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Abstract. Firefly Algorithm (FA) is a stochastic population-based algorithm 

based on the flashing patterns and behavior of fireflies. Original FA was created 

and successfully applied to solve bound constrained optimization problems. In 

this paper we present extensions of FA for solving nonsmooth nonconvex 

constrained global optimization problems. To handle the constraints of the 

problem, feasibility and dominance rules and a fitness function based on the 

global competitive ranking, are proposed. To enhance the speed of convergence, 

the proposed extensions of FA invoke a stochastic local search procedure. 

Numerical experiments to validate the proposed approaches using a set of well 

know test problems are presented. The results show that the proposed extensions 

of FA compares favorably with other stochastic population-based methods.  

Keywords: Firefly algorithm, Constrained Global Optimization, Stochastic 

Ranking.  

1 Introduction 

In the last decades, different methods have been developed in order to solve a wide 

range of different kind of optimization problems. Metaheuristics are an important class 

of contemporary global optimization algorithms, computational intelligence and soft 

computing. The observation and study of nature and behavior of some living species 

have been served as inspiration for the development of new methods. A subset of 

metaheuristics, often referred to as swarm intelligence based algorithms, have been 

developed by mimicking the so-called swarm intelligence characteristics of biological 

agents such as birds, fish, humans among others. Swarm Intelligence belongs to an 

artificial intelligence subject that became increasingly popular over the last decade [1]. 

The three main purposes of metaheuristics are: to solve problems with low 

computational time, to solve large dimensional problems, and to obtain robust 

algorithms. In fact, metaheuristics are the most used stochastic optimization algorithms. 

In recent years, metaheuristic algorithms have emerged as global search approaches 
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used for solving complex optimization problems. The most popular metaheuristic 

methods are Genetic Algorithm (GA) [2], Ant Colony Optimization [3], Particle Swarm 

Optimization (PSO) [4], Harmony Search [5] and Firefly Algorithm (FA) [6]. All of 

them are metaheuristic population-based methods. The FA, initially proposed by Yang, 

is one of the new metaheuristic techniques inspired by the flashing behavior of fireflies 

and was designed for solving bound constrained optimization (BCO) problems. This 

algorithm is inspired by the nocturnal luminous of the fireflies, mating and social 

behavior. The FA algorithm takes into account what each firefly notes in its line of sight 

in an attempt to move to a new location, which is brighter than its prior. Simulation 

results indicate that FA is superior over GA and PSO [7,8]. Although the original 

version of FA was designed to solve BCO problems, many variants of this algorithm 

has been developed and applied to solve constrained problems from different areas. FA 

has become popular and widely used in many applications like economic dispatch 

problems [9,10], mixed variable optimization problems [11,12,13] and multiobjective 

continuous optimization problems [14,15]. A recent review and advances of the firefly 

algorithms are available in [16,17].  

In this paper, we aim to extend the FA for solving nonsmooth nonconvex constrained 

global optimization (CGO) problems. The mathematical formulation of the problem to 

be addressed has the form:  

minimize
𝑥

   𝑓(𝑥)

subject to 𝑔𝑘(𝑥) ≤ 0,  𝑘 = 1, … , 𝑝

ℎ𝑗(𝑥) = 0,  𝑗 = 1, … , 𝑚

 (1) 

where 𝑓 ∶ ℝ𝑛  → ℝ, g ∶ ℝ𝑛  → ℝ𝑝 and ℎ ∶ ℝ𝑛  → ℝ𝑚 are nonlinear continuous 

functions, possibly non differentiable, and Ω = {𝑥 ∈ ℝ𝑛 ∶ −∞ <  𝑙𝑏 ≤  𝑥 ≤  𝑢𝑏 <
∞}, with 𝑙𝑏 and 𝑢𝑏 the vectors of lower and upper bounds on the variables, respectively. 

In (1), f, g and h may be nonconvex functions and many local minima may exist in the 

feasible region 𝐹 = {𝑥 ∈  ∶ 𝑔(𝑥) ≤ 0, ℎ(𝒙) = 0}. In order to solve (1) two 

constraint-handling techniques based on feasibility and dominance rules and a global 

competitive ranking, are proposed. 

The paper is organized as follows. Section 2 briefly presents some common 

constraint-handling techniques and the main ideas that motivated this work. Section 3 

describes the original FA and in Section 4 we propose three extensions of FA for 

solving nonsmooth nonconvex CGO problems. The preliminary numerical experiments 

are reported in Section 5 and the paper is concluded in Section 6. 

2 Constraint-Handling Techniques  

In population-based methods, the widely used approach to deal with constrained 

optimization problems is based on exterior penalty methods [18,19,20,21]. In this type 

of approach, the constrained problem is replaced by a sequence of unconstrained 

subproblems, defined by penalty functions. A penalty function consists of the objective 

function of the constrained problem combined with one additional term for each 



 

 

 

constraint (which is positive when the point is infeasible for that constraint and zero 

otherwise) multiplied by some positive penalty parameter. Making the penalty 

parameter larger along the iterative process, the constraints violation is more severely 

penalized, forcing in this way the minimizer of the penalty function to be closer to the 

feasible region of the original problem.  

A well-known penalty function is the l1 exact penalty function, in which the terms 

that measure the constraints violation of a point 𝑥𝑖, are given by 

휁(𝑥𝑖) = ∑ 𝑚𝑎𝑥{0, 𝑔𝑘(𝑥𝑖)}

𝑝

𝑘=1

+ ∑|ℎ𝑗(𝑥𝑖)|

𝑚

𝑗=1

. 

Assuming that the bound constraints on the variables are guaranteed by the population 

stochastic method, at each iteration, the problem (1) is transformed into a BCO problem 

as follows: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥

 𝑓(𝑥) +  𝜆(∑ 𝑚𝑎𝑥{0, 𝑔𝑘(𝑥𝑖)}𝑝
𝑘=1 + ∑ |ℎ𝑗(𝑥𝑖)|𝑚

𝑗=1 ) (2) 

where 𝜆 > 0 is the penalty parameter. For a sufficiently large, positive value of 𝜆, one 

minimization of exact penalty function (2) will produce the solution of problem (1). 

However, in practice it is hard to determine a priori the 𝜆 values, being necessary to use 

rules for adjusting this parameter along the iterative process.  

Despite the popularity of penalty methods regarding its simplicity and easy 

implementation, they have several drawbacks. The most difficult issue lies in finding 

the appropriate penalty parameter values 𝜆, since they require a suitable fine tuning to 

estimate the degree of penalization to be applied. New penalty approaches in this field 

are constantly under research. 

2.1 Global Competitive Ranking 

Runarsson and Yao [22] proposed a constraint-handling technique called global 

competitive ranking, where an individual point 𝑥𝑖   is ranked by comparing it against all 

other members in the population, for 𝑖 = 1, … , 𝑁 being N the population size. In this 

technique, first the objective function value, 𝑓(𝑥𝑖), and the constraints violation value 

휁(𝑥𝑖), are calculated, for all points of the population. Then, considering a minimization 

problem, these values are ranked separately in ascending order. In case of tied 

individuals, the same higher rank will be given. After giving ranks to all points, based 

on f and 휁, separately, the fitness function of each individual point 𝑥𝑖 is computed by: 

 Φ(𝑥𝑖) = 𝑃𝑓
𝐼𝑖,𝑓−1

𝑁−1
+ (1 − 𝑃𝑓)

𝐼𝑖,𝜁−1

𝑁−1
  (3) 

where 𝐼𝑖 ,𝑓 and 𝐼𝑖 ,𝜁  are the ranks of point 𝑥𝑖 based on the objective function 𝑓 and the 

constraints violation 휁, respectively. 𝑃𝑓 is the probability that the fitness is calculated 

based on the rank of the objective function. According to the authors of [22], the 

probability should take a value on  0 <  𝑃𝑓 < 0.5 in order to guarantee that a feasible 

solution may be found. The main goal of this technique is to strike the right balance 

between the objective function and the constraints violation. From (3), the best point of 



 

 

the population is the point that has the lowest fitness value. One drawback detected by 

the authors associated to this constraint handling technique was the need to use different 

values of 𝑃𝑓 to solve different optimization problems. To prevent this drawback, using 

the same ranking process, we propose a new fitness function that does not depend on 

the probability value 𝑃𝑓. 

2.2 Feasibility and Dominance Rules 

Deb [23] proposed another constraint-handling technique that is based on biasing 

feasible over infeasible points. The constraints violation and the objective function 

values are used separately and optimized by some sort of order, where feasible points 

are always preferable to infeasible ones. This technique is based on three simple 

feasibility and dominance rules proposed for binary tournaments:  

 

(i) Any feasible point is preferred to any infeasible one. 

(ii) Between two feasible points, the one having better objective function is 

preferred. 

(iii) Between two infeasible points, the one having smaller constraint violation 

is preferred. 

 

In this work, we propose a ranking scheme based on rules (i)-(iii) with the additional 

following new rule, that takes into account the number of violated constraints (nc): 

 

(iv) Between two infeasible points, the one having smaller number of violated 

constraints is preferred. 

 

Hence, when two points of the population are compared to see which one improves 

over the other, the rules (i)-(iv) are used. These rules can be mathematically stated in 

the following definition. 

 

Definition 1 (Point 𝑦 improves over point 𝑥)   

Let x and y be two points in . The point y improves over point x if the following 

condition holds: 

(휁(𝑥) > 휁(𝑦)  or  𝑛𝑐(𝑥) > 𝑛𝑐(𝑦))  or (휁(𝑥) = 휁(𝑦) = 0 and  𝑓(𝑥) > 𝑓(𝑦)) 

3 Firefly Algorithm  

3.1 Standard Firefly Algorithm 

FA is a stochastic population-based algorithm for solving BCO problems. In order 

to develop FA, some of the flashing characteristics of fireflies were idealized. Yang 

formulated FA by assuming three simple rules [6].  

 



 

 

 

 All fireflies are unisex, meaning that any firefly will be attracted to other fireflies 

regardless of their sex.  

 The brightness of a firefly is determined by the objective function value.  

 Attractiveness between fireflies is proportional to their brightness but decreases 

with distance. For any two fireflies, the firefly with less bright will move towards 

the brighter. 

 

In the description of the algorithm, the position of the firefly 𝑗 will be represented 

by 𝑥𝑗 ∈ ℝ𝑛and firefly 𝑗 is brighter than firefly 𝑖 if 𝑓(𝑥𝑗  ) < 𝑓(𝑥𝑖  ). Most of 

metaheuristics optimization methods are based on the generation of random initial 

population of feasible points. All points of the population are placed in the search space 

to guide the search to the best location. Thus, the FA applies a similar strategy and the 

random initial population of Ω is generated as follows: 

𝑥𝑖𝑠
= 𝑙𝑏𝑠

+ 𝑟𝑎𝑛𝑑𝑠(𝑢𝑏𝑠
− 𝑙𝑏𝑠

),   𝑠 = 1, … , 𝑛. 

where 𝑟𝑎𝑛𝑑𝑠~U(0,1) is a uniformly distributed random number in [0,1]. After 

generating the initial population, the objective function values 𝑓(𝑥𝑖  ) for all points 𝑥𝑖, 

 𝑖 = 1, . . . , 𝑁; are calculated and ranked from lowest to largest value of 𝑓, and the 

iteration counter 𝑘 is set to 1. In each iteration 𝑘, for each point 𝑥𝑖, the FA examines 

every point 𝑥𝑗 , 𝑗 =  1, 2, . . . , 𝑁. If point 𝑥𝑖 has higher objective function value than 𝑥𝑗 

(firefly j is brighter than firefly i), the firefly i moves towards the firefly j according to 

following movement equation:  

 𝑥𝑖 = 𝑥𝑖 + 𝛽(𝑥𝑗 − 𝑥𝑖) + 𝛼(𝑟𝑎𝑛𝑑𝑖 − 0.5) 𝑆  (4) 

where 𝑟𝑎𝑛𝑑𝑖 is a vector of random numbers generated from a uniform distribution in 

[0,1], 𝛼 is a randomization parameter defined by the user, usually a number in the range 

[0,1] and 𝑆 (scale of the problem) is a problem dependent vector scaling parameter 

defined componentwise by 𝑆 = |𝑙𝑏 − 𝑢𝑏|. The parameter 𝛽 of (4) is the attractiveness 

between fireflies 𝑖 and 𝑗, and is defined in terms of the monotonically decreasing 

negative exponential function as follows:  

𝛽(𝑟) = 𝛽0e−γ‖𝑥𝑖−𝑥𝑗‖ (5) 

where ‖. ‖ is the Cartesian distance between the fireflies i and j, and  𝛽0 is the attraction 

parameter when the distance between themselves is zero. The variation of the 

attractiveness is defined by the control parameter 𝛾. The value of parameter 𝛾 is crucial 

to determine the speed of the convergence and how the FA behaves. In theory, 𝛾 could 

take any value in the set [0, ∞[. When  → 0, the value of  𝛽 ≈ 𝛽0, meaning that a 

flashing firefly can be seen anywhere in the search space and, when 𝛾 → ∞, the 

attractiveness is almost zero in the sight of other fireflies and each firefly moves in a 

random way.  

Finally, whenever a position of a point 𝑥𝑖 is updated, the FA controls the bound 

constraints, i.e., the point 𝑥𝑖  is projected onto the search space as follows:  



 

 

𝑥𝑖 𝑠
= {

𝑙𝑖 𝑠
𝑖𝑓 𝑥𝑖 𝑠

< 𝑙𝑖 𝑠

𝑢𝑖𝑠
𝑖𝑓 𝑥𝑖𝑠

> 𝑢𝑖𝑠

 

The pseudo-code of the standard FA is presented in the Algorithm 1. 

 

Algorithm 1: Standard Firefly Algorithm 

Data: 𝑘𝑚𝑎𝑥 , , 
0
,  

Set 𝑘 = 1 

Randomly generate a population of N fireflies, 𝑥𝑖
𝑘 ∈ , 𝑖 = 1, … , 𝑁 

Based on  {𝑥1
𝑘, … , 𝑥𝑁

𝑘 }  evaluate  𝑓(𝑥𝑖
𝑘), = 1, … , 𝑁 

Rank the fireflies using the objective function values (from lowest to largest of 𝑓) 

Set 𝑥𝑏𝑒𝑠𝑡
𝑘 = 𝑥1

𝑘 and  𝑓𝑏𝑒𝑠𝑡
𝑘 = 𝑓(𝑥1

𝑘) 

Compute the scaler parameter S as  |𝑙𝑏 − 𝑢𝑏| 
while 𝑘 ≤ 𝑘𝑚𝑎𝑥  do  

for 𝑖 = 1 𝑡𝑜 𝑁 

for 𝑗 = 1 𝑡𝑜 𝑁 

     if  𝑓(𝑥𝑖
𝑘) > 𝑓(𝑥𝑗

𝑘) then 

  Compute the attractiveness 𝛽 using (5) 

  Move firefly 𝑖 towards firefly 𝑗 using (4) 

      end if 

end for 𝑗 

end for 𝑖 

Project 𝑥𝑖
𝑘  onto ,  for all 𝑖 = 1, … , 𝑁 

Evaluate  𝑓(𝑥𝑖
𝑘), 𝑖 =  1, . . . , 𝑁 

Rank the fireflies using the objective function values (from lowest to largest of 𝑓) 

Set 𝑘 =  𝑘 + 1 

Set 𝑥𝑏𝑒𝑠𝑡
𝑘 = 𝑥1

𝑘 and  𝑓𝑏𝑒𝑠𝑡
𝑘 = 𝑓(𝑥1

𝑘) 

end while 

3.2 Dynamic Updates of the Parameters 𝛂, 𝛄 and S 

The parameters 𝛼 and 𝛾 affects the performance of FA. In the version of FA 

proposed in [11] to solve mixed variable structural optimization problems, the authors 

improved the solution quality by reducing the value of the parameter 𝛼 with a geometric 

progression reduction scheme defined by 𝛼 = 𝛼0𝜃𝑘, where 𝛼0 is the initial randomness 

scaling factor, 0 < 𝜃 < 1 is the reduction factor of randomization and 𝑘 is the current 

iteration. In [12] the authors improved the quality of the solutions by reducing the 

randomness of the parameters 𝛼 and 𝛾. The computational experiments shown that they 

must take large values at the beginning of the iterative process and decrease gradually 

as the optimum solution is approached, to enforce the algorithm to increase the diversity 

and the convergence of the algorithm. In order to improve convergence speed and 



 

 

 

solution accuracy, dynamic updates of these parameters, which depend on the iteration 

counter of the algorithm, were defined. The parameter 𝛼 is defined at each iteration k 

as follows: 

 𝛼(𝑘) = 𝛼𝑚𝑎𝑥 − 𝑘
𝛼𝑚𝑎𝑥−α𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
 (6) 

where 𝛼𝑚𝑎𝑥 and 𝛼𝑚𝑖𝑛 are the limits to an  upper and lower level for 𝛼, 𝑘 is the number 

of current iteration and 𝑘𝑚𝑎𝑥 is the maximum number of iterations allowed. The 

parameter 𝛾,  used for increasing the attractiveness with 𝑘, is defined at each iteration 

𝑘 by the following dynamic update formula: 

 𝛾(𝑘) = 𝛾𝑚𝑎𝑥𝑒

𝑘𝑙𝑜𝑔(
𝛾𝑚𝑖𝑛
𝛾𝑚𝑎𝑥

)

𝑘𝑚𝑎𝑥  (7) 

where 𝛾𝑚𝑖𝑛  and 𝛾𝑚𝑎𝑥 are the minimum variation and maximum variation of the 

attractiveness, respectively.  

In this paper we propose a dynamic update formula to compute the vector of scaling 

parameters with k, in order enhance the convergence of the proposed FA extensions. 

Thus, the vector 𝑆 is dynamically updated in order to decrease with k as follows:  

 𝑆(𝑘) =
|(𝑙𝑏−𝑢𝑏)−(𝑥𝑁

𝑘 −𝑥1
𝑘)|

𝑘
 (8) 

where 𝑥𝑁
𝑘 − 𝑥1

𝑘 is the vector of the ranges given by the positions between the best and 

the worst fireflies. 

4 Constrained Firefly Algorithm  

In this section, we present extensions of FA for solving nonsmooth nonconvex CGO 

problems. We propose two constraint-handling techniques based on feasibility and 

dominance rules and the global competitive ranking that are able to explore both 

feasible and infeasible regions.  

4.1 Ranking Scheme Proposals 

In the global competitive ranking (GR) proposed algorithm, after calculating  𝑓(𝑥𝑖), 

휁(𝑥𝑖) and 𝑛𝑐(𝑥𝑖), for all points 𝑥𝑖  of the population, the points are ranked considering 

separately the ascending order of 𝑓(𝑥𝑖) and 휁(𝑥𝑖), 𝑖 = 1, … , 𝑁. Then, taking into 

account the ranking of all points , the fitness function of each point  𝑥𝑖, i=1,…,N; is 

computed by: 

 𝜈(𝑥𝑖) =
𝐼𝑖,𝑓−1

𝑁(𝑁−1)
+ 𝑛𝑐(𝑥𝑖)

𝐼𝑖,𝜁−1

𝑁(𝑁−1)
 (9) 

where 𝐼𝑖 ,𝑓 and 𝐼𝑖 ,𝜁  are the ranks of point 𝑥𝑖 based on the objective function 𝑓 and the 

constraints violation 휁 respectively. Finally, using the fitness function values 𝜈(𝑥𝑖), 

𝑖 =  1, … , 𝑁, the N points of the population are ranked by comparing all pairs of points 



 

 

in at least N sweeps. The description of the proposed GR scheme based on fitness 

function (9) is presented in Algorithm 2. 

 

Algorithm 2. GR 

Compute 𝐼𝑓 and 𝐼𝜁  

for 𝑖 = 1 𝑡𝑜 𝑁 − 1 

    𝐟𝐨𝐫 𝑗 = 𝑖 + 1 𝑡𝑜 𝑁 

             if  𝜈(𝑥𝑖) > 𝜈(𝑥𝑗)   

switch rank of firefly 𝑥𝑖  with firefly 𝑥𝑗   

              end if                             

end for j 

end for i 

 

In the ranking scheme based on feasibility and dominance (FD) rules, first the 

objective function value, 𝑓(𝑥𝑖), the constraint violation value, 휁(𝑥𝑖), and the number of 

constraints violated, 𝑛𝑐(𝑥𝑖), are calculated for all points 𝑥𝑖 of the population; i=1,…,N. 

Then, using the rules (i)-(iv) the N points of the population are ranked by comparing all 

pairs of points in at least N sweeps.  

A formal description of the proposed ranking scheme based on the FD rules (i)-(iv) 

(Definition 1) is presented in Algorithm 3. 

 

Algorithm 3. FD rules 

for 𝑖 = 1 𝑡𝑜 𝑁 − 1 

    𝐟𝐨𝐫 𝑗 = 𝑖 + 1 𝑡𝑜 𝑁 

             if  𝑥𝑗 improves over 𝑥𝑖  

switch rank of firefly 𝑥𝑖  with firefly 𝑥𝑗   

              end if                             

end for j 

end for i 

 

Both ranking schemes, the GR and FD rules, ensure that good feasible solutions as 

well as promising infeasible ones are ranked in the top of the population.  

4.2 Local Search 

In order to reach high quality solutions the proposed extensions of FA are designed 

to invoke, at the end of each iteration, a stochastic local intensification search procedure 

aiming to exploit the search region around the best firefly, 𝑥𝑏𝑒𝑠𝑡 . This local search, 

presented in [24], is a random line search algorithm that is applied coordinate by 

coordinate to the best point of the population. The procedure can be described as 

follows. First, for a fixed parameter 𝛿 the procedure computes the maximum feasible 

step length  



 

 

 

 ∆= 𝛿 ( max
1≤𝑠≤𝑛

(𝑢𝑏𝑠
− 𝑙𝑏𝑠

)). 

Then, for each coordinate 𝑠 (𝑠 = 1, 2, … , 𝑛), a random number 𝜇~𝑈[0,1] (uniformly 

distributed between 0 and 1) is selected as a step length and a trial point 𝑦 is 

componentwise moved along that direction and a new position is obtained as follows 

 𝑦𝑠 = 𝑥𝑏𝑒𝑠𝑡 𝑠
+ 𝜇∆. 

When 𝑦 ∉ Ω, the trial point is rejected and the search along that coordinate ends. If 𝑦 

improves over the best point 𝑥𝑏𝑒𝑠𝑡  according to Definition 1, within 𝐿𝑆𝑖𝑡max iterations, 

the best point 𝑥𝑏𝑒𝑠𝑡  is replaced by the trial point 𝑦 and the search along that coordinate 

𝑠 ends. A description of the local search procedure is presented in Algorithm 4. 

 

Algorithm 4: Local Search 

Data: 𝑥𝑏𝑒𝑠𝑡  (the best point of the population at iteration k), 𝐿𝑆𝑖𝑡max, 𝛿 

Δ = 𝛿 max
1≤𝑠≤𝑛

(𝑢𝑏𝑠
− 𝑙𝑏𝑠

)  

for 𝑠 = 1 𝑡𝑜 𝑛 do 

      Set 𝑖𝑡 = 1 

      while 𝑖𝑡 < 𝐿𝑆𝑖𝑡max do 

            Set 𝑦 = 𝑥𝑏𝑒𝑠𝑡 

            𝑦𝑠 = 𝑥𝑏𝑒𝑠𝑡 𝑠
+ 𝜇Δ,   𝜇~𝑈[0,1]  

            if 𝑦 improves over 𝑥𝑏𝑒𝑠𝑡  and 𝑦 ∈ Ω then 

                 Set  𝑥𝑏𝑒𝑠𝑡 = 𝑦 

            else 

                 Set 𝑖𝑡 = 𝐿𝑆𝑖𝑡max − 1 

            end if 

            Set 𝑖𝑡 = 𝑖𝑡 + 1  

      end while  

end for  

4.3 Extensions of FA 

The proposed extensions of FA (herein denoted by exts-FA) use a population of 

points/fireflies to compute, at each iteration 𝑘, an approximate solution, 𝑥𝑏𝑒𝑠𝑡
𝑘 , to the 

problem (1). Along the iterative process, the exts-FA generate approximate solutions, 

𝑥𝑏𝑒𝑠𝑡
𝑘  , that satisfy the bound constraints, with increasingly better accuracy.  

In the standard FA, each firefly i moves towards the brighter fireflies. However, 

when a firefly i, located at 𝑥𝑖, moves as in standard FA, its brightness may decrease. To 

prevent this, after moving each firefly i in the direction of a brighter firefly j, the 

selection rule given by Definition 1 is applied. We remark that if the trial position lies 

outside the search space , the point is projected onto . Denoting by 𝑡𝑖 the trial 

position, if 𝑡𝑖 improves over 𝑥𝑖 ,  𝑡𝑖 will be the current position of the firefly i for the 

next movement; otherwise, the position 𝑥𝑖 will be maintained as current for the next 



 

 

movement. To further improve exts-FA, all fireflies will move according to (4) except 

the less bright firefly, 𝑥𝑁. The position of firefly N is replaced by a random movement 

position of the brightest firefly. The pseudo-code of exts-FA is given in Algorithm 5. 

 

Algorithm 5: exts- FA 

Data: 𝑘𝑚𝑎𝑥, 𝑚𝑎𝑥, 𝑚𝑖𝑛 , 
𝑚𝑎𝑥

, 
𝑚𝑖𝑛

 

Set k=1 

Randomly generate a population of N fireflies, 𝑥𝑖
𝑘 ∈ , 𝑖 = 1, … , 𝑁 

Based on  {𝑥1
𝑘, … , 𝑥𝑁

𝑘 }  evaluate  𝑓(𝑥𝑖
𝑘), 휁(𝑥𝑖

𝑘), 𝑛𝑐(𝑥𝑖
𝑘),  𝑖 = 1, … , 𝑁 

Rank the fireflies using GR (Algorithm 2) or FD rules (Algorithm 3) 

Set 𝑥𝑏𝑒𝑠𝑡
𝑘 = 𝑥1

𝑘 and  𝑓𝑏𝑒𝑠𝑡
𝑘 = 𝑓(𝑥1

𝑘) 

While (stopping criteria is not met)  

   Compute the randomization parameter 𝛼(𝑘) using (6) 

   Compute the scale parameter 𝑆(𝑘) using (8) 

   for 𝑖 = 2 to 𝑁 − 1 

for 𝑗 = 1 to 𝑖 − 1 

         Compute the attractiveness   using (5) and (7) 

         Move firefly i towards firefly j using (4), and project onto  the trial position 𝑡𝑖  

          Evaluate 𝑓(𝑡𝑖), 휁(𝑡𝑖), 𝑛𝑐(𝑡𝑖) 

          if 𝑡𝑖  improves over 𝑥𝑖
𝑘 then 

         Set 𝑥𝑖
𝑘 = 𝑡𝑖 

     end if 

end for j 

end for i 

Set 𝑡𝑁 = 𝑥1
𝑘 + , where ~ U(0,1) (vector of random numbers) and project onto  

Evaluate 𝑓(𝑡𝑁), 휁(𝑡𝑁), 𝑛𝑐(𝑡𝑁) 

if 𝑡𝑁 improves over 𝑥𝑁
𝑘  then 

         Set 𝑥𝑁
𝑘 = 𝑡𝑁 

end if 

Set 𝑘 = 𝑘 + 1 

Evaluate  𝑓(𝑥𝑖
𝑘), 휁(𝑥𝑖

𝑘), 𝑛𝑐(𝑥𝑖
𝑘),  𝑖 = 1, … , 𝑁 

Rank the fireflies using GR (Algorithm 2) or FD rules (Algorithm 3) 

Set 𝑥𝑏𝑒𝑠𝑡
𝑘 = 𝑥1

𝑘  and  𝑓𝑏𝑒𝑠𝑡
𝑘 = 𝑓(𝑥1

𝑘) 

Invoke the Local Search (Algorithm 4) 

end while 

 

We will denote by FA1 the exts-FA with FD rules, and by FA2 the exts-FA with GR 

in the ranking of the points. In the context of the implementation of FA1, we also 

propose a new movement equation (instead of (4)) in which all fireflies will move 

towards the best one. We will denoted this implementation by FA1#. 



 

 

 

4.4 Stopping Criteria 

The algorithm stops when the following condition is reached: 

(|𝑓𝑜𝑝𝑡 − 𝑓𝑏𝑒𝑠𝑡| ≤ 10−6 and  휁(𝑓𝑏𝑒𝑠𝑡) ≤ 10−6)   or   𝑘 > 𝑘max (10) 

where 𝑓𝑜𝑝𝑡  represents the known global optimal solution, 𝑓𝑏𝑒𝑠𝑡 is the objective function 

value of the best point of the population, 𝑘 denotes the iteration counter and 𝑘max is 

the maximum number of iterations allowed.  

5 Experimental Results  

In this section, we aim to investigate the performance of FA1, FA1# and FA2 when 

solving a set of nonlinear optimization problems. Thirteen benchmark global 

optimization test problems, with dimensions ranging from 2 to 20, chosen from [25] 

containing characteristics that are representative of what can be considered difficult 

when solving global optimization problems. Their characteristics are outlined in Table 

1.  

Table 1. Summary of main properties of the benchmark problems. 

Prob. 𝑓𝑜𝑝𝑡 n function LI NI LE NE 𝜌 (%) 

G01 -15.000000 13 Quadratic 9 0 0 0 0.011 

G02 -0.803619 20 Nonlinear 1 1 0 0 99.99 

G03 -1.000500 10 Nonlinear 0 0 0 1 0.002 

G04 -30665.538672 5 Quadratic 0 6 0 0 52.123 

G05 5126.496714 4 Nonlinear 2 0 0 3 0.000 

G06 -6961.813876 2 Nonlinear 0 2 0 0 0.006 

G07 24.306209 10 Quadratic 3 5 0 0 0.000 

G08 -0.095825 2 Nonlinear 0 2 0 0 0.856 

G09 680.630057 7 Nonlinear 0 4 0 0 0.521 

G10 7049.248021 8 Linear 3 3 0 0 0.001 

G11 0.749900 2 Quadratic 0 0 0 1 0.000 

G12 -1.000000 3 Quadratic 0 9 0 0 4.779 

G13 0.053942 5 Nonlinear 0 0 1 3 0.000 
 

The two first columns display the name of the problem (Prob.) and the best known 

solution (𝑓𝑜𝑝𝑡), followed by the number of variables (𝑛), the type of objective function 

(function), the number of inequality constraints (LI and NI, for linear and nonlinear 

inequality constraints, respectively), the number of equality constraints (LE and NE, 

for linear and nonlinear equality constraints, respectively), as reported in [25]. The 

feasibility ratio 𝜌, in the last column, is an estimate of the size of the feasible search 

space Ω𝐹  to the size of the whole search space. In practice, 𝜌 represents the degree of 

difficulty of each problem.  



 

 

The numerical experiments were carried out on a MacBook Pro (13-inch, Mid 2012) 

with processor 2.5 GHz and 4 Gb of memory. The algorithms were coded in Matlab® 

programming language, version 8.01 (R2013a). 

Since the FA is a stochastic method, each problem was solved 20 times. The size of 

the population used was 𝑁 = 40 fireflies and in the stopping criteria, defined in (10), 

the maximum number of iterations allowed was 𝑘max = 5000 iterations. The initial 

parameters used to dynamically compute 𝛼 and 𝛾 are: 𝛼𝑚𝑎𝑥 = 0.9, α𝑚𝑖𝑛 = 0.01, 

𝛾𝑚𝑎𝑥 = 100  and 𝛾𝑚𝑖𝑛 = 0.001. All equality constraints ℎ𝑗(𝑥) have been converted 

into inequality constraints using |ℎ𝑗(𝑥)| − 휀 ≤ 0, where 휀 > 0 is a very small violation 

tolerance. In our numerical experiments 휀 = 10−4 is used for the problems G05, G11 

and G13 and 휀 = 10−6 for the remaining problems. The step length in the local search 

procedure is set to 𝛿 = 10−5, except those marked with (*) that are set to 𝛿 =  10−2. 

The maximum number of local search iterations allowed is 𝐿𝑆𝑖𝑡max =  10. 
Table 2 summarizes the numerical results produced by the exts-FA, namely the 

proposed FA1#, FA1 and FA2. The first column shows the name of the problem, 

followed by the acronym of the exts-FA implementation. The remaining columns 

present: the best (𝑓𝑏𝑒𝑠𝑡), the mean (𝑓𝑚𝑒𝑎𝑛), the median (𝑓𝑚𝑒𝑑), the standard deviation 

(SD) and the worst (𝑓𝑤𝑜𝑟𝑠𝑡) solution values obtained over the 20 runs.  

We remark that our proposed algorithms were able to find feasible solutions for all 

the runs of all of thirteen benchmark tested problems. This is due to the fact that the 

proposed algorithms prioritize the search of feasible solutions before proceeding to the 

search of the global optimum value.  

The proposed exts-FA were also able to achieve very good results in almost of the 

problems. In the G01, G03, G08, G11 and G12 problems, the FA1#, FA1 and FA2 

implementations reached the known global optimal solution in all runs. Consequently 

the measures of mean, median and the worst of the objective function values are equal 

to the global optimum and the standard deviation is zero. For G05 and G13 problems, 

the optimal solutions obtained by FA1 are lower than the known optimum values. This 

is related to the fact that the equality constraints of these problems were relaxed by a 

threshold value of 휀 = 10−4. For the G04, G06, G07 and G09 problems the proposed 

extensions of FA produced very competitive results since they were able to obtain 

optimum values very close to the known optimum ones. On the other hand, for the 

problems G02 and G10 they were not able to reach the known optimum solution.  

In general, the best performance was obtained with FA1 and FA2 implementations. 

Then, we analyze the performance of these two extensions when compared with five 

stochastic population-based global methods. In [26] the method incorporates a 

homomorphous mapping between an n-dimensional cube and the feasible search space. 

Runarsson and Yao in [27] present results of the original stochastic ranking method for 

constrained evolutionary optimization. In [28] a self-adaptive fitness formulation is 

used. The results reported in [29] were obtained with an adaptive penalty method with 

dynamic use of DE variants, while in [30] a self-adaptive penalty based genetic 

algorithm is used. Table 3 reports the best results found by these methods and by our 

proposed best implementations FA1 and FA2. 



 

 

 

Table 2. Results produced by the FA1#, FA1 and  FA2. 

Prob. exts-FA 𝑓𝑏𝑒𝑠𝑡 𝑓𝑚𝑒𝑎𝑛 𝑓𝑚𝑒𝑑 SD. 𝑓𝑤𝑜𝑟𝑠𝑡 

G01 

FA1# 

FA1 

FA2 

-15.0000 

-15.0000 

-15.0000 

-15.0000 

-15.0000 

-15.0000 

-15.0000 

-15.0000 

-15.0000 

0.0000 

0.0000 

0.0000 

-15.0000 

-15.0000 

-15.0000 

G02 

FA1# 

FA1 

FA2 

-0.4373 

-0.4048 

-0.4799 

-0.2968 

-0.2941 

-0.3458 

-0.2841 

-0.2911 

-0.3330 

0.0557 

0.0398 

0.0631 

-0.2405 

-0.2414 

-0.2488 

G03 

FA1# 

FA1 

FA2 

-1.0005 

-1.0005 

-1.0005 

-1.0005 

-1.0005 

-1.0005 

-1.0005 

-1.0005 

-1.0005 

0.0000 

0.0000 

0.0000 

-1.0005 

-1.0005 

-1.0004 

G04 

FA1# 

FA1 

FA2 

-30665.5385 

-30665.5386 

-30665.5385 

-30538.1527 

-30663.8601 

-30660.8451 

-30546.2560 

-30665.5382 

-30665.5382 

96.7170 

7.5011 

14.4310 

-30372.8244 

-30631.9925 

-30611.1510 

G05 

FA1#* 

FA1 

FA2 

5126.7259 

5126.3617 

5126.5175 

5402.6462 

5157.5428 

5128.7370 

5274.4115 

5128.489 

5128.4245 

279.0658 

66.0467 

2.0577 

5986.442138 

5401.545758 

5133.3343 

G06 

FA1#* 

FA1 

FA2* 

-6961.8101 

-6961.8016 

-6961.5405 

-6961.7905 

-6961.7747 

-6959.8675 

-6961.7905 

-6961.7747 

-6960.2069 

0.0130 

0.0172 

1.2835 

-6961.7553 

-6961.7347 

-6956.3551 

G07 

FA1#* 

FA1 

FA2 

24.6203 

24.3571 

24.3273 

26.0814 

24.5827 

24.3772 

26.1657 

24.5456 

24.3663 

0.7935 

0.1967 

0.0311 

27.1457 

25.2044 

24.4368 

G08 

FA1# 

FA1 

FA2 

-0.095825 

-0.095825 

-0.095825 

-0.095825 

-0.095825 

-0.095825 

-0.095825 

-0.095825 

-0.095825 

0.0000 

0.0000 

0.0000 

-0.095825 

-0.095824 

-0.095825 

G09 

FA1# 

FA1 

FA2 

680.6445 

680.6348 

680.6328 

680.7663 

680.6895 

680.6869 

680.7867 

680.6659 

680.6821 

0.0676 

0.0468 

0.0414 

680.8671 

680.7948 

680.7852 

G10 

FA1# 

FA1* 

FA2* 

7069.4263 

7125.2110 

7073.7810 

8183.2192 

7552.1114 

7171.9798 

7785.5967 

7364.5715 

7145.6712 

1053.5456 

486.5234 

107.9335 

10276.0255 

8872.8741 

7542.8818 

G11 

FA1# 

FA1 

FA2* 

0.7499 

0.7499 

0.7499 

0.7499 

0.7499 

0.7499 

0.7499 

0.7499 

0.7499 

0.0000 

0.0000 

0.0000 

0.749910 

0.749900 

0.749900 

G12 

FA1# 

FA1 

FA2 

-1.0000 

-1.0000 

-1.0000 

-1.0000 

-1.0000 

-1.0000 

-1.0000 

-1.0000 

-1.0000 

0.0000 

0.0000 

0.0000 

-1.0000 

-1.0000 

-1.0000 

G13 

FA1#* 

FA1 

FA2 

0.054106 

0.053556 

0.053944 

0.325382 

0.283400 

0.053960 

0.435195 

0.434445 

0.053951 

0.2509 

0.1924 

0.0000 

0.817849 

0.444500 

0.054017 

  * means the step length of 𝛿 = 10−2 in the local search procedure. 

 

From Table 3 the competitiveness of FA1 and FA2 with the reported approaches is 

shown. The stochastic ranking in [27] produced very good results. However this 

algorithm was able to obtain feasible solutions only in 6 out of the 30 runs performed 

for the test problem G10. In [28] only 17 out of 20 runs produced feasible solutions for 

the problem G10 and 9 out of 20 runs for G05 problem, while the exts-FA obtained 



 

 

feasible solutions for all problems in all runs. In general, the proposed exts-FA is 

competitive as the reported algorithms in the related field.  

Table 3. Comparison of our study with others stochastic population-based methods 

Prob. FA1 FA2 [26] [27] [28] [29] [30] 

G01 -15.0000 -15.0000 -14.7082 -15.0000 -15.0000 -15 -15.000 

G02 -0.4048 -0.4799 -0.79671 -0.803515 -0.802970 -0.8036 -0.803202 

G03 -1.0005 -1.0005 -0.9989 -1.0000 -1.0000 -1.0 -1.000 

G04 -30665.539 -30665.539 -30655.3 -30665.539 -30665.500 -30665.5 -30665.401 

G05 5126.3617 5126,5175 n.a. 5126.497 5126.989 5126.4981 5126.907 

G06 -6961.8016 -6961,5405 -6342.6 -6961.814 -6961.800 -6961.8 -6961.046 

G07 24.3571 24,3273 24.826 24.307 24.480 24.306 24.838 

G08 -0.095825 -0.095825 -0.089157 -0.095825 -0.095825 -0.09582 -0.095825 

G09 680.6348 680.6328 681.16 680.630 680.640 680.63 680.773 

G10 7125.2110 7073.7810 8163.6 7054.316 7061.340 7049.25 7069.981 

G11 0.749900 0.749900 0.75 0.750 0.75 0.75 0.749 

G12 -1.000000 -1.000000 -0.999135 -1.000000 n.a. n.a. -1.000000 

G13 0.053556 0.053944 0.557 0.053957 n.a. n.a. 0.053941 

   n.a. means not available. 

6 Conclusions 

The FA is a stochastic global optimization algorithm, inspired by the social behavior 

of fireflies and based on their flashing and attraction, which was originally designed to 

solve bound constrained optimization problems. In this paper we extend the FA to solve 

nonsmooth nonconvex constrained global optimization problems. The extensions of FA 

denoted by FA1 and FA1# incorporate the constraint-handling technique based on the 

feasibility and dominance rules, while FA2 uses a global competitive ranking combined 

with a new fitness function. Moreover, FA1# uses a movement equation where all 

fireflies move towards the best one. 

Thirteen well known benchmark problems were used in order to test the performance 

of the implementations of the exts-FA. The numerical experiments show that the 

proposed exts-FA are competitive when compared with other stochastic methods. 

Further research will be directed to improve the results through testing other fitness 

functions combined with the GR scheme. Future developments may include solving 

problems with large dimensions. 
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