1,120 research outputs found

    An overview of the proper generalized decomposition with applications in computational rheology

    Get PDF
    We review the foundations and applications of the proper generalized decomposition (PGD), a powerful model reduction technique that computes a priori by means of successive enrichment a separated representation of the unknown field. The computational complexity of the PGD scales linearly with the dimension of the space wherein the model is defined, which is in marked contrast with the exponential scaling of standard grid-based methods. First introduced in the context of computational rheology by Ammar et al. [3] and [4], the PGD has since been further developed and applied in a variety of applications ranging from the solution of the Schrödinger equation of quantum mechanics to the analysis of laminate composites. In this paper, we illustrate the use of the PGD in four problem categories related to computational rheology: (i) the direct solution of the Fokker-Planck equation for complex fluids in configuration spaces of high dimension, (ii) the development of very efficient non-incremental algorithms for transient problems, (iii) the fully three-dimensional solution of problems defined in degenerate plate or shell-like domains often encountered in polymer processing or composites manufacturing, and finally (iv) the solution of multidimensional parametric models obtained by introducing various sources of problem variability as additional coordinates

    Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction

    Full text link
    The Gaussian Approximation, proposed originally by Ottinger [J. Chem. Phys., 90 (1) : 463-473, 1989] to account for the influence of fluctuations in hydrodynamic interactions in Rouse chains, is adapted here to derive a new mean-field approximation for the FENE spring force. This "FENE-PG" force law approximately accounts for spring-force fluctuations, which are neglected in the widely used FENE-P approximation. The Gaussian Approximation for hydrodynamic interactions is combined with the FENE-P and FENE-PG spring force approximations to obtain approximate models for finitely-extensible bead-spring chains with hydrodynamic interactions. The closed set of ODE's governing the evolution of the second-moments of the configurational probability distribution in the approximate models are used to generate predictions of rheological properties in steady and unsteady shear and uniaxial extensional flows, which are found to be in good agreement with the exact results obtained with Brownian dynamics simulations. In particular, predictions of coil-stretch hysteresis are in quantitative agreement with simulations' results. Additional simplifying diagonalization-of-normal-modes assumptions are found to lead to considerable savings in computation time, without significant loss in accuracy.Comment: 26 pages, 17 figures, 2 tables, 75 numbered equations, 1 appendix with 10 numbered equations Submitted to J. Chem. Phys. on 6 February 200

    On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition

    Get PDF
    This paper focuses on the efficient solution of models defined in high dimensional spaces. Those models involve numerous numerical challenges because of their associated curse of dimensionality. It is well known that in mesh-based discrete models the complexity (degrees of freedom) scales exponentially with the dimension of the space. Many models encountered in computational science and engineering involve numerous dimensions called configurational coordinates. Some examples are the models encoun- tered in biology making use of the chemical master equation, quantum chemistry involving the solution of the Schrödinger or Dirac equations, kinetic theory descriptions of complex systems based on the solution of the so-called Fokker–Planck equation, stochastic models in which the random variables are included as new coordinates, financial mathematics, etc. This paper revisits the curse of dimensionality and proposes an efficient strategy for circumventing such challenging issue. This strategy, based on the use of a Proper Generalized Decomposition, is specially well suited to treat the multidimensional parametric equations

    Corrections to Einstein's relation for Brownian motion in a tilted periodic potential

    Get PDF
    In this paper we revisit the problem of Brownian motion in a tilted periodic potential. We use homogenization theory to derive general formulas for the effective velocity and the effective diffusion tensor that are valid for arbitrary tilts. Furthermore, we obtain power series expansions for the velocity and the diffusion coefficient as functions of the external forcing. Thus, we provide systematic corrections to Einstein's formula and to linear response theory. Our theoretical results are supported by extensive numerical simulations. For our numerical experiments we use a novel spectral numerical method that leads to a very efficient and accurate calculation of the effective velocity and the effective diffusion tensor.Comment: 29 pages, 7 figures, submitted to the Journal of Statistical Physic

    High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications

    Get PDF
    A high order, deterministic direct numerical method is proposed for the nonrelativistic 2Dx×3Dv2D_{\bf x} \times 3D_{\bf v} Vlasov-Maxwell system, coupled with Fokker-Planck-Landau type operators. Such a system is devoted to the modelling of electronic transport and energy deposition in the general frame of Inertial Confinement Fusion applications. It describes the kinetics of plasma physics in the nonlocal thermodynamic equilibrium regime. Strong numerical constraints lead us to develop specific methods and approaches for validation, that might be used in other fields where couplings between equations, multiscale physics, and high dimensionality are involved. Parallelisation (MPI communication standard) and fast algorithms such as the multigrid method are employed, that make this direct approach be computationally affordable for simulations of hundreds of picoseconds, when dealing with configurations that present five dimensions in phase space
    corecore