

Extensions of Firefly Algorithm for Nonsmooth

Nonconvex Constrained Optimization Problems

Rogério B. Francisco1, M. Fernanda P. Costa1, Ana Maria A. C. Rocha2

1 Centre of Mathematics, University of Minho, Portugal

rbf@estgf.ipp.pt; mfc@math.uminho.pt

2 Algoritmi Research Centre, University of Minho, Portugal

arocha@dps.uminho.pt

Abstract. Firefly Algorithm (FA) is a stochastic population-based algorithm

based on the flashing patterns and behavior of fireflies. Original FA was created

and successfully applied to solve bound constrained optimization problems. In

this paper we present extensions of FA for solving nonsmooth nonconvex

constrained global optimization problems. To handle the constraints of the

problem, feasibility and dominance rules and a fitness function based on the

global competitive ranking, are proposed. To enhance the speed of convergence,

the proposed extensions of FA invoke a stochastic local search procedure.

Numerical experiments to validate the proposed approaches using a set of well

know test problems are presented. The results show that the proposed extensions

of FA compares favorably with other stochastic population-based methods.

Keywords: Firefly algorithm, Constrained Global Optimization, Stochastic

Ranking.

1 Introduction

In the last decades, different methods have been developed in order to solve a wide

range of different kind of optimization problems. Metaheuristics are an important class

of contemporary global optimization algorithms, computational intelligence and soft

computing. The observation and study of nature and behavior of some living species

have been served as inspiration for the development of new methods. A subset of

metaheuristics, often referred to as swarm intelligence based algorithms, have been

developed by mimicking the so-called swarm intelligence characteristics of biological

agents such as birds, fish, humans among others. Swarm Intelligence belongs to an

artificial intelligence subject that became increasingly popular over the last decade [1].

The three main purposes of metaheuristics are: to solve problems with low

computational time, to solve large dimensional problems, and to obtain robust

algorithms. In fact, metaheuristics are the most used stochastic optimization algorithms.

In recent years, metaheuristic algorithms have emerged as global search approaches

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55642764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mfc
mailto:mfc
mailto:sameiro%7d@dps.uminho.pt

used for solving complex optimization problems. The most popular metaheuristic

methods are Genetic Algorithm (GA) [2], Ant Colony Optimization [3], Particle Swarm

Optimization (PSO) [4], Harmony Search [5] and Firefly Algorithm (FA) [6]. All of

them are metaheuristic population-based methods. The FA, initially proposed by Yang,

is one of the new metaheuristic techniques inspired by the flashing behavior of fireflies

and was designed for solving bound constrained optimization (BCO) problems. This

algorithm is inspired by the nocturnal luminous of the fireflies, mating and social

behavior. The FA algorithm takes into account what each firefly notes in its line of sight

in an attempt to move to a new location, which is brighter than its prior. Simulation

results indicate that FA is superior over GA and PSO [7,8]. Although the original

version of FA was designed to solve BCO problems, many variants of this algorithm

has been developed and applied to solve constrained problems from different areas. FA

has become popular and widely used in many applications like economic dispatch

problems [9,10], mixed variable optimization problems [11,12,13] and multiobjective

continuous optimization problems [14,15]. A recent review and advances of the firefly

algorithms are available in [16,17].

In this paper, we aim to extend the FA for solving nonsmooth nonconvex constrained

global optimization (CGO) problems. The mathematical formulation of the problem to

be addressed has the form:

minimize
𝑥

 𝑓(𝑥)

subject to 𝑔𝑘(𝑥) ≤ 0, 𝑘 = 1, … , 𝑝

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑚

 (1)

where 𝑓 ∶ ℝ𝑛 → ℝ, g ∶ ℝ𝑛 → ℝ𝑝 and ℎ ∶ ℝ𝑛 → ℝ𝑚 are nonlinear continuous

functions, possibly non differentiable, and Ω = {𝑥 ∈ ℝ𝑛 ∶ −∞ < 𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 <
∞}, with 𝑙𝑏 and 𝑢𝑏 the vectors of lower and upper bounds on the variables, respectively.

In (1), f, g and h may be nonconvex functions and many local minima may exist in the

feasible region 𝐹 = {𝑥 ∈ ∶ 𝑔(𝑥) ≤ 0, ℎ(𝒙) = 0}. In order to solve (1) two

constraint-handling techniques based on feasibility and dominance rules and a global

competitive ranking, are proposed.

The paper is organized as follows. Section 2 briefly presents some common

constraint-handling techniques and the main ideas that motivated this work. Section 3

describes the original FA and in Section 4 we propose three extensions of FA for

solving nonsmooth nonconvex CGO problems. The preliminary numerical experiments

are reported in Section 5 and the paper is concluded in Section 6.

2 Constraint-Handling Techniques

In population-based methods, the widely used approach to deal with constrained

optimization problems is based on exterior penalty methods [18,19,20,21]. In this type

of approach, the constrained problem is replaced by a sequence of unconstrained

subproblems, defined by penalty functions. A penalty function consists of the objective

function of the constrained problem combined with one additional term for each

constraint (which is positive when the point is infeasible for that constraint and zero

otherwise) multiplied by some positive penalty parameter. Making the penalty

parameter larger along the iterative process, the constraints violation is more severely

penalized, forcing in this way the minimizer of the penalty function to be closer to the

feasible region of the original problem.

A well-known penalty function is the l1 exact penalty function, in which the terms

that measure the constraints violation of a point 𝑥𝑖, are given by

휁(𝑥𝑖) = ∑ 𝑚𝑎𝑥{0, 𝑔𝑘(𝑥𝑖)}

𝑝

𝑘=1

+ ∑|ℎ𝑗(𝑥𝑖)|

𝑚

𝑗=1

.

Assuming that the bound constraints on the variables are guaranteed by the population

stochastic method, at each iteration, the problem (1) is transformed into a BCO problem

as follows:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥

 𝑓(𝑥) + 𝜆(∑ 𝑚𝑎𝑥{0, 𝑔𝑘(𝑥𝑖)}𝑝
𝑘=1 + ∑ |ℎ𝑗(𝑥𝑖)|𝑚

𝑗=1) (2)

where 𝜆 > 0 is the penalty parameter. For a sufficiently large, positive value of 𝜆, one

minimization of exact penalty function (2) will produce the solution of problem (1).

However, in practice it is hard to determine a priori the 𝜆 values, being necessary to use

rules for adjusting this parameter along the iterative process.

Despite the popularity of penalty methods regarding its simplicity and easy

implementation, they have several drawbacks. The most difficult issue lies in finding

the appropriate penalty parameter values 𝜆, since they require a suitable fine tuning to

estimate the degree of penalization to be applied. New penalty approaches in this field

are constantly under research.

2.1 Global Competitive Ranking

Runarsson and Yao [22] proposed a constraint-handling technique called global

competitive ranking, where an individual point 𝑥𝑖 is ranked by comparing it against all

other members in the population, for 𝑖 = 1, … , 𝑁 being N the population size. In this

technique, first the objective function value, 𝑓(𝑥𝑖), and the constraints violation value

휁(𝑥𝑖), are calculated, for all points of the population. Then, considering a minimization

problem, these values are ranked separately in ascending order. In case of tied

individuals, the same higher rank will be given. After giving ranks to all points, based

on f and 휁, separately, the fitness function of each individual point 𝑥𝑖 is computed by:

 Φ(𝑥𝑖) = 𝑃𝑓
𝐼𝑖,𝑓−1

𝑁−1
+ (1 − 𝑃𝑓)

𝐼𝑖,𝜁−1

𝑁−1
 (3)

where 𝐼𝑖 ,𝑓 and 𝐼𝑖 ,𝜁 are the ranks of point 𝑥𝑖 based on the objective function 𝑓 and the

constraints violation 휁, respectively. 𝑃𝑓 is the probability that the fitness is calculated

based on the rank of the objective function. According to the authors of [22], the

probability should take a value on 0 < 𝑃𝑓 < 0.5 in order to guarantee that a feasible

solution may be found. The main goal of this technique is to strike the right balance

between the objective function and the constraints violation. From (3), the best point of

the population is the point that has the lowest fitness value. One drawback detected by

the authors associated to this constraint handling technique was the need to use different

values of 𝑃𝑓 to solve different optimization problems. To prevent this drawback, using

the same ranking process, we propose a new fitness function that does not depend on

the probability value 𝑃𝑓.

2.2 Feasibility and Dominance Rules

Deb [23] proposed another constraint-handling technique that is based on biasing

feasible over infeasible points. The constraints violation and the objective function

values are used separately and optimized by some sort of order, where feasible points

are always preferable to infeasible ones. This technique is based on three simple

feasibility and dominance rules proposed for binary tournaments:

(i) Any feasible point is preferred to any infeasible one.

(ii) Between two feasible points, the one having better objective function is

preferred.

(iii) Between two infeasible points, the one having smaller constraint violation

is preferred.

In this work, we propose a ranking scheme based on rules (i)-(iii) with the additional

following new rule, that takes into account the number of violated constraints (nc):

(iv) Between two infeasible points, the one having smaller number of violated

constraints is preferred.

Hence, when two points of the population are compared to see which one improves

over the other, the rules (i)-(iv) are used. These rules can be mathematically stated in

the following definition.

Definition 1 (Point 𝑦 improves over point 𝑥)

Let x and y be two points in . The point y improves over point x if the following

condition holds:

(휁(𝑥) > 휁(𝑦) or 𝑛𝑐(𝑥) > 𝑛𝑐(𝑦)) or (휁(𝑥) = 휁(𝑦) = 0 and 𝑓(𝑥) > 𝑓(𝑦))

3 Firefly Algorithm

3.1 Standard Firefly Algorithm

FA is a stochastic population-based algorithm for solving BCO problems. In order

to develop FA, some of the flashing characteristics of fireflies were idealized. Yang

formulated FA by assuming three simple rules [6].

 All fireflies are unisex, meaning that any firefly will be attracted to other fireflies

regardless of their sex.

 The brightness of a firefly is determined by the objective function value.

 Attractiveness between fireflies is proportional to their brightness but decreases

with distance. For any two fireflies, the firefly with less bright will move towards

the brighter.

In the description of the algorithm, the position of the firefly 𝑗 will be represented

by 𝑥𝑗 ∈ ℝ𝑛and firefly 𝑗 is brighter than firefly 𝑖 if 𝑓(𝑥𝑗) < 𝑓(𝑥𝑖). Most of

metaheuristics optimization methods are based on the generation of random initial

population of feasible points. All points of the population are placed in the search space

to guide the search to the best location. Thus, the FA applies a similar strategy and the

random initial population of Ω is generated as follows:

𝑥𝑖𝑠
= 𝑙𝑏𝑠

+ 𝑟𝑎𝑛𝑑𝑠(𝑢𝑏𝑠
− 𝑙𝑏𝑠

), 𝑠 = 1, … , 𝑛.

where 𝑟𝑎𝑛𝑑𝑠~U(0,1) is a uniformly distributed random number in [0,1]. After

generating the initial population, the objective function values 𝑓(𝑥𝑖) for all points 𝑥𝑖,

 𝑖 = 1, . . . , 𝑁; are calculated and ranked from lowest to largest value of 𝑓, and the

iteration counter 𝑘 is set to 1. In each iteration 𝑘, for each point 𝑥𝑖, the FA examines

every point 𝑥𝑗 , 𝑗 = 1, 2, . . . , 𝑁. If point 𝑥𝑖 has higher objective function value than 𝑥𝑗

(firefly j is brighter than firefly i), the firefly i moves towards the firefly j according to

following movement equation:

 𝑥𝑖 = 𝑥𝑖 + 𝛽(𝑥𝑗 − 𝑥𝑖) + 𝛼(𝑟𝑎𝑛𝑑𝑖 − 0.5) 𝑆 (4)

where 𝑟𝑎𝑛𝑑𝑖 is a vector of random numbers generated from a uniform distribution in

[0,1], 𝛼 is a randomization parameter defined by the user, usually a number in the range

[0,1] and 𝑆 (scale of the problem) is a problem dependent vector scaling parameter

defined componentwise by 𝑆 = |𝑙𝑏 − 𝑢𝑏|. The parameter 𝛽 of (4) is the attractiveness

between fireflies 𝑖 and 𝑗, and is defined in terms of the monotonically decreasing

negative exponential function as follows:

𝛽(𝑟) = 𝛽0e−γ‖𝑥𝑖−𝑥𝑗‖ (5)

where ‖. ‖ is the Cartesian distance between the fireflies i and j, and 𝛽0 is the attraction

parameter when the distance between themselves is zero. The variation of the

attractiveness is defined by the control parameter 𝛾. The value of parameter 𝛾 is crucial

to determine the speed of the convergence and how the FA behaves. In theory, 𝛾 could

take any value in the set [0, ∞[. When → 0, the value of 𝛽 ≈ 𝛽0, meaning that a

flashing firefly can be seen anywhere in the search space and, when 𝛾 → ∞, the

attractiveness is almost zero in the sight of other fireflies and each firefly moves in a

random way.

Finally, whenever a position of a point 𝑥𝑖 is updated, the FA controls the bound

constraints, i.e., the point 𝑥𝑖 is projected onto the search space as follows:

𝑥𝑖 𝑠
= {

𝑙𝑖 𝑠
𝑖𝑓 𝑥𝑖 𝑠

< 𝑙𝑖 𝑠

𝑢𝑖𝑠
𝑖𝑓 𝑥𝑖𝑠

> 𝑢𝑖𝑠

The pseudo-code of the standard FA is presented in the Algorithm 1.

Algorithm 1: Standard Firefly Algorithm

Data: 𝑘𝑚𝑎𝑥 , ,
0
,

Set 𝑘 = 1

Randomly generate a population of N fireflies, 𝑥𝑖
𝑘 ∈ , 𝑖 = 1, … , 𝑁

Based on {𝑥1
𝑘, … , 𝑥𝑁

𝑘 } evaluate 𝑓(𝑥𝑖
𝑘), = 1, … , 𝑁

Rank the fireflies using the objective function values (from lowest to largest of 𝑓)

Set 𝑥𝑏𝑒𝑠𝑡
𝑘 = 𝑥1

𝑘 and 𝑓𝑏𝑒𝑠𝑡
𝑘 = 𝑓(𝑥1

𝑘)

Compute the scaler parameter S as |𝑙𝑏 − 𝑢𝑏|
while 𝑘 ≤ 𝑘𝑚𝑎𝑥 do

for 𝑖 = 1 𝑡𝑜 𝑁

for 𝑗 = 1 𝑡𝑜 𝑁

 if 𝑓(𝑥𝑖
𝑘) > 𝑓(𝑥𝑗

𝑘) then

 Compute the attractiveness 𝛽 using (5)

 Move firefly 𝑖 towards firefly 𝑗 using (4)

 end if

end for 𝑗

end for 𝑖

Project 𝑥𝑖
𝑘 onto , for all 𝑖 = 1, … , 𝑁

Evaluate 𝑓(𝑥𝑖
𝑘), 𝑖 = 1, . . . , 𝑁

Rank the fireflies using the objective function values (from lowest to largest of 𝑓)

Set 𝑘 = 𝑘 + 1

Set 𝑥𝑏𝑒𝑠𝑡
𝑘 = 𝑥1

𝑘 and 𝑓𝑏𝑒𝑠𝑡
𝑘 = 𝑓(𝑥1

𝑘)

end while

3.2 Dynamic Updates of the Parameters 𝛂, 𝛄 and S

The parameters 𝛼 and 𝛾 affects the performance of FA. In the version of FA

proposed in [11] to solve mixed variable structural optimization problems, the authors

improved the solution quality by reducing the value of the parameter 𝛼 with a geometric

progression reduction scheme defined by 𝛼 = 𝛼0𝜃𝑘, where 𝛼0 is the initial randomness

scaling factor, 0 < 𝜃 < 1 is the reduction factor of randomization and 𝑘 is the current

iteration. In [12] the authors improved the quality of the solutions by reducing the

randomness of the parameters 𝛼 and 𝛾. The computational experiments shown that they

must take large values at the beginning of the iterative process and decrease gradually

as the optimum solution is approached, to enforce the algorithm to increase the diversity

and the convergence of the algorithm. In order to improve convergence speed and

solution accuracy, dynamic updates of these parameters, which depend on the iteration

counter of the algorithm, were defined. The parameter 𝛼 is defined at each iteration k

as follows:

 𝛼(𝑘) = 𝛼𝑚𝑎𝑥 − 𝑘
𝛼𝑚𝑎𝑥−α𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
 (6)

where 𝛼𝑚𝑎𝑥 and 𝛼𝑚𝑖𝑛 are the limits to an upper and lower level for 𝛼, 𝑘 is the number

of current iteration and 𝑘𝑚𝑎𝑥 is the maximum number of iterations allowed. The

parameter 𝛾, used for increasing the attractiveness with 𝑘, is defined at each iteration

𝑘 by the following dynamic update formula:

 𝛾(𝑘) = 𝛾𝑚𝑎𝑥𝑒

𝑘𝑙𝑜𝑔(
𝛾𝑚𝑖𝑛
𝛾𝑚𝑎𝑥

)

𝑘𝑚𝑎𝑥 (7)

where 𝛾𝑚𝑖𝑛 and 𝛾𝑚𝑎𝑥 are the minimum variation and maximum variation of the

attractiveness, respectively.

In this paper we propose a dynamic update formula to compute the vector of scaling

parameters with k, in order enhance the convergence of the proposed FA extensions.

Thus, the vector 𝑆 is dynamically updated in order to decrease with k as follows:

 𝑆(𝑘) =
|(𝑙𝑏−𝑢𝑏)−(𝑥𝑁

𝑘 −𝑥1
𝑘)|

𝑘
 (8)

where 𝑥𝑁
𝑘 − 𝑥1

𝑘 is the vector of the ranges given by the positions between the best and

the worst fireflies.

4 Constrained Firefly Algorithm

In this section, we present extensions of FA for solving nonsmooth nonconvex CGO

problems. We propose two constraint-handling techniques based on feasibility and

dominance rules and the global competitive ranking that are able to explore both

feasible and infeasible regions.

4.1 Ranking Scheme Proposals

In the global competitive ranking (GR) proposed algorithm, after calculating 𝑓(𝑥𝑖),

휁(𝑥𝑖) and 𝑛𝑐(𝑥𝑖), for all points 𝑥𝑖 of the population, the points are ranked considering

separately the ascending order of 𝑓(𝑥𝑖) and 휁(𝑥𝑖), 𝑖 = 1, … , 𝑁. Then, taking into

account the ranking of all points , the fitness function of each point 𝑥𝑖, i=1,…,N; is

computed by:

 𝜈(𝑥𝑖) =
𝐼𝑖,𝑓−1

𝑁(𝑁−1)
+ 𝑛𝑐(𝑥𝑖)

𝐼𝑖,𝜁−1

𝑁(𝑁−1)
 (9)

where 𝐼𝑖 ,𝑓 and 𝐼𝑖 ,𝜁 are the ranks of point 𝑥𝑖 based on the objective function 𝑓 and the

constraints violation 휁 respectively. Finally, using the fitness function values 𝜈(𝑥𝑖),

𝑖 = 1, … , 𝑁, the N points of the population are ranked by comparing all pairs of points

in at least N sweeps. The description of the proposed GR scheme based on fitness

function (9) is presented in Algorithm 2.

Algorithm 2. GR

Compute 𝐼𝑓 and 𝐼𝜁

for 𝑖 = 1 𝑡𝑜 𝑁 − 1

 𝐟𝐨𝐫 𝑗 = 𝑖 + 1 𝑡𝑜 𝑁

 if 𝜈(𝑥𝑖) > 𝜈(𝑥𝑗)

switch rank of firefly 𝑥𝑖 with firefly 𝑥𝑗

 end if

end for j

end for i

In the ranking scheme based on feasibility and dominance (FD) rules, first the

objective function value, 𝑓(𝑥𝑖), the constraint violation value, 휁(𝑥𝑖), and the number of

constraints violated, 𝑛𝑐(𝑥𝑖), are calculated for all points 𝑥𝑖 of the population; i=1,…,N.

Then, using the rules (i)-(iv) the N points of the population are ranked by comparing all

pairs of points in at least N sweeps.

A formal description of the proposed ranking scheme based on the FD rules (i)-(iv)

(Definition 1) is presented in Algorithm 3.

Algorithm 3. FD rules

for 𝑖 = 1 𝑡𝑜 𝑁 − 1

 𝐟𝐨𝐫 𝑗 = 𝑖 + 1 𝑡𝑜 𝑁

 if 𝑥𝑗 improves over 𝑥𝑖

switch rank of firefly 𝑥𝑖 with firefly 𝑥𝑗

 end if

end for j

end for i

Both ranking schemes, the GR and FD rules, ensure that good feasible solutions as

well as promising infeasible ones are ranked in the top of the population.

4.2 Local Search

In order to reach high quality solutions the proposed extensions of FA are designed

to invoke, at the end of each iteration, a stochastic local intensification search procedure

aiming to exploit the search region around the best firefly, 𝑥𝑏𝑒𝑠𝑡 . This local search,

presented in [24], is a random line search algorithm that is applied coordinate by

coordinate to the best point of the population. The procedure can be described as

follows. First, for a fixed parameter 𝛿 the procedure computes the maximum feasible

step length

 ∆= 𝛿 (max
1≤𝑠≤𝑛

(𝑢𝑏𝑠
− 𝑙𝑏𝑠

)).

Then, for each coordinate 𝑠 (𝑠 = 1, 2, … , 𝑛), a random number 𝜇~𝑈[0,1] (uniformly

distributed between 0 and 1) is selected as a step length and a trial point 𝑦 is

componentwise moved along that direction and a new position is obtained as follows

 𝑦𝑠 = 𝑥𝑏𝑒𝑠𝑡 𝑠
+ 𝜇∆.

When 𝑦 ∉ Ω, the trial point is rejected and the search along that coordinate ends. If 𝑦

improves over the best point 𝑥𝑏𝑒𝑠𝑡 according to Definition 1, within 𝐿𝑆𝑖𝑡max iterations,

the best point 𝑥𝑏𝑒𝑠𝑡 is replaced by the trial point 𝑦 and the search along that coordinate

𝑠 ends. A description of the local search procedure is presented in Algorithm 4.

Algorithm 4: Local Search

Data: 𝑥𝑏𝑒𝑠𝑡 (the best point of the population at iteration k), 𝐿𝑆𝑖𝑡max, 𝛿

Δ = 𝛿 max
1≤𝑠≤𝑛

(𝑢𝑏𝑠
− 𝑙𝑏𝑠

)

for 𝑠 = 1 𝑡𝑜 𝑛 do

 Set 𝑖𝑡 = 1

 while 𝑖𝑡 < 𝐿𝑆𝑖𝑡max do

 Set 𝑦 = 𝑥𝑏𝑒𝑠𝑡

 𝑦𝑠 = 𝑥𝑏𝑒𝑠𝑡 𝑠
+ 𝜇Δ, 𝜇~𝑈[0,1]

 if 𝑦 improves over 𝑥𝑏𝑒𝑠𝑡 and 𝑦 ∈ Ω then

 Set 𝑥𝑏𝑒𝑠𝑡 = 𝑦

 else

 Set 𝑖𝑡 = 𝐿𝑆𝑖𝑡max − 1

 end if

 Set 𝑖𝑡 = 𝑖𝑡 + 1

 end while

end for

4.3 Extensions of FA

The proposed extensions of FA (herein denoted by exts-FA) use a population of

points/fireflies to compute, at each iteration 𝑘, an approximate solution, 𝑥𝑏𝑒𝑠𝑡
𝑘 , to the

problem (1). Along the iterative process, the exts-FA generate approximate solutions,

𝑥𝑏𝑒𝑠𝑡
𝑘 , that satisfy the bound constraints, with increasingly better accuracy.

In the standard FA, each firefly i moves towards the brighter fireflies. However,

when a firefly i, located at 𝑥𝑖, moves as in standard FA, its brightness may decrease. To

prevent this, after moving each firefly i in the direction of a brighter firefly j, the

selection rule given by Definition 1 is applied. We remark that if the trial position lies

outside the search space , the point is projected onto . Denoting by 𝑡𝑖 the trial

position, if 𝑡𝑖 improves over 𝑥𝑖 , 𝑡𝑖 will be the current position of the firefly i for the

next movement; otherwise, the position 𝑥𝑖 will be maintained as current for the next

movement. To further improve exts-FA, all fireflies will move according to (4) except

the less bright firefly, 𝑥𝑁. The position of firefly N is replaced by a random movement

position of the brightest firefly. The pseudo-code of exts-FA is given in Algorithm 5.

Algorithm 5: exts- FA

Data: 𝑘𝑚𝑎𝑥, 𝑚𝑎𝑥, 𝑚𝑖𝑛 ,
𝑚𝑎𝑥

,
𝑚𝑖𝑛

Set k=1

Randomly generate a population of N fireflies, 𝑥𝑖
𝑘 ∈ , 𝑖 = 1, … , 𝑁

Based on {𝑥1
𝑘, … , 𝑥𝑁

𝑘 } evaluate 𝑓(𝑥𝑖
𝑘), 휁(𝑥𝑖

𝑘), 𝑛𝑐(𝑥𝑖
𝑘), 𝑖 = 1, … , 𝑁

Rank the fireflies using GR (Algorithm 2) or FD rules (Algorithm 3)

Set 𝑥𝑏𝑒𝑠𝑡
𝑘 = 𝑥1

𝑘 and 𝑓𝑏𝑒𝑠𝑡
𝑘 = 𝑓(𝑥1

𝑘)

While (stopping criteria is not met)

 Compute the randomization parameter 𝛼(𝑘) using (6)

 Compute the scale parameter 𝑆(𝑘) using (8)

 for 𝑖 = 2 to 𝑁 − 1

for 𝑗 = 1 to 𝑖 − 1

 Compute the attractiveness using (5) and (7)

 Move firefly i towards firefly j using (4), and project onto the trial position 𝑡𝑖

 Evaluate 𝑓(𝑡𝑖), 휁(𝑡𝑖), 𝑛𝑐(𝑡𝑖)

 if 𝑡𝑖 improves over 𝑥𝑖
𝑘 then

 Set 𝑥𝑖
𝑘 = 𝑡𝑖

 end if

end for j

end for i

Set 𝑡𝑁 = 𝑥1
𝑘 + , where ~ U(0,1) (vector of random numbers) and project onto

Evaluate 𝑓(𝑡𝑁), 휁(𝑡𝑁), 𝑛𝑐(𝑡𝑁)

if 𝑡𝑁 improves over 𝑥𝑁
𝑘 then

 Set 𝑥𝑁
𝑘 = 𝑡𝑁

end if

Set 𝑘 = 𝑘 + 1

Evaluate 𝑓(𝑥𝑖
𝑘), 휁(𝑥𝑖

𝑘), 𝑛𝑐(𝑥𝑖
𝑘), 𝑖 = 1, … , 𝑁

Rank the fireflies using GR (Algorithm 2) or FD rules (Algorithm 3)

Set 𝑥𝑏𝑒𝑠𝑡
𝑘 = 𝑥1

𝑘 and 𝑓𝑏𝑒𝑠𝑡
𝑘 = 𝑓(𝑥1

𝑘)

Invoke the Local Search (Algorithm 4)

end while

We will denote by FA1 the exts-FA with FD rules, and by FA2 the exts-FA with GR

in the ranking of the points. In the context of the implementation of FA1, we also

propose a new movement equation (instead of (4)) in which all fireflies will move

towards the best one. We will denoted this implementation by FA1#.

4.4 Stopping Criteria

The algorithm stops when the following condition is reached:

(|𝑓𝑜𝑝𝑡 − 𝑓𝑏𝑒𝑠𝑡| ≤ 10−6 and 휁(𝑓𝑏𝑒𝑠𝑡) ≤ 10−6) or 𝑘 > 𝑘max (10)

where 𝑓𝑜𝑝𝑡 represents the known global optimal solution, 𝑓𝑏𝑒𝑠𝑡 is the objective function

value of the best point of the population, 𝑘 denotes the iteration counter and 𝑘max is

the maximum number of iterations allowed.

5 Experimental Results

In this section, we aim to investigate the performance of FA1, FA1# and FA2 when

solving a set of nonlinear optimization problems. Thirteen benchmark global

optimization test problems, with dimensions ranging from 2 to 20, chosen from [25]

containing characteristics that are representative of what can be considered difficult

when solving global optimization problems. Their characteristics are outlined in Table

1.

Table 1. Summary of main properties of the benchmark problems.

Prob. 𝑓𝑜𝑝𝑡 n function LI NI LE NE 𝜌 (%)

G01 -15.000000 13 Quadratic 9 0 0 0 0.011

G02 -0.803619 20 Nonlinear 1 1 0 0 99.99

G03 -1.000500 10 Nonlinear 0 0 0 1 0.002

G04 -30665.538672 5 Quadratic 0 6 0 0 52.123

G05 5126.496714 4 Nonlinear 2 0 0 3 0.000

G06 -6961.813876 2 Nonlinear 0 2 0 0 0.006

G07 24.306209 10 Quadratic 3 5 0 0 0.000

G08 -0.095825 2 Nonlinear 0 2 0 0 0.856

G09 680.630057 7 Nonlinear 0 4 0 0 0.521

G10 7049.248021 8 Linear 3 3 0 0 0.001

G11 0.749900 2 Quadratic 0 0 0 1 0.000

G12 -1.000000 3 Quadratic 0 9 0 0 4.779

G13 0.053942 5 Nonlinear 0 0 1 3 0.000

The two first columns display the name of the problem (Prob.) and the best known

solution (𝑓𝑜𝑝𝑡), followed by the number of variables (𝑛), the type of objective function

(function), the number of inequality constraints (LI and NI, for linear and nonlinear

inequality constraints, respectively), the number of equality constraints (LE and NE,

for linear and nonlinear equality constraints, respectively), as reported in [25]. The

feasibility ratio 𝜌, in the last column, is an estimate of the size of the feasible search

space Ω𝐹 to the size of the whole search space. In practice, 𝜌 represents the degree of

difficulty of each problem.

The numerical experiments were carried out on a MacBook Pro (13-inch, Mid 2012)

with processor 2.5 GHz and 4 Gb of memory. The algorithms were coded in Matlab®

programming language, version 8.01 (R2013a).

Since the FA is a stochastic method, each problem was solved 20 times. The size of

the population used was 𝑁 = 40 fireflies and in the stopping criteria, defined in (10),

the maximum number of iterations allowed was 𝑘max = 5000 iterations. The initial

parameters used to dynamically compute 𝛼 and 𝛾 are: 𝛼𝑚𝑎𝑥 = 0.9, α𝑚𝑖𝑛 = 0.01,

𝛾𝑚𝑎𝑥 = 100 and 𝛾𝑚𝑖𝑛 = 0.001. All equality constraints ℎ𝑗(𝑥) have been converted

into inequality constraints using |ℎ𝑗(𝑥)| − 휀 ≤ 0, where 휀 > 0 is a very small violation

tolerance. In our numerical experiments 휀 = 10−4 is used for the problems G05, G11

and G13 and 휀 = 10−6 for the remaining problems. The step length in the local search

procedure is set to 𝛿 = 10−5, except those marked with (*) that are set to 𝛿 = 10−2.

The maximum number of local search iterations allowed is 𝐿𝑆𝑖𝑡max = 10.
Table 2 summarizes the numerical results produced by the exts-FA, namely the

proposed FA1#, FA1 and FA2. The first column shows the name of the problem,

followed by the acronym of the exts-FA implementation. The remaining columns

present: the best (𝑓𝑏𝑒𝑠𝑡), the mean (𝑓𝑚𝑒𝑎𝑛), the median (𝑓𝑚𝑒𝑑), the standard deviation

(SD) and the worst (𝑓𝑤𝑜𝑟𝑠𝑡) solution values obtained over the 20 runs.

We remark that our proposed algorithms were able to find feasible solutions for all

the runs of all of thirteen benchmark tested problems. This is due to the fact that the

proposed algorithms prioritize the search of feasible solutions before proceeding to the

search of the global optimum value.

The proposed exts-FA were also able to achieve very good results in almost of the

problems. In the G01, G03, G08, G11 and G12 problems, the FA1#, FA1 and FA2

implementations reached the known global optimal solution in all runs. Consequently

the measures of mean, median and the worst of the objective function values are equal

to the global optimum and the standard deviation is zero. For G05 and G13 problems,

the optimal solutions obtained by FA1 are lower than the known optimum values. This

is related to the fact that the equality constraints of these problems were relaxed by a

threshold value of 휀 = 10−4. For the G04, G06, G07 and G09 problems the proposed

extensions of FA produced very competitive results since they were able to obtain

optimum values very close to the known optimum ones. On the other hand, for the

problems G02 and G10 they were not able to reach the known optimum solution.

In general, the best performance was obtained with FA1 and FA2 implementations.

Then, we analyze the performance of these two extensions when compared with five

stochastic population-based global methods. In [26] the method incorporates a

homomorphous mapping between an n-dimensional cube and the feasible search space.

Runarsson and Yao in [27] present results of the original stochastic ranking method for

constrained evolutionary optimization. In [28] a self-adaptive fitness formulation is

used. The results reported in [29] were obtained with an adaptive penalty method with

dynamic use of DE variants, while in [30] a self-adaptive penalty based genetic

algorithm is used. Table 3 reports the best results found by these methods and by our

proposed best implementations FA1 and FA2.

Table 2. Results produced by the FA1#, FA1 and FA2.

Prob. exts-FA 𝑓𝑏𝑒𝑠𝑡 𝑓𝑚𝑒𝑎𝑛 𝑓𝑚𝑒𝑑 SD. 𝑓𝑤𝑜𝑟𝑠𝑡

G01

FA1#

FA1

FA2

-15.0000

-15.0000

-15.0000

-15.0000

-15.0000

-15.0000

-15.0000

-15.0000

-15.0000

0.0000

0.0000

0.0000

-15.0000

-15.0000

-15.0000

G02

FA1#

FA1

FA2

-0.4373

-0.4048

-0.4799

-0.2968

-0.2941

-0.3458

-0.2841

-0.2911

-0.3330

0.0557

0.0398

0.0631

-0.2405

-0.2414

-0.2488

G03

FA1#

FA1

FA2

-1.0005

-1.0005

-1.0005

-1.0005

-1.0005

-1.0005

-1.0005

-1.0005

-1.0005

0.0000

0.0000

0.0000

-1.0005

-1.0005

-1.0004

G04

FA1#

FA1

FA2

-30665.5385

-30665.5386

-30665.5385

-30538.1527

-30663.8601

-30660.8451

-30546.2560

-30665.5382

-30665.5382

96.7170

7.5011

14.4310

-30372.8244

-30631.9925

-30611.1510

G05

FA1#*

FA1

FA2

5126.7259

5126.3617

5126.5175

5402.6462

5157.5428

5128.7370

5274.4115

5128.489

5128.4245

279.0658

66.0467

2.0577

5986.442138

5401.545758

5133.3343

G06

FA1#*

FA1

FA2*

-6961.8101

-6961.8016

-6961.5405

-6961.7905

-6961.7747

-6959.8675

-6961.7905

-6961.7747

-6960.2069

0.0130

0.0172

1.2835

-6961.7553

-6961.7347

-6956.3551

G07

FA1#*

FA1

FA2

24.6203

24.3571

24.3273

26.0814

24.5827

24.3772

26.1657

24.5456

24.3663

0.7935

0.1967

0.0311

27.1457

25.2044

24.4368

G08

FA1#

FA1

FA2

-0.095825

-0.095825

-0.095825

-0.095825

-0.095825

-0.095825

-0.095825

-0.095825

-0.095825

0.0000

0.0000

0.0000

-0.095825

-0.095824

-0.095825

G09

FA1#

FA1

FA2

680.6445

680.6348

680.6328

680.7663

680.6895

680.6869

680.7867

680.6659

680.6821

0.0676

0.0468

0.0414

680.8671

680.7948

680.7852

G10

FA1#

FA1*

FA2*

7069.4263

7125.2110

7073.7810

8183.2192

7552.1114

7171.9798

7785.5967

7364.5715

7145.6712

1053.5456

486.5234

107.9335

10276.0255

8872.8741

7542.8818

G11

FA1#

FA1

FA2*

0.7499

0.7499

0.7499

0.7499

0.7499

0.7499

0.7499

0.7499

0.7499

0.0000

0.0000

0.0000

0.749910

0.749900

0.749900

G12

FA1#

FA1

FA2

-1.0000

-1.0000

-1.0000

-1.0000

-1.0000

-1.0000

-1.0000

-1.0000

-1.0000

0.0000

0.0000

0.0000

-1.0000

-1.0000

-1.0000

G13

FA1#*

FA1

FA2

0.054106

0.053556

0.053944

0.325382

0.283400

0.053960

0.435195

0.434445

0.053951

0.2509

0.1924

0.0000

0.817849

0.444500

0.054017

 * means the step length of 𝛿 = 10−2 in the local search procedure.

From Table 3 the competitiveness of FA1 and FA2 with the reported approaches is

shown. The stochastic ranking in [27] produced very good results. However this

algorithm was able to obtain feasible solutions only in 6 out of the 30 runs performed

for the test problem G10. In [28] only 17 out of 20 runs produced feasible solutions for

the problem G10 and 9 out of 20 runs for G05 problem, while the exts-FA obtained

feasible solutions for all problems in all runs. In general, the proposed exts-FA is

competitive as the reported algorithms in the related field.

Table 3. Comparison of our study with others stochastic population-based methods

Prob. FA1 FA2 [26] [27] [28] [29] [30]

G01 -15.0000 -15.0000 -14.7082 -15.0000 -15.0000 -15 -15.000

G02 -0.4048 -0.4799 -0.79671 -0.803515 -0.802970 -0.8036 -0.803202

G03 -1.0005 -1.0005 -0.9989 -1.0000 -1.0000 -1.0 -1.000

G04 -30665.539 -30665.539 -30655.3 -30665.539 -30665.500 -30665.5 -30665.401

G05 5126.3617 5126,5175 n.a. 5126.497 5126.989 5126.4981 5126.907

G06 -6961.8016 -6961,5405 -6342.6 -6961.814 -6961.800 -6961.8 -6961.046

G07 24.3571 24,3273 24.826 24.307 24.480 24.306 24.838

G08 -0.095825 -0.095825 -0.089157 -0.095825 -0.095825 -0.09582 -0.095825

G09 680.6348 680.6328 681.16 680.630 680.640 680.63 680.773

G10 7125.2110 7073.7810 8163.6 7054.316 7061.340 7049.25 7069.981

G11 0.749900 0.749900 0.75 0.750 0.75 0.75 0.749

G12 -1.000000 -1.000000 -0.999135 -1.000000 n.a. n.a. -1.000000

G13 0.053556 0.053944 0.557 0.053957 n.a. n.a. 0.053941

 n.a. means not available.

6 Conclusions

The FA is a stochastic global optimization algorithm, inspired by the social behavior

of fireflies and based on their flashing and attraction, which was originally designed to

solve bound constrained optimization problems. In this paper we extend the FA to solve

nonsmooth nonconvex constrained global optimization problems. The extensions of FA

denoted by FA1 and FA1# incorporate the constraint-handling technique based on the

feasibility and dominance rules, while FA2 uses a global competitive ranking combined

with a new fitness function. Moreover, FA1# uses a movement equation where all

fireflies move towards the best one.

Thirteen well known benchmark problems were used in order to test the performance

of the implementations of the exts-FA. The numerical experiments show that the

proposed exts-FA are competitive when compared with other stochastic methods.

Further research will be directed to improve the results through testing other fitness

functions combined with the GR scheme. Future developments may include solving

problems with large dimensions.

Acknowledgements. This work has been supported by COMPETE: POCI-01-0145-

FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the projects

UID/CEC/00319/2013 and UID/MAT/00013/2013.

References

1. Blum, C., Li, X.: Swarm intelligence in optimization. In: Blum, C., Merkle, D. (eds.), Swarm

Intelligence: Introduction and Applications, pp. 43–86, Springer Verlag, Berlin (2008)

2. Tuba, M.: Swarm Intelligence Algorithms Parameter Tuning. In: Proceedings of the

American Conference on Applied Mathematics (AMERICAN-MATH'12), pp. 389-394,

Harvard, Cambridge, USA (2012)

3. Holland, J.H.: Adaptation in Natural and Artificial Systems, Ann Arbor: University of

Michigan Press (1975)

4. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference

on Neural Networks (Perth, Australia), pp. 1942–1948, IEEE Service Center, Piscataway,

NJ (1995)

5. Geem, Z.W., Kim , J.H., Loganathan, G.V.: A new heuristic optimization algorithm:

harmony  search. Simulations 76, 60-68 (2001) 

6. Yang, X. S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)

7. Dorigo, M.: Optimization, learning and natural algorithms, PhD Thesis, Dipartimento di

Elettronica, Politecnico di Milano, Italy (1992)  

8. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings

of  the Sixth International Symposium on Micro Machine and Human Science. Nagoya:

IEEE Press, pp. 39-43 (1995)

9. Horng, M.H., Liou, R.J.:Multilevel minimum cross entropy threshold selection based on the

firefly algorithm., Expert Systems with Applications 38 (12), pp. 14805-14811 (2011)

10. Yang, X. S., Hosseini, S. S., Gandomi, A. H.: Firefly algorithm for solving non-convex

economic dispatch problems with valve loading effect. Applied Soft Computing 12(3), pp.

1180-1186 (2012)

11. Gandomi, A. H., Yang, X. S., Alavi, A. H.: Mixed variable structural optimization using

Firefly Algorithm. Computers & Structures, 89 (23-24), pp. 2325–2336 (2011)

12. Costa, M.F.P., Rocha, A.M.A.C., Francisco, R.B., Fernandes, E.M.G.P.: Heuristic-Based

Firefly Algorithm for Bound Constrained Nonlinear Binary Optimization. Advances in

Operations Research, 2014, Article ID 215182, 12 pages (2014)

13. Costa, M.F.P., Rocha, A.M.A.C., Francisco, R.B., Fernandes, E.M.G.P.: Firefly penalty-

based algorithm for bound constrained mixed-integer nonlinear programming, Optimization

(2016) (in press) DOI: 10.1080/02331934.2015.1135920.

14. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann,

T. (eds.) Stochastic Algorithms:  Foundations and Applications (SAGA 2009),  LNCS, vol.

5792, pp. 169-78, Springer-Verlag, Berlin (2009)

15. Yang, X. S.: Multiobjective firefly algorithm for continuous optimization. Engineering with

Computers 29(2), 175-184 (2013)

16. Fister, I., Fister Jr., I., Yang, X.-S., Brest, J.: A comprehensive review of firefly algorithms.

Swarm and Evolutionary Computation 13, 34-46 (2013)

17. Yang, X.-S., He, X.: Firefly algorithm: recent advances and applications. International

Journal of Swarm Intelligence 1 (1), 36–50 (2013)

18. Ali, M., Zhu, W. X.: A Penalty Function-Based Differential Evolution Algorithm for

Constrained Global Optimization. Computational Optimization and Applications 54 (3),

707-739 (2013)

19. Barbosa, H. J. C., Lemonge, A. C. C.: An Adaptive Penalty Method for Genetic Algorithms

in Constrained Optimization Problems. In: H. Iba (eds.) Frontiers in Evolutionary Robotics,

pp. 9-34. Vienna: I-Tech Education Publications (2008)

20. Mezura-Montes, E., Coello Coello. C. A. C.: Constraint-Handling in Nature-Inspired

Numerical Optimization: Past, Present and Future. Swarm and Evolutionary Computation 1

(4), 173–194 (2011)

21. Lemonge, A. C. C., Barbosa, H. J. C., Bernardino, H. S.: Variants of an Adaptive Penalty

Scheme for Steady-State Genetic Algorithms in Engineering Optimization. Engineering

Computations: International Journal for Computer-Aided Engineering and Software 32(8),

2182–2215 (2015)

22. Runarsson, T.P., Yao, X.: Constrained evolutionary optimization – the penalty function

approach. In: Sarker et al. (eds.), Evolutionary Optimization: International Series in

Operations Research and Management Science, vol. 48, pp. 87–113, Springer, New York

(2003)

23. Deb, K.: An Efficient Constraint-handling Method for Genetic Algorithms. Computer

Methods in Applied Mechanics and Engineering 186, No. 0045-7825, pp. 311-338.(2000)

24. Birbil, S. I., Fang, S.-C.:An electromagnetism-like mechanism for global optimization.

Journal of Global Optimization 25,  263-282 (2003)

25. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello,

C.A.C.,  Deb, K.: Problem Definition and Evolution Criteria for the CEC 2006 Special Ses-

sion on Constrained Real-Parameter Optimization. In: IEEE Congress on Evolutionary

Computation, Vancouver, Canada, 17–21 July (2006)

26. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and

constrained parameter optimization. Evolutionary Computations 7(1), 19-44 (1999)

27. Runarsson, T. P., Yao, X.: Stochastic ranking for constrained evolutionary optimization.

IEEE Transactions on Evolutionary Computation 4 (3), 284–294 (2000)

28. Farmani, R., Wright, J.: Self-adaptive fitness formulation for constrained optimization. IEEE

Transaction on Evolutionary Computation 7 (5), 445-455 (2003)

29. Silva, E.K., Barbosa, H.J.C., Lemonge, A.C.C.: An adaptive constraint handling technique

for differential evolution with dynamic use of variants in engineering optimization.

 Optimization and Engineering 12 (1–2), 31–54 (2011)

30. Tessema, R, Yen, G.G.: A self adaptive penalty function based algorithm for constrained

optimization. In: IEEE Congress on Evolutionary Computation (CEC 2006), pp.  246-253,

Vancouver, Canada (2006)

