90 research outputs found

    Second kind Chebyshev collocation technique for Volterra-Fredholm fractional order integro-differential equations

    Get PDF
    In this work, we present the numerical solution of fractional order Volterra–Fredholm integro-differential equations using the second kind of Chebyshev collocation technique. First, we transformed the problem into a system of linear algebraic equations, which are then solved using matrix inversion to obtain the unknown constants. Furthermore, numerical examples are used to outline the method’s accuracy and efficiency using tables and figures. The results show that the method performed better in terms of improving accuracy and requiring less rigorous work.©2022 JNSMR UIN Walisongo. All rights reserved

    Second kind Chebyshev collocation technique for Volterra-Fredholm fractional order integro-differential equations

    Get PDF
    In this work, we present the numerical solution of fractional order Volterra–Fredholm integro-differential equations using the second kind of Chebyshev collocation technique. First, we transformed the problem into a system of linear algebraic equations, which are then solved using matrix inversion to obtain the unknown constants. Furthermore, numerical examples are used to outline the method’s accuracy and efficiency using tables and figures. The results show that the method performed better in terms of improving accuracy and requiring less rigorous work.©2022 JNSMR UIN Walisongo. All rights reserved

    Second kind Chebyshev collocation technique for Volterra-Fredholm fractional order integro-differential equations

    Get PDF
    In this work, we present the numerical solution of fractional order Volterra–Fredholm integro-differential equations using the second kind of Chebyshev collocation technique. First, we transformed the problem into a system of linear algebraic equations, which are then solved using matrix inversion to obtain the unknown constants. Furthermore, numerical examples are used to outline the method’s accuracy and efficiency using tables and figures. The results show that the method performed better in terms of improving accuracy and requiring less rigorous work.©2022 JNSMR UIN Walisongo. All rights reserved

    Numerical solution of fractional Fredholm integro-differential equations by spectral method with fractional basis functions

    Full text link
    This paper presents an efficient spectral method for solving the fractional Fredholm integro-differential equations. The non-smoothness of the solutions to such problems leads to the performance of spectral methods based on the classical polynomials such as Chebyshev, Legendre, Laguerre, etc, with a low order of convergence. For this reason, the development of classic numerical methods to solve such problems becomes a challenging issue. Since the non-smooth solutions have the same asymptotic behavior with polynomials of fractional powers, therefore, fractional basis functions are the best candidate to overcome the drawbacks of the accuracy of the spectral methods. On the other hand, the fractional integration of the fractional polynomials functions is in the class of fractional polynomials and this is one of the main advantages of using the fractional basis functions. In this paper, an implicit spectral collocation method based on the fractional Chelyshkov basis functions is introduced. The framework of the method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton's iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with smooth and non-smooth solutions in comparison with other existing methods

    Numerical Approximate Methods for Solving Linear and Nonlinear Integral Equations

    Get PDF
    Integral equation has been one of the essential tools for various area of applied mathematics. In this work, we employed different numerical methods for solving both linear and nonlinear Fredholm integral equations. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study on numerical methods for solving integral equations. Integral equations can be viewed as equations which are results of transformation of points in a given vector spaces of integrable functions by the use of certain specific integral operators to points in the same space. If, in particular, one is concerned with function spaces spanned by polynomials for which the kernel of the corresponding transforming integral operator is separable being comprised of polynomial functions only, then several approximate methods of solution of integral equations can be developed. This work, specially, deals with the development of different wavelet methods for solving integral and intgro-differential equations. Wavelets theory is a relatively new and emerging area in mathematical research. It has been applied in a wide range of engineering disciplines; particularly, wavelets are very successfully used in signal analysis for waveform representations and segmentations, time frequency analysis, and fast algorithms for easy implementation. Wavelets permit the accurate representation of a variety of functions and operators. Moreover, wavelets establish a connection with fast numerical algorithms. Wavelets can be separated into two distinct types, orthogonal and semi-orthogonal. The preliminary concept of integral equations and wavelets are first presented in Chapter 1. Classification of integral equations, construction of wavelets and multi-resolution analysis (MRA) have been briefly discussed and provided in this chapter. In Chapter 2, different wavelet methods are constructed and function approximation by these methods with convergence analysis have been presented. In Chapter 3, linear semi-orthogonal compactly supported B-spline wavelets together with their dual wavelets have been applied to approximate the solutions of Fredholm integral equations (both linear and nonlinear) of the second kind and their systems. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. Convergence analysis of B-spline method has been discussed in this chapter. Again, in Chapter 4, system of nonlinear Fredholm integral equations have been solved by using hybrid Legendre Block-Pulse functions and xiii Bernstein collocation method. In Chapter 5, two practical problems arising from chemical phenomenon, have been modeled as Fredholm- Hammerstein integral equations and solved numerically by different numerical techniques. First, COSMO-RS model has been solved by Bernstein collocation method, Haar wavelet method and Sinc collocation method. Second, Hammerstein integral equation arising from chemical reactor theory has been solved by B-spline wavelet method. Comparison of results have been demonstrated through illustrative examples. In Chapter 6, Legendre wavelet method and Bernoulli wavelet method have been developed to solve system of integro-differential equations. Legendre wavelets along with their operational matrices are developed to approximate the solutions of system of nonlinear Volterra integro-differential equations. Also, nonlinear Volterra weakly singular integro-differential equations system has been solved by Bernoulli wavelet method. The properties of these wavelets are used to reduce the system of integral equations to a system of algebraic equations which can be solved numerically by Newton's method. Rigorous convergence analysis has been done for these wavelet methods. Illustrative examples have been included to demonstrate the validity and applicability of the proposed techniques. In Chapter 7, we have solved the second order Lane-Emden type singular differential equation. First, the second order differential equation is transformed into integro-differential equation and then solved by Legendre multi-wavelet method and Chebyshev wavelet method. Convergence of these wavelet methods have been discussed in this chapter. In Chapter 8, we have developed a efficient collocation technique called Legendre spectral collocation method to solve the Fredholm integro-differential-difference equations with variable coefficients and system of two nonlinear integro-differential equations which arise in biological model. The proposed method is based on the Gauss-Legendre points with the basis functions of Lagrange polynomials. The present method reduces this model to a system of nonlinear algebraic equations and again this algebraic system has been solved numerically by Newton's method. The study of fuzzy integral equations and fuzzy differential equations is an emerging area of research for many authors. In Chapter 9, we have proposed some numerical techniques for solving fuzzy integral equations and fuzzy integro-differential equations. Fundamentals of fuzzy calculus have been discussed in this chapter. Nonlinear fuzzy Hammerstein integral equation has been solved by Bernstein polynomials and Legendre wavelets, and then compared with homotopy analysis method. We have solved nonlinear fuzzy Hammerstein Volterra integral equations with constant delay by Bernoulli wavelet method and then compared with B-spline wavelet method. Finally, fuzzy integro-differential equation has been solved by Legendre wavelet method and compared with homotopy analysis method. In fuzzy case, we have applied two-dimensional numerical methods which are discussed in chapter 2. Convergence analysis and error estimate have been also provided for Bernoulli wavelet method. xiv The study of fractional calculus, fractional differential equations and fractional integral equations has a great importance in the field of science and engineering. Most of the physical phenomenon can be best modeled by using fractional calculus. Applications of fractional differential equations and fractional integral equations create a wide area of research for many researchers. This motivates to work on fractional integral equations, which results in the form of Chapter 10. First, the preliminary definitions and theorems of fractional calculus have been presented in this chapter. The nonlinear fractional mixed Volterra-Fredholm integro-differential equations along with mixed boundary conditions have been solved by Legendre wavelet method. A numerical scheme has been developed by using Petrov-Galerkin method where the trial and test functions are Legendre wavelets basis functions. Also, this method has been applied to solve fractional Volterra integro-differential equations. Uniqueness and existence of the problem have been discussed and the error estimate of the proposed method has been presented in this work. Sinc Galerkin method is developed to approximate the solution of fractional Volterra-Fredholm integro-differential equations with weakly singular kernels. The proposed method is based on the Sinc function approximation. Uniqueness and existence of the problem have been discussed and the error analysis of the proposed method have been presented in this chapte

    A Two-Dimensional Chebyshev Wavelet Method for Solving Partial Di erential Equations

    Get PDF
    In this paper, we introduce a two-dimensional Chebyshev wavelet method (TCWM) for solving partial di erential equations (PDEs) in L2(R) space. In this method, the spatial variables appearing in the PDE each has its own kernel, as well as wavelet coecient for approxi- mating the unknown solution of the equation. The approximated solu- tion of the equation is fast and has higher number of vanishing moments as compared to the Chebyshev wavelet method with only one wavelet coecient for two or more separated kernels for the variables appearing in the PDE

    Solving fractional Fredholm integro-differential equations by Laguerre polynomials

    Get PDF
    The main purpose of this study was to present an approximation method based on the Laguerre polynomials to obtain the solutions of the fractional linear Fredholm integro-differential equations. This method transforms the integro-differential equation to a system of linear algebraic equations by using the collocation points. In addition, the matrix relation for Caputo fractional derivative of Laguerre polynomials is also obtained. Besides, some examples are presented to illustrate the accuracy of the method and the results are discussed

    Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem

    Get PDF
    في هذا البحث، تم تنفيذ الطريقة الحسابية الفعالة (ECM) المستندة إلى متعددة الحدود القياسية الأحادية لحل مشكلة تدفق جيفري-هامل غير الخطية. علاوة على ذلك، تم تطوير واقتراح الطرق الحسابية الفعالة الجديدة في هذه الدراسة من خلال وظائف أساسية مناسبة وهي متعددات الحدود تشيبشيف، بيرنشتاين، ليجندر، هيرمت. يؤدي استخدام الدوال الأساسية إلى تحويل المسألة غير الخطية إلى نظام جبري غير خطي من المعادلات، والذي يتم حله بعد ذلك باستخدام برنامج ماثماتيكا®١٢. تم تطبيق تطوير طرق حسابية فعالة (D-ECM) لحل مشكلة تدفق جيفري-هامل غير الخطية، ثم تم عرض مقارنة بين الطرق. علاوة على ذلك، تم حساب الحد الأقصى للخطأ المتبقي ( )، لإظهار موثوقية الطرق المقترحة. تثبت النتائج بشكل مقنع أن ECM و D-ECM دقيقة وفعالة وموثوقة للحصول على حلول تقريبية للمشكلة.In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum error remainder ( ) has been calculated to exhibit the reliability of the suggested methods. The results persuasively prove that ECM and D-ECM are accurate, effective, and reliable in getting approximate solutions to the problem
    corecore