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ABSTRACT 

We study sojourn times of customers in a processor sharing queue with 
a service rate that varies over time, depending on the number of customers and 
on the state of a random environment. An explicit expression is derived for the 
Laplace-Stieltjes transform of the sojourn time conditional on the state upon 
arrival and the amount of work brought into the system. Particular attention 
is paid to the conditional mean sojourn time of a customer as a function of 
his required amount of work, and we establish the existence of an asymp
tote as the amount of work tends to infinity. The method of random time 
change is then extended to include the possibility of a varying service rate. 
By means of this method, we explain the well-established proportionality be
tween the conditional mean sojourn time and required amount of work in 
processor sharing queues without random environment. Based on numerical 
experiments, we propose an approximation for the conditional mean sojourn 
time. Although first presented for exponentially distributed service require
ments, the analysis is shown to extend to phase-type services. The service 
discipline of discriminatory processor sharing is also shown to fall within the 
framework. 
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1. INTRODUCTION 

We study a processor sharing queueing model in which the service speed 
depends on the state of some underlying Markov chain. To be more precise: Cus
tomers arrive at a service station requiring a random amount of service. If at time 
t::: 0, the number of customers X(t) in the system equals k > 0, and some (yet to 
be specified) underlying Markov process {Y(t), t?:: O} is in state i E { 1, 2, ... , N}, 
then the total service rate at which customers are served, is cjkl ::=::: 0. The process 
Y (t) is called the random environment. The offered service capacity is divided 
equally among all customers present. Under the assumption of Poisson arrivals 
(possibly state-dependent) and exponentially distributed service requirements, the 
2D process {(X(t), Y(t)), t ::=::: O} is a nonhomogeneous (or level-dependent) Quasi 
Birth-Death (QBD) process. The QBD structure is not essential to the analysis, but 
has computationally attractive properties. The QBD structure is preserved through
out the analysis and reflected in the results. In Section 8 we show how the analysis 
can be extended to the case when service requirements have a phase-type distribu
tion. This destroys the QBD structure, but qualitative properties of sojourn times 
are preserved. 

The model may be used for the performance analysis of modern telecom
munication systems, in which real-time and non real-time (best-effort) traffic share 
network resources. Real-time connections (such as telephony and interactive video) 
have strict delay requirements at the packet- (or cell-) level. Therefore, after accept
ing such a connection, network resources must be reserved to guarantee a certain 
transmission rate. Non real-time connections, however, are less sensitive to delays 
at the packet-level. In file transfers, for example, the transmission time of the com
plete file-that is, the delay at the connection- (or call-) level-is of interest, and 
less so the delay of any part of the file. Consequently, the capacity available to 
non real-time connections may vary over the duration of such a connection. For 
instance in ATM (Asynchronous Transfer Mode) networks, it was proposed that 
non real-time data connections should be accommodated in the ABR (Available Bit 
Rate) service class. In principle, connections using this service are only offered the 
capacity that is not required by real-time connections using other service classes 
such as CBR (Constant Bit Rate) or real-time VBR (Variable Bit Rate). Further
more, data connections should share the available capacity fairly, that is each such 
connection should get an equal share, see for instance The ATM Forum (1). Also 
in IP (Internet Protocol) networks it is thought to be useful to make a distinction 
between real-time and non real-time (best-effort) connections to provide Quality 
of Service guarantees, see for instance Van der Wal et al. (2) and White (3). 

In Nunez Queija et al. (4) the presented model is used for the performance 
analysis of best-effort and real-time connections in a telecommunication switch, 
under three different connection acceptance strategies. In that paper the random en
vironment Y (t) represents the number of real-time connections on the switch, each 
of which requires a fixed amount of capacity for its complete duration. The remain
ing capacity is equally shared among the best-effort connections (file transfers). 
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In this paper we study the sojourn times of customers in the processor 
sharing system with varying total service rate. We are particularly interested in 
the sojourn times of customers conditioned on their required amount of work. In 
the context of the above mentioned application in telecommunication systems, these 
conditional sojourn times of customers correspond to the total transmission time 
of files of given size. For processor sharing systems with constant service rate it is 
well known that the conditional mean sojourn time is proportional to the amount 
of work (5-9). When the server alternates between exponentially distributed ac
tivity periods, during which the service rate is constant, and generally distributed 
unavailability periods, it is shown in ( l 0) that this proportionality property is lost. 
However, in that paper an asymptotic linearity (for the amount of work tending 
to infinity) is revealed. Here we show that this asymptotic result is also valid for 
the present model, in which the service rate may assume different positive values. 
Using a time-scale transformation, the problem may be viewed in the context of 
a Markov reward process. We also discuss the relation of our approach with the 
branching process approach, which has proven to be valuable in the analysis of 
traditional processor sharing systems. 

The remainder of the paper is organized as follows. We present the model 
in Section 2. In Section 3 the sojourn times of customers are studied. We mainly 
concentrate on sojourn times conditional on the state upon arrival and on the amount 
of work brought into the system. An explicit expression is derived for the Laplace
Stieltjes transform of the conditional sojourn time. Particular attention is paid to the 
conditional mean sojourn time as a function of the amount of work, and we prove 
the existence of an asymptote, as the amount of work tends to infinity. In Section 4 
we extend the method of random time change, originally introduced for the MIG/I 
processor sharing queue by Yashkov (11), to our model. This way we translate 
sojourn times in the queueing system into rewards in a Markov-Reward process. 
We also discuss the relation between our approach and the branching process often 
used in the literature to study processor sharing queues. The case where the server 
may be unavailable for some periods of time is discussed in Section 5. In Section 6 
we explain the proportionality property between conditional mean sojourn times and 
the amount of work brought into the system in processor sharing queues without 
random environment. We show in Section 7 how the conditional mean sojourn 
times may be computed. In view of the computational complexity, we propose 
an approximation based on numerical experiments from (4). In Section 8 it is 
shown that phase-type services and discriminatory processor sharing essentially fall 
within the model. We also discuss the extension to infinite state spaces. Concluding 
remarks are made in Section 9. 

2.THEMODEL 

Consider a processor-sharing queue in a random environment as depicted in 
Figure 1. In the queue at most L EN customers can be present. We assume that 
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Figure J. The queueing model. 

the random environment may be modeled as a Markov process with state space 
{l, 2, ... , N}, with NE N. Changes in the random environment may be dependent 
on the arrival and departure process of customers. The set of possible states of 
the random environment when the number of customers is k E {0, I, 2, ... , L) is 
denoted by the subset E<k> ~ {l, 2, ... , N}. We say that the queueing system of 
Figure 1 is in state (k, i) when there are k E {0, 1, ... , L} customers present and 
the state of the random environment is i E £(kl. The set of all possible system states 
is denoted by: 

S:= {Ck,i):k=O,l, ... ,L; iEE<kl}. (1) 

The arrival rate of new customers and the service rate of customers in the queue are 
determined by both the queue length and the state of the random environment. For 
the time being (we come back to this in Section 8.1), it is assumed that customers 
have an exponentially distributed service requirement with mean 1/ µ, (indepen
dent of other customers' service requirements, the arrival process, and the random 
environment). If the state of the system is (k, i), then new customers arrive ac
cording to a Poisson process with rate ;..;kl. Upon such an arrival, the number of 
customers in the system is increased by one, and the random environment changes 
(immediately) to state j E £(k+J) with probability pj~l, where Lje£lk+DP}Jl = 1 
for 0 < k ::S L - 1. If j = i then pt) is the probability that the random environ
ment does not change state. In state (k, i) with k > 0, the server works at rate 
c;k> > 0. This service capacity is equally divided among all customers present (pro
cessor sharing). Hence, each customer leaves in an interval of length b.. with prob
ability t µc~k) ./::)._ + o( b..), for b.. ..!- 0. The total departure rate of customers is therefore 
µc~k). Upon such a departure, the random environment changes to state j E £<k-l) 
wi~h probability m~Jl. where LJe£1k-li m;~l = 1 for 1 ~ k :::: L. Finally, in state 
(k, i) the random environment may change to state j E £(kl_without changing 
the number of customers-at rate q~l, j =I i. For (k, i) E S it is convenient to 
define p~_? = 0, j ~ E<k+I>, m)J> = 0, j <!. E<k-1), andqijl = 0, j ~ £<kl_ Note that 
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£<- t l and £(L+ll are not defined, therefore we further set A.ill := ci0l := 0, for all 
iE{1,2, ... ,N}. 

At time t :=:: 0, X(t) is the number of customers in the system and Y(t) is the 
state of the random environment. { (X(t), Y(t)), t :=:: 0) is a non-homogeneous QBD 
process. Its infinitesimal generator can be written as: 

QjO) AW> 0 0 

AfUl Qjl) A(JJ 0 

Q·- 0 .- (2) 

0 

The submatrices in this generator are given by: 

A Ckl _ [A. Ck> (k>J 
- ; Pij iEE(kl,jE£ik+l1' 

MCkl _ [ Ckl CkJ] 
- flC; mij iE£'k'.jE£<!-l1' 

Q;;) = [ q;'Jl,jEE"'' 
where the qj;> are such that Equation (2) is a true generator (all rows sum to 0). 

The state space of the process (X(t), Y(t)) is given by Sin Equation (I). The 
components k and i of the state (k, i) E S are called the level and the phase of the 
QBD process, respectively. The level of the process corresponds to the number of 
customers in the system, and the phase of the process corresponds to the state of 
the random environment. 

It will be assumed throughout this chapter that g is irreducible (all states in the 
corresponding Markov process communicate). The process is called a homogeneous 
QBD process if for all 1 ::=:: k ::=:: L - I: M<kJ = M, Qjk> = Qd and A (kl= A. The 
state space is finite, since we assumed that L, the maximum number of customers 
in the system, and N, the number of states of the random environment, are both 
finite. The submatrices Q'.ll, A <kJ, and AfCk) are all of finite-but not necessarily the 
same-dimension. Generalizations to infinite state spaces are possible, but require 
specific attention regarding ergodicity issues. We briefly address these issues in 
Section 8.3. 

We denote the vector of steady-state probabilities of (X(t), Y(t)) by 1r: 

nl = I, 

with 0 being the vector with all entries equal to zero and 1 the vector with all entries 
equal to one. Throughout this paper (article), for any vector v its entries vu are 
ordered lexicographically, that is, vu precedes v1.j if k < l, or if k = l and i < j. 
Another notational convention we adopt, is that any vectormultiplying a matrix from 
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the left (right) is a row (column) vector. Furthermore we use the symbol/ to denote 
the identity matrix. Whenever used, the vectors 1 and 0, and the matrix I are of the 
appropriate dimension. 

Usually the service discipline considered for queueing systems that can be 
modeled as a QBD process is FCFS (First Come First Served), see for instance 
Neuts (12, Sec. 3.9). In the present queueing system the service discipline is pro
cessor sharing. Because of the exponentially distributed service requirements, the 
queue length process obeys the same probabilistic law for all work-conserving 
service disciplines that do not take into account actual service requirements (in
cluding FCFS and processor sharing). The queue length in non-homogeneous QBD 
processes has been studied extensively in the literature, see for instance De Nitto 
Pers one and Grassi ( 13) where an algorithm is described for the computation of the 
steady-state queue-length distribution in non-homogeneous QBD processes with 
a finite state space. Here we do not discuss the computation of the steady-state 
probability vector 1r. 

For the sojourn times of customers, the service discipline does matter. Sojourn 
times in QBD processes under the FCFS discipline are discussed in ( 12, Sec. 3.9). 
For non-homogeneous QBD processes an analogous treatment is possible. The 
distribution in terms of LSTs may be found in (14). Here, our concern is with the 
sojourn time distribution under the processor-sharing service discipline. 

3. SOJOURN TIMES 

In this section we study the sojourn time of a customer conditioned on the 
number of customers and the state of the random environment upon his arrival. 
Particular attention is paid to the case where we also condition on the amount of 
work brought into the system. It will be useful to define the following generator: 

0 0 0 0 

AfOlt Q(l) 
d 

A OJ 

l.M(2lt 
2 

l.Af(2) 
2 

Q~2) A<2l 

1-( ·-.- (3) 

l.Af(k)l ~MlkJ (k) A(kJ 
k k Qd 

L-\ M(L) Q(L) 
L d 

The state space of a Markov process with generator 1-( may be denoted by all pairs 
(k, i), with k = I, 2, ... , Landi E £<kl, and an absorbing state 0. Note that there 
are no states (k, i) with k = 0, and that all states (k, i), k = 1, 2, ... , Lare transient. 
The latter statement follows from the irreducibility of Q given by Definition (2). In 
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the first column of 1-l we find the transition (absorption) rates from all other states 
into state 0. From any state (k, i) the absorption rate (into state 0) equals t µcjkl. 

Theorem 3.1. The sojourn time of a customer who enters the system with k - 1 
other customers present and the random environment being in state i, is distributed 
as the absorption time in a Markov process M')-{ with generator 1-l defined by 
Equation (3), starting from state (k, i). 

Proof: The proof can be given by comparing the evolution of the queueing system 
of Figure I, from the moment that the tagged customer arrives (and finds k - 1 other 
customers and the random environment in state i), with the evolution of the Markov 
process M')-{, starting in state (k, i), until absorption in state 0. 

In particular, at any moment that the tagged customer is in service with l - l 
other customers and the random environment in state j, the rate at which he is 
served is fcjl, and his "departure rate" is therefore µjcjl. The departure of the 
tagged customer from the queueing system corresponds to absorption in state 0 in 
the Markov process M')-{ (see the first column of'H). D 

Remark 3. l. For the computation of the moments of the absorption time in MH 
(and hence of the sojourn time in the queueing system) from any initial state we 
refer to Li and Sheng (14). 

We further concentrate on the sojourn time of a customer with service require
ment r > 0. Fork= 1, 2,. . ., Landi E £(kl, let Vi.i(r) be the (remaining) sojourn 
time of a (tagged) customer, starting with k - I other customers present, the ran
dom environment in state i, and the tagged customer having a (remaining) service 
requirement of r, Define the LST (Laplace-Stieltjes Transform) of the distribution 
of Vk.i(r) by 

V ·(s· r) ·- E[e-sVi.;(rlJ k,t ' .- ' Re(s) 2: 0, 

and let v(s; r) be the vector with the vk.i (s; r) ordered lexicographically. In the 
following we derive an explicit expression for v(s; r ). 

Remark 3.2. In this section and in Section 4 we concentrate on the case where the 
c,(kJ are all strictly positive. In Sectio. n 5 we extend the analysis to the case where 

l k • ' 
some of the c~ l may be zero. · 

We study the sojourn times conditional on the service requirement using a 
modified model with one permanent customer. Suppose we consider the queueing 
system of Figure 1, with the modification that there is one customer that never 
leaves the system, but shares in the service rate as an ordinary customer. With 
that modification, the number of customers k ranges from I to L. Having placed a 
permanent customer in the system at time 0, we denote the total number of customers 
in the system (including the permanent customer) at time t 2: 0 by X*(t) and the 
state of the random environment by Y*(t). The process {(X*(t), Y*(t)), t 2: 0) is 
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again a non-homogeneous QBD process with generator Q* defined by: 

~(I) 
Qd A Ol 

~(2) 1 M(2J Qd A (2l 

A(kl Q* ·-.- (4) 

The matrices Qd (kl differ from the matrices Q~l only in their diagonal elements: 
these are such that each row of Q* sums to 0. The state space of the process 
(X*(t), Y*(t)) will be denoted by: 

S* := {(k, i) ES: k > O}. 

In this section we first analytically derive an expression for the vector of LSTs 
v(s; r). In Section 4 we relate the solution to the permanent-customer model using 
the method of random time change. 

Define the diagonal matrix 
' 

R := diag [~cjkl] 
k (k.i)ES* 

The entries of R along the diagonal are ordered lexicographically in (k, i ). 
The following theorem gives the LSTs of the conditional sojourn times ex

plicitly. Similar expressions were obtained in (15-17). 

Theorem 3.2. If cjkl > 0 for all (k, i) ES*, then for r ::;: 0 and Re(s) ::;: 0, 

a 
-v(s; r) = n-1w* - s/]v(s; r), or 

v(s; 0) = 1; 

and heJJ,ce, 

, v(s; r) = exp{ rn-1 [Q* - s I]} 1. 

(5) 

(6) 

(7) 

Proof: The proof can be given by marginal analysis: When the state of the queue
ing system is (k, i) ES*, the customer with a remaining amount of work r (as well 
as any other customer) is served at rate ic~kl. Consider a small time interval of 
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length k,~ and condition on the possible events occurring in this interval: 
('. 

I 

. h -<kl k-t (kl 1<kl " (kl Th" I d h d"""" . I E wit qu = -µ-k-ci - "; - L..Ni qiJ . 1s ea s to t e 111erentia qua-
tion (5). The initial conditions (6) follow from the fact that all cjkl are positive, 
and hence E[Vk,;(0+ )] = 0. It can then be verified that Equation (7) is a solution 
to Equations (5) and (6). 

It remains to be shown that the solution is unique. Suppose w(s; r) is a second 
solution. Then w'(s; r) := v(s; r) - w(s; r) satisfies a set of equations like (5) and 
(6) with 1 replaced by 0. From Equation (5) it follows that v(s; r), w(s; r) and 
w'(s; r) are analytic in r ~ 0 (it can be shown iteratively that"°<lll derivatives exist). 
Since all derivatives of w' (s; r) vanish at r = 0 (this again can be shown iteratively) 
it must be the case that w' (s; T) = 0. 0 

In the proof of the following corollary we use standard results for Markov
Reward processes. These processes fall within the framework of Markov decision 
theory (with the difference that here no decisions are to be made). The first to present 
a systematic treatment of Markov-Reward processes on a finite state space seerp.s 
to have been Howard (18). In particular the results on continuous-time Markov
Reward processes (pp. 99-104) are of interest to us. The close relationship between 
the continuous-time case and the discrete-time case is exploited by Tijms (19, 
Sec. 3.5). In the proof of the following corollary we further rely on Zijm (20). 

We use the symbol lk,i to denote the vector with the entry in position (k, i) 
equal to 1, and all other entries equal to 0. 

Corollary 3.3. If cjkl > 0 for all (k, i) E S*, then for T ~ 0, 

E[Vk,;(T)] = T + lk,;[J - exp{r'R.- 19*}]-y, 
c* - p* 

where 

c*= L rr;,;cjkl, 

(k,i)ES* 

p* = I: rrt.;A~k>.!.. 
(k,i)ES* µ 

(8) 
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with -rr* = (n:k)(k,i)eS* the steady-state probability vector of the model with one 
permanent customer: 

-rr*Q* = 0, -rr*l = 1. 

The vector 1 satisfies 

* 1 -Q 1=1- 'Rl, 
c* - p* 

(9) 

and is unique up to translation by the vector 1. Expression (8) is, however, invariant 
with respect to such a translation. We may normalize 1 such that 7r"'R1 = 0. 

Proof: The result can be obtained by differentiating Equation (7) with respect 
to s, and settings = 0. However, we give a more direct proof. In the same way 
as we derived Equations (5) and (6), we may find the following set of differential 
equations and initial conditions: 

d 
dr (E[Vk,i(r)fo,i = R- 11 + R-1Q*(E[Vk,i(r)fo.i, (10) 

E[Vk,i(O)] = 0, "l(k, i) ES*. (11) 

By (-)k,i we mean the vector with the entries between brackets ordered lexicograph
ically in (k, i) E S*. As in the proof of Theorem 3.2 it can be verified that there is 
at most one solution to this set of differential equations and initial conditions. 

Suppose for the moment that a vector -y exists, satisfying Equation (9) and 
normalized as required. By substitution of Equation (8) into Equations (I 0) and (I I), 
we may verify that these differential equations and initial conditions are satisfied, 
and hence Equation (8) is the unique solution. Note that Q*l = 0, since 9* is the 
generator of a Markov process. 

From Equation (9) we note that if the vector 1 exists, it may be interpreted 
• as the "relative reward" vector in a Markov-Reward process. This vector con

tains for each state of the process the long-run difference in accumulated rewards 
when starting in that state relative to those when starting in steady state, see Tijms 
( 19, pp. I 87, 188) for a discussion. The generator of this Markov-Reward process 
is 9* and rewards are generated at rate 1 - t4) c•~p' when the process is in state 
(k, i) ES*. 

In order for Equation (9) to have a solution, it is necessary that this Markov
Reward process has average reward per time unit equal to 0, because the left-hand 
side is equal to zero if we premultiply by 1t"*. Indeed, 

" * 1 (k) * 1 " * k - 1 (k) 
L._, rrk,i//i = C - - L._, Jrk,i-k-C; µ 

(k,i)eS• µ (k,i)eS* 

1 
= c* - - " nk* .;,Y> 

II L._, ,! l 

,,., (k,i)eS' 

= c* - p*, (12) 
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where the one-but-last equality sign is due to the fact that the average number of 
customers leaving the system per time unit equals the average number of customers 
entering the system per time unit. Since the state space is finite, the existence of a 
vector/, and its uniqueness up to translation along the vector 1, is guaranteed by 
Zijm (20, Theorem 4.5). 

Note that translation along the vector 1 of a vector I satisfying Equation (9) 
does not alter the solution for E[Vi,;(r)], since all rows of the matrix I -
exp{ rR- 1 Q*} in Equation (8) sum to 0 (because all rows of 9* do). Therefore, 
if/ = v satisfies Equation (9), then so does 

7T*'R..v 
I:= v- 1, 

c* - p* 

which is normalized as required. D 

Remark 3.3. The entities c* and p* have the following interpretation. In the queue
ing system with one permanent customer, the service capacity not given to other 
customers is assigned to the permanent customer. The average capacity per unit of 
time available for all customers (including the permanent one) is c*. Per unit of 
time, on average L<k.i)ES* rrk,;Aikl customers enter the system, each requiring an 
expected amount of work 1 /µ.Therefore p* is the average amount of work entering 
the system per unit of time. 

Corollary 3.4. If dkl > 0 for all (k, i) E S*, then for r --+ oo we have: 

r . S* E[Vk,;(r)] - * * --+ Yk,i· (k, z) E . 
c - p 

Proof: Note that n- 19* is the infinitesimal generator of an irreducible Markov 
process on a finite state space. Its largest eigenvalue is therefore equal to 0 and of 
multiplicity 1. The scaled left and right eigenvectors corresponding to the eigen
value 0 are c'~P' 7T*'R.. and 1. As a consequence, the matrix limr-c>eio exp{r'R..- 19*} 
exists and has all rows equal to the probability vector c'~P' 7r*R. The corollary now 
follows from Expression (8). D 

Remark 3.4. For the special case of a constant service rate, c;k) = 1, V(k, i), and 
state independent arrivals (Poisson with rate A.), the model reduces to the M/M/ 1 / L 
queue with processor sharing. It can be shown that for this case (the second sub
scripts are omitted since there is no random environment): 

Yk+I - Yk = ~ t (-1-* - }) pi> 0, k = 1, 2, ... , L - 1. 
Hp i=I 1 - p 

Here, p := A./µ, and 

"'""'L-J [ l-1 
* Lil=I p 

p = L p. 
Li=ll pi-I 
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Passing L ~ oo, we find in case p < 1: 
p 

Yk+I - Yk ~ A.(1- p)' L ~ oo, 

which indeed corresponds to the M/M/l queue with processor sharing. For that 
model we may even explicitly find: 

r 1 ( 1 ) (l -r{µ-A.l) E[Vi(r)] = --+-- k- -- -e , 
I-p µ-A. 1-p 

cf. Coffman et al. (21, Formula (33)) (there the delay Vi(r) - r is studied instead 
of the sojourn time, which gives a term I~p instead of 1 ~P ). 

4. RANDOM TIME CHANGE 

In the proof of Corollary 3.3 we mentioned the interpretation of the coefficients 
Yu as relative rewards in a Markov-Reward process. In this section we explore 
such an interpretation further and link this to the method of random time change, 
which was introduced for the analysis of processor-sharing systems by Yashkov 
(22). In essence, but without transformation of time, this method was already used 
for the analysis of the M/G / 1 processor-sharing queue in ( 11 ). Foley and Klutke 
(23) studied the queue-length process and the process of accumulated work after 
applying the random time change to a processor-sharing model in which the total 
service capacity may depend on the number of customers in the system. Grishechkin 
(24,25) further exploited the method by reformulating it in terms of Crump-Mode
Jagers branching processes and applying it to the analysis of queues with a general 
class of service disciplines, including processor sharing. For more references on the 
time-transformation method and its use in the analysis of processor-sharing queues 
we refer to Yashkov (26, Sec. 2.4). 

Our starting point is the Markov process (X*(t), Y*(t)), that is, the queue 
length and the state of the random environment in the queueing model of Figure 1, 
when there is one permanent customer in the system. This permanent customer 
shares in the service capacity as any other customer, but never leaves the system. 
We already saw that 9* is the infinitesimal generator of the process (X*(t), Y*(t)). 
We make a random time change in the following way. When (X*(t), Y*(t)) is in 
state (k, i), all transitions out of this state are "sped up" by a factor k / c}kl. For inst
ance, the new arrival rate of customers in state (k, i) is A.jklx k/c)kl. More impor
tantly, the new departure rate of customers is exactly (k - l)µ in all states (k, i). 
Note that k - l is the number of non permanent customers in state (k, i) E S*. Ap
parently, in the new time scale, each customer receives one unit of service per "time" 
unit. By {(X(a), Y(a)), a ::: O} we denote the process of queue length and state of 
the random environment in the new time scale. The generator of the Markov pro
cess (X(a ), Y(a )), is n-19*. The inverse of the matrix n exists since we assumed 
all service rates c)kl to be non-zero (see Section 5 for the general case). Note that 
the processes (X*(t), Y*(t)) and (X(a), Y(a)) have the same jump-chain. By the 
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t = 0 

\ 
l (X(a), Y(a)) 

O' = T 

Figure 2. Coupling of the jump-chains of (X*(t), Y*(t)) and (X(a ), Y(a)). 

jump-chain of a Markov process we mean the Markov chain embedded at transition 
epochs. 

We now explain how the process {(X*(t), Y*(t)), t ;::: 0} is related to the pro
cess { (X(a ), Y(a )), a 2:: O}, using a coupling argument on their jump-chains: Sup
pose that at time t = 0, the process (X*(t). Y*(t)) is in state (k0 , i0) and observe 
the process as it evolves over time. For a given path of the process (X*(t), Y*(t)), 
we may "perform" the random time change as indicated above: For any period 
of time that (X*(t), Y*(t)) resides in a state (k, i), we "shrink" the length of this 
period by a factor k/cjk>, i.e. we divide the length of the period by this num
ber. We may so construct a path for the process (X(a), Y(a)), starting in (k0 , io) 
for a = 0. In Figure 2 such a construction is depicted. Two horizontal axes are 
drawn. The upper axis corresponds to the "normal" time axis on which we ob
serve the process (X*(t), Y*(t)) fort=:::: 0. The lower axis corresponds to the new 
"time" scale, after the random time change. On this axis we observe the process 
(X(a), Y(a)). a 2:: 0. 

In the realization depicted in Figure 2 the following events happen succes
sively: The process starts in (k0 , i0), then a customer arrives and the random envi
ronment changes to state i 1 , another customer arrives and the random environment 
changes to state i 2, a customer departs and the random environment changes to state 
i 3, and finally another customer arrives and the random environment moves to state 
i4 . Of course, the random environment may change without changing the number 
of customers, but for transparency of the picture no such event is drawn. Note 
that since both processes (X*(t), Y*(t)) and (X(a), Y(a)) have the same jump
chain, any such realization (indeed) occurs with the same probability in both r.ro
cesses. Now concentrate on the indicated time-interval of length (ko + l).6./c}3 o+ll 

on the upper axis. This interval lies between the moment of the first departure and 
the moment of the third arrival. At any point in this interval the number of cus
tomers X*(t) (including the permanent one) is ko + I, and the random environment 
Y*(t) is in state i 3. During this interval of time, the amount of service received by 
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the permanent customer (and any other customer in the system), equals .6.. This 
argument can be used for any time interval during which the state does not change. 
It is seen that the amount of service received by the permanent customer between 
time t = 0 and the time point (on the upper axis) which corresponds to the point 
a = r (on the lower axis), is exactly r. Therefore, the point on the upper axis 
corresponding to a = T on the lower axis is exactly Vi0 .;0(r): It is the amount of 
time that a customer must stay in the system before he has received an amount of 
service -r, starting at time t = 0 with no service received, k0 - 1 other customers, 
and the random environment in state io. 

We introduce the following reward structure in the process (X(a), Y(a)): In 
state (k, i) reward is earned at rate k/c~kl. The accumulation of rewards in this 
process can now be related to sojourn times in the processor-sharing queue (with 
exclusively positive service rates). 

Theorem 4.1. The sojourn time Vk,;(T) of a customer in the queueing system of 
Figure 1, arriving when there are k - 1 other customers in the system, the random 
environment being in state i, and bringing an amount of work T, is distributed as 
the cumulative reward in the process (X(a), Y(cr)) over the interval a E (0, r), 
starting at a = 0 in state (k, i). 

Proof: From our construction of the coupled Uump-) processes above, it follows 
that the accumulated reward in the process (X(a), Y(a)) over the interval a E 

(0, r) on the lower axis, is equal to Vk0 ,;0 (r) on the upper axis (Fig. 2). As we 
already remarked, any such realization has the same probability for both processes 
(X*(t), Y*(t)) and (X(a), Y(a)). D 

From Theorem 4.1 we may obtain the result of Corollary 3.4, which is restated 
in terms of the transformed process in the following corollary: 

Corollary 4.2. With probability 1: 

1. Vk,;(-r) _ * ._ [ X ] 
1m -- - g .- E (X) , 

r_,.oo T Cy 
(13) 

where the distribution of (X, Y) is the equilibrium distribution of(X(a), Y(a)). 
Furthermore, the limit 

(14) 

exists and is finite. 

Proof: Relation (13) is standard for irreducible Markov-Reward processes with 
a finite state space, see for instance Ross (27, Corollary 6.20) or Tijms (19, 
Theorem 3.1.1). We use Zijm (20, Theorem 4.5) to establish the convergence in 
Relation ( 14 ). o 



SOJOURN TIMES IN QBD PROCESSES WITH PROCESSOR SHARING 75 

Remark 4.1. Equation ( 13) holds under much more general assumptions. In fact, 
with L < oo, N < oo, and all cikl > O, it can be proved using the Renewal Reward 
theorem (e.g. Ross (27, Theorem 3.16) or Tijms (19, Theorem l.3.1)) under the 
sole assumption that the original process (X(t), f(t)) is regenerative with finite 
expected regeneration time. The interested reader is also referred to Iyer et al. (15) 
where a Central Limit Theorem is derived for V(r). 

Remark 4.2. Corollaries 3.4 and 4.2 imply that g* = c*~p*, or equivalently: 

where we use Equation (12). This can be verified by noting that the distribution of 
(X, Y) is given by the vector c*~p* Tr*R, and that the reward vector in that process 
is given by n- 11. The fact that 

[ (X*)] 
E c~.* = c* - p* 

can be argued as follows. As we saw in Remark 3.3, c* is the average capacity 
per unit of time available for all customers, and p* is the average amount of work 
entering the system per unit of time. Since all non-permanent customers eventually 
leave the system, p* is also the average amount of service capacity assigned to 
non-permanent customers (in the long run). Hence, c* - p* is the average capacity 
per unit of time assigned to the permanent customer. 

If the arrival rate and total service rate do not depend on the number of 
customers in the system and the random environment evolves independently of the 
history of the queue length, then the average total service capacity and the average 
amount of work entering the system per unit of time are the same for the original 
model and the model with one permanent customer, i.e., c* = c and p* = p. This 
is the case in the model of (10). 

Remark 4.3. Branching processes that are closely related to the process 
(X(a), Y(a)) have previously been used to study sojourn times in traditional 
processor-sharing systems with constant service capacity (i.e., cik) = I; there is 
no random environment), constant arrival rate (A.), and infinite space for cus
tomers (L = oo ), see Yashkov (22) and Grishechin (24,25). Let us briefly discuss 
the essentials of that approach. After the random time change, customers may 
be seen as individuals in a population, one of them having an infinite life time 
(corresponding to the permanent customer), and all others having an exponen
tially distributed life time with mean 1/µ., (independent of everything else). Thus, 
with k :::= 1 individuals in the population (including the permanent one) the total 
"death" rate is (k - 1)µ.,. Each of the k individuals gives birth to new individuals 
at rate A., the total birth rate is thus H. Clearly, the evolution of each individual 
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and all his descendants is independent of all other individuals, which makes this 
branching process very suitable for analysis. In fact, the approach is applica
ble to other service disciplines, including discriminatory processor sharing, see 

Section 8.2. 
In our case, the branching process is governed by a random environment. 

The life time of non-permanent individuals is still exponentially distributed with 
mean 1/ µ. If the state of the random environment is i and the population size 
is k (including the permanent one), then each of the k individuals gives birth 
to new individuals with rate ).,~k) / cjk>_ This birth rate depends both on the state 
of the random environment, and on the number of individuals in the popula
tion. The random environment also evolves dependent on the number of indi
viduals. With k living individuals, the random environment may change from 
state i to state j with rate k x q?/ / cjkl_ The mutual dependence of the branch
ing process and the random environment and the dependence among individuals 
make this approach less suitable for the analysis of sojourn times in the present 

model. 

5. SERVER UNAVAILABILITY 

In this section we extend the analysis of Sections 3 and 4 to the case where some 
of the dk) may be equal to zero, that is, there are periods during which no service 
is provided to the customers. In the setting of our model, unavailability periods are 
exponentially distributed or, more generally, have a phase-type distribution (when 
two or more states of the random environment for which the service rate is zero, 
communicate directly with each other). 

We define the subset of states 

S~ := {U,J) E S*:cjl =0}. 

I 1. . h " (k) . . n app icat1ons, t e iact whether ci = 0 will typ1cally only depend on i, hut for 
generality of the presentation we do not assume this. Partition the state space s• 
into S~ and its complement S~ := S* - S~, and "reorder" the rows and the columns 
of the generator Q* accordingly: 

Q* = [ 9! 9~0 l · 
90+ 90 

Soi_ne reftec~ion shows that if the states within S~f and those within S' are ordered 
lex1cograph1cally, then 9~ and 90 are the generators of (possibly reduci1~1e J transient 
QBD processes. We also reorder the entries of 7r* = ( 7r'' 7r' ! witl1 ..,,.. • . d ~ 

t · h h · · · . + ' o ' " ' ,m 7r o 
vec ors wit t e1r entnes ~rdered lex1cograph1cally. Starting from any (/, j) E s~. 
let U1,; be the amount of time the process remains in the set S' and w . E S' th • 
first state that is visited after le · S* N h . 0 '. _ 1. / - ' + . e . . . . avmg o· ote t at U1,j 1s the so1ourn tm1e (or time 
until exit) m a transient QBD f h. h . . . · . process, or w 1c an efficient routrne to compute 
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moments of the distribution can be found in (14). Furthermore, for Re(s) ::= 0, define 
the matrix U(s) of dimension JS0 I x JS~ I with entries: 

U(l,j),(k,i)(S) := E[e-SU/,jl{w1.j=(k,i))]' (l, j) Es;;, (k, i) Es~. 

Here 1{·} is the indicator function. Note that, in particular, U(O) is a probability 
matrix, and that -~U(s)ls=ol = (E[U1,jD(l.j)eS(;· 

Lemma 5.1. The matrix U(s) is given by 

U(s) = -W0 - sl]- 190+' Re(s)::::: O, 

and hence 

Proof: By conditioning on the possible transitions in an interval D. when we start 
from any state in S0* we find for 6. ..[.. 0: 

U(s) = e-M([l + D..Q0JU(s) + D..90+) + 0(6.) 

=(I+ 6.[Q0 - sl])U(s) + D..90+ + o(D..), 

where o(b..) applies to each entry in the matrix equations. Canceling terms, dividing 
by D.., and taking D.. ..[.. 0 we have: 

-W0 - s I] U(s) = 9o+· Re(s) ::::: o. (15) 

Since 90 is a transient generator, Q0 - s I is invertible for all Re(s) ;::: 0, and hence 
the first statement of the lemma follows. 

Differentiating Equation (15) with respect to s, settings= 0, and using the 
fact that U(O) is a probability matrix (so that U(O)l = 1), we may prove the second 
statement of the lemma. D 

As before, denote by Vk,i(s; r) the LSTof vk,i(T), the (remaining) sojourn time 
of a customer with a (remaining) amount of work r, starting in state (k, i) E S*. 
Construct the vectors 

vo(s; r) = (vt,j(s; r))(l.jJeS(j and V+(s; r) = (vk,;(s; r))(k,nes:• 

according to the partitioning S* = S0 U S~. The following lemma gives the relation 
between the two vectors. 

Lemma 5.2. For r ::= 0 and Re(s) ;::: 0: 

vo(s; r) = U(s)v+(s; r), 

and in particular, 

(16) 
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Proof: The proof of the first part is immediate by noting that i) as long as the 
system is in SI) no service is received, and ii) the LST of the joint distribution 
of the first state visited in S~ and the time until that moment is given by the 
matrix U (s ). The second part follows by differentiating with respect to s and putting 
s=Q D 

With the aid of the two preceding lemmas we are able to prove the following 
theorem, which generalizes Theorem 3.2 to the case S0 =/= 0. Before proceeding, 
we define the matrix 

. [ 1 (k)J 
R+ := diag kci , 

(k,i)eS~ 

with the entries along the diagonal ordered lexicographically in (k, i) E S~. Note 

that R:j:1 is well defo;1ed. 

Theorem 5.3. For r 2: 0 and Re(s) 2: 0, 

a 
-v+(s; r) = R:j:1 [Q'~ + g~0 U(s) - s Ilv+(s; r), ar 

V+(s;O) = 1; 

and hence, 

v+(s; r) = exp{rR:j:1 [Q'~ + Q~0U(s) - s /]} 1. 

Proof: The proof may proceed as that for Theorem 3.2: For any (k, i) ES~ derive 
the differential equation for Vk,i(s; r) by conditioning on the possible events in a 
time interval t1 .6.., and then take .6.. -!.- 0. Substituting Equation (16) for v0(s; r) 

c. 
readily leads td the desired result. D 

Consequently we have the following corollary, which generalizes Corollaries 
3.3 and 3.4: 

Corollary 5.4. For r 2: 0, 

i 
(E[Vk,i(r)])(k,i)eS~ = c* _ p* 1 +[I - exp{rR:j: 1 [Q'~ + g~0U(O)]}}y, 

where c* and p* are as in Corollary 3 .3. The vector 'Y satisfies 

-[Q'~ + 9~oU(O)] "Y = 1+Q~+(E[U1,j])<11.Jes• - l R+l, 
, o c* - p* 

and is uniquely determined by normalizing such that 1T'~ R+ -y = 0. Consequently 
we have for (k, i) ES~: 

i 
E[Vi,i(r)] - ~ Yk i· 

c* - p* , 
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Proof: Similar to Equations (10) and (11) we may derive differential equations 
for E[Vk,i('r)], (k, i) ES~. Using Equation (17) we get: 

d -1[ * J dr (E[Vk.i(r)])(k.i)eS~ = 'R+ 1 + Y+o<E[U1.1Du,J>eS~ 
+ 'R.:t 1 [9~ + Q~0U(0)] (E[Vk,i(r)])<kJ)eS~. 

Of course, E[Vk.i(O)] = 0, for (k, i) E S~. To see that the solution given in the 
corollary satisfies this set of differential equations and initial conditions, note that 
the vector -y may be interpreted as the vector of relative rewards in a Markov
Reward process with generator Q~ + g~0U(O), rewards being earned according 
to the vector 1 + Q~0(E[U1.1Du.JleS~ - c*~p• 'R+l. It remains to be shown that 
the average rewards in this Markov-Reward process equals 0. The steady-state 
probability vector of this process is given by 71"~ 1 7r~, and using ( cf. Lemma 5 .1 ), 

1r~g~o(E[U1.1DU.j)eS(; = 7r~9~o[-9ir 1 1=7r{jl, 

we indeed find that the reward per unit time in steady state equals 0. The limit as 
r ---+ oo can be obtained as in the proof of Corollary 3.4. D 

Corollary 5.5. For r ~ oo, 

r 
(E[V/.1(r)])u.1ies0 - * * 1 ~ (E[U1.1Du.nes0 + U(O)-y. 

c -p 

Proof: By Lemma 5.2, Corollary 5.4, and using the fact that U(O) is a probability 
matrix. D 

The remainder of this section is devoted to the method of random time change 
in the case that S0 =f. 0, unifying the branching process approach with that of random 
time change. We use the same arguments as in Section 4, with the following modi
fications: All transitions that occur when the process (X*(t), Y*(t)) is in the set S0 
are "collapsed" into one single event when constructing the process (X(a), Y(a)). 
More precisely: When the process (X*(t), Y*(t)) is in some state in S~. we change 
the time scale as before, speeding up all transitions out of state (k, i) E s: by a factor 
k / c;k). When the state is (l, j) E S0 this time transformation can not be done 
since cjl = 0. Suppose that at some time t ~ 0 the process (X*(t), Y*(t)) changes 
from state (k, i) E S~ to some state in S0. Suppose further that the first state within 
s: visited thereafter is(!, j) E S~. If a ~ 0 is the point on the transformed time
scale corresponding to time t, then the process (X(a) 1 Y(a)) makes a (direct) 
transition at the point a from (k, i) Es~ to(/, j) Es:. Thus (X(a), Y(a)) is not 
observed on the states in S0. When (X(a), Y(a)) makes such a transition corre
sponding to a visit of (X*(t), Y*(t)) to the set S0, an immediate reward is earned 
that is equal to the time that (X*(t), Y*(t)) spends within the set S0. 

In the process {(X(a), Y(a)), a ~ O} with state space s: and generator 
n+ 1 [9~ + Q~0U(O)] there are two types of transitions and two types of rewards. 
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"Ordinary" transitions occur according to the transient generator Q~, and "ordi
nary" rewards are earned at rate -fu in state (k, i) E S~. The other transitions and 

c. 

rewards are related as follows. The entry in row (k, i) E s: and column (l, j) E S0 
of the matrix g~0 gives the rate with which an (l, j)-event occurs. An (l, j)-event 
has two consequences: (i) a transition is made, and (ii) an instantaneous reward 
is earned. The instantaneous reward, and the state after an (l, j)-event are jointly 
distributed as the pair (Ut,j, W1,j ), and (the LST of) their joint distribution is given 
by the matrix U(s) for Re(s) :::: 0. Note that the state after the (/, j) event may 
be the same as the state before the event. We emphasize that the jump-chains of 
the process (X(a), Y(a)) and the process (X*(t), Y*(t)) restricted to the set S~ 
are identical. 

Theorem 4.1 remains true with the above modifications, and so does Corol
lary 4.2 if we redefine the constant g* as 

Remark 5.1. The discussion in Remark 4.1 also applies to this section. The relation 
g* = -.1-. discussed in Remark 4.2 is true for the redefined constant g*. As in c -p 
Remark 4.2, in the queueing system with one permanent customer, c* - p* is the 
average capacity per unit of time assigned to the permanent customer. Remark 4.3 
only needs to be modified to account for the transitions with instantaneous rewards. 
This can be done, as in (10), by "attaching" the instantaneous rewards to the birth of 
a nest of children. This way, the analysis can proceed even if the periods of service 
unavailability are generally distributed. 

6. THE PROPORTIONALITY RESULT 

We now discuss the proportionality between the conditional mean sojourn 
time and the amount of work brought into the system, in processor-sharing systems 
without random environment. This result is well known for the M/G / 1 queue with 
processor sharing, see for instance Sakata et al. (7, Formula (10)), Wolff (28), or 
Kleinrock (8, Formula ( 4.17)). Cohen (9, Formula (7 .27)) found the proportionality 
property for the M/G /I/ L queue with processor sharing and queue-dependent total 
service capacity (there called generalized processor sharing). 

In this section we explain why this proportionality property holds, using the 
results from the random time-change method of Section 4. Note that since there is 
no random environment, this discussion only applies to the case with S0 = 0: If 
c<k> = 0 for some k :::: 1, then the states with less than k customers are transient. 
For the M/G/1 queue with queue-dependent service rates the same arguments 
were used by Foley and Klutke (23). We show that the arguments also apply to 
the M/G / 1 / L processor-sharing system with queue-dependent total service rates. 
A related discussion for the M/G/1 queue is given in Van den Berg (29, Remark 
5.10, p. 115), and Van den Berg and Boxma (30, Remark 8.2). 



SOJOURN TIMES IN QBD PROCESSES WITH PROCESSOR SHARING 81 

In the absence of a random environment and with queue-independent ar
rivals (at rate A.), the queue length process {X(t), t ::-: O} is an ordinary birth-death 
process. The queueing models of Remark 3.4 (M/M/ 1 / L and M/M/ 1) possess 
these properties. Note however, that (unlike the M/M/ 1 / L and M/M/ 1 models) 
the service rates may be queue-dependent, that is, the c<kl may be different for 
different k = 1, 2, ... , L. The steady-state probabilities rrk. k = 0, 1, ... , L of the 
process X(t), and the steady-state probabilities rrk', k = 1, 2, ... , L-not including 
k = 0-of the process X*(t), satisfy: 

* 1 (k) rrkkc "'Trk-1, k=l,2, ... ,L, 

where the symbol ,...., means equality up to multiplication by a constant (indepen
dent of k). We already saw in Remark 4.2 that the steady-state distribution of 
the process (X(a), Y(a)) is given by the vector c*~p• Tr*R. For the present case, 
in the absence of a random environment, we thus have fork = 1, 2, ... , L, that 
P {X = k} = c'~P' rrk' "~ 1 , and hence, P {X = k} = t~~1L. This property has an 
interesting consequence: Suppose the queueing system under consideration is in 
steady state, and let the random variable X have this distribution: P { X = k} = rrk. 
Since we assumed Poisson arrivals, from the PASTA (Poisson Arrivals See Time 
Averages) property, the number of customers seen by a newly arrived customer is 
distributed as X. Condition on the fact that the new customer is accepted, which 
occurs with probability P { X < L} = 1 - rr L. Let the amount of work of the new 
(tagged) customer be r > 0, and denote his sojourn time by the random variable 
V(r). Theorem 4.1 tells us that V(r) is distributed as 

1r X(a) 
(X(a)) da, 

a=O C 

with X0 distributed as X + 1 given that X < L. However, this distribution is the 
steady-state distribution of the process X(a), and so P {X(a) = k} = I~rrl rrk-L· 
k = 1, 2, ... , L, for any a E [0, r]. Therefore, in steady state we find for the mean 
of the sojourn time V ( r) (of an accepted customer with service requirement r ): 

E[V(r)] = g*r. 

So, for the model with exponentially distributed service requirements we have ex
plained why this proportionality occurs, namely because the stationary distribution 
of X (a) is the same as that of X given that X < L. We can generalize our arguments 
to the M / G / 1 / L queue with processor sharing and queue-dependent service rates, 
cf. Cohen (9, Formula (7.27)) (for L = oo this was done in (23)). We give a brief 
outline of the proof: If the service requirements are distributed according to the 
distribution B(x), x ::-: 0, then 

A.k k 

Pk(X1, ... , xk) =Po k <"l n (1 - B(xj)), k = 1, 2, ... , L, 
nj=l c 1 j=' 

is the density function of there being k customers in the system with respective 
remaining service requirements x 1, .•. Xb see Cohen (9, Formula (5.9)). For this 
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model we may apply the random time change to the system with one permanent 
customer, as described above: we "shrink" the time-scale by a factor kjc<k) when 
there are k customers in the system. Viewing the resulting process as a branching 
process, then Pk(x1, ... , xk), fork < L, is also the density function (up to normal
ization) of there being k + 1 living individuals, the k non-permanent ones having 
respective remaining life times x1, ••• , Xk· It is beyond our purposes to work out 
the details at this point. 

Remark 6.1. If we allow the arrival rate to depend on the queue length then the 
proportionality property is lost. The steady-state distribution seen upon arrival, 
or at arbitrary time points, no longer equals the steady-state distribution of the 
time-changed process. Under exponentiality assumptions this is easily checked by 
comparing the balance equations. 

Remark 6.2. A related result regarding the proportionality property was obtained 
in (9, Theorem 5.3). The model studied there is a closed queueing model with 
L customers, who are served according to the processor-sharing discipline with 
queue-dependent service rates. After having completed his service, a customer 
waits for a generally distributed time, and then enters the system again with a 
new (independently drawn) service requirement. It is shown that if an exogenous 
customer with an amount of work T is brought into the system in steady state, his 
mean sojourn time is proportional tor. In this model, the arrival process is obviously 
queue-dependent, and hence the proportionality result seems to contradict Remark 
6.1. However, the considered model in (9) is fundamentally different from the above 
models: The exogenous customer may cause the number of customers in service 
to become L + 1. Moreover, the arrival process is still determined by the ordinary 
customers, so that the queue-dependent arrivals in the original process and the 
time-changed process "cancel out". Again, under exponentiality assumptions this 
is easily seen from the balance equations. 

7. COMPUTATION AND APPROXIMATION 

We return to the general queueing model of Figure 1. Let V ( r) be the sojourn 
time of a customer with an amount of work r, arriving to the system in steady state. 
In this section we show how E[V(r)] can be computed. Computation of transient 
rewards in Markov-Reward models has received quite some attention in the area 
of peiformability of computing systems, see for instance Smith et al. (16) for 
mean transient rewards (which correspond to E[V(r)]. The issue of computation 
of the entire distribution was addressed in Iyer et al. (15), Reibman et al. (17), 
Donatiello and Grassi (31), Nabli and Sericola (32), and De Souza e Silva and Gail 
(33). 

Remark 7.1. In our presentation we required>.. (L) = 0 so that no customers are lost. 
In many applications the arrival process is a Poisson process, and customers arriving 
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when there are L other customers present are lost. Then it must be explicitly stated 
that the sojourn time of a customer is conditional on this customer not being rejected. 
As said before, this conditioning is inherent to our formulation. Poisson arrivals are 
thus incorporated by defining A. (L) = 0 and >.. (k) = J..., k = 0, 1, ... , L - 1. 

7 .1. Computation 

For (k, i) E S*, denote by ak.i the steady-state probability that the system is in 
state (k, i) immediately after the arrival of a customer. The ak.i are the steady-state 
probabilities of a discrete-time Markov chain with transition probability matrix: 

y0.1) y0.0) 0 
y(2,2) y<2. I) y(2,0J 

A ·-.-

y<L,L) 

Here, for k = 1, ... , L - 1, 

yck,Ol = [ -Q~klr 1 A (kl, 

and fork= 1, ... , L; n = 1, ... , k, 

0 
0 

y<L-1.2) T(L-l.I) y<L-1,0) 

y<L.2) T(L, I) 

n-1 

y<k.n> = n ([-Q~-m>r 1 Mck-ml)[-Q~-n)rlA<k-n>. 
m=O 

We now show how E[V(r)] can be computed after having determined the steady
state probabilities immediately after the arrival of a customer. We focus again 
on the case S0 = 0, see Remark 7.3 below for the case S0 # 0. Our starting 
point is the set of differential equations and initial conditions given in Equa
tions (10) and (11). Obviously, for n =:::: 1, 

dn 
-(E[V: ·(r)]) . I - = ('R.-IQ*)n-l'R.-11 drn k,1 k,1 r-0 (18) 

We use Jensen's method, see also Reibman et al. (17) and Donatiello and Grassi 
(31 ), to uniformize the generator R.- 1 Q*, and define the probability matrix 

1 
P* :=I+ -'R.- 19*, 

T} 

with the scalar ri > 0 being equal to minus the entry with largest absolute value 
(along the diagonal) of 'R.- 1Q*. Assuming the Taylor-series of E[Vi,;(r)] around 
r = O exists (at the end we verify the result), and using Equation ( 18) we may find: 

(E[Vi,;(r)])k,; = ~ f (1 -e-11 r t (ri:?k) (P*/R.- 11. 
rJ 1=0 k=O . 

(19) 
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Noting that k! ~ (l + l)!(k - l - 1)!, when 0 < l + 1 s k, we have: 

l k '\'00 (T/d ( )/+l 
0 < 1 _ e-T/T "°"' (17r) = L..k=t+1 k! < 17r . 

- ~ k ! eT/T - (l + 1) ! 

and hence the infinite sum in Equation (19) exists for every r ~ 0. Moreover, by 

substitution it may be seen that it satisfies the differential equations and initial 

conditions given in Equations (10) and (11). 
Expression (19) for the E[Vi,i(r)] provides a numerically stable algorithm, 

since it only involves multiplication and addition of positive terms. Within the 

summation one needs to evaluate the "coefficients" e-'lr L~Ht (ry;t, which can be 

done accurately by proper scaling of the terms (to avoid problems when 17r is large). 

Remark 7.2. Instead of starting from the differential Equations ( 10), we may 

start from the final Expression (8) in Corollary 3.3. Again we may use Jensen's 

uniformization method to derive: 

(E[Vk,i(r)fo,i = * r * 1 + '"'( - e-ryr exp{17rP*h· 
c - p 

(20) 

However, for this approach one first needs to compute the vector/. Moreover, 

the vector 'Y contains negative elements that may cause the evaluation of e-ryr 

exp{17rP*h to be numerically unstable. No problems were encountered, though, 

in the numerical experiments of Nunez Queija et al. (4), where both methods were 

used to compute the exact value of E[Vk,i(r)]. In all cases the relative difference 

between the outcomes was of the order 10-8 or smaller (with values of r up to 10 

times the mean 1 / µ ). 

Remark 7.3. When S~ -:fa 0 we may proceed in a similar way. The starting point 

is then the set of differential equations mentioned in the proof of Theorem 5.3. 

For (k, i) ES~, the E[Vk,i(r)] are found as before. However, first the E[u 1.1], for 

(l, j) E S~, and the probability matrix U(O), need to be computed. Using Lemma 

5.2, from the E[Vi,;(r)], (k, i) Es:, also the E[V/,j(r)], for (l, j) ES~ can be 

computed. Note that E[V/,j(O+ )] = E[u!,j] > 0, for (l, j) E S~. As a consequence, 

E[V(O+)] > 0, unless Pi'.') 1l = 0, V(l, j) ES~, i E £U-ll. 

7 .2. Approximation 

Although Expression ( 19) provides a numerically stable algorithm to compute 

the E[Vk,;(r)], in general this task requires considerable computation time and 

memory space. Therefore it would be convenient to have a good approximation 

which is less computationally demanding. From Corollary 3.4 we have for the 
mean of V(r): 

lim E[V(r)] - r = y := "°"' ak iYk ;. 
T-+00 C* - p* ~ , , 

(k,i)ES* 
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- asymptote 

1/µ T 

Figure 3. Example with N = 5. 

This asymptotic relation can be used for a first approximation, that is, E[ V ( T)] ~ 
c'~p' + y. Indeed, when the number of states of the random environment is small 
(N:::: 5), the asymptotic result may serve as a useful approximation for E[V(r)]. 
For this case, the exact value and the asymptote typically look as shown in Figure 3. 
However, we shall see in the example below that for larger values of N (;::::30) the 
asymptote may give a poor approximation, whereas the tangent in the origin is an 
excellent approximation of E[V(r)], even for relatively large values of T (Fig. 4). 

300 

--<>--E[V(r)] 

-8- asymptote 
250 

- tangent in origin 

200 

150 

100 

50 

100 200 300 400 500 600 700 800 900 1000 
T 

Figure 4. Asymptote and tangent line of E[V(r)]. 
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Example. In Nunez Queija et al. (4) the results are applied to a telecommuni
cations model. There, the capacity available to the so-called elastic customers in 
a processor-sharing queue depends on the number of another type of customers 
(stream customers) in the system. Stream customers have preemptive priority over 
elastic customers. The state of the random environment Y(t) is given by the number 
of stream customers and behaves as an independent M/M/ N / N queue with arrival 
rate )..Cs) = 0.81 customers per second, mean service time h(s) = 10 s and N = 
31. Elastic customers also arrive according to a Poisson process with rate )... Cel = 
2.17 customers per second and have mean service requirement 1 / µ. = 50 Mbit 
(service requirements correspond to data file sizes). Stream customers require a 
bandwidth 5 Mbit/s, while individual elastic customers can use at most a peak rate 
r~l = 10 Mbit/s. The total bandwidth is 155 Mbit/s, hence, the maximum number 
of stream customers N = 155 /5 = 31. E[ V ( r )] (the mean sojourn time of elastic 
customers) is displayed in Figure 4. For values of r up to an order of magnitude 
larger than the mean service requirement, the tangent in the origin is closer to the 
actual curve than the asymptote. 

The slope o of the tangent line is equal to the initial expected "delay per unit 
of service" upon arrival of a customer in steady state: 

(21) 

Note that when the tangent line in the origin is close to the exact value, the mean of 
V(T) is "almost" proportional tor, the proportionality constant being given by 8. 

In practice it is not clear beforehand which of the two approximations (the 
asymptote or the tangent in the origin) is best, the more since the quality of both 
approximations also depends on the transition rates of the random environment. 
However, in (4) it is observed that both approximations are an upper bound for 
E[V(r)], and that for practical purposes the minimum of the two gives a useful 
approximation. Therefore we propose to use the following refined approximation, 
by combining the two previously mentioned ones (for the ~ase that S~ = 0). 

E[V(r)]::::::: min( i + y, or). 
c* - p* 

The experiments in (4) support this approximation, which only depends on steady
state characteristics and can therefore be efficiently computed. The ap>proximation 
can be improved by computing more than the first coefficient (8) of the Taylor
series. This may be done iteratively by using Expression (18), until two subsequent 
approximations are considered to be close enough. Note however that this procedure 
is not guaranteed to be numerically stable, since positive and negative numbers are 
added in each step. Therefore the roundoff errors may accumulate significantly in 
the iterative procedure. 

Remark 7.4. The models evaluated in ( 4) form a special subclass of the general 
framework depicted in Figure 1. In particular, the capacity allocated to a single 
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customer, cjk) / k, is a nonincreasing function of k (the total number of customers). 
For practical situations this seems to be a reasonable assumption. 

8. GENERALIZATIONS 

In Section 2 we made some assumptions that are not essential for the analysis, 
but facilitated the presentation and discussion. In this section we relax some of the 
assumptions and show how the resulting models either fit into the framework, or 
how they can be included in an analogous but generalized analysis. A general draw
back in these generalizations is that the QBD structure, which was convenient for 
computation of various entities, is lost. This may render computations impractical 
for realistic system sizes.* However, this section shows that qualitative properties 
derived within the QBD setting are retained by several generalizations. In particular 
we find in all cases that the conditional mean sojourn time as a function of the amount 
of work r, has an asymptote for r -+ oo. 

8.1. Service Requirements of Phase-Type 

We may allow the service requirements of customers in the queueing system 
of Figure 1 to be of phase-type. The class of phase-type distributions was described 
by Neuts (12, Chapter 2). In order to preserve the Markovian description of our 
model, some additional state-descriptors must be added. For the analysis of the 
sojourn time conditioned on the amount of work, in the queueing model with one 
permanent customer, a state is determined by the number of customers (excluding 
the permanent one) in each service phase together with the state of the random 
environment. Thus, if the service requirement distribution consists of P phases, 
then the state space is given by: 

0 :'S k1 + k1 + ... + kp :'SL - I, l 
k1E{0,l,2,. .. ,L-l}, . 
i E {I, 2, 3, ... , N} 

Here the QBD structure is lost. Note that when studying the process with one 
permanent customer, the role of the random environment and the service phases 
of nonpermanent customers is not fundamentally different. We may redefine the 
random environment such that it also contains the service phases of non permanent 
customers, and then view the resulting model as a special case of the earlier model 
with L = 1. 

*These effects have not been studied with rigor in this paper. Within the QBD setting, systems with 

L '°"' 1500 and N ""'30 could be evaluated within minutes on a regular personal computer (Intel Pentium 

processor). 



88 NUNEZ-QUEUA 

For the representation of sojourn times (not conditioned on the amount of 
work) as absorption times in an appropriate Markov process, we need to add yet 
another descriptor to the state space, namely the phase of the tagged customer's 
service. Then Theorem 3.1 again applies. 

8.2. Other Service Disciplines 

Our model of Section 2 also includes other service disciplines. For instance 
discriminatory processor sharing (sometimes called weighted processor sharing), 
which contains (ordinary) processor sharing as a special case. This discipline was 
introduced by Kleinrock (6) and already studied via Crump-Mode-Jagers branch
ing processes by Grishechkin (25). Discriminatory processor sharing is of great 
interest for applications. For this service discipline several classes of customers 
are identified, numbered as 1, 2, ... , J. With customer class j a weight w j > 0 is 
associated. If there are k j customers of class j, j = 1, 2, ... , J, then each of these 
gets a fraction Wj/(k1 w1 + · · · + k1w1 ) of the total (available) capacity. In our 
model this capacity may be a function of the state of a random environment and the 
numbers k1, j = 1, 2, ... , J. Ifwe are interested in the (conditional) sojourn time 
of customers of class 1, then we may view the model in the framework of Section 
2 by extending the random environment with the tuples (k2, ..• , k1) containing the 
number of customers of all other classes. 

As in Section 8.1, we may allow for phase-type distributions for each of the 
customer classes. In our state description we need to record the number of customers 
of any class in each particular service-phase. The number of (other) customers 
of the class under consideration in each possible service-phase also needs to be 
incorporated in the random environment. 

Similarly, other service disciplines-including FCFS and LCFS (Last 
Come First Served)-may be incorporated by a proper definition of the random 
environment. 

8.3. Infinite State Space 

In Section 2 we assumed L < oo and N < oo. Here we discuss the case where 
either of these, or both, are infinite. The results obtained in this paper (article) may 
be generalized to infinite state spaces, under recurrence conditions that are stronger 
than requiring ergodicity. For instance, the existence of the vector 'Y in Corollaries 
3.3 and 5.4 is not ensured if we only assume ergodicity. This issue is related to con
vergence of the value iteration algorithm for Markov-Reward (decision) processes 
on countable state spaces, see for instance Sennott (34). 

In applications, it is usually the case that the c}k) are uniformly bounded 
from above, so that the rewards in the Markov-Reward processes of the proofs 
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of Corollaries 3.3 and 5.4 are uniformly bounded. In that case the vector 'Y exists 
under the assumption of ergodicity. To see this we may proceed as in (19, p. 188) 
to construct a relative reward vector that satisfies the conditions given for 'Y in 
Corollaries 3.3 and 5.4. In the same way, we may show that the mean of these 
constructed relative rewards exists and is finite, so that we may normalize as required 
in Corollaries 3.3 and 5.4. 

Moreover, in applications when L = oo and N < oo, it is often the case that 
the QBD process with generator Q given by Definition (2) is homogeneous beyond 
some level, that is, there is a positive integer K such that Mlk> = M, Q~kl = Qc1, 
and A lk) = A, for all k :::: K (see for instance Nunez Queija et al. (4 ). The ergodicity 
condition is then pAl < pMl, with p[M + Qd +A] = 0, where 0 is a vector of 
zeroes, see Neuts (12, Theorem 3.1.1 ). 

We finally remark that for infinite generators, the exponential function as in 
Equation (7) may be defined by its Taylor-series representation. 

9. CONCLUDING REMARKS 

We studied sojourn times of customers in a Markovian queueing system with 
processor sharing, in which arrival and service rates may depend on the number 
of customers already in the system and on the state of a random environment. 
The random environment itself may be dependent on the number of customers in 
the system. For this model we first represented the sojourn time as the absorption 
time in an appropriate Markov process. Pa1ticular attention was paid to sojourn 
times conditioned on the amount of work. For these, we found a closed-form so
lution for the LST, and in particular for its mean. We showed that as a function 
of the service requirement, the conditional mean sojourn time has a linear asymp
tote. By means of the method of random time change, the conditional sojourn 
times were represented by rewards in a particular Markov-Reward process. The 
latter was shown to be closely related to the traditional branching process ap
proach to study processor-sharing systems with constant total service capacity. For 
those systems it is known that the conditional mean sojourn time is proportional 
to the amount of work. This property (which does not hold for our model with 
fluctuating service capacity) was explained by comparing the steady-state distribu
tions of the original queueing model and the model obtained by the random time 
change. 

We discussed how the conditional mean of the sojourn times as a function 
of the service requirement may be computed. A numerically stable algorithm was 
developed, but the computational complexity calls for reliable and efficient ap
proximations. Numerical results motivated an approximation that only depends on 
steady-state characteristics. 

The analysis was shown to include the case of service requirements with a 
phase-type distribution. We also saw that the more general discriminatory 
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h · 1·ce discipline fits into our framework. We discussed exten-processor-s anng serv . . . · fi ·t t te spaces and showed that for bounded service rates the analysis s1ons to m m e s a , 
still applies. 
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