22,217 research outputs found

    Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale

    Get PDF
    Soil organic carbon (SOC) plays a major role in the global carbon budget. It can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Improving the tools that model the spatial distributions of SOC stocks at national scales is a priority, both for monitoring changes in SOC and as an input for global carbon cycles studies. In this paper, we compare and evaluate two recent and promising modelling approaches. First, we considered several increasingly complex boosted regression trees (BRT), a convenient and efficient multiple regression model from the statistical learning field. Further, we considered a robust geostatistical approach coupled to the BRT models. Testing the different approaches was performed on the dataset from the French Soil Monitoring Network, with a consistent cross-validation procedure. We showed that when a limited number of predictors were included in the BRT model, the standalone BRT predictions were significantly improved by robust geostatistical modelling of the residuals. However, when data for several SOC drivers were included, the standalone BRT model predictions were not significantly improved by geostatistical modelling. Therefore, in this latter situation, the BRT predictions might be considered adequate without the need for geostatistical modelling, provided that i) care is exercised in model fitting and validating, and ii) the dataset does not allow for modelling of local spatial autocorrelations, as is the case for many national systematic sampling schemes

    The application of GIS based decision-tree models for generating the spatial distribution of hydromorphic organic landscapes in relation to digital terrain data

    Get PDF
    Accurate information about organic/mineral soil occurrence is a prerequisite for many land resources management applications (including climate change mitigation). This paper aims at investigating the potential of using geomorphometrical analysis and decision tree modeling to predict the geographic distribution of hydromorphic organic landscapes in unsampled area in Denmark. Nine primary (elevation, slope angle, slope aspect, plan curvature, profile curvature, tangent curvature, flow direction, flow accumulation, and specific catchment area) and one secondary (steady-state topographic wetness index) topographic parameters were generated from Digital Elevation Models (DEMs) acquired using airborne LIDAR (Light Detection and Ranging) systems. They were used along with existing digital data collected from other sources (soil type, geological substrate and landscape type) to explain organic/mineral field measurements in hydromorphic landscapes of the Danish area chosen. A large number of tree-based classification models (186) were developed using (1) all of the parameters, (2) the primary DEM-derived topographic (morphological/hydrological) parameters only, (3) selected pairs of parameters and (4) excluding each parameter one at a time from the potential pool of predictor parameters. The best classification tree model (with the lowest misclassification error and the smallest number of terminal nodes and predictor parameters) combined the steady-state topographic wetness index and soil type, and explained 68% of the variability in organic/mineral field measurements. The overall accuracy of the predictive organic/inorganic landscapes' map produced (at 1:50 000 cartographic scale) using the best tree was estimated to be ca. 75%. The proposed classification-tree model is relatively simple, quick, realistic and practical, and it can be applied to other areas, thereby providing a tool to facilitate the implementation of pedological/hydrological plans for conservation and sustainable management. It is particularly useful when information about soil properties from conventional field surveys is limited

    GlobalSoilMap.net - From planning, development and proof of concept to full-scale production mapping

    Get PDF
    The GlobalSoilMap.net project aims to produce predictions of nine key soil properties at continuous depth intervals at a spatial resolution of 90 m for the entire world. These maps of soil properties will be produced by a participants working under the coordination of regional node leaders with responsibility for organizing and delivering results for eight defined geographic regions of the world. This paper identifies and discusses the technical impediments to moving towards commencement of operational production mapping. These are: i) agreement on specifications for all products, ii) location, digital capture and harmonization of legacy soil data, iii) assembly of covariate databases, iv) documentation of prediction methods, v) specification of data model(s) to use to capture, store and disseminate maps and data, vi) selection of cyber-infrastructure to support map production and dissemination vii) end user surveys assessment and verification, and vii) identification of methods for assessing the uncertainty and accuracy of predictions. Actions undertaken to date to address these challenges are presented and progress is evaluated. There are no significant technical reasons for not moving towards planning and implementing operational production mapping

    Visible and near infrared spectroscopy in soil science

    Get PDF
    This chapter provides a review on the state of soil visible–near infrared (vis–NIR) spectroscopy. Our intention is for the review to serve as a source of up-to date information on the past and current role of vis–NIR spectroscopy in soil science. It should also provide critical discussion on issues surrounding the use of vis–NIR for soil analysis and on future directions. To this end, we describe the fundamentals of visible and infrared diffuse reflectance spectroscopy and spectroscopic multivariate calibrations. A review of the past and current role of vis–NIR spectroscopy in soil analysis is provided, focusing on important soil attributes such as soil organic matter (SOM), minerals, texture, nutrients, water, pH, and heavy metals. We then discuss the performance and generalization capacity of vis–NIR calibrations, with particular attention on sample pre-tratments, co-variations in data sets, and mathematical data preprocessing. Field analyses and strategies for the practical use of vis–NIR are considered. We conclude that the technique is useful to measure soil water and mineral composition and to derive robust calibrations for SOM and clay content. Many studies show that we also can predict properties such as pH and nutrients, although their robustness may be questioned. For future work we recommend that research should focus on: (i) moving forward with more theoretical calibrations, (ii) better understanding of the complexity of soil and the physical basis for soil reflection, and (iii) applications and the use of spectra for soil mapping and monitoring, and for making inferences about soils quality, fertility and function. To do this, research in soil spectroscopy needs to be more collaborative and strategic. The development of the Global Soil Spectral Library might be a step in the right direction

    Digital soil mapping, downscaling and updating conventional soil maps using GIS, RS, statistics and auxiliary data

    Get PDF
    Spatial distribution of soil types and soil properties in the landscape are important in many environmental researches. Conventional soil surveys are not designed to provide the high-resolution soil information required in environmental modelling and site-specific farm management. The objectives of this study were to investigate the relationship between soil development, soil evolution in the landscape, updating legacy soil maps and pedodiversity in an arid and semi-arid region. The application of Digital Soil Mapping (DSM) techniques was investigated with a particular focus to predict soil taxonomic classes and spatial distribution of soil types by soil observations and covariate sets representative of s,c,o,r,p,a,n factors. In the first study, focus is on establishing relationships between pedodiversity and landform evolution in a 86,000 ha region in Borujen, Chaharmahal-Va-Bakhtiari Province, Central Iran. From an overview study, we could conclude that landform evolution was mainly affected by topography and its components. A second study compares various DSM-methods and a conventional soil mapping approach for soil class maps in terms of accuracy, information value and cost in central Iran. Also, the effects of different sample sizes were investigated. Our results demonstrated that in most predicted maps, in DSM approaches, the best results were obtained using the combination of terrain attributes and the geomorphology map. Furthermore, results showed that the conventional soil mapping approach was not as effective as DSM approach. In the third study, different models of the DSM approach were compared to predict the spatial distribution of some important soil properties such as clay content, soil organic carbon and calcium carbonate content. Among all studied models, the terrain attribute “elevation” is the most important variable to predict soil properties. Random forest had promising performance to predict soil organic carbon. But results revealed that all models could not predict the spatial distributions of clay content properly. The minimum area of land that can be legibly delineated in a traditional (printed) map is highly dependent upon mapping scale. For example, this area at a mapping scale of 1:24,000 is about 2.3 ha but at a mapping scale of 1:1,000,000 it is about 1000 ha. A mapping scale of 1:1,000,000 is just too coarse to show a fine-scale pattern or soil type with any degree of legibility, but finer-scale soil maps are more expensive and time-consuming to produce. Thus, spatial variation is often unavoidably obscured. The fourth study of this dissertation focuses on downscaling and updating soil map methods. Thus, the objectives were to apply supervised and unsupervised disaggregation approaches to disaggregate soil polygons of conventional soil map at a scale of 1: 1,000,000 in the selected area. Therefore, soil subgroups and great groups were selected because it is a basic taxonomic level in regional and national soil maps in Iran. In general, we conclude that DSM approach and also disaggregation approach are capable to predict soil types and properties, produce and update legacy soil maps. However, still a number of challenges need to be evaluated e.g. influence of expert knowledge on CSM approach, resolution of ancillary data, georeferenced legacy soil samples data to validate disaggregated soil maps
    • 

    corecore