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ABSTRACT  

This paper gives an exact characteristic equation for asymmetrical coupled dielectric slab waveguides with losses in 
both the guiding and surrounding regions. For the lossless case the solution of a single transcendental equation is all that 
is required for the evaluation of the propagation constant. 

 

INTRODUCTION  

There has been renewed interest in dielectric and non-radiative dielectric waveguides recently [1, 2, 3]. These structures 
provide very low-loss transmission and are likely to be the preferred transmission line medium for future 3D MMICs at 
upper mm-wave frequencies. Many dielectric waveguide components such as directional couplers [4] and filters [5] rely 
on composite structures for there operation. For each of these components, accurate values for the modal propagation 
constants are required. In general, solutions of coupled structures are obtained using coupled mode theories [6, 7]. The 
coupled mode is approximated by a weighted sum of the modes that exist on the isolated structures. However, these 
methods are only valid for large separations or well-confined modes [8]. Furthermore, coupled mode theory does not 
work well for asymmetrical guides [8]. Marcuse [9] presented a technique for the solution of compound slab waveguides 
with width and permittivity asymmetry. Unfortunately, his method is cumbersome, requiring numerical techniques to 
find the eigenvalue of an 8×8 determinant. In this paper, we derive an exact transcendental characteristic equation for 
the general asymmetrical coupled slab waveguide, the roots of which can easily be found. Furthermore, the technique 
can be used for the calculation of losses in coupled dielectric waveguides, which is an important consideration at mm-
wave frequencies. 

 

THEORY  

Consider two parallel slab waveguides, A and B, separated by a distance 2D and with thicknesses 2a and 2b, 
respectively (Fig. 1). Guide A occupies region 2 and has a relative permittivity εa. Guide B occupies region 4 and has a 
relative permittivity εb. Regions 1, 3 and 5 all have a relative permittivity ε2. In general, the permittivity in each of the 
regions will be complex, εn = ε'n(1-jtanδn). All five regions have permeability µ0. We make the usual slab assumption 
that all the field components are independent of y and that the z dependence is exp(-γzz), where γz = αz + jβz. αz is the 
longitudinal attenuation constant and βz is the longitudinal phase constant. The wave equation then reduces to a one 
dimensional Helmholtz equation: 
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where Φy = Ey for TE modes and Φy = Hy for TM modes. We choose the following fields over the five regions 
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where A1…A6 are amplitude constants and φa and φb are constant phase terms. The transverse propagation constants are 

given by 22
02
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22 kk bzxb ε−γ=  where k0 is the free-space wave number. For TE 

modes, Ey and Hz must be continuous at the boundaries between the different regions. For TM modes Hy and Ez must be 
continuous. Therefore, using Maxwell’s equations to calculate Hz (Ez), and equating Ey (Hy) and Hz (Ez) at the four 
boundaries gives eight equations for the boundary conditions of the TE (TM) modes. These equations can be combined 
to yield 
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where ( )xaxaa k2
1tan αρ=φ −  and ( )xbxbb k2

1tan αρ=φ −  with ρa = ρb = 1 for TE modes and ρa = εa/ε2 and ρb = εb/ε2 
for TM modes. We see that αx2, kxa and kxb are all functions of γz. Thus, the right hand side of eqn. (2) is a function of 
a single variable - the longitudinal propagation constant γz. Therefore if a, b, D, εa, and εb are specified, we can solve 
eqn. (2) for all possible solutions of γz.  

 
Fig. 1. Geometry of two parallel dielectric slab waveguides. 

RESULTS 

Fig. 2 shows the normalised separation 2D/λ0 plotted against the normalised propagation constant βz/k0 for different 2a/
λ0 ratios. Both guides are identical, i.e. a=b and εa=εb=2.07. From Fig. 2 we see that, for the given 2a/λ0 ratios, there are 
two solutions to eqn. (2). The solution with the largest value of βz corresponds to the lowest order (even) mode. The 
solution with the smallest value of βz corresponds to the next higher order (odd) mode. This can be readily seen be 
substituting βz into the field equations. It should be noted that for further increases in frequency, higher order modes 
would propagate. However, in general, coupled structures are limited to the two-mode case. We clarify Fig. 2 with an 
example. For a structure with a=b=0.5mm, 2D=6.0mm and λ0=10.0mm, Fig. 2 shows that two modes exist: an odd 
mode with βz/k0=1.012 and an even mode with βz/k0=1.068. Solutions with values of βz/k0 approaching unity correspond 
to modes near to low frequency cut-off. It is seen that in the low frequency case, 2a/λ0=0.1, the odd mode is cut-off until 
the guide separation 2D is larger than 0.4λ0. As expected the even and odd mode propagation constants tend to the value 
of the propagation constant of the isolated guides for increasing separation.  
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Fig. 2. Normalised separation 2D/λ0 against βz/k0 for   Fig. 3. Normalised attenuation constant for TE mode 
several different 2a/λ0 ratios. 2a=2b and εa=εb=2.07. symmetrical coupled slab waveguide. 2a=2b, ε2=1, 

ε′a= ε′b =2.07 and tanδa= tanδb =3.0×10-4 



  
For completeness Fig. 3 shows the attenuation constant αz for varying separation with 2a=2b, ε2=1, ε′a= ε′b =2.07 and 
tanδa= tanδb =3.0×10-4. Notice that the odd mode solutions increase with 2D, reach a maximum and then decrease 
slightly as they converge to the isolated value. For the even modes, αz decreases as 2D increases, reaches a minium and 
then increases with 2D, finally converging to the isolated value. This means that for some values of 2D the even mode of 
the coupled structure has a lower attenuation constant than that of the isolated dielectric waveguide. This may have some 
implications for low-loss propagation. 

 

Once the propagation constant is determined from eqn. (2) the values of αx2, kxa, kxb, φa and φb can be calculated. Thus, 
by applying the appropriate boundary conditions the field amplitude constants A1…A6 can be evaluated. Fig. 4 shows 
field plots for the even and odd modes of a TE guide for 2a=λ0/2 and εa=εb=2.0. Fig. 4 (a), (b) and (c) show the 
symmetrical case with 2D=λ0/4, 2D=λ0/2 and 2D=λ0, respectively. Fig. 4 (d), (e) and (f) are for the same guide 
separations as above but with a width asymmetry of a/b=2. Similarly, Fig. 4 (g), (h) and (I) are for a/b=4 and Fig. 4 (j), 
(k) and (l) are for a/b=8. 

 
Fig. 4. Effects of separation and width asymmetry on the modal electric field profiles for TE coupled slab waveguide. 
Solid lines show the even modes, dashed lines show the odd. 

 

 

 



  
 

CONCLUSIONS  

In summary, an exact transcendental characteristic equation has been presented for both the TE and TM solutions of 
asymmetrical coupled slab waveguides with width and permittivity asymmetry. The solution of this new equation is 
simpler than previous methods and, unlike coupled mode theories, is exact. The technique is therefore valid for all guide 
separations and asymmetries. Furthermore, the technique can be used to calculate the attenuation constant when 
dielectric losses are present, which is often the case at millimetre-wave frequencies. 
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