89 research outputs found

    A modified differential evolution based solution technique for economic dispatch problems

    Get PDF
    Economic dispatch (ED) plays one of the major roles in power generation systems. The objective of economic dispatch problem is to find the optimal combination of power dispatches from different power generating units in a given time period to minimize the total generation cost while satisfying the specified constraints. Due to valve-point loading effects the objective function becomes nondifferentiable and has many local minima in the solution space. Traditional methods may fail to reach the global solution of ED problems. Most of the existing stochastic methods try to make the solution feasible or penalize an infeasible solution with penalty function method. However, to find the appropriate penalty parameter is not an easy task. Differential evolution is a population-based heuristic approach that has been shown to be very efficient to solve global optimization problems with simple bounds. In this paper, we propose a modified differential evolution based solution technique along with a tournament selection that makes pair-wise comparison among feasible and infeasible solutions based on the degree of constraint violation for economic dispatch problems. We reformulate the nonsmooth objective function to a smooth one and add nonlinear inequality constraints to original ED problems. We consider five ED problems and compare the obtained results with existing standard deterministic NLP solvers as well as with other stochastic techniques available in literature.Fundação para a Ciência e a Tecnologia (FCT

    Hybrid optimization algorithm to solve the nonconvex multiarea economic dispatch problem

    Get PDF
    In this paper, multiarea economic dispatch (MAED) problems are solved by a novel straightforward process. The solved MAED problems include transmission losses, tie-line constraints, multiple fuels, valve-point effects, and prohibited operating zones in which small, medium, and large scale test systems are involved. The methodology of tackling the problems consists in a new hybrid combination of JAYA and TLBO algorithms simultaneously to take the advantages of both to solve even nonsmooth and nonconvex MAED problems. In addition, a new and simple process is used to tackle with the interaction between areas. The objective is to economically supply demanded loads in all areas while satisfying all of the constraints. Indeed, by combining JAYA and TLBO algorithms, the convergence speed and the robustness have been improved. The computational results on small, medium, and large-scale test systems indicate the effectiveness of our proposed algorithm in terms of accuracy, robustness, and convergence speed. The obtained results of the proposed JAYA-TLBO algorithm are compared with those obtained from ten well-known algorithms. The results depict the capability of the proposed JAYA-TLBO based approach to provide a better solution.fi=vertaisarvioitu|en=peerReviewed

    Hybrid DE-SQP method for solving combined heat and power dynamic economic dispatch problem

    Get PDF
    Combined heat and power dynamic economic dispatch (CHPDED) plays a key role in economic operation of power systems. CHPDED determines the optimal heat and power schedule of committed generating units by minimizing the fuel cost under ramp rate constraints and other constraints. Due to complex characteristics, heuristic and evolutionary based optimization approaches have became effective tools to solve the CHPDED problem. This paper proposes hybrid differential evolution (DE) and sequential quadratic programming (SQP) to solve the CHPDED problem with nonsmooth and nonconvex cost function due to valve point effects. DE is used as a global optimizer and SQP is used as a fine tuning to determine the optimal solution at the final. The proposed hybrid DE-SQP method has been tested and compared to demonstrate its effectiveness.The Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabiahttp://www.hindawi.com/journals/mpe/am2013ai201

    Chaos Firefly Algorithm With Self-Adaptation Mutation Mechanism for Solving Large-Scale Economic Dispatch With Valve-Point Effects and Multiple Fuel Options

    Get PDF
    This paper presents a new metaheuristic optimization algorithm, the firefly algorithm (FA), and an enhanced version of it, called chaos mutation FA (CMFA), for solving power economic dispatch problems while considering various power constraints, such as valve-point effects, ramp rate limits, prohibited operating zones, and multiple generator fuel options. The algorithm is enhanced by adding a new mutation strategy using self-adaptation parameter selection while replacing the parameters with fixed values. The proposed algorithm is also enhanced by a self-adaptation mechanism that avoids challenges associated with tuning the algorithm parameters directed against characteristics of the optimization problem to be solved. The effectiveness of the CMFA method to solve economic dispatch problems with high nonlinearities is demonstrated using five classic test power systems. The solutions obtained are compared with the results of the original algorithm and several methods of optimization proposed in the previous literature. The high performance of the CMFA algorithm is demonstrated by its ability to achieve search solution quality and reliability, which reflected in minimum total cost, convergence speed, and consistency

    Extensions of firefly algorithm for nonsmooth nonconvex constrained optimization problems

    Get PDF
    Publicado em: "Computational science and its applications – ICCSA 2016: 16th International Conference, Beijing, China, July 4-7, 2016, Proceedings, Part I". ISBN 978-3-319-42084-4Firefly Algorithm (FA) is a stochastic population-based algorithm based on the flashing patterns and behavior of fireflies. Original FA was created and successfully applied to solve bound constrained optimization problems. In this paper we present extensions of FA for solving nonsmooth nonconvex constrained global optimization problems. To handle the constraints of the problem, feasibility and dominance rules and a fitness function based on the global competitive ranking, are proposed. To enhance the speed of convergence, the proposed extensions of FA invoke a stochastic local search procedure. Numerical experiments to validate the proposed approaches using a set of well know test problems are presented. The results show that the proposed extensions of FA compares favorably with other stochastic population-based methods.COMPETE: POCI-01-0145- FEDER-007043FCT – Fundação para a Ciência e Tecnologia within the projects UID/CEC/00319/2013 and UID/MAT/00013/201

    Solving practical economic load dispatch problem using crow search algorithm

    Get PDF
    The practical economic load dispatch problem is a non-convex, non-smooth, and non-linear optimization problem due to including practical considerations such as valve-point loading effects and multiple fuel options. An optimization algorithm named crow search algorithm is proposed in this paper to solve the practical non-convex economic load dispatch problem. Three cases with different economic load dispatch configurations are studied. The simulation results and statistical analysis show the efficiency of the proposed crow search algorithm. Also, the simulation results are compared to the other reported algorithms. The comparison of results confirm the high-quality solutions and the effectiveness of the proposed method for solving the non-convex practical economic load dispatch problem

    Combined Heat and Power Dynamic Economic Dispatch with Emission Limitations Using Hybrid DE-SQP Method

    Get PDF
    Combined heat and power dynamic economic emission dispatch (CHPDEED) problem is a complicated nonlinear constrained multiobjective optimization problem with nonconvex characteristics. CHPDEED determines the optimal heat and power schedule of committed generating units by minimizing both fuel cost and emission simultaneously under ramp rate constraints and other constraints. This paper proposes hybrid differential evolution (DE) and sequential quadratic programming (SQP) to solve the CHPDEED problem with nonsmooth and nonconvex cost function due to valve point effects. DE is used as a global optimizer, and SQP is used as a fine tuning to determine the optimal solution at the final. The proposed hybrid DE-SQP method has been tested and compared to demonstrate its effectiveness
    corecore