68 research outputs found

    Sojourn time approximations for a discriminatory-processor-sharing queue

    Get PDF
    International audienceWe study a multi-class time-sharing discipline with relative priorities known as Discriminatory Processor Sharing (DPS), which provides a natural framework to model service differentiation in systems. The analysis of DPS is extremely challenging and analytical results are scarce. We develop closed-form approximations for the mean conditional (on the service requirement) and unconditional sojourn times. The main benefits of the approximations lie in its simplicity, the fact that it applies for general service requirements with finite second moments, and that it provides insights into the dependency of the performance on the system parameters. We show that the approximation for the mean conditional and unconditional sojourn time of a customer is decreasing as its relative priority increases. We also show that the approximation is exact in various scenarios, and that it is uniformly bounded in the second moments of the service requirements. Finally we numerically illustrate that the approximation for exponential, hyperexponential and Pareto service requirements is accurate across a broad range of parameters

    Decomposing the queue length distribution of processor-sharing models into queue lengths of permanent customer queues

    Get PDF
    We obtain a decomposition result for the steady state queue length distribution in egalitarian processor-sharing (PS) models. In particular, for an egalitarian PS queue with KK customer classes, we show that the marginal queue length distribution for class kk factorizes over the number of other customer types. The factorizing coefficients equal the queue length probabilities of a PS queue for type kk in isolation, in which the customers of the other types reside \textit{ permanently} in the system. Similarly, the (conditional) mean sojourn time for class kk can be obtained by conditioning on the number of permanent customers of the other types. The decomposition result implies linear relations between the marginal queue length probabilities, which also hold for other PS models such as the egalitarian processor-sharing models with state-dependent system capacity that only depends on the total number of customers in the system. Based on the exact decomposition result for egalitarian PS queues, we propose a similar decomposition for discriminatory processor-sharing (DPS) models, and numerically show that the approximation is accurate for moderate differences in service weights. \u

    Interpolation approximations for the steady-state distribution in multi-class resource-sharing systems

    Get PDF
    International audienceWe consider a single-server multi-class queue that implements relative priorities among customers of the various classes. The discipline might serve one customer at a time in a non-preemptive way, or serve all customers simultaneously. The analysis of the steady-state distribution of the queue-length and the waiting time in such systems is complex and closed-form results are available only in particular cases. We therefore set out to develop approximations for the steady-state distribution of these performance metrics. We first analyze the performance in light traffic. Using known results in the heavy-traffic regime, we then show how to develop an interpolation-based approximation that is valid for any load in the system. An advantage of the approach taken is that it is not model dependent and hence could potentially be applied to other complex queueing models. We numerically assess the accuracy of the interpolation approximation through the first and second moments

    Heavy-traffic limits for Discriminatory Processor Sharing models with joint batch arrivals

    Get PDF
    We study the performance of Discriminatory Processor Sharing (DPS) systems, with exponential service times and in which batches of customers of different types may arrive simultaneously according to a Poisson process. We show that the stationary joint queue-length distribution exhibits state-space collapse in heavy traffic: as the load ρ tends to 1, the scaled joint queue-length vector (1−ρ)Q converges in distribution to the product of a determin

    Sojourn times in non-homogeneous QBD processes with processor sharing

    Get PDF
    We study sojourn times of customers in a processor sharing model with a service rate that varies over time, depending on the number of customers and on the state of a random environment. An explicit expression is derived for the Laplace-Stieltjes transform of the sojourn time conditional on the state upon arrival and the amount of work brought into the system. Particular attention is given to the conditional mean sojourn time of a customer as a function of his required amount of work, and we establish the existence of an asymptote as the amount of work tends to infinity. The method of random time change is then extended to include the possibility of a varying service rate. By means of this method, we explain the well-established proportionality between the conditional mean sojourn time and required amount of work in processor sharing queues without random environment. Based on numerical experiments, we propose an approximation for the conditional mean sojourn time. Although first presented for exponentially distributed service requirements, the analysis is shown to extend to phase-type services. The service discipline of discriminatory processor sharing is also shown to fall within the framework

    Sojourn time asymptotics in processor sharing queues

    Get PDF
    This paper addresses the sojourn time asymptotics for a GI/GI/‱ queue operating under the Processor Sharing (PS) discipline with stochastically varying service rate. Our focus is on the logarithmic estimates of the tail of sojourn-time distribution, under the assumption that the jobsize distribution has a light tail. Whereas upper bounds on the decay rate can be derived under fairly general conditions, the establishment of the corresponding lower bounds requires that the service process satisfies a samplepath large-deviation principle. We show that the class of allowed service processes includes the case where the service rate is modulated by a Markov process. Finally, we extend our results to a similar system operation under the Discriminatory Processor Sharing (DPS) discipline. Our analysis relies predominantly on large-deviations techniques
    • 

    corecore