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Abstract

In this paper, we introduce a two-dimensional Chebyshev wavelet
method (TCWM) for solving partial differential equations (PDEs) in
L2(R) space. In this method, the spatial variables appearing in the
PDE each has its own kernel, as well as wavelet coefficient for approxi-
mating the unknown solution of the equation. The approximated solu-
tion of the equation is fast and has higher number of vanishing moments
as compared to the Chebyshev wavelet method with only one wavelet
coefficient for two or more separated kernels for the variables appearing
in the PDE.
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1 Introduction

Most of the physical problems like heat conduction, wave propagation, laser
beam models, are modelled as PDEs whose solutions cannot be easily obtained
by the classical method. This may be due to either the nonlinearity associ-
ated with equation or inappropriate solution space. The Poisson equation
with the modulus of x as an inhomogeneous function, in a unit square domain
([0, 1] × [0, 1]), has no classical solution in Hilbert space. Sometimes, a PDE
may have no smooth function that describes the problem at hand. For exam-
ple, Black Scholes equation in finance is of no exception. Solving a PDE in a
functional space may not be feasible, the only way is to approximate the solu-
tion of the problem. This depends on the kind of the lay-down procedure one
adopts. Approximation methods like Runge-Kutta, Adams-Bashford method,
provide solution with unsurmountable errors. In a similar development, the
local methods such as finite difference method, finite element method, finite
volume method, collocation method, provide unstable solution, which when
the boundary of the domain of PDE is irregular. Thus, the boundary infor-
mation is not included in the approximated solution. In addition, they give
information only in frequency domain. Numerical approximations of solution
of the equation have a number of drawbacks.

A method which is efficient and accurate to obtain the approximated so-
lutions of the PDEs over the past two decades is the wavelet series. This
method makes use of both the dilation parameter, for compression of wavelet
series solution, and the translation parameter for the location of wavelet se-
ries solution in L2(R) space. The method provides approximated solution to
the PDEs in regular domain, as well as irregular domain. In addition, the
wavelet function is symmetrical, detects the singularities in the equation, and
yields solution which is robust against noise. Again, the wavelet series solution
of a PDE converges faster than the traditional methods of approximation on
the grounds that the wavelet function has the number of vanishing moments.
What is more, in wavelet domain, we are able to obtain both time and fre-
quency information which is not feasible with other methods of approximating
PDEs.

Due to the pioneering work by Chen and Hsiao [6] who introduced an inte-
gral Haar wavelet method for solving differential equations, number of studies
had applied this method in solving differential equations. For example, see
research papers by [4, 5, 9, 10, 11, 15, 17, 18, 19, 25]. The approximated Haar
wavelet solutions of the Klein-Gordon and Sine-Gordon equations were ob-
tained by [8]. In [21], solution of fractional-order differential equation was
obtained by the use of new operational matrix of derivatives. However, the
Haar wavelet function, a square-wave, is discontinuous at zero in the domain
[0, 1). Thus, the Haar wavelet function lacks vanishing moments on the grounds
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that it is not C2([0, 1)). This shortcoming of the Haar integral wavelet method
limits its applicabilities. Some wavelet series methods like Legendre method
of different kinds have been introduced for solving the PDEs. For example,
see research papers by [1, 2, 20, 22, 27]. In [14], the author used Daubechies
wavelet function, which is compactly supported, to obtain the approximated
solution of the PDE.

Recently, the Chebyshev wavelet function, analytic in its derivation, and
with higher number of vanishing moments has been used in approximating
PDEs. In [12], the authors applied Chebyshev wavelet method to obtain the
approximated solution of the fractional integrodifferential equation in one spa-
tial variable. In [13, 24], the authors developed the shifted second kind Cheby-
shev matrix of derivatives for solving ordinary differential equations. The
authors in [23] proved the convergence of the shifted fourth kind Chebyshev
wavelet solution of the PDE in one spatial variable. A lot of studies have been
done on attainment of wavelet solution of PDE in one coordinate variable.

However, only a few works have looked at the approximating PDEs with
solutions in two coordinate variables. In [3], the authors obtained approxi-
mated solution of the first kind of Fredholm integral equation. The kernel of
the integral equation was approximated as an inner product of two different
wavelet basis functions as

K(x, y) =
2k−1M∑
i=1

2k−1M∑
j=1

Kijψi(x)ψj(y),

where i = M(n− 1) + m + 1 and j = M(n′ − 1) + m′ + 1. Again, in [16] the
author applied inner product of two wavelet basis kernel functions for solv-
ing stochastic Volterra-Fredholm integral equation. Splitting the kernel of the
partial differential operator into wavelet kernels that match with the num-
ber of spatial variables appearing in the equation cannot be overemphasized.
Thus, this method gives the approximated solution to a PDE in the number of
dimensions equal to the number of spatial variables appearing in the equation.

In this paper, we make use of Chebyshev wavelet basis which is analytic and
compactly supported on the interval [0, 1]. We introduce a TCWM to obtain
approximated solutions of PDEs. In TCWM, each spatial variable occurring in
the PDE has its own wavelet coefficients. Thus, we split the unknown solution
of the PDE into Chebyshev wavelet functions with each spatial variable having
its own kernel, as well as wavelet coefficient, which is then used to obtain the
approximated solution of the PDE.

The Chebyshev wavelet function has compact support on [0, 1], orthogonal
with respect to the weight

w(x) = (1− x2)
−1
2 .
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The TCWM solves PDEs by converting the equation into a system of algebraic
equations from which the wavelet coefficients are obtained. The wavelet coef-
ficients together with Chebyshev wavelet are used to obtain the approximated
solution for the PDE. By and large, this method of approximation is easy and
converges faster for a few number of Chebyshev wavelet coefficients. Thus, the
number of vanishing moments is higher as compared to [3] and others.

2 Some Properties of Wavelets and Cheby-

shev wavelets

In this section, we provide some definitions and properties of the wavelets,
and Chebyshev wavelets that will enable us to derive our result in subsequent
sections.

Definition 2.1 (Wavelet) A family of functions constructed from the trans-
lation and dilation of a single function ψ(x), is called the (mother) wavelet.
The dilation parameter j and translation parameter k are varied continuously
which gives

ψj,k(x) =
1√
|j|
ψ(
x− k
j

), j, k ∈ R, j 6= 0.

The dilation parameter which measures the degree of compression or scale,
and k is the translation parameter which determines the time location of the
wavelet, see [7].

Definition 2.2 (Multiresolution Analysis) Let {φok} be an orthonor-
mal system in L2(R). The sequence of spaces {Vj, j ∈ Z}, generated by φ(x)
is called a multiresolution analysis MRA of L2(R) if it satisfies the following
properties:

1. Vj ⊂ Vj+1, j ∈ Z

2.
⋃
j∈Z

Vj = L2(R)

3. ∩j∈ZVj = {0}
4. f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1

5. f(x) ∈ Vj ⇔ f(x− k) ∈ Vj, ∀ k ∈ Z

See [26].
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Theorem 2.3 (The Riesz representation theorem) Let f(x) be a bounded
linear functional on a Hilbert space H. There exists exactly on xo ∈ H such
that

f(x) = 〈x, xo〉, ∀x ∈ H.

Moreover, we have

‖f‖ = ‖xo‖.

There exists a function φ (called scaling function or father wavelet) such that

φj,k(x) = 2j/2φ(2jx− k), k ∈ Z

constitute an orthonormal basis for corresponding subspace Vj.

See [26]
Also, we make use of the first kind of the Chebyshev wavelet ψn,m(x) on

the interval [0, 1], which is given by

ψn,m(x) =

{
2

T+1
2 T̃m(2k+1x− 2n− 1), n

2k
≤ x < n+1

2k

0, otherwise,

where

T̃ (x) =


1√
π
, m = 0√
2
π
Tm(x), m ≥ 1,

m = 0, 1, . . . ,M, n = 0, 1, . . . , 2k−1, and k is any positive integer. The Tm(x)
are Chebyshev polynomial of the first kind of degree m which are orthogonal
with respect to the weight function

w(x) =
1√

(1− x2)

and satisfy the following recursive relation

Tm+1(x) = 2xTm(x)− Tm−1(x), ∀ m = 1, 2, . . . ,

where

T0(x) = 1

and

T1(x) = x

see [23].
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2.1 A Two-dimensional Chebyshev Wavelet Method

In this section, we introduce TCWM for solving PDEs in both regular and
irregular domains. Let the unknown function w(x, y) be defined over [0, 1] ×
[0, 1], is expanded in terms of first kind Chebyshev wavelets as

w(x, y) =
∞∑
n=0

∞∑
m=0

Bn,mψn,m(x)×
∞∑
n=0

∞∑
m=0

Cn,mψn,m(y), (1)

where

Bn,m = 〈w(x, .), ψn,m(x)〉

Bn,m =
∫ 1

0

1√
(1− t)

w(x, .)ψn,m(x)dx,

and

Cn,m = 〈w(., y), ψn,m(y)〉

Cn,m =
∫ 1

0

1√
(1− t)

w(., y)ψn,m(y)dy.

The infinite series is truncated, then it is written as

w(x, y) ≈
2k−1∑
n=0

M∑
m=0

Bn,mψn,m(x)×
2k−1∑
n=0

M∑
m=0

Cn,mψn,m(y)

w(x, y) = BTψ(x)CTψ(y), (4.4)

where C, B, ψ(x) and ψ(y) are 2k(M + 1)× 1 matrices given by

B = [ B0,0, B0,1, . . . , B0,M , B1,0, B1,1, . . . , B1,M , B2k−1,0, B2k−1,1, . . . , B2k−1,M ] T (2)

C = [ C0,0, C0,1, . . . , C0,M , C1,0, C1,1, . . . , C1,M , C2k−1,0, C2k−1,1, . . . , C2k−1,M ] T (3)

ψ(x) = [ ψ0,0(x), ψ0,1(x), . . . , ψ0,M(x), ψ1,0(x), ψ1,1(x), . . . , ψ1,M(x), ψ2k−1,0(x),

ψ2k−1,1(x), . . . , ψ2k−1,M(x)] T (4)

ψ(y) = [ ψ0,0(y), ψ0,1(y), . . . , ψ0,M(y), ψ1,0(y), ψ1,1(y), . . . , ψ1,M(y), ψ2k−1,0(y),

ψ2k−1,1(y), . . . , ψ2k−1,M(y)] T (5)

2.2 The Operational Matrix of Derivatives of the TCWM

In this section, we derive a new operational matrix of the second partial deriva-
tives for approximating the partial coefficients of the PDEs by the following
theorem.
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Theorem 2.4 Let ψ(x) and ψ(y) be the first kind Chebyshev wavelets vector
defined in (4) and (5) respectively, then the first derivative of the vectors ψ(x)
and ψ(y) are given as

∂2ψ(x)

dx2
= D2ψ(x)

and

∂2ψ(y)

dy2
= D2ψ(y)

where D2 is 2k(M + 1) square operational matrix of second-order derivatives
and given by

D2 =


F 0 · · · 0
0 F · · · 0
...

...
. . .

...
0 0 · · · F

 (6)

where 0 is square matrix and (M + 1) zeros matrix, F is an (M + 1) square
matrix and its (r, s)th element is defined as follows.

F =

{
2,
0, otherwise

Corollary 2.5 Let ψ(x) be the Chebyshev wavelet vector defined in equation
(4), then the operational matrix for the nth derivative is

dnψ(x)

dxn
= Dnψ(x),

where Dn is the nth power of matrix D.

2.3 Convergence of TCWM

In this section, we show that a two-dimensional Chebyshev wavelet method
converges in L2(R) space.

Theorem 2.6 Let

w(x, y) =
2k−1∑
n=0

M∑
m=0

Bn,mψn,m(x)×
2k−1∑
n=0

M∑
m=0

Cn,mψn,m(y)

be the wavelet series solution to the PDE using Chebyshev wavelet then the
solution converges to w(x, y) in L2(R) space.
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Proof: Let L2(R) be a space of square integrable functions with an inner
product defined on it, and ψn,m(x) and ψn,m(y) defined in equations (4) and
(5) form orthonormal basis. Also, let

w(x, y) =
2k−1∑
n=0

M∑
m=0

Bn,mψn,m(x)×
2k−1∑
n=0

M∑
m=0

Cn,mψn,m(y)

be the solution of PDE , where

Bn,m = 〈w(x, .), ψn,m(x)〉
Cn,m = 〈w(., y), ψn,m(y)〉, for a fixed n.

We define

ψn,i(x) = Ψ(x)

ψn,i(y) = Ψ(y)

and

αj = 〈w(x, .),Ψ(x)〉
γi = 〈w(., y),Ψ(y)〉.

Let Sn be the partial sum of

〈αjΨ(xj), γiΨ(yi)〉.

Sn =
n∑
j=0

m∑
i=0

αjΨ(xj)γiΨ(yi)

⇒ 〈w(x, y), Sn〉 = 〈w(x, y),
n∑
j=0

m∑
i=0

αjΨ(xj)γiΨ(yi)〉

〈w(x, y), Sn〉 = 〈
n∑
j=0

m∑
i=0

αjγiΨ(xj)Ψ(yi), αjΨ(xj)γiΨ(yi)〉

〈w(x, y), Sn〉 =
n∑
j=1

m∑
i=1

αjγiαjγi

〈w(x, y), Sn〉 =
n∑
j=1

m∑
i=1

|αjγi|2

By contradiction, we let Sn and Sm be the partial sum with m,n > s.

‖Sn − Sm‖2 = ‖
n∑

j=s+1

m∑
i=s+1

αjΨ(xj)γiΨ(yi)‖2
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‖Sn − Sm‖2 = 〈
n∑

j=s+1

m∑
i=s+1

αjΨ(xj)γiΨ(yi),
n∑

j=s+1

m∑
i=s+1

αjΨ(xj)γiΨ(yi)〉

‖Sn − Sm‖2 =
n∑

j=s+1

m∑
i=s+1

αjγiαjγi〈Ψ(xj)Ψ(yi),Ψ(xj)Ψ(yi)〉

‖Sn − Sm‖2 =
n∑

j=s+1

m∑
i=s+1

|αjγi|2

As m,n→∞. From Bessel’s inequality, we see that

n∑
j=s+1

m∑
i=s+1

|αjγi|2

is convergent. Thus,

‖
n∑
j=0

m∑
i=0

αjΨ(xj)γiΨ(yi)‖2 → 0 as m, n→∞

The {Sn} converges uniformly. Thus,

lim
m,n→∞

w(x, y) = 0.

We see that:

〈L− w(x, y),Ψ(xj)Ψ(yi)〉 = 〈L,Ψ(xj)Ψ(yi)〉 − 〈w(x, y),Ψ(xj)Ψ(yi)〉
= 〈 lim

m,n→∞
Sn,Ψ(xj)Ψ(yi)〉 − αjγi〈Ψ(xj)Ψ(yi),Ψ(xj)Ψ(yi)〉

= αjγi − αjγi
= 0.

We give the structure of operational matrix of second-order derivatives
based on coefficients for each spatial variable appearing in the PDE. We choose
k = 1 and M = 3, we obtain operational matrix of derivatives with respect to
x as follows:

ψ1(x) = ψ0,0(x) =

{
2√
π
, 0 ≤ x < 1

2

0, otherwise

ψ2(x) = ψ0,1(x) =

{
2
√
2√
π

(4x− 1), 0 ≤ x < 1
2

0, otherwise

ψ3(x) = ψ0,2(x) =

{
2
√
2√
π

(
2(4x− 1)2 − 1

)
, 0 ≤ x < 1

2

0, otherwise

ψ4(x) = ψ0,3(x) =

{
2
√
2√
π

(256x3 − 192x2 + 36x2 − 1), 0 ≤ x < 1
2

0, otherwise
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ψ5(x) = ψ1,0(x) =

{
2√
π
, 1

2
≤ x < 1

0, otherwise

ψ6(x) = ψ1,1(x) =

{
2
√
2√
π

(4x− 3), 1
2
≤ x < 1

0, otherwise

ψ7(x) = ψ1,2(x) =

{
2
√
2√
π

(
2(4x− 3)2 − 1

)
, 1

2
≤ x < 1

0, otherwise

ψ8(x) = ψ1,3(x) =

{
2
√
2√
π

(256x3 − 576x2 + 420x− 99), 1
2
≤ x < 1

0, otherwise

Also, we derive 8×8 operational matrix of second derivatives. The second-
order derivatives of ψ(x), i = 1, . . . , 8 with respect to x is given below

d2ψ1(x)

dx2
= 0

d2ψ2(x)

dx2
= 0

d2ψ3(x)

dx2
=

128
√

2√
π

d2ψ3(x)

dx2
= 64

√
2ψ1(x)

d2ψ4(x)

dx2
=

2
√

2√
π

(1536x− 384)

d2ψ4(x)

dx2
= 384ψ2(x)

d2ψ5(x)

dx2
=

d2ψ6(x)

dx2
= 0

d2ψ7(x)

dx2
= 64

√
2ψ5(x)

d2ψ8(x)

dx2
= 384ψ6(x)

and the matrix

D =

[
F 0
0 F

]
where,

F =


0 0 0 0
0 0 0 0

64
√

2 0 0 0
0 384 0 0

 (8)
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On the other hand, the operational matrix of derivatives with respect to y is
similar except that we replace x for y into equation (8)

2.4 The Product Operational Matrix POM of the TCWM

In this section, we derive the product of two Chebyshev wavelet function vec-
tors to obtain the approximated solutions of the PDEs

ψ(x)ψT (x)C ≈ C̃ψ(x) (9)

We obtain the matrix ψ(x)ψT (x) = 2√
π
×

ψ0,0 ψ0,1 ψ0,2 ψ0,3 0 0 0 0
ψ0,1 ψ0,0 + 1√

2
ψ0,2

1√
2
(ψ0,1 + ψ0,3)

1√
2
ψ0,2 0 0 0 0

ψ0,2
1√
2
(ψ0,1 + ψ0,3) ψ0,0

1√
2
ψ0,1 0 0 0 0

ψ0,3
1√
2
ψ0,2

1√
2
ψ0,1 ψ0,0 0 0 0 0

0 0 0 0 ψ1,0 ψ1,1 ψ1,2 ψ1,3

0 0 0 0 ψ1,1 ψ1,0 + 1√
2
ψ1,2

1√
2
(ψ1,1 + ψ1,3)

1√
2
ψ1,2

0 0 0 0 ψ1,2
1√
2
(ψ1,1 + ψ1,3) ψ1,0

1√
2
ψ1,1

0 0 0 0 ψ1,3
1√
2
ψ1,2

1√
2
ψ1,1 ψ1,0


by the set of rules given below as

ψn,mψl,k(x) = 0, n 6= l

ψn,0ψn,k(x) =
2√
π
ψn,k, ∀k = 0, 1, 2

ψn,mψn,k(x) =
2√
π
ψn,0 +

√
2√
π
ψn,m+k, for m = k 6= 0

ψn,mψn,k(x) =

√
2√
π

(
ψn,|m−k| + ψn,m+k

)
, for m 6= k, m, k 6= 0, for m+ k ≤ 3 and n = 0, 1

ψn,mψn,k(x) =

√
2√
π
ψn,|m−k|, for m+ k > 3

Then the 8× 8 matrix C̃ in equation (4.10) is written as

C̃ =

[
c0 0
0 c1

]
where, ci, i = 0, 1 are 4× 4 matrix given below.

ci =
2√
π


ci,0 ci,1 ci,2 ci,3
ci,1 ci,0 + 1√

2
ci,2

1√
2

(ci,1 + ci,3)
1√
2
ci,2

ci,2
1√
2

(ci,1 + ci,3) ci,0
1√
2
ci,1

ci,3
1√
2
ci,2

1√
2
ci,1

1√
2
ci,0
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We increase accuracy of the approximated solutions to PDEs by setting M = 4
and k = 2. This reduces equation (8) to 20× 20 operational matrix of second-
order derivatives D2

F =


0 0 0 0 0
0 0 0 0 0

256
√

2 0 0 0 0
0 1536 0 0 0

2048
√

2 0 3072 0 0


We obtain similar results for ψ(y)ψT (y).

3 Conclusion

In TCWM, each spatial variable of the PDE has its own wavelet coefficient,
as well as Chebyshev kernel for approximating PDE which produces solution
which matches with the spatial variables appearing in the equation. This
approach facilitates easy and fast computation of the solution of the PDE
on the grounds that, it makes use of a few number of vanishing moments.
In addition, we observed that the approximated solution of the equation is
fast and has higher number of vanishing moments as compared to [3] and
others. Again, the TCWM solves the PDEs in regular, as well as irregular
domains. Unlike the local methods such as finite difference method, finite
element method, collocation method, which cannot give information on the
boundary of the domain to the approximated solution of the PDE, our method
provides the boundary information in approximating the unknown solution of
the PDE. In addition, the TCWM gives information on both frequency and
time domains.
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