3,735 research outputs found

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe

    Conservative and non-conservative methods based on hermite weighted essentially-non-oscillatory reconstruction for Vlasov equations

    Get PDF
    We introduce a WENO reconstruction based on Hermite interpolation both for semi-Lagrangian and finite difference methods. This WENO reconstruction technique allows to control spurious oscillations. We develop third and fifth order methods and apply them to non-conservative semi-Lagrangian schemes and conservative finite difference methods. Our numerical results will be compared to the usual semi-Lagrangian method with cubic spline reconstruction and the classical fifth order WENO finite difference scheme. These reconstructions are observed to be less dissipative than the usual weighted essentially non- oscillatory procedure. We apply these methods to transport equations in the context of plasma physics and the numerical simulation of turbulence phenomena

    Navier-Stokes calculations with a coupled strongly implicit method. Part 2: Spline solutions

    Get PDF
    A coupled strongly implicit method is combined with a deferred-corrector spline solver for the vorticity-stream function form of the Navier-Stokes equation. Solutions for cavity, channel and cylinder flows are obtained with the fourth-order spline 4 procedure. The strongly coupled spline corrector method converges as rapidly as the finite difference calculations and also allows for arbitrary large time increments for the Reynolds numbers considered. In some cases fourth-order smoothing or filtering is required in order to suppress high frequency oscillations

    The Numerical Investigations of Non-Polynomial Spline for Solving Fractional Differential Equations

    Get PDF
    We present a crossing approach based on the new construction of non-polynomial spline function to investigate the numerical solution of the fractional differential equations. We find the accuracy of the spline method and to presenting the completion of non-polynomial spline two examples for problems are used. To clarify, we present the numerical computations that can be used to solve difficult problems while the results are found and got to be in good error estimation with comparing exact solutions
    corecore