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ABSTRACT
This paper addresses the sojourn time asymptotics for a GI/GI/• queue operating under the
Processor Sharing (PS) discipline with stochastically varying service rate. Our focus is on the
logarithmic estimates of the tail of sojourn-time distribution, under the assumption that the job-
size distribution has a light tail. Whereas upper bounds on the decay rate can be derived under
fairly general conditions, the establishment of the corresponding lower bounds requires that the
service process satisfies a samplepath large-deviation principle. We show that the class of
allowed service processes includes the case where the service rate is modulated by a Markov
process. Finally, we extend our results to a similar system operation under the Discriminatory
Processor Sharing (DPS) discipline. Our analysis relies predominantly on large-deviations
techniques.
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Abstract
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der the Processor Sharing (PS) discipline with stochastically varying service rate. Our
focus is on the logarithmic estimates of the tail of sojourn-time distribution, under the
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1 Introduction

Based on the traffic characteristics and Quality-of-Service requirements, traffic flows in
communication networks can be roughly divided into two categories: streaming flows
(voice, video, etc.) and elastic flows (data files, Web pages, etc.), see e.g. [20]. Streaming
flows require strict delay guarantees for the duration of its connection time, whereas
elastic traffic is less demanding. One way of handling both types of traffic is to meet
these Quality-of-Service requirements by prioritizing streaming traffic. The bandwidth
remaining from the transmission of streaming traffic is made available to elastic traffic.
It is widely agreed upon that the protocols for handling elastic traffic are such that each
elastic flow obtains roughly an equal share.
Motivated by the above application, one could consider the following model. Let elastic
flows (we use the word jobs throughout) arrive at a queueing resource, according to a
renewal process, and let these jobs be independent samples from some common distri-
bution. The jobs are served in a Processor Sharing (PS) manner, but the capacity available
(to be interpreted as the service rate left over by the streaming flows) fluctuates in time.
The streaming flows ‘do not see’ the elastic flows, so their performance can be evaluated
by using traditional models. The performance experienced by the elastic flows, however,
can be regarded as a GI/GI/· queue with a service rate that varies in time (according to
some stochastic process), operating under PS, and is more involved. In this paper we
study the asymptotic properties of the sojourn-time distribution of the elastic flows.

It is worth noting that in the case of Processor-Sharing queues with constant service ca-
pacity, the sojourn time has been studied in many different settings, and this has already
proven to be a rather challenging task. The (conditional) sojourn time distribution in
the M/G/1-PS queue was analyzed in terms of Laplace-Stieltjes transforms (LST) by
e.g. Yashkov [23], Schassberger [21], Ott [18], Núñez-Queija [16], and Zwart & Boxma
[24]. Unfortunately, analytic inversion of these LST s has appeared to be hard, and only
partial results are available.
Another classical subject of research is the derivation of the asymptotic behavior of sojourn
times in PS-queues. Notably, one of the major insights is that there is a fundamental
difference between sojourn-time asymptotics under heavy-tailed and light-tailed jobs. A
so-called reduced-load approximation for queues with heavy-tailed distributed job sizes
was proven in different settings by, e.g., Zwart and Boxma [24], Núñez-Queija [16] and
Jelenković and Momčilović [13]; importantly, long sojourn times are essentially due to
the tagged job itself being large. For PS queues with a light-tailed job-size distribution
long sojourn times are predominantly caused by the jobs that arrive during the sojourn
time of the tagged job. For the light-tailed case, exact asymptotics are known in a few
special cases, see [4], [10], [11]; for a survey, see [6].

Recent work by Mandjes and Zwart [15] addressed the logarithmic asymptotics of the
sojourn time in the GI/GI/1-PS queue, under technical assumptions which guarantee
that the tail distribution of the service time is not too light and not too heavy. More
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precisely, they proved under specific conditions that the sojourn time V obeys

lim
x→∞

1
x

log P(V > x) = inf
θ≥0

(α(θ)− θ), (1.1)

where α(s) is the so-called (asymptotic) cumulant function of total amount of work fed
to the queue, i.e.,

α(θ) = lim
x→∞

1
x

log E[eθA(0,x)],

with A(0, x) the amount of traffic offered to the system in (0, x]. The goal of the present
paper is to generalize the result (1.1) of [15] to a setting in which the available service
capacity varies according to some stochastic process. Again the job sizes should be from
a light-tailed distribution (but not too light). We extend (1.1) by constructing asymptotic
lower and upper bounds, which coincide as x becomes large. The upper bounds can
be established under rather general conditions, whereas the lower bound requires that
the service process obeys a sample-path large-deviation principle. More specifically, the
main result of our work is that we can express the exponential decay rate of P(V > x)
through

lim
x→∞

1
x

log P(V > x) = inf
θ≥0

(α(θ) + c(−θ)), (1.2)

where α(·) and c(·) are the cumulative functions of the arrival and service processes,
respectively. The exact statement of the result is given in Theorem 3.4.
As a special case, we study service processes that have a so-called Markov-fluid structure.
Under the extra assumption of the interarrival times of the jobs being exponential (rather
than renewal), we derive for these service processes an explicit upper bound on the tail
probability, rather than just an upper bound on the exponential decay rate.
Our proofs predominantly rely on large-deviation tools, such as the classical Chernoff
bound, as well as the application of sample-path large deviations principles. An impor-
tant role, however, is also played by the insight that, for PS systems with load larger than
1, the queue length increases roughly at a linear rate. As a by-product, the proofs also
show that the sojourn-time asymptotics resemble busy-period asymptotics (in the sense
that their exponential decay rates coincide). Although our results are an extension of the
results in [15], we have succeeded to simplify the proofs; in particular, we have elimi-
nated the need to use detailed fluid-limit results for overloaded PS queues, as used in
[15].
Finally, our methods allow us to obtain an extension of the result to the system operating
under the Discriminatory Processor Sharing (DPS) discipline. As for the single-class case,
we allow the service process to be random, but note that this result is also also new for
the standard DPS queue with a fixed service rate. More specifically, we show that the
decay rate of the sojourn-time is weight-independent (and hence the same for jobs of any
class).

The literature on the analysis of the sojourn time asymptotics in PS queues with time-
varying service is quite sparse. Assuming the job-size distribution being heavy-tailed,
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different extensions of the reduced-load approximations (as derived for the situation with
constant service rate) were found. Núñez-Queija [16] studied the M/G/1-PS system in
which the service rate is an On-Off process with exponential On-periods. Later, the so-
journ time asymptotics for a general DPS queue with time-varying service rate were ana-
lyzed in [7]; the authors considered the service rate process which does not fluctuate too
wildly compared to the size of a job. Other versions of the reduced-load approximation
for queues with varying service rate are given in e.g. [1], [3], and [5].

The organization of this paper is as follows: The model is described in Section 2. In
Section 3 we present our main results on the logarithmic asymptotics for the queue with
general service rate. In addition, we consider the special case in which the service rate
varies according to a Markov-fluid process. The proofs can be found in Section 4. In
Section 5 we generalize the result to the DPS queue. Concluding remarks can be found
in Section 6.

2 Model description and preliminaries

We now specify the GI/GI/· queue operating under the PS discipline, with varying ser-
vice rate. Jobs arrive according to a renewal process, and the job sizes constitute an
i.i.d. sequence; our focus is on the sojourn time, say V , of a ‘tagged’ job (with job size
B0), that we assume to arrive at time 0. The service is according to the PS discipline; all
jobs present in the system are served simultaneously and receive an equal share of the
available capacity. A complication, however, is that we allow the available capacity to
fluctuate in time. The main goal of the paper is to describe the asymptotic behavior of
P(V > x) as x →∞.

In this paper we use the following notation. Let An, n ∈ N, be the time between the
(n − 1)-st and n-th arrival after time zero. To emphasize that an arrival occurred in the
past, we also use the notation A−n, n ∈ N, for the time between the (n − 1)-st and n-th
arrival before time zero. Furthermore, let Bn, n ∈ Z, be the request size of the nth job;
recall that B0 corresponds to the tagged job. We assume that (An)n and (Bn)n are mutu-
ally independent sequences, each consisting of i.i.d. random variables. We introduce the
random walks SA

n = A1 + ... + An and SB
n = B1 + ... + Bn, and similarly, with respect to

events in the past, SA
−n = A−n + ... + A−1, SB

−n = B−n + ... + B−1. We denote the random
variable corresponding to a generic interarrival time (service time) by A (B, respectively).
We set

N(t) := max{n ∈ N : SA
n ≤ t}

representing the number of arrivals in the time interval (0, t]. Denote by A(0, t), t > 0, the
total amount of work fed into the queue in the time interval (0, t], i.e.,

A(0, t) =
N(t)∑
i=1

Bi.
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Analogously, C(t1, t2) is defined as the total service provided in the time interval (t1, t2]
with t2 > t1,

C(t1, t2) =
∫ t2

t1

R(u)du,

where R(u) denotes the (random, non-negative) service rate available at time u. Later
we also consider the system in the past, i.e., before time zero; then we use the notation
A(−t, 0) for the total amount of work feed into the system on [−t, 0). Note that we do not
include the tagged arrival which occurred at time 0 into neither A(0, t) nor A(−t, 0). The
cumulative arrival and service processes are assumed to be independent of each other.
Throughout the paper we assume the cumulative service process to satisfy the following
conditions:

1. the cumulative service process has stationary increments, i.e., the distribution of
C(t1 + δ, t2 + δ) does not depend on δ;

2. the service rate R(·) is bounded from above, i.e. there exists rmax such that R(u) ≤ rmax

for all u;

3. the asymptotic cumulant function of C(0, x) exists:

c(s) := lim
x→∞

1
x

log E[esC(0,x)].

Furthermore, the system is assumed to be stable, i.e. , the long-run average work offered
to the system, say α, is smaller than the average offered service, say c, where

α := lim
t→∞

EA(0, t)
t

, c := lim
t→∞

EC(0, t)
t

.

Define the moment generating functions (mgf s) ΦB(s) := E[esB] and ΦA(s) := E[esA].
Since both ΦA(·) and ΦB(·) are strictly increasing and strictly convex functions, the in-
verse functions Φ←A (·) and Φ←B (·) are well defined. We assume that either A or B does not
have a deterministic distribution. An important result is that the cumulant function of
the amount of work fed to the system can be expressed explicitly in terms of the moment
generating functions of A and B.

Lemma 2.1 For s ≥ 0, the asymptotic cumulant function α(s) of A(0, x), x > 0, is given by

α(s) := lim
x→∞

1
x

log E[esA(0,x)] = −Φ←A

(
1

ΦB(s)

)
. (2.3)

If either A or B is non-deterministic, then α(·) is strictly convex.

The result of Lemma 2.1, as stated by Whitt [22], was proved in [15].

In the sequel, we separately consider the special case in which the service process is
given by a Markov-fluid process. Such a process can be described as follows. Consider
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a continuous-time Markov chain on a finite state space {1, 2, ..., d}. The transition rate
matrix is denoted by Q := (qij)i,j=1,2,...,d, where qij ≥ 0 (i 6= j) and qii = −

∑
j 6=i qij .

We assume that the Markov chain is irreducible, and π denotes its unique steady-state
distribution. When the Markov chain is in state i, the server provides service at constant
rate ri ≥ 0. Let R be the diagonal matrix with coefficients ri on the diagonal. Denote the
mean rate by c :=

∑d
i=1 riπi. We denote this class of processes by Mf(Q,R); if the service

process is of this type, we write C(·, ·) ∈ Mf(Q,R). Results from Kesidis et al. [14] yield
the following standard properties.

Property 2.1 Let C(·, ·) ∈ Mf(Q,R). Then the following statements hold:

1. The mgf of the service provided to the jobs in an interval of length x is given by

EesC(0,x) = πe(Q+sR)x1,

where 1 the all-one vector of dimension d.

Denote by c1(s), ..., cd(s) the eigenvalues of matrix Q + sR. Hence, the mgf can be repre-
sented as, for appropriate numbers m1, . . . ,md,

EesC(0,x) =
d∑

i=1

mieci(s)x.

2. For all real s there exists a limiting mgf:

lim
x→∞

1
x

log EesC(0,x) = c(s).

Moreover, c(s) = max(c1(s), ..., cd(s)), i.e., c(s) is the largest real eigenvalue of Q + sR;
the corresponding eigenvector is componentwise positive.

3. There exists a finite K such that

EesC(0,x) ≤ Kec(s)x.

For instance, K =
∑d

i=1 mi.

3 Main results

In this section we present the main results of the paper. These characterize the logarithmic
asymptotic behavior of the tail probability P(V > x) as x → ∞, under the assumption
that the job size has a light-tailed distribution.
To put things in perspective, we first recall the result for asymptotic behavior of the so-
journ time in a PS queue with constant (rather than fluctuating) service capacity. Mandjes
& Zwart [15] performed a large-deviation analysis of the steady-state sojourn time distri-
bution in the GI/GI/1 PS queue, and derived the following logarithmic estimates under
the assumption that the job-size distribution has a light tail.
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Theorem 3.1 See [15]. Consider the GI/GI/1 PS queue (with constant service rate of, say, 1). If
there exists a solution ν∗ > 0 to α′(s) = 1, and for each constant c > 0

lim
x→∞

1
x

log P(B > c log x) = 0,

then

lim
x→∞

1
x

log P(V > x) = inf
s≥0

(α(s)− s) = α(ν∗)− ν∗. (3.1)

The main goal of the present paper is to derive a generalization of the above result for
a queue with varying service rate. We will show that under similar assumptions on the
arrival and job-size processes, and in addition certain assumptions on the service process,
we can prove the following extension of (3.1):

lim
x→∞

1
x

log P(V > x) = inf
s≥0

(α(s) + c(−s)). (3.2)

Despite the simple form, the proof of the above result is quite technical. The proof con-
sists of two parts, derivation of the upper bound (i.e., (3.2) with “=“ replaced by “≤“) and
derivation of the lower bound (i.e., (3.2) with “=“ replaced by “≥“) which asymptotically
coincide.
The proof of the upper bound is rather elementary, and is essentially based on classical
Chernoff-bound arguments, and applies without imposing additional conditions on the
service process. The proof of the lower bound, however, is substantially harder. There
we first truncate the job-size distribution (and then let the truncation threshold increase
to ∞), so that we enforce linearly bounded queue length growth. Thus, the problem
is reduced to finding the corresponding busy-period asymptotics. The establishment of
these busy-period asymptotics requires an additional assumption on the service process:
we require the service process to obeys a so-called sample-path large-deviation principle
(more precisely: only the large deviations lower bound is required here).
In the following subsections we will present results for the system with general service
process, but also (more explicit) results for the case the service process is Markov fluid.
The proofs are deferred to Section 4.

3.1 Upper bound

We first present the upper bound for a GI/GI/· system with a generally distributed ser-
vice process. We need to make the following assumption.

Assumption 3.1 There exists ν > 0 such that α(ν) + c(−ν) < 0.

This assumption ensures that service times are light-tailed and that the system is stable.
To be more precise, what the assumptions states is that in some neighborhood to the
right of the origin the sum stays finite. This implies (due to Lemma 2.1) that there exists a
neighborhood of the origin in which the mgf ΦB(·) is well defined (as an aside, note that
this implies that B is light tailed). Since the function g(s) = α(s)+c(−s) is strictly convex

7



and equals 0 at s = 0, the assumption implies that g(·) has a negative derivative at s = 0,

α− c < 0, and hence, the system is stable.
Due to strict convexity of the cumulant function, we can define ω∗ > 0 such that

ω∗ = arg inf
s≥0

(α(s) + c(−s)).

Since α(s) + c(−s) equals zero at s = 0 and has a strictly negative derivative at s = 0, we
also have α(ω∗) + c(−ω∗) < 0.

The next theorem gives the logarithmic upper bound for P(V > x) in terms of the cumu-
lant functions.

Theorem 3.2 If Assumption 3.1 is valid, then

lim sup
x→∞

1
x

log P(V > x) ≤ α(ω∗) + c(−ω∗). (3.3)

Besides the general upper bound on the exponential decay rate, as presented in Theorem
3.2, we have a tighter result (namely bounds on the probability P(V > x) itself, uniformly
in x) for an important special case. This result requires an additional assumption; it
implies Assumption 3.1 and existence of ω∗.

Assumption 3.2 There exists a solution ν∗ > 0 to α(ν∗) + c(−ν∗) = 0.

In the special case we consider, we specialize to Poisson interarrival times (rather than
renewal arrivals; the arrival process is thus a compound Poisson process) and Markov-
fluid service. We remark that the constant K, as used in Theorem 3.3, will be explicitly
given in the proof of the result.

Theorem 3.3 Suppose the arrival process is given by a compound Poisson process (with arrival
rate λ) and service process is in Mf(Q,R). Then, under Assumption 3.2, uniformly in x ≥ 0,

P(V > x) ≤ Ke(a(ω∗)+c(−ω∗))x, (3.4)

and α(ω∗) = λ(ΦB(ω∗)− 1).

3.2 Lower bound

Let us now turn to stating the results for the lower bound on P(V > x). Here we need
the following assumption.

Assumption 3.3 For each constant c > 0, we have

lim
x→∞

1
x

log P(B > c log x) = 0.
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It is readily checked that this assumption is satisfied by most distributions of interest,
such as phase-type, Gamma, Weibull distributions, etc. However, it is noted that it is
violated by distributions with extremely light tails. For instance, the assumption does
not hold for service times for which P(B > x) is of the form exp(−ex), and by job size
distributions with bounded support (for instance the deterministic distribution).

The derivation of the lower bound is considerably more involved than the corresponding
upper bound. Importantly, it requires extra structure of the process C(·, ·), namely that
the process C(·, ·) must satisfy the lower bound of a sample-path large-deviation principle.

Definition 3.1 Denote by AC the space of all absolutely continuous functions (see e.g. [9]), i.e.,

AC =

{
f ∈ C([0, 1]) :

if
∑k

l=1 |tl − sl| → 0, sl ≤ tl ≤ sl+1 < tl+1,

then
∑k

l=1 |f(tl)− f(sl)| → 0

}
.

Define the space Ω := {f ∈ [0, 1] → R, f ∈ AC, f(0) = 0}.
Let the process Zx(·) be given through

Zx(u) :=
1
x

∫ ux

0
c(s)ds =

1
x

C(0, ux).

The process Zx(·) obeys a sample-path large-deviation principle (sp-LDP) for all S ⊂ Ω:

lim sup
x→∞

1
x

log P(Zx(·) ∈ S) ≤ − inf
f∈S

∫ 1

0
Λ(f ′(t))dt, (3.5)

lim inf
x→∞

1
x

log P(Zx(·) ∈ S) ≥ − inf
f∈So

∫ 1

0
Λ(f ′(t))dt, (3.6)

where Λ(t) := sups∈R(st − c(s)), S is the closure and So is the interior of set S. We say that
(3.5) is the upper bound of the sp-LDP, and (3.6) is the lower bound of the sp-LDP.

Assumption 3.4 The process Zx(·), defined through Zx(u) := C(0, ux)/x, satisfies the lower
bound of the sp-LDP (3.6).

The next theorem presents the main result of the paper; its upper bound was already
stated in Theorem 3.2.

Theorem 3.4 If Assumptions 3.1, 3.3 and 3.4 are valid, then

lim
x→∞

1
x

log P(V > x) = α(ω∗) + c(−ω∗).

Although, to our best knowledge, no sp-LDP was established for Markov fluid, we were
still able to prove the corresponding logarithmic lower bound.

Theorem 3.5 If C(·, ·) ∈ Mf(Q,R), and Assumptions 3.1 and 3.3 are valid, then

lim inf
x→∞

1
x

log P(V > x) ≥ a(ω∗) + c(−ω∗). (3.7)
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Thus, combining the results in Theorems 3.3 and 3.5, we conclude that if the service pro-
cess is of Markov fluid type, the logarithmic asymptote (3.2) holds under Assumptions
3.1 and 3.3.

Remark 3.1 Throughout the paper we assumed that the tagged job (with service time
B0) and jobs arriving into the system after time 0 (with generic service time distribution
B) have the same job-size distribution. However, this assumption is not necessary as will
become clear from our proofs. If the distributions of B0 and B are different, the result still
hold if just B0 satisfies Assumption 3.3; it is not necessary that B satisfies this assumption.

Remark 3.2 An interesting implication of our results is the following. Denoting by Pr the
residual busy period in the corresponding GI/GI/· queue (with the service rate varying
as specified before), we have

P(V > x) ≤ P(Pr > x) ≤ P(W + B0 + A(0, x)− C(0, x) > 0).

Thus, from the proof of the lower bound in the next section, it follows that the decay
rates of Pr and V coincide under Assumptions 3.1, 3.3 and 3.4. Similar methods as in
the present paper can be applied to show that the decay rate of the busy period P equals
the decay rate of the residual busy period Pr. Consequently, under Assumptions 3.1, 3.3
and 3.4,

log P(P > x) ∼ (α(ω∗) + c(−ω∗))x.

The most likely way a large busy period occurs is by changing the drift in such a way
the system becomes critical. This means that the average arrival rate is increased, and
the service rate decreased in such a way that they become equal. In our setting, the
arrival rate is increased from α′(0) to α′(ω∗), and the service rate is decreased from c′(0)
to c′(−ω∗); the definition of ω∗ ensures that both values are equal.

Remark 3.3 Our results allow us to compare the performance of the systems with vary-
ing service rate and with constant rate (where the mean service rate is the same in both
systems). It is a quite general phenomenon that performance nearly always improves if
a random process is replaced by a deterministic process with the same mean.
Therefore, we now consider the GI/GI/1 PS system with the fixed service rate c (re-
call that this is the mean service rate of the system considered in this paper). Applying
Jensen’s inequality we obtain that

c(s) = lim
x→∞

1
x

log E[esC(0,x)] ≥ lim
x→∞

1
x

log eE[sC(0,x)] = lim
x→∞

1
x
E[sC(0, x)] = sc.

Hence,

lim
x→∞

1
x

log P(V > x) = inf
s≥0

(α(s) + c(−s)) ≥ inf
s≥0

(α(s)− sc),

where the latter is the exponential decay rate in the system with the constant service rate
c. If the function c(−s) is strictly convex, it can be shown that the above inequality is
strict. Thus, we conclude that, informally speaking, the random service rate increases the
probability of a long sojourn time.
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4 Proofs

We now provide the proofs of the results presented in the previous section.

4.1 Upper bound

We start by proving the upper bound.

Proof of Theorem 3.2
The event {V > x} implies that the queue does not empty before time x. Evidently, as
we assume the system to be in steady state (with respect to job arrivals), the workload
present at time 0, say W , can be identified with the FIFO waiting time. In other words,
W has the representation W = supt≥0(A(−t, 0)− C(−t, 0)). Hence, we can write

P(V > x) ≤ P(W + B0 + A(0, x)− C(0, x) > 0)

= P
(

sup
t>0

(A(−t, 0)− C(−t, 0)) + B0 + A(0, x)− C(0, x) > 0
)

. (4.1)

Now note that the process A(0, x) jumps at the arrival epochs and is constant in between,
whereas we assumed the process C(0, x) to be non-decreasing. Hence, the difference
A(0, x)−C(0, x) increases with positive jumps at arrival epochs and is non-increasing in
between. Therefore, the supremum can only be attained at arrival epochs. This yields
that expression (4.1) is equivalent to

= P
(

sup
n∈N

(
A(−SA

−n, 0)− C(−SA
−n, 0)

)
+ B0 + A(0, x)− C(0, x) > 0

)
.

Remark that the quantities A(−SA
−n, 0) and A(0, x) are independent. Now applying the

standard union bound, this expression is further bounded by
∞∑

n=1

P
(
A(−SA

−n, 0)− C(−SA
−n, 0) + B0 + A(0, x)− C(0, x) > 0

)
=

∞∑
n=1

P
(
A(−SA

−n, 0) + B0 + A(0, x)− C(−SA
−n, x) > 0

)
.

where we recall that −SA
−n denotes the time of the nth arrival in the past. Now we can

apply the Chernoff bound to (each term in) the last expression, so that we arrive at

P(V > x) ≤
∞∑

n=1

E[eω∗(A(−SA
−n,0)+B0+A(0,x)−C(−SA

−n,x))]

=
∞∑

n=1

∫ ∞
0

E[eω∗(A(−SA
−n,0)+B0+A(0,x)−C(SA

−n,x))|SA
−n = y]dP(SA

−n ≤ y)

=
∞∑

n=1

∫ ∞
0

(E[eω∗B])n+1E[eω∗A(0,x)]E[e−ω∗C(−y,x)]dP(SA
−n ≤ y),

where in the last equality A(−SA
−n, 0) is interpreted as the sum of n job sizes. Now apply-

ing the definition of the cumulant function c(·), we obtain that for any ε > 0 for x large

11



enough the expression in the previous display is bounded from above by

∞∑
n=1

∫ ∞
0

(E[eω∗B])n+1e(α(ω∗)+ε)xe(c(−ω∗)+ε)(x+y)dP(SA
−n ≤ y).

Evaluating the integral and using the definition of SA
−n, we see that the last expression

equals
∞∑

n=1

(
E[e(c(−ω∗)+ε)A]

)n
e(α(ω∗)+c(−ω∗)+2ε)x(E[eω∗B])n+1

= E[eω∗B]e(α(ω∗)+c(−ω∗)+2ε)x
∞∑

n=1

(ΦB(ω∗)ΦA(c(−ω∗ + ε)))n .

Now observe that the summation over n does not depend on x; we therefore now verify
whether this sum is finite. Note that (apply Lemma 2.1)

α(ω∗) + c(−ω∗) = −Φ←A

(
1

ΦB(ω∗)

)
+ c(−ω∗) < 0.

Hence, due to continuity of the mgf s, we see that for ε small enough the product under
the sum is less than one, and hence the geometric series is converging. Furthermore,
E[eω∗B] < ∞. Thus, we conclude that P(V > x) can be bounded from above by

P(V > x) ≤ Me(α(ω∗)+c(−ω∗)+2ε)x,

where M < ∞ is some positive constant. Taking logarithms, dividing by x, letting x →∞
and ε ↓ 0, we obtain

lim sup
x→∞

1
x

log P(V > x) ≤ α(ω∗) + c(−ω∗).

This proves the upper bound. 2

We now turn to the proof of Theorem 3.3. Let us first state the basic result for the work-
load distribution which is useful for our proof. Denote by X(t) the state of the underlying
Markov chain at time t; X(t) ∈ {1, 2, ..., d}.

Proposition 4.1 If C(·, ·) ∈ Mf(Q,R) and Assumption 3.2 is valid, then there exists a constant
K > 0 such that for any initial state of service process X(0) = i, i ∈ {1, 2, ..., d}, uniformly in x

holds

P
(

sup
t≥0

A(−t, 0)− C(−t, 0) > x|X(0) = i

)
≤ Ke−ν∗x. (4.2)

Proof of Proposition 4.1
We present a proof that is based on a change-of-measure argument; there are several
alternative approaches possible. This change of measure is such that the event {W > x}
becomes more likely than under old measure. We introduce a process

T (x) := inf{t : A(−t, 0)− C(−t, 0) > x}.

12



Then we can write

P(W > x) = P(T (x) < ∞).

Let us first twist the interarrival-time and job-size distributions. Define a new probability
measure Pω for ω > 0 such that

Pω(A ∈ dx) = P(A ∈ dx)e−α(ω)x/ΦA(−α(ω)),

Pω(B ∈ dx) = P(B ∈ dx)eωx/ΦB(ω).

In order to construct the change of measure for the service process let us first define the
largest real eigenvalue of the matrix Q + ωR, which coincides with c(ω), where the cor-
responding right eigenvector (v1, ...vd)T is componentwise positive, see Property 2.1(2).
Note that the eigenvector also depends on ω, but for compactness we suppress this. With
the new probability measure we associate the modified Markov chain with transition
matrix Q∗ defined as (for i 6= j)

q∗ij = qijvj/vi,

q∗ii = qii + riω + c(−ω).

It is not hard to verify that these rates indeed constitute a generator matrix (use that c(ω)
is eigenvalue of Q + ωR).
We have the following fundamental identity

P(W > x) = Eω[LT (x)I{T (x) < ∞}], (4.3)

see e.g. Theorem XIII.3.2 in [2]; here Eω denotes expectation under new measure Pω, and
L ≡ LT (x) is the likelihood ratio process stopped at T (x), which we specify below.
In this proof we take the parameter ω (the ‘exponential twist’) to be equal to ν∗. Suppose
that in [−T (x), 0) there were n arrivals; denote ai, bi, i = 1, ..., n, the interarrival times
and corresponding job sizes. Also suppose that there were m transitions of the Markov
chain governing the service process; let, in time interval [−T (x), 0), the Markov chain
X(·) visit states i0, i1, ..., im. Define by tij , j = 1, ...,m, the time service process spends in
state ij . Then, considering the likelihood ratio LT (x) stopped at time T (x), we can write

LT (x) =
(

vi0

vim

)
×
(
eν∗

Pm
j=1 rij

tij +c(−ν∗)
Pm

j=1 tij
)
×(

eα(ν∗)
Pn

i=1 ai

)
×
(
e−ν∗

Pn
i=1 bi

)
× (ΦA(−α(ν∗))ΦB(ν∗))n .

As −T (x) corresponds to an arrival epoch, we have that
∑

ai = T (x),
∑

bi = A(0, T (x)).
Also, recall from Lemma 2.1 that ΦA(−α(ν∗))ΦB(ν∗) = 1. Recall the new measure was
chosen so that the event {T (x) < ∞} occurs with probability 1. We thus find

LT (x) ≤
(

vi0

vim

)
×
(
e−ν∗(A(0,T (x))−C(0,T (x)))

)
×
(
eα(ν∗)T (x)+c(−ν∗)

Pm
j=1 tij

)
.

13



Taking into account that {I{T (x) < ∞} = 1} implies A(−T (x), 0) − C(−T (x), 0) > x, in
conjunction with α(ν∗) = −c(−ν∗), we have identified a K > 0 such that

LT (x)I{T (x) < ∞} ≤ Ke−ν∗x.

We conclude that the identity (4.3) implies that indeed P(W > x) ≤ Ke−ν∗x, irrespective
of the value of X(0) = i. 2

Proof of Theorem 3.3
Since the event {V > x} implies that the queue does not empty before time x, we obtain
by using the Chernoff bound

P(V > x) ≤ P(W + B0 + A(0, x)− C(0, x) > 0) ≤ E[eω∗(W+B0+A(0,x)−C(0,x))]

= E[Eeω∗(W+B0+A(0,x)−C(0,x))|X(0)].

Conditioning on the state of the Markov chain at time 0 provides the independence be-
tween the workload process and the arrival and service process after time 0. Therefore,
the last expression in the previous display is equal to

Eeω∗B0E
[
E[eω∗W |X(0)]E[eω∗(A(0,x)−C(0,x))|X(0)]

]
= Eeω∗B0

d∑
i=1

E[eω∗W |X(0) = i]E[eω∗(A(0,x)−C(0,x))|X(0) = i]πi,

where we recall that π is the equilibrium distribution of X(·). Since α(s) + c(−s) equals
zero at s = 0, and has a strictly negative derivative at s = 0, it follows that ω∗ < ν∗. Then,
Proposition 4.1 implies that there is a K1 such that

E[eω∗W |X(0)] =
∫ ∞

0
P(eω∗W > x|X(0))dx =

∫ ∞
0

P(W > log x/ω∗|X(0))dx

≤ 1 +
∫ ∞

1
P(W > log x/ω∗|X(0))dx ≤ 1 +

∫ ∞
1

K1e−ν∗/ω∗ log xdx

< 1 + K1

∫ ∞
1

x−ν∗/ω∗dx =: K2 < ∞.

Consequently,

P(V > x) ≤ K2 ·Eeω∗B0E[eω∗A(0,x)]E[e−C(0,x))]. (4.4)

Note that due to Assumption 3.2, E[eω∗B] < ∞. Since process A(0, x) is a compound
Poisson process we have

E[eω∗A(0,x)] = eα(ω∗)x = eλx(ΦB(ω∗)−1).

Due to Property 2.1(3), there exists K3 < ∞ such that

Eeω∗C(0,x) ≤ K3ec(ω∗)x.

Combining this with (4.4), we have identified a K > 0 such that, uniformly in x ≥ 0,
P(V > x) ≤ Ke(α(ω∗)+c(−ω∗))x, where α(ω∗) = λ(ΦB(ω∗)− 1), as desired. 2
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4.2 Lower bound

We now proceed with proving the lower bound results.

Proof of Theorem 3.4
Our proof consists of five steps: (i) we truncate the job-size distribution to find a lower
bound on P(V > x) that, by virtue of Assumption 3.3, reduces the problem to finding
a lower bound on a related busy period problem for the system with truncated jobs;
(ii) next, we show that long busy periods are due to a large deviation of both the arrival
process and the service process; (iii) after that, we analyze the large deviations of the
arrival process, and pay special attention to the technicality of dealing with the truncated
job sizes; (iv) we then invoke the sp-LPD lower bound 3.4 to analyze the large deviations
of the service process; (v) finally, we combine all results to establish the stated.

Step (i). We truncate the job-size distribution, by introducing a new stochastic process
Ak(0, x), k > 0, as follows:

Ak(0, x) :=
N(x)∑
i=1

BiI{Bi < k}.

By definition of the PS queue with varying service capacity,

P(V > x) = P
(

B0 >

∫ x

0

1
1 + Q(u)

dC(0, u)
)

,

where Q(u) is the number of jobs in the system at time u excluding the tagged job.
If we have Ak(0, u) − C(0, u) > εu, then also Ak(0, u) > εu, and as all jobs are at most of
size k, we find a linear lower bound on the number of jobs present at time u: Q(u) ≥ εu/k.

We thus obtain

P(V > x) ≥ P
(

B0 >

∫ x

0

1
1 + Q(u)

dC(0, u), Ak(0, u)− C(0, u) > εu, u ∈ (0, x)
)

≥ P
(

B0 >

∫ x

0

1
1 + εu/k

dC(0, u)
∣∣∣∣Ak(0, u)− C(0, u) > εu, u ∈ (0, x)

)
×P(Ak(0, u)− C(0, u) > εu, u ∈ (0, x));

By applying integration by parts and standard calculus,∫ x

0

1
1 + εu/k

dC(0, u) =
C(0, x)

1 + εx/k
+

ε

k

∫ x

0
C(0, u)

1
(1 + εu/k)2

du

≤ C(0, x)
1 + εx/k

+
ε

k
rmax

∫ x

0

u

(1 + εu/k)2
du

≤ rmaxx

1 + εx/k
+

rmaxk

ε

(
1

1 + εx/k
− 1 + log

(
1 +

ε

k
x
))

=
rmaxk

ε
log
(
1 +

ε

k
x
)
.

Hence,

P(V > x) ≥ P
(

B0 >
rmaxk

ε
log
(
1 +

ε

k
x
)∣∣∣Ak(0, u)− C(0, u) > εu, u ∈ (0, x)

)
×P(Ak(0, u)− C(0, u) > εu, u ∈ (0, x)).
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Now observe that in the first probability in the right-hand side of the previous display,
the value of B0 does not depend on the condition, so that we finally arrive at the lower
bound

P
(

B0 >
krmax

ε)
log
(
1 +

ε

k
x
))

× P(Ak(0, u)− C(0, u) > εu, u ∈ (0, x)). (4.5)

Due to Assumption 3.3 we conclude that the first probability in (4.5) asymptotically be-
haves as eo(x). Therefore, we are left with analyzing the second probability, which could
be interpreted as the probability of a busy period exceeding x in the system with trun-
cated jobs and a service rate perturbed by ε.

Step (ii). We bound the second factor in (4.5) as follows:

P(Ak(0, u)− C(0, u) > εu, u ∈ [0, x]) ≥ P1(x) ·P2(x);

here P1(x) := P(Ak(0, u)− bu > 0, u ∈ (0, x)), P2(x) := P(C(0, u) < (b− ε)u, u ∈ (0, x)),
and b < c is any fixed number. We have thus decomposed the probability of a long busy
period into a large deviation of the arrival process and a large deviation of the service
process; the intuitive explanation is that the occurrence of a long busy period is the result
of both the arrival process generating traffic at a higher rate than usual and the service
process offering service at a lower rate than usual. We emphasize that the value of b is
free now, but in Step (v) we choose an appropriate value. We now deal with each of the
probabilities separately; in Step (iii) we analyze P1(x), and in Step (iv) P2(x).

Step (iii). Consider P1(x). Denote by Pk the busy period in the system with truncated
job size (at threshold k) and constant service rate b. In [19] the asymptotics for large
busy periods in this system were derived; it is readily checked that the corresponding
conditions apply for truncated job sizes. We thus find

lim inf
x→∞

1
x

log P(Ak(0, u)− bu > 0, u ∈ (0, x))

= lim inf
x→∞

1
x

log P(Pk > x) = inf
s≥0

(αk(s)− bs) = γk
b < 0,

where

αk(s) := lim
x→∞

1
x

log E[esAk(0,x)].

We now show that γk
b → γb := infs≥0(α(s) − bs) as k → ∞. To this end, define fk(s) :=

αk(s)− bs. Clearly, fk(s) → f(s) = α(s)− bs pointwise as k →∞ and fk(s) is increasing
in k. Consequently, we have that the limit of γk

b for k →∞ exists and that

γ∗b := lim
k→∞

γk
b = lim

k→∞
inf
s≥0

fk(s) ≤ inf
s≥0

f(s) = γb.

It remains to be shown that the reverse inequality holds. For this we follow an argument
similar to the proof of Proposition 2.2 in Nuyens & Zwart [17].
Note that the function fk(·) is continuous in s. Moreover, it is non-decreasing in k, and
thus so is γk

b ≡ infs≥0 fk(s). Clearly, infs≥0 fk(s) ≤ fk(0) ≤ f(0) = 0, and hence γ∗b ≡
limk→∞ infs≥0 fk(s) ≤ 0.
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Now denote by Bk the job size truncated at k. Take k0 such that P(Bk > bA) > 0 for
k > k0. Then there exist δ, η > 0 such that P(Bk − bA ≥ δ) ≥ η > 0 for k > k0. Hence, for
k ≥ k0,

ΦBk(s)ΦA(−bs) = E[esBk
]E[e−sbA] = E[es(Bk−bA)] ≥ ηesδ,

and consequently, for s large enough,

ΦA(−bs) ≥ 1
ΦBk(s)

.

Since Φ−1
A (−s) is increasing in s, we find that for s and k large enough,

αk(s)− bs = −Φ−1
A

(
1

ΦBk(s)

)
− bs ≥ −Φ−1

A (ΦA(−bs))− bs = 0,

and γ∗b > −∞. Therefore, the level sets Lk = {s ≥ 0 : fk(s) ≤ γ∗b } are non-empty,
compact sets that are nested with respect to k, which implies that there exists at least one
point, say s0, in their intersection. By definition of s0, we have fk(s0) ≤ γ∗b for every k.

Since fk converges pointwise, we find

γb = inf
s≥0

f(s) ≤ f(s0) = lim
k→∞

fk(s0) ≤ γ∗b .

Thus, we conclude that γk
b → γb as k →∞, and

lim inf
x→∞

1
x

log P1(x) = inf
s≥0

(α(s)− bs).

Step (iv). We now analyze the asymptotic behavior of P2(x). First observe that we can
rewrite P2(x) as follows:

P2(x) = P(C(0, u) < (b− ε)u, u ∈ (0, x)) = P(C(0, ux) < (b− ε)ux, u ∈ (0, 1))

= P
(

1
x

C(0, ux) < (b− ε)u, u ∈ (0, 1)
)

= P
(

1
x

C(0, ·x) ∈ S

)
,

where S := {f ∈ Ω : f(u) < (b − ε)u, u ∈ (0, 1)}. As we assumed that C(0, ·x)/x obeys
the lower bound of the sp-LDP (Assumption 3.4) we have

lim inf
x→∞

1
x

log P
(

1
x

C(0, ux) ∈ S

)
≥ − inf

f∈So
I(f) =: −I∗, I(f) :=

∫ 1

0
Λ(f ′(t))dt,

where we recall that Λ(t) = sups∈R(st− c(s)). Since the infimum of I(f) over all f ∈ So is
not larger than I(f∗) for any particular f∗ ∈ So, taking f∗(u) := (b− ε̄)u with ε̄ := ε(1+δ)
for some small δ > 0, we obtain the lower bound

−I∗ ≥ − sup
s∈R

((b− ε̄)s− c(s)).

Observe that since the constant b is chosen such that b < c, the supremum is attained for
s ≤ 0. Hence, we may write

lim inf
x→∞

1
x

log P2(x) ≥ −I∗ ≥ − sup
s≤0

((b− ε̄)s− c(s))

= − sup
s≥0

(−(b− ε̄)s− c(−s)) = inf
s≥0

((b− ε̄)s + c(−s)).
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Step (v). By combining the results for P1(x) and P2(x) we find that, for any b < c,

lim inf
x→∞

1
x

log P(Ak(0, u)− C(0, u) > εu, u ∈ (0, x))

≥ inf
s≥0

(α(s)− bs) + inf
s≥0

((b− ε̄)s + c(−s)). (4.6)

Take ε > 0 sufficiently small and note that log ΦB(·) is convex, (log ΦB(·))′ = Φ′B(·)/ΦB(·)
is increasing and, due to Assumption 3.2, is finite and continuous in a neighborhood
of ω∗. Similar arguments yield that Φ′A(·)/ΦA(·) is an increasing, finite and continuous
function as well, and α(·) is continuous and increasing. Thus, there exists an ε > 0 for
which there is ω = ωε such that ΦB(ωε) < ∞, Φ′B(ωε) < ∞, and α′(ωε) − c′(−ωε) =
ε̄. Since α(·) + c(−·) is a strictly convex function (this follows from the fact that α(·) is
strictly convex and c(−·) is convex), α′(·)−c′(−·) is increasing and hence, ωε is the unique
solution. The continuity properties imply that limε→0 ωε = ω∗.

Let us now take b := α′(ωε) in (4.6). Note that this choice satisfies requirement b < c:
since the cumulant function c(·) is a convex function, its derivative is increasing, and
consequently, for ε̄ small, b = c′(−ωε) + ε̄ < c′(0) = c.

Now consider the first optimization in (4.6): infs≥0(α(s) − α′(ωε)s). It is readily checked
that its first order condition is α′(s) = α′(ωε), which is obviously met for s = ωε (and there
is just at most one solution, so ωε is the unique minimizer). The first order condition for
the second optimization in (4.6) is then α′(ωε)− c′(−s) = ε̄, which is by definition solved
for s = ωε. We conclude that

inf
s≥0

(α(s)− bs) + inf
s≥0

((b− ε̄)s + c(−s)) = inf
s≥0

(α(s) + c(−s)− ε̄s).

Now let ε → 0, δ → 0 (and hence also ε̄ → 0). Due to continuity we have that ωε → ω∗,

and consequently,

lim inf
x→∞

1
x

log P(Ak(0, u)− C(0, u) > εu, u ∈ (0, x)) ≥ α(ω∗) + c(−ω∗).

This completes the proof. 2

Proof of Theorem 3.5
The proof strongly resembles that of Theorem 3.4. We leave it to the reader to check that
only the argumentation in Step (iv) needs to be modified. This step relies on the validity
of the lower bound of the sp-LDP, and to our best knowledge, an sp-LDP for the processes
in Mf(Q,R) is not available from the literature. Therefore we need a different approach
to analyze the large deviation P2(x) of the service process C(·, ·). The main idea of this
modification is to apply results of Chang [8] for Markov-type processes in discrete time.
For that we need to cast our model into Chang’s framework. This is done as follows.

Consider, as before, P2(x) = P(C(0, u) < (b − ε)u, u ∈ (0, x)). For any fixed M < x and
CM < (b− ε)M ,

P2(x) ≥ P(C(0, u) < (b− ε)u, u ∈ (0, x), C(0,M) < CM , X(M) = j),

as the event in the right hand side is fully contained in that of the left hand side. Now con-
sider separately the intervals (0,M ] and (M,x). By using the conditional independence
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and a straightforward time-shift, we have that the previous probability is not smaller
than

P(C(0, u) < (b− ε)u, u ∈ (0,M), C(0,M) < CM , X(M) = j) × P̄2(x), where

P̄2(x) := P(C(0, u) < (b− ε)u + (b− ε)M − CM , u ∈ (0, x−M) | X(0) = j).

Observe that the former probability is constant in x; therefore we need to concentrate just
on P̄2(x). Now the fact that the service rate is bounded by rmax entails

C(0, u) ≤ C
(
0,
⌊u

δ

⌋
δ
)

+ rmaxδ,

for any δ. As a consequence, P̄2(x) majorizes

P
(

C(0, iδ) + rmaxδ < (b− ε)iδ + (b− ε)M − CM , i = 0, . . . ,

⌈
x−M

δ

⌉
| X(0) = j

)
.

Let us take δ < ((b− ε)M − CM )/rmax. Then the probability in the previous display is
not smaller than

P
(

C(0, iδ) ≤ (b− ε)iδ, i = 0, . . . ,

⌈
x−M

δ

⌉
| X(0) = j

)
.

Now it can be verified that C(0, iδ) is a discrete-time process fitting in the framework of
the sp-LDP of Chang [8]. Applying the sp-LDP lower bound on the last probability, it is
straightforward to prove that the decay rate (in x) of the latter probability is indeed

− sup
s≥0

((b− ε)s− c(s)),

as desired. Proceeding with Step (v) as before completes the proof. 2

5 Extension to Discriminatory Processor Sharing

We now consider the extension of our analysis to the GI/GI/· queue operating under
Discriminatory Processor Sharing (DPS) with varying service rate. The proof indicates
that essentially the same argumentation can be used as in the case of PS with varying
service rate (as dealt with in the previous sections).
Suppose that there are M job classes sharing the available capacity. The aggregate job
arrival process is assumed to be a renewal process as considered in Section 2. An arriv-
ing job is of type k with probability pk, k = 1, ...,M . The service times Bn in Section 2
denote the unconditional service times of jobs (for our purposes, we do not need to spec-
ify the conditional service time distributions). Thus, the asymptotic cumulant generating
function of the aggregate arrival process is still given by α(s).
All jobs present in the system are served simultaneously with rates controlled by a vector
of weights {gk > 0; k = 1, ...,M}. If there are Qj jobs of class j present in the system,
j = 1, ...,M, each class-k job is served at rate gk/

∑M
j=1 gjQj . When all the weights are

equal, this is equivalent to the standard (i.e., egalitarian) Processor Sharing (PS) system.
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By changing the DPS weights, one can effectively control the instantaneous service rates
of different job classes.
The proofs of the previous section show that the logarithmic sojourn-time asymptotics
coincide with the logarithmic busy-period asymptotics. The following theorem states
that the same result holds in DPS queue, regardless of the specific values of the weight
factors.
Suppose the tagged job belongs to class 1. Denote V1 its sojourn time, and B1

0 its job size.

Theorem 5.1 If Assumptions 3.1, 3.3 and Assumption 3.4 are valid, then

lim
x→∞

1
x

log P(V1 > x) = inf
s>0

(α(s) + c(−s)).

Thus, the large deviations estimate does not change when one assigns different weights
to the various customer classes. This may not be surprising since we already obtained
the insight that on a large deviations scale, a large sojourn-time resembles a large-busy
period. The decay rate of the latter is obviously weight-independent (as the length of a
busy period is the same for all work conserving service disciplines, such as DPS).

On the one hand, this asymptotic insensitivity might be considered as a negative fact. It
says that independent of the particular weights assignment, the DPS discipline does not
reduce the likelihood of extremely long sojourns. Long sojourn times are inevitable, since
they are typically caused by the large amount of work brought by customers during the
service of the tagged job. On the other hand, the insensitivity property may be regarded
as a positive result, because it implies that preferential treatment of classes with large
weights does not carry the penalty of increasing the occurrence of long sojourn times for
classes with smaller weights.

Proof of Theorem 5.1
The proof of the upper bound uses the same arguments as for the single class PS queue,
which we will not repeat here. The proof of the lower bound is similar to that of Theorem
3.4. We truncate the work process by accepting into the system only jobs of size smaller
than k and proceed in the similar fashion as before. The only extra step involves the
maximal weight gmax = maxj=1,...,M gj ,

P(V1 > x)

≥ P

(
B1

0 >

∫ x

0

g1dC(0, u)

1 +
∑M

j=1 gjQj(u)

∣∣∣∣∣Ak(0, u)− C(0, u) > εu, u ∈ (0, x)

)
×P(Ak(0, u)− C(0, u) > εu, u ∈ (0, x))

≥ P

(
B1

0 >

∫ x

0

g1dC(0, u)

1 + gmax
∑M

j=1 Qj(u)

∣∣∣∣∣Ak(0, u)− C(0, u) > εu, u ∈ (0, x)

)
×P(Ak(0, u)− C(0, u) > εu, u ∈ (0, x)).

Since the jobs are not larger than k, under present condition, the total number of jobs

M∑
j=1

Qj(u) ≥ εu

k
.
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It is now straightforward to verify that the first probability behaves as eo(x) when x →∞.

The second probability gives the desired decay rate. For details see Theorem 3.4. 2

6 Concluding remarks

We have considered a PS queue with fluctuating service rate and light-tailed service times
and established logarithmic tail asymptotics for the sojourn time in a Processor Sharing
queue. Our results indicate that on a large-deviations scale, the event of a large sojourn
time is equivalent to the event of a large busy period. In particular, the system is critically
loaded during the sojourn time of a customer. Our proof method turned out to be pow-
erful enough to extend to Discriminatory Processor Sharing. As shown in Section 4, all
that is required is to be able to compute the decay rate of the busy period distribution. It
is rather surprising that this decay rate has not been found yet under assumptions of the
type considered in [12]; we were not able to deal with this level of generality, and con-
sider this to be an interesting open problem. Another open problem is to show that the
sample-path LDP holds for the Markov fluid service process. As mentioned before, we
could not find any direct reference in the applied probability literature. Finally, we expect
that the results in this paper are useful to develop importance sampling techniques.
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[5] Borst, S.C., Núñez-Queija, R., van Uitert, M.J.G. (2002). User-level performance of elastic
traffic in a differentiated-services environment. Performance Evaluation 49, 507–519.
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