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a b s t r a c t

We study the performance of Discriminatory Processor Sharing (DPS) systems, with exponential service
times and in which batches of customers of different types may arrive simultaneously according to
a Poisson process. We show that the stationary joint queue-length distribution exhibits state-space
collapse in heavy traffic: as the load ρ tends to 1, the scaled joint queue-length vector (1 − ρ)Q
converges in distribution to the product of a deterministic vector and an exponentially distributed
random variable, with known parameters. The result provides new insights into the behavior of DPS
systems. It shows how the queue-length distribution depends on the system parameters, and in
particular, on the simultaneity of the arrivals. The result also suggests simple and fast approximations
for the tail probabilities and the moments of the queue lengths in stable DPS systems, capturing the
impact of the correlation structure in the arrival processes. Numerical experiments indicate that the
approximations are accurate for medium and heavily loaded systems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A Discriminatory Processing Sharing (DPS) model is a multi-
class queueing model where all customers are served simultane-
ously. The customer classes have different service rates and are
assigned different weights indicating their priority. Customers of
classes with relatively high weights get more of the server’s ca-
pacity than customers of classes with relatively low weights. This
type of systems was introduced by Kleinrock [12]. Applications
of DPS models can be found in, for instance, communication net-
works (e.g., bandwidth sharing) and in computers (e.g., multiple
processes on a shared processor).

The majority of papers on DPS consider single arrivals, i.e.,
whenever an arrival occurs, only one new customer joins the sys-
tem. In some applications it is possible that multiple customers
arrive at the same time, and these customers could possibly
belong to different classes. Such an arrival pattern is captured
by allowing multi-class batch arrivals. In this paper we inves-
tigate the impact of the simultaneity of arrivals on the joint
queue-length distribution in heavy traffic.

The possibility of simultaneous arrivals of batches of differ-
ent types strongly enhances the modeling capabilities of DPS
models. Examples are found in communication networks. For
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instance, consider a Web server that needs to respond to nu-
merous page-retrieval requests initiated by the end users. A Web
page generally consists of a number of objects (e.g., pieces of
text, in-line images, audio or video files), all of which generate
separate object-retrieval requests to the Web server. Each of
these requests initiates one or more data flows to be transferred
via a multitude of connections (typically TCP-based connections
with typically different characteristics) that compete for access
on a shared medium. DPS being a convenient modeling paradigm
for the sharing mechanism of TCP, see e.g. [1,2], a page request
can thus be seen as a batch of flows that arrive simultaneously to
a DPS node. Other examples can be found in computer systems
where threads compete for access to shared processors in a
processor sharing fashion. Efficient thread-spawning algorithms
create batches of additional threads to reduce congestion dur-
ing temporary overload situations, and vice versa, can terminate
threads when no longer needed. At the operating system level,
different thread types may have different priorities. This way, the
creation of threads can be seen as a batch of jobs arriving to a DPS
node.

DPS models have received much attention in the literature;
we refer to Altman et al. [1] for a survey on DPS queues. The
(conditional) moments of the response times and number of cus-
tomers in a DPS queue and their finiteness are studied in [3,6,8].
Analysis of overloaded regimes in PS and DPS models can be
found in [2,4,5,10]. DPS models in the heavy-traffic (HT) regime
have been studied in [13,15]. These papers assume single arrivals
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and the approach they follow differs from our approach. The
analysis we follow builds on the study of Verloop et al. [16], who
analyze a DPS queue with phase-type service time distributions
by considering a Markovian framework. Their main result is the
joint distribution of the scaled number of customers in the sys-
tem in the HT regime. Grishechkin [7] allows for batch arrivals
and explored the relationship between Processor Sharing models
and Crump–Mode–Jagers branching processes. Recently, Izagirre
et al. [9] proposed an approximation for the mean sojourn time
in a DPS queue with Poisson arrivals and general service times by
interpolating between heavy traffic and light traffic.

The motivation for this paper is two-fold. First, it is of a
fundamental interest to explicitly quantify the impact of corre-
lations between the arrival processes of the different customers
classes on the number of each type in the system. Using a specific
class of correlation structures, we take a significant step in that
direction. In fact, our results explicitly quantify the impact of the
simultaneity of the arrivals on the joint distribution of the number
of jobs in DPS systems in HT. Moreover, the result also leads to
sharp approximations of the impact of batched arrivals for stable
systems (i.e., with load strictly less than 1), providing new insight
in the performance of DPS systems, a class of models that is
notoriously hard to analyze in an exact manner. Second, in several
applications of DPS models the arrival processes of the different
job types are correlated (see the examples above). In view of
those applications it is important to be able to predict the queue-
ing behavior accurately, in particular when the system load is
significant. The effectiveness of the existing numerical techniques
(like simulations) tends to degrade strongly when the system is
heavily loaded. This raises the need for the development of simple
and fast approximations for the delay incurred at each of the
queues, explicitly capturing the impact of correlated arrivals.

We study a DPS queue with batch arrivals that occur according
to a Poisson process and exponential service times. Each arriving
batch may contain customers of multiple types and the number
of customers per type can be larger than one. The size of a batch
is according to a general joint batch-size distribution. We are
interested in the system in HT. To obtain this, we scale the arrival
rate and let the total load of the system go to 1. We analyze
the scaled joint queue-length distribution and show that a state-
space collapse occurs in the HT limit. More specifically, the joint
distribution of the scaled number of customers is given by a
vector of constants multiplied by an exponential distribution. This
result is similar to the result of Verloop et al. [16] for Poisson
arrivals of single customers, where the authors find the same
constant vector times an exponential distribution. The difference
with [16] is in the parameter of the exponential distribution,
which now contains the second moments and correlation struc-
ture of the batches. In the HT regime, the batch arrivals only affect
the mean of the scaled joint queue-length distribution. For polling
models a similar phenomenon is observed in, e.g., [14].

The remainder of this paper is organized as follows. In Sec-
tion 2 the model is described in detail and we introduce the
notation. In Section 3, we formulate the main result and include
some intuition; the proof is given in Appendix. In Section 4
we discuss numerical results. Finally, Section 5 contains some
concluding remarks and topic for further research.

2. Model description

We consider a system with N classes. Arrivals occur according
to a Poisson process with rate λ. Each arrival consists of a batch
of size K = (K1, . . . , KN ), where Ki stands for the number of
class-i customers. Denote the joint batch-size distribution by
p(k1, . . . , kN ) = p(k) := P(K1 = k1, . . . , KN = kN ) and let the
corresponding probability generating function (PGF) of K be K (z),

where z = (z1, . . . , zN ) and |zi| < 1, for i = 1, . . . ,N . The arrival
rate of class-i customers is denoted by λi := λE[Ki]. Customers of
type i have an exponentially distributed service requirement with
mean 1/µi. The N customer types share a common resource of
capacity 1. Associated with every class i, there is a strictly positive
weight wi, i = 1, . . . ,N . When there are q := (q1, . . . , qN )
customers present in the system, with qi the number of type-i
customers, each type-i customer is served at rate

wi∑N
j=1 wjqj

, i = 1, . . . ,N.

We denote the random variable of the number of type-i cus-
tomers in the system by Qi and denote its joint steady-state
distribution by π (q) := P(Q = q), with Q = (Q1, . . . ,QN ). The
load of type-i is given by

ρi :=
λi

µi
,

and the load of the system is

ρ := λ

N∑
j=1

E[Kj]

µj
=

N∑
j=1

ρj.

We analyze the system when it is near saturation, i.e., for ρ ↑ 1.
To obtain this regime we scale the arrival rate by letting

λ ↑ λ̂ :=

(
N∑
i=1

E[Ki]

µi

)−1

, (1)

while keeping µi, i = 1, . . . ,N , and the batch-size distribution
p(k) fixed. In HT, the load per customer type is given by

ρ̂i =
λ̂i

µi
, i = 1, . . . ,N,

with λ̂i = λ̂E[Ki]. The total load is equal to ρ̂ =
∑N

i=1 ρ̂i = 1. We
let ei denote the ith unit vector.

3. Main result

In this section we state the main result. The proof proceeds
along similar lines as the derivation in [16], and the details are
given in Appendix.

Theorem 1. As ρ ↑ 1, the joint distribution of the scaled queue
lengths is given by

(1 − ρ)(Q1,Q2, . . . ,QN ) →d (Q̂1, Q̂2, . . . , Q̂N )

=d

(
ρ̂1

w1
,

ρ̂2

w2
, . . . ,

ρ̂N

wN

)
X, (2)

where X is exponentially distributed with mean

E[X] =

∑N
j=1 ρ̂j

1
µj

+ λ̂
∑N

i=1
∑N

j=1 E[KiKj]
1
µi

1
µj

2
∑N

j=1(ρ̂j/wj) 1
µj

. (3)

The intuition behind the result is as follows. Observe that the
total amount of work is the same for any work-conserving M/G/1
queue and is exponentially distributed in HT. Hence, the total
amount of work in a DPS queue in HT is also an exponential
random variable X . From the theorem above, we see that there
is balance in how the total amount of work is distributed among
the N classes. This is reflected by the fact that the exponential
random variable is multiplied by a constant vector; the different
customer types all have their own portion of the exponential
random variable equal to ρ̂i/wi, i = 1, . . . ,N . The number of
type-i customers grows with rate λ̂i and is depleted with rate
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wiqiµi

(∑N
j=1 wjqj

)−1
. Due to the balance of type-i customers for

a certain realization of X , these two rates should be equal. We can
solve this equation for qi to get: qi = (ρ̂i/wi)

∑N
j=1 wjqj. We see

that
∑N

j=1 wjqj is a constant common to all qi, i = 1, . . . ,N , giving
relative portions according to the vector (ρ̂1/w1, . . . , ρ̂N/wN ).

Observe that the joint batch arrivals only influence the deter-
ministic vector in Theorem 1 through the load. Also, the random
variable X remains exponential; the effect of the joint batch
arrivals only appears in the mean of X . In case of single-class
arrival processes, it holds that E[KiKj] = 0 if i ̸= j. Rewriting
E[X] for single and single-class arrivals, respectively, yields

E[X] =

∑N
j=1 ρ̂j

1
µj∑N

j=1(ρ̂j/wj) 1
µj

(for single arrivals)

E[X] =

∑N
j=1 ρ̂j

1
µj

(
1 + E[K 2

j ]/E[Kj]
)

2
∑N

j=1(ρ̂j/wj) 1
µj

(for single-type batch arrivals).

Remark 1. Analogous to the derivation of Verloop et al. [16],
our main result may be extended to phase type service-time
distributions and even to a more general Markovian framework.
In this framework, after service completion a customer of type i
becomes a customer of type j with probability p̂ij, or the customer
leaves the system with probability p̂i0. The service duration of
a type-i customer is still exponential with rate µi, but now a
customer has to complete multiple services with different service
rates (because the customer changes type after a service com-
pletion). We conjecture that the joint distribution of the scaled
queue length (Q̂1, . . . , Q̂N ) is still given as in Theorem 1, where
(3) is replaced by

E[X] =

∑N
j=1 ρ̂jE[Rj] + λ̂

∑N
i=1
∑N

j=1 E[KiKj]E[Ri]E[Rj]

2
∑N

j=1(ρ̂j/wj)E[Rj]
,

with Ri the remaining service duration of customers of type i,
i = 1, . . . ,N .

4. Numerical results

In this section we perform some numerical experiments and
compare simulation results with the closed-form expressions
from the HT limit. In Section 4.1, we plot the queue-length
distribution obtained from simulation, to demonstrate the state-
space collapse. In Section 4.2, we present the scaled mean queue
lengths for different loads and show that the mean queue lengths
indeed converge to their HT limit. We will use the heavy-traffic
result as an approximation for smaller loads and show the errors
in a table. Finally, in Section 4.3, we compare the mean queue
lengths in the system with joint batch arrivals to the mean queue
lengths in a system with batch arrivals of one customer class and
a system with single arrivals.

4.1. State-space collapse

The basic DPS queue that we use for our experiments is a
system with two customer classes and batches of at most 2
arrivals per class. We use the batch-size distribution p(0, 1) =

p(1, 0) = p(1, 1) = p(1, 2) = p(0, 2) = 1/5, i.e., there are five
possible batches that have the same probability of occurrence.
We take w1 = 2, w2 = 1, µ1 = 0.75 and µ2 = 1. The arrival
rate λ is varied to allow for different loads. In Fig. 1, we plot the
joint queue-length distribution obtained by simulation for three
different loads: ρ = 0.8 1(a), ρ = 0.9 1(b) and ρ = 0.99 1(c). For
every point (Q1,Q2), the color of the point represents the density.

Table 1
Comparison between simulation and heavy-traffic approximation for type-1
customers.
ρ E[Q1] E[Q 2

1 ]

Sim App ∆% Sim App ∆%

0.70 1.06 1.33 25.79 3.30 3.56 7.80
0.80 1.76 2.00 13.90 7.88 8.00 1.58
0.90 3.79 4.00 5.60 32.27 32.00 0.85
0.95 7.82 8.00 2.35 129.48 128.00 1.15
0.99 40.19 40.00 0.48 3212.30 3200.00 0.38

We see that for higher loads, the density is more concentrated on
a single line, demonstrating the state-space collapse.

4.2. Approximation of moments

The HT result provides the following for the scaled marginal
queue-length distribution: (1 − ρ)Qi →d (ρ̂i/wi)X , with X an
exponential random variable. This suggests the following approx-
imation for the number of type-i customers in a system with ρ <

1. Specifically, Qi is then approximately exponentially distributed
with mean

E[Qi] =
(ρ̂i/wi)E[X]

1 − ρ

and with second moment

E[Q 2
i ] =

2((ρ̂i/wi)E[X])2

(1 − ρ)2
, i = i, . . . ,N.

We compare the approximations above with simulation results
for different values of ρ (by changing λ) using the absolute
percentage error, given by

∆% = 100% ×
|App − Sim|

Sim
.

From Table 1 we see that the approximation works better for
higher loads. This is to be expected, since the approximation is
exact in HT. For loads around 0.9, the approximation is reason-
able, for lower loads the error increases substantially. Note that
we only studied one specific setting, but we expect similar results
in other settings.

4.3. The impact of batch arrivals

Finally, we experiment with the impact of batch arrivals on
the (scaled) mean queue length. To do so, we consider a system
with joint batch arrivals to similar systems with single-class batch
arrivals and systems with single arrivals only. The arrivals process
is modified such that the systems have as many features in
common as possible, like the load per class. In the system with
joint batch arrivals we again take: p(0, 1) = p(1, 0) = p(1, 1) =

p(1, 2) = p(0, 2) = 1/5. In the system with batch arrivals of a
single type we have: p(1, 0) = 3/7, p(0, 1) = 2/7 and p(0, 2) =

2/7, and in the system with single arrivals: p(1, 0) = 1/3 and
p(0, 1) = 2/3. We simulate the mean queue lengths of type-1
customers for different loads. The results are scaled by a factor
(1−ρ) and plotted in Fig. 2 (dashed lines). We see that the scaled
mean queue length is smaller if the batches are of a single type
and smallest if there are only single arrivals. This can be explained
by the variability in the arrival process, where an arrival process
consisting of only single customers has the smallest variation.
This also explains why the convergence to the HT limits (solid
lines) is faster in case of single arrivals.

We conclude that the influence on the queue-length distri-
butions of the joint batch arrivals is significant and that the
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Fig. 1. Joint queue-length distribution for different values of ρ.

Fig. 2. Scaled mean queue lengths of type-1 customers in systems with different
arrival types.

HT approximation works reasonably well for systems with high
loads.

5. Conclusion and topics for further research

This paper provides new fundamental insights in the perfor-
mance of DPS systems, a class of models for which hardly any
exact results are known. We show explicitly how the queue-
length distributions depend on the system parameters when the
system is heavily loaded, and proof that the scaled queue-length
distribution converges to the product of a known vector and an
exponentially distributed random variable, when the load goes
to 1. In particular, the asymptotic results explicitly quantify the
impact of the simultaneity of the job arrivals on the queue-length
distributions. The results also lead to new and simple closed-
form approximations for stable systems, and numerical results
illustrate the accuracy of the approximations.

The results can be extended in several directions. First, the
exponentiality assumption can be relaxed to phase-type distri-
butions, as suggested in Remark 1. Obtaining a rigorous proof
is a topic for further research. Second, one may suspect that
the Poisson assumption can be relaxed to renewal arrivals, using
the time-scale decomposition results obtained for polling models
(e.g., [14]). Finally, the asymptotic results form open up possibili-
ties for the development of approximations for the queue-length
and sojourn-time distributions for arbitrary values of the load, for

the models batched arrivals. To this end, the elegant interpolation
technique proposed in [9] forms an excellent basis.

Appendix. Proof of Theorem 1

In this appendix we derive the limiting distribution of the
number of customers in the queue in HT (i.e., when ρ ↑ 1). To
this end, we start by formulating the balance equations for the
limiting distribution π (q); these balance equations will be used to
derive the functional equation, see Appendix A.1. When we have
the functional equations, we scale it with a factor (1 − ρ) and
take the limit ρ ↑ 1. This leads to a partial differential equation
as presented in Appendix A.2. The solution to this equation gives
the desired distribution up to a single random variable. The final
step is finding this random variable, see Appendix A.3.

A.1. Balance equations and functional equation

We start by deriving the functional equation. To this end,
we introduce a transformation that leads to more convenient
expressions. Define

r(0) = 0, and r(q) =
π (q)∑N
j=1 wjqj

, for q ̸= 0. (A.1)

Let P(z) and R(z) denote the generating functions of π (q) and r(q),
respectively. That is

P(z) = E
[
zQ1
1 · · · zQN

N

]
=

∞∑
q1=0

· · ·

∞∑
qN=0

zq11 · · · · · zqNN π (q),

and

R(z) = E

[
zQ1
1 · · · · · zQN

N∑N
i=1 wiQi

1
{
∑N

j=1 Qj>0}

]
=

∞∑
q1=0

· · ·

∞∑
qN=0

zq11 · · · · · zqNN r(q).

The following lemma formulates a functional equation for R(z):

Lemma 1. For ρ < 1, a functional equation for R(z) is given by

λ(1 − ρ)(1 − K (z)) =

N∑
i=1

(λzi(K (z) − 1) + µi(1 − zi)) wi
∂

∂zi
R(z).

(A.2)

Proof. Assuming ρ < 1, the equilibrium distribution π (q)
satisfies the following balance equations

λπ (0) =

N∑
i=1

µiπ (ei), (A.3)
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and, for q ̸= 0,(
λ +

∑N
i=1 wiµiqi∑N
i=1 wiqi

)
π (q) = λ

q1∑
k1=0

· · ·

qN∑
kN=0

p(k)π (q − k)

+

N∑
i=1

µi
wi(qi + 1)∑N
j=1 wjqj + wi

π (q + ei).

Now we take the generating function, yielding
∞∑

q1=0

· · ·

∞∑
qN=0

1
{
∑N

j=1 qj>0}z
q1
1 · · · · · zqNN

(
λ +

∑N
i=1 wiµiqi∑N
i=1 wiqi

)
π (q)

=

∞∑
q1=0

· · ·

∞∑
qN=0

zq11 · · · · · zqNN λ

q1∑
k1=0

· · ·

qN∑
kN=0

p(k)π (q − k)

+

N∑
i=1

∞∑
q1=0

· · ·

∞∑
qN=0

1
{
∑N

j=1 qj>0}z
q1
1 · · · · · zqNN µi

×
wi(qi + 1)∑N
j=1 wjqj + wi

π (q + ei).

To get rid of the indicator functions, we add Eq. (A.3), change
the order of summation in the second line and start the corre-
sponding summations at 0 by a change of variable. This leads
to

λπ (0) +

∞∑
q1=0

· · ·

∞∑
qN=0

1
{
∑N

j=1 qj>0}z
q1
1 · · · · · zqNN

(
λ +

∑N
i=1 wiµiqi∑N
i=1 wiqi

)
π (q)

= λ

∞∑
k1=0

· · ·

∞∑
kN=0

zk11 · · · · · zkNN p(k)
∞∑

q1=0

· · ·

∞∑
qN=0

zq11 · · · · · zqNN π (q)

+

N∑
i=1

∞∑
q1=0

· · ·

∞∑
qN=0

zq11 · · · · · zqNN µi
wi(qi + 1)∑N
j=1 wjqj + wi

π (q + ei).

We now apply the transformation from (A.1). Note that for the
first term on the right-hand side, we have to take into account
that r(0) = 0, but π (0) ̸= 0. Hence, we obtain

λπ (0) +

∞∑
q1=0

· · ·

∞∑
qN=0

zq11 · · · · · zqNN

(
λ

N∑
i=1

wiqi +
N∑
i=1

wiµiqi

)
r(q)

= λK (z)

⎛⎝π (0) +

∞∑
q1=0

· · ·

∞∑
qN=0

zq11 · · · · · zqNN r(q)
N∑
i=1

wiqi

⎞⎠
+

N∑
i=1

∞∑
q1=0

· · ·

∞∑
qN=0

zq11 · · · · · zqNN µiwi(qi + 1)r(q + ei).

Taking partial derivatives of R(z) with respect to zi, we get

∂

∂zi
R(z) = z−1

i

∞∑
q1=0

· · ·

∞∑
qN=0

zq11 · · · · · zqNN qir(q).

Using this, we can rewrite the functional equation as

λπ (0) +

N∑
i=1

(
λwizi

∂

∂zi
R(z) + µiwizi

∂

∂zi
R(z)

)

= λK (z)

(
π (0) +

N∑
i=1

wizi
∂

∂zi
R(z)

)
+

N∑
i=1

µiwi
∂

∂zi
R(z).

Rearranging the terms and using π (0) = 1 − ρ completes the
proof. □

A.2. Heavy-traffic limit and partial differential equation

For convenience we use the change of variables zi = e−(1−ρi)si ,
with si > 0, i = 1, . . . ,N . We use the notation s = (s1, . . . , sN )
and e−(1−ρ)s

= (e−(1−ρ)s1 , . . . , e−(1−ρ)sN ). For the heavy-traffic
limit, we define

R̂(s) = E

[
1 − e−s1Q̂1 · · · · · e−sN Q̂N∑N

j=1 Q̂jwj
1

{
∑N

j=1 Q̂j>0}

]
. (A.4)

Now we can formulate the following lemma.

Lemma 2. If limρ↑1 P(e−(1−ρ)s) exists, then the function R̂(s) satis-
fies the following partial differential equation:

0 =

N∑
i=1

Fi(s)
∂ R̂(s)
∂si

= F(s)∇R̂(s), ∀ s ≥ 0,

where F(s) = (F1(s), . . . , FN (s)), and

Fi(s) = wi

⎛⎝µisi − λ̂

N∑
j=1

sjE[Kj]

⎞⎠ , i = 1, . . . ,N,

with λ̂ as defined in (1).

Proof. We divide both sides of (A.2) by (1 − ρ) and apply the
change of variables. Note that limρ↑1(1 − K (e−(1−ρ)s))/(1 − ρ) =∑N

j=1 sjE[Kj]. Taking the limit ρ ↑ 1 gives the partial differential
equation

0 =

N∑
i=1

⎛⎝µisi − λ̂

N∑
j=1

sjE[Kj]

⎞⎠wi
∂

∂si
R̂(s). (A.5)

This completes the proof. □

The lemma above is similar to Lemma 2 in [16]; in our case
pij = 0 if j > 0 and it turns out that p0j = E[Kj] due to batch
arrivals. The next step is to establish the state-space collapse. Due
to the similarity between our functional equation in Lemma 2 and
the functional equation in [16, Lemma 2], we can rely on Lemma 3
of [16]. Specifically, [16, Lemma 3] gives that R̂(s) is constant
on an (N − 1)-dimensional hyperplane, see [16] for a geometric
interpretation. Essentially, this provides that the N-dimensional
random vector of queue lengths reduces to a deterministic vector
times a single random variable in heavy traffic. Applying [16,
Lemma 3] and the subsequent analysis, we get

(Q̂1, Q̂2, . . . , Q̂N ) =d

(
ρ̂1

w1
,

ρ̂2

w2
, . . . ,

ρ̂N

wN

)
w1

ρ̂1
Q̂1, (A.6)

Note that [16, Lemma 3] holds in our case, as its proof does not
depend on the fact that the p0j add up to 1, and we take p0j equal
to E[Kj], j = 1, . . . ,N . Eq. (A.6) is now equivalent to (2), with X
distributed as w1

ρ̂1
Q̂1. It remains to find the distribution of X .

A.3. Specifying the common distribution

The distribution of X is given in the following lemma.

Lemma 3. X is exponentially distributed with mean

E[X] =

∑N
j=1 ρ̂j

1
µj

+ λ̂
∑N

i=1
∑N

j=1 E[KiKj]
1
µi

1
µj

2
∑N

j=1(ρ̂j/wj) 1
µj

.
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Proof. Denote by B the total amount of work that an arbitrary
arriving batch brings into the system. From Kingman [11] we have
that the total amount of work in the system W in the GI/GI/1
queue, when scaled by (1−ρ), has a proper distribution as ρ ↑ 1.
In particular,

(1 − ρ)W →d Ŵ ,

where Ŵ is exponentially distributed with mean

E[Ŵ ] =
E[B2

]

2E[B]
.

For our DPS model, we can represent the total workload as

W =

N∑
j=1

Qj∑
h=1

Rj,h,

where Rj,h is the remaining service requirement of the hth type-j
customer. Since we have exponential service requirements, the
remaining service requirements are in distribution equal to the
original service requirements: Rj,h =d Bj,h, with Bj,h exponentially
distributed with mean E[Bj] = 1/µj. Using the representation of
the total workload, we may write

(1 − ρ)W =

N∑
j=1

(1 − ρ)Qj ×
1
Qj

Qj∑
h=1

Bj,h.

Observe that (1 − ρ)Qj → X ρ̂j/wj according to Eq. (A.6), and as
Qj → ∞ (a.s.) for ρ ↑ 1, we have that 1

Qj

∑Qj
h=1 Bj,h → E[Bj] due

to the law of large numbers. This suggests that

Ŵ = X
N∑
j=1

ρ̂j

wj
E[Bj],

which in turn implies that X is also exponentially distributed; this
equation is formally shown in [16, Equation (17)].

Combining the two expressions for E[Ŵ ] above gives

E[B2
]

2E[B]
= E[X]

N∑
j=1

ρ̂j

wj
E[Bj],

and thus

E[X] =
E[B2

]/(2E[B])∑N
j=1(ρ̂j/wj)E[Bj]

.

Note that B can be rewritten as

B =

N∑
j=1

Kj∑
i=1

Bj,i.

Using the law of total expectation, we derive the moments of B:

E[B] = E[E[B|K]] = E

⎡⎣ N∑
j=1

Kj∑
i=1

E[Bj,i]

⎤⎦ =

N∑
j=1

E[Kj]
1
µj

=
1

λ̂
,

and

E[B2
] = E

[
E[B2

|K]
]

= E
[
Var [B|K] + (E[B|K])2

]
= E

⎡⎣ N∑
j=1

Kj∑
i=1

Var[Bj,i] +

N∑
i=1

N∑
j=1

KiKjE[Bi]E[Bj]

⎤⎦
= E

⎡⎣ N∑
j=1

Kj
1
µ2

j
+

N∑
i=1

N∑
j=1

KiKj
1
µi

1
µj

⎤⎦
=

N∑
j=1

E[Kj]
1
µ2

j
+

N∑
i=1

N∑
j=1

E[KiKj]
1
µi

1
µj

.

Substituting the above in the equation for E[X] completes the
proof. □

Proof of Theorem 1. The proof follows directly from combining
Lemma 2 and [16, Lemma 3], leading to Eq. (A.6), and Lemma 3
for the distribution of the remaining random variable. □

References

[1] E. Altman, K. Avrachenkov, U. Ayesta, A survey on discriminatory processor
sharing, Queueing Syst. 53 (1–2) (2006) 53–63.

[2] E. Altman, T. Jimenez, D. Kofman, DPS queues with stationary ergodic
service times and the performance of TCP in overload, in: Proceedings
IEEE INFOCOM 2004, Vol. 2, IEEE, 2004, pp. 975–983.

[3] K. Avrachenkov, U. Ayesta, P. Brown, R. Núñez-Queija, Discriminatory pro-
cessor sharing revisited, in: Proceedings IEEE 24th Annual Joint Conference
of the IEEE Computer and Communications Societies, Vol. 2, IEEE, 2005,
pp. 784–795.

[4] A. Ben Tahar, A. Jean-Marie, The fluid limit of the multiclass processor
sharing queue, Queueing Syst. 71 (4) (2012) 347–404.

[5] R. Egorova, S.C. Borst, A.P. Zwart, Bandwidth-sharing networks in overload,
Perform. Eval. 64 (9) (2007) 978–993.

[6] G. Fayolle, I. Mitrani, R. Iasnogorodski, Sharing a processor among many
job classes, J. ACM 27 (3) (1980) 519–532.

[7] S.A. Grishechkin, On a relationship between processor-sharing queues and
Crump-Mode-Jagers branching processes, Adv. Appl. Probab. 24 (03) (1992)
653–698.

[8] M. Haviv, J. van der Wal, Mean sojourn times for phase-type discriminatory
processor sharing systems, European J. Oper. Res. 189 (2) (2008) 375–386.

[9] A. Izagirre, U. Ayesta, I.M. Verloop, Sojourn time approximations for a
discriminatory processor sharing queue, ACM Trans. Model. Perform. Eval.
Comput. Syst. 1 (1) (2016) 5.

[10] A. Jean-Marie, P. Robert, On the transient behavior of the processor sharing
queue, Queueing Syst. 17 (1) (1994) 129–136.

[11] J.F.C. Kingman, The single server queue in heavy traffic, in: Mathemat-
ical Proceedings of the Cambridge Philosophical Society, Vol. 57, (04)
Cambridge Univ Press, 1961, pp. 902–904.

[12] L. Kleinrock, Time-shared systems: A theoretical treatment, J. ACM 14 (2)
(1967) 242–261.

[13] K.M. Rege, B. Sengupta, Queue-length distribution for the discriminatory
processor-sharing queue, Oper. Res. 44 (4) (1996) 653–657.

[14] R.D. van der Mei, Waiting-time distributions in polling systems with
simultaneous batch arrivals, Ann. Oper. Res. 113 (1–4) (2002) 155–173.

[15] G. van Kessel, R. Núñez-Queija, S.C. Borst, Asymptotic regimes and approx-
imations for discriminatory processor sharing, SIGMETRICS Perform. Eval.
Rev. 32 (2) (2004) 44–46.

[16] I.M. Verloop, U. Ayesta, R. Núñez-Queija, Heavy-traffic analysis of a
multiple-phase network with discriminatory processor sharing, Oper. Res.
59 (3) (2011) 648–660.

http://refhub.elsevier.com/S0167-6377(20)30012-2/sb1
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb1
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb1
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb2
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb2
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb2
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb2
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb2
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb3
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb3
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb3
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb3
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb3
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb3
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb3
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb4
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb4
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb4
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb5
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb5
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb5
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb6
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb6
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb6
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb7
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb7
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb7
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb7
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb7
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb8
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb8
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb8
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb9
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb9
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb9
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb9
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb9
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb10
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb10
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb10
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb11
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb11
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb11
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb11
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb11
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb12
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb12
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb12
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb13
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb13
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb13
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb14
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb14
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb14
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb15
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb15
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb15
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb15
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb15
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb16
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb16
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb16
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb16
http://refhub.elsevier.com/S0167-6377(20)30012-2/sb16

	Heavy-traffic limits for Discriminatory Processor Sharing models with joint batch arrivals
	Introduction
	Model description
	Main result
	Numerical results
	State-space collapse
	Approximation of moments
	The impact of batch arrivals

	Conclusion and topics for further research
	Appendix. Proof of Theorem 1
	Balance equations and functional equation
	Heavy-traffic limit and partial differential equation
	Specifying the common distribution

	References


