterer that was developed earlier for scalar waves is generalized so that polarization of light is included. Starting from a Lippmann-Schwinger formalism for vector waves, we show that the Green function has to be regularized before T-matrices can be defined in a consistent way. After the regularization, optical modes and Green functions are determined exactly for finite structures built up of an arbitrary number of parallel planes, at arbitrary positions, and where each plane can have different optical properties. The model is applied to the special case of finite crystals consisting of regularly spaced identical planes, where analytical methods can be taken further and only light numerical tasks remain. The formalism is used to calculate position- and orientation-dependent spontaneous-emission rates inside and near the finite photonic crystals. The results show that emission rates and reflection properties can differ strongly for scalar and for vector waves. The finite size of the crystal influences the emission rates. For parallel dipoles close to a plane, emission into guided modes gives rise to a peak in the frequency-dependent emission rate.Comment: 18 pages, 6 figures, to be published in Phys. Rev.
    corecore