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P.O. Box 50, 8830 Tjele, Denmark

Received: 21 December 2009 – Published in Hydrol. Earth Syst. Sci. Discuss.: 18 January 2010
Revised: 11 May 2010 – Accepted: 17 May 2010 – Published: 1 June 2010

Abstract. Accurate information about organic/mineral soil
occurrence is a prerequisite for many land resources man-
agement applications (including climate change mitigation).
This paper aims at investigating the potential of using geo-
morphometrical analysis and decision tree modeling to pre-
dict the geographic distribution of hydromorphic organic
landscapes in unsampled area in Denmark. Nine primary
(elevation, slope angle, slope aspect, plan curvature, pro-
file curvature, tangent curvature, flow direction, flow accu-
mulation, and specific catchment area) and one secondary
(steady-state topographic wetness index) topographic param-
eters were generated from Digital Elevation Models (DEMs)
acquired using airborne LIDAR (Light Detection and Rang-
ing) systems. They were used along with existing digital
data collected from other sources (soil type, geological sub-
strate and landscape type) to explain organic/mineral field
measurements in hydromorphic landscapes of the Danish
area chosen. A large number of tree-based classification
models (186) were developed using (1) all of the parame-
ters, (2) the primary DEM-derived topographic (morpholog-
ical/hydrological) parameters only, (3) selected pairs of pa-
rameters and (4) excluding each parameter one at a time from
the potential pool of predictor parameters. The best classifi-
cation tree model (with the lowest misclassification error and
the smallest number of terminal nodes and predictor parame-
ters) combined the steady-state topographic wetness index
and soil type, and explained 68% of the variability in or-
ganic/mineral field measurements. The overall accuracy of
the predictive organic/inorganic landscapes’ map produced
(at 1:50 000 cartographic scale) using the best tree was esti-
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mated to be ca. 75%. The proposed classification-tree model
is relatively simple, quick, realistic and practical, and it can
be applied to other areas, thereby providing a tool to facil-
itate the implementation of pedological/hydrological plans
for conservation and sustainable management. It is particu-
larly useful when information about soil properties from con-
ventional field surveys is limited.

1 Introduction

Detailed soil spatial information is indispensable for land re-
sources management and environmental modeling. Distribu-
tion patterns of organic/mineral soil occurence have a large
potential to affect global climate, and the international efforts
for using soils and vegetation as carbon sinks are rapidly in-
creasing (IPCC, 2000). Changes in soil organic distribution
are attributed to both natural processes and human activities,
the latter being widely recognized in recent years. Land use
changes, including deforestation, biomass burning, draining
of wetlands (being usually humus-rich), ploughing, use of
fertilizers and other agricultural practices, are regarded as
the main factors causing loss of soil organic carbon (SOC)
and the emission of CO2 into the atmosphere. These changes
can be significant in hydromorphic grasslands and croplands
where intensive artificial drainage activities are carried out.
This is particularly true in the case of Denmark with an im-
portant reduction of the total wetland area during the past
200 years as a result of much drainage activity (digging of
drainage ditches and introduction of tile drainage).

As part of international efforts to stabilize atmospheric
greenhouse gas concentrations, Denmark (like several
other countries) is committed to establish inventories of
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organic/mineral soil distribution in the frame of Kyoto proto-
col. Modeling tools of diverse soil properties (including or-
ganic/mineral soil occurence) require more information than
available even in detailed soil maps. Digital Soil Mapping
has been tested in a wide range of soil mapping contexts
at different scales throughout the world (McBratney et al.,
2003; Dobos et al., 2006; Grunwald, 2006). It has been
used to understand and quantify the relationships between
soils and their environmental attributes, mostly derived from
exhaustive and easy-to-access datasets such as Digital Eleva-
tion Models (DEMs) and remote sensing imagery. According
to Bishop and Minasny (2005) and McBratney et al. (2003),
in almost 80% of digital soil mapping projects DEMs are
used as the most important data source to derive landforms
and run predictions of soil properties. Topographic attributes
control the differential distribution of water, sediments, and
dissolved material, which in turn result in soil differentiation
(Pachepsky et al., 2001).

Soil landscape modeling has been successfully applied to
predict soil variability in small landscapes of less than 100
ha (Moore et al., 1993; Gessler et al., 2000; Florinsky et
al., 2002). These studies have demonstrated that combina-
tions of one to five terrain attributes derived from DEMs can
explain 20 to 88% of the variability of selected soil prop-
erties. The empirical relationships between soil properties
and terrain attributes are unique to each soil property and
each soil-forming environment. Recent soil landscape pre-
dictive algorithms such as neural networks, fuzzy logic or
tree model tools arose mainly from data-mining and machine
learning fields, also referred to as knowledge discovery in a
database in its overall process (Fayyad et al., 1996). Soil
landscape prediction from existing maps involves recovering
the mental model used by the soil surveyor to set up the map
(Lagacherie et al., 1995; Bui, 2004). This is a reverse soil
mapping process and has broad relevance to any other appli-
cation of knowledge discovery from natural resource maps
(Qi and Zhu, 2003). Many researchers have utilized other
statistical methods, such as multiple regression, stepwise re-
gression, stepwise principal component regression, and cor-
relation analysis to study the relationships between DEM-
derived terrain attributes and different soil attributes, but in
most cases for specific, localized landscapes (Moore et al.,
1993; Dobos et al., 2000; Gessler et al., 2000; Egli et al.,
2006a; Hengl, 2009).

Classification tree analysis (CTA) is a modeling tech-
nique that is being used increasingly (Henderson et al., 2004;
Lawrence et al., 2004), being dedicated to the prediction of
categorical data (classes of soil properties). It significantly
enhances the ability of the DEM-derived variables to predict
soil attributes (e.g. organic/mineral soil occurrence). CTA
has several advantages that seem to suit well soil-landscape
modelling applications. One of the most interesting features
is that they are non-parametric, which means that no assump-
tion is made regarding variable distribution (Breiman, 2001).
Thus, it avoids variable transformation caused, for instance,

by bi-modal or skewed histograms, which are frequent in
soil class signatures (Lawrence et al., 2004). They are non-
sensitive to missing data, perform automatic variable subset
selection, are not sensitive to the inclusion of a large number
of irrelevant variables, and finally, they can handle quanti-
tative and categorical data, making it possible to integrate
DEM-derived variables and indexes together with geology
or soil categorical layers (Breiman, 2001; Henderson et al.,
2004; Lawrence et al., 2004). However, in the built clas-
sification trees, the uncertainties of the classes in each one
of their leaves can be explored. Efficiency of using CTA
for predictive soil landscape mapping was demonstrated in
a few studies at regional and subregional scale (Moran and
Bui, 2002; Scull et al., 2005). Recent studies showed their
potential for land cover mapping from remote sensing images
analysis (Friedl et al., 1999; Lawrence et al., 2004), geomor-
phological mapping (Luoto and Hjort, 2005) and soil erosion
occurrence (Bou Kheir et al., 2008).

As mentioned by Luoto and Hjort (2005), CTA was prac-
tically used in two linked but distinct purposes: induction
and prediction. Induction-oriented studies used CTA to un-
cover the relationship between soil units or properties and
environmental attributes, to identify the discriminant vari-
ables and to compare rules determined by the model with ex-
pert knowledge-based rules (McKenzie and Ryan, 1999; Bui
et al., 2006). On the other hand, prediction-oriented stud-
ies used quantitative relationships between the soil response
variables and the environmental soil-forming factors to pre-
dict soil landscape patterns over unvisited areas (Lagacherie
et al., 1995; Moran and Bui, 2002; Scull et al., 2005).

The purpose of this study is to implement CTA and eval-
uate its ability to provide accurate soil landscape prediction
and more precisely to determine the geographic distribution
of hydromorphic organic landscapes (target variable being
the organic/mineral soil occurence) depending on the exist-
ing field surveys’ data collected during the last 60 years at
an unsampled area in Denmark from mapped environmen-
tal variables. Our hypothesis was that spatial patterns of or-
ganic ditribution in hydromorphic landscapes could be pre-
dicted from spatial patterns of terrain attributes that have
been shown to influence soil-forming processes. Prediction
of hydromorphic organic landscapes will have implications
for the proper management of marginal and environmentally
sensitive areas. Understanding how soil organic distribution
varies across landscape positions based on limited field sam-
ples has become the focal point of much environmental re-
search nowadays.

2 Study area description

The chosen study area, covering about 1812 km2, is located
in southern Denmark (Fig. 1). It has been selected due
to the strong link between land use on historical maps and
soil internal drainage (Dalsgaard, 1997), which induces the
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Fig. 1. Soil map of the study area within Denmark (Madsen et al., 1992).

accumulation of organic carbon on poorly drained Danish
soils (Madsen et al., 1992). The climate is temperate with
mean annual temperature ranging from 0 to 16◦C, and a
West-East gradient in precipitation oscillating between 900
and 600 mm/year (1961–1990). 95% of parent materials
have glacial and fluvio-glacial origin. Approximately 65%
of these materials were deposited during the last glacial pe-
riod (between 10 000 and 100 000 years), and 20% during
the previous glacial period (more than 110 000 years ago).
However, the deposits from that period were all strongly re-
distributed by periglacial processes, and evidence of earlier
soil formations is extremely rare. The area is representative
of a broad region of landscapes in Denmark (i.e. Weichsel
moraine landscape, Glacifluvial plains, Saalian landscape,
Aeolian landscape, and Post glacial marine deposits). The
elevation varies from 0 m in the western part to 85 m in the
eastern part. The area has been intensively cropped since the
Middle Ages. Currently, 70% of the area is cultivated, 10%
forested and the rest urbanized.

3 Materials and methods

The spatial prediction of hydromorphic organic landscapes
was realized in several steps, combining existing soil sur-
vey collection, geomorphometrical analysis and decision tree

modeling. Some existing field surveys were collected for
specifying organic soils at visited locations. The obtained
field samples’ layer information (point location) was then
intersected with maps of predictor parameters (as extracted
from DEMs and other sources). A large number of un-pruned
and pruned classification-tree models (186) were explored on
the result of this intersection combining field samples loca-
tions and the corresponding parameters. The best tree model
with the lowest misclassification error and the lowest num-
ber of terminal nodes and predictor parameters was used for
producing a predictive map of organic/inorganic landscapes’
map within the hydromorphic landscapes of the study area
using GIS (Geographic Information Systems).

3.1 Soil samples collection and analysis

The soil was sampled at 1541 sites selected by four differ-
ent existing field surveys to be representative for the area.
In order to avoid soil variability on a small scale, 25 bulk
soil samples were taken within a radius of 50 m from a depth
of 0–30 cm (plough layer) in the Danish Soil Classification
(1975) and the Danish Profile Investigation (1990). The col-
lected samples in these two existing surveys were taken to the
laboratory for analysis. These samples were air-dried at room
temperature and passed through a 2 mm soil sieve. Concen-
trations of soil organic carbon (SOC) were determined by the
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combustion method in a LECO induction furnace, converted
to % Soil Organic Matter (SOM) using a factor of 1.72. The
other two surveys (ochre classification and well database per-
formed in 1985) gave categorical information on parent ma-
terial (e.g. peat, sand, silt and clay). This parent material in-
formation was reclassified into organic and mineral soils. In
order to increase the number of samples used in the modeling
process, the continuous soil organic matter (SOM) obtained
in the former surveys was converted to a categorical variable
(organic/mineral soil occurence) using 10% SOM as a cut
off value (commonly used in Denmark). With less than 10%
SOM, soils are classified as mineral; and with more than 10%
SOM, soils are considered organic.

3.2 Geomorphometrical analysis

It has been postulated in several studies that the occurrence of
hydromorphic organic landscapes is dictated by topographic
features of the landscape (Moore et al., 1993; Gessler et al.,
1995; Bou Kheir et al., 2007). In this study, we consider
easy to derive and interpret terrain parameters from Digital
Elevation Models.

3.2.1 Generation of Digital Elevation Model

A digital elevation model (DEM) was generated for the cho-
sen area from airborne LIDAR (Light Detection and Rang-
ing) systems. The latter seem effective and reliable means of
terrain data collection in relatively large areas with cloudy
weather conditions (Baltsavias, 1999; Brian et al., 2007;
Schmitt et al., 2007; Liu, 2008). The established triangular
irregular network (TIN) was converted using a TOPOGRID
algorithm to an ArcGIS grid of 1.6-m pixel resolution. This
resolution was chosen to match the planimetric and altimetric
accuracies of LIDAR systems. In order to increase the effi-
ciency in terms of storage and manipulation, and to acquire
homogeneity and standardization with used ancillary maps,
the constructed high-resolution DEM was coarsened in this
study to 25-m resolution.

The produced elevation surface (DEM) would still contain
several spurious elements, usually classified either as sinks
or peaks (one or two cells below or above the local surface).
The errors vary between 0.1 m and 4.7 m in a typical 25 m
DEM (Tarboton et al., 1991). Although many authors agree
that sinks and peaks may actually represent the true nature of
topography (Chorowicz et al., 1992), they may act as local
barriers that trap water flow and cause a major problem for
drainage network extraction. To avoid this problem and be-
fore performing any hydrologic analysis, sinks in the DEM
were identified and eliminated using TerraStream software
(Danner et al., 2007).

3.2.2 Derivation of morphological/hydrological param-
eters from Digital Elevation Model

The chosen morphological/hydrological predictor parame-
ters may aid spatial estimation of hydromorphic organic
landscapes, because the relief had a great influence on soil
formation and its physical/chemical properties (McKenzie
and Ryan, 1999; Bou Kheir et al., 2007, 2008). They may be
divided into primary and compound attributes. In this study,
the nine primary parameters, i.e. elevation, slope angle, slope
aspect, plan curvature, profile curvature, tangent curvature,
flow direction, flow accumulation, and specific catchment
area were directly derived from the constructed Digital Ele-
vation Model (DEM) using specific TerraSTREAM (Danner
et al., 2007) and ArcGIS (version 9.3) algorithms.

Elevation is useful for classifying the local relief, and
locating points of maximum and minimum heights. It
had a high correlation with organic/mineral soil occurence
(Thompson and Kolka, 2005). At regional scales, several au-
thors found that soil organic carbon content increased with
elevation over ranges of≥1000 m, since lower temperatures
characterize higher elevations (Bolstad et al., 2001; Egli et
al., 2003, 2006b).

Slope,S, characterizing the spatial rate of change of eleva-
tion in the direction of steepest descent, affects the velocity
of both surface and subsurface flow, and hence the water and
organic carbon contents in landscapes.

As for slope aspect,ψ (orientation of the line of steep-
est descent), is useful for visualizing hydromorphic or-
ganic landscapes, and is frequently recorded in pedologi-
cal/hydrological surveys. Aspect is divided into the eight
major directions plus the non-oriented flat areas. Slopes ex-
posed to the south and west are more subject to runoff for
two reasons: (1) they are warmer with higher evaporation
rates and lower moisture storage capacity, thus less forested
than those exposed to the north and east, and (2) rainfall af-
fects slope aspect depending on the direction of winds during
rainfall, which commonly has a west and south–west trend in
Denmark.

Slope curvature,K, measures the distribution of convex
and concave areas; hence the propensity of water to con-
verge or diverge as it flows across the land. Convex sur-
faces are most likely to be well drained, while for concave
surfaces depressions have a higher likelihood of having hy-
dromorphic features. Concave slopes can concentrate more
water and sediments indicating the potential accumulation
of a large quantity of organic soils. Convex slopes show
an inverse effect, dispersing flow and limiting material ac-
cumulation, therefore a lesser quantity of soil tends to accu-
mulate than on concave slopes. Flat areas (zero curvature)
are without any effect on flow divergence or convergence.
Curvature attributes (plan, profile and tangent) are based on
second derivatives: the rate of change of a first derivative
such as slope gradient or slope aspect, usually in a particular
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direction. Curvatures were derived through GIS from the
constructed DEM.

The type and the amount of soil organic carbon (SOC) are
strongly related to the presence of water. The drainage net-
work provides an important indication of water percolation
rate. Special hydrological algorithms were used depending
on known matrices (i.e. flow direction matrix, flow accumu-
lation and stream network) to derive the drainage network
running over the study area (Tarboton et al., 1991; Chorow-
icz et al., 1992). A stream network was derived by connect-
ing all pixels that accumulate flow from 100 pixels or more.
Flow accumulation grid and digitized outlets from the stream
network were used to automatically subdivide the whole area
into small watersheds. Each watershed was subdivided into
two facets, separated by the streamline passing through the
watershed.

The specific catchment area, representing the upslope area
per unit width of contour, was calculated using the finite dif-
ference slope algorithm and FD8 flow-routing method with
a maximum area of 50 000 m2. FD8 was chosen because
it allows flow to be distributed to multiple nearest neighbor
nodes in upland areas above different channels, thus model-
ing flow divergence using flow dispersion. It takes consider-
ably longer to run than the more common D8 algorithm but
it avoids many of the problems incurred with D8 and gives
much more realistic distributions of contributing area (Gal-
lant and Wilson, 2000).

In addition to primary terrain attributes, a compound to-
pographic index (CTI), often referred to as the steady-state
wetness index was also calculated for each pixel using the
average upslope contributing area (As) and the slope degree
(β), according to the formula (CTI=ln [As/tanβ]) (Moore et
al., 1993; Wilson and Gallant, 2000).

3.3 Collection of other predictor parameters (soil, par-
ent material and landscape)

Other predictor parameters (soil type, parent material and
landscape type) were incorporated also in the constructed
decision-tree models for mapping hydromorphic organic
landscapes. Soil types were represented by a digital regis-
tered form of the available choropleth Danish soil classifica-
tion map compiled by Madsen et al. (1992) at 1:50 000, and
classifying the agricultural areas of Denmark into eight tex-
tural classes. Parent material was extracted from scanned and
registered national geological maps of Denmark at 1:25 000
cartographic scale (Danmarks Geologiske Undersøgelse,
1978). The major Danish landscape types, considered spa-
tially homogeneous geomorphic units in terms of both en-
vironmental characteristics and SOC content, were derived
from the existing digital vector landscape map at 1:100 000
scale (Madsen et al., 1992). We did not use climatic data in
this study since Denmark is relatively a small country with
low topographic relief. Moreover, the main factor controlling

soil moisture is local topography and soil conditions, which
were retained in the constructed classification tree-models.

3.4 Decision-tree analysis

The field survey data were split into two files, one compiling
80% of the field samples (1233 sites) used in the modelling
process, and another one comprising 20% used in the valida-
tion phase (308 sites). The modelling file integrates x- and
y-fields representing locational coordinates and the z-field
representing organic/mineral soil occurence. This file was
converted to a square grid that matched the resolution of the
constructed DEM (25 m). ArcGIS was used to overlay mor-
phology, hydrology, soil, geology, and landscape variables to
each of the field survey (sampling) locations.

Spatial prediction of organic/inorganic landscapes
was produced using tree-based classification models.
The dependent variable is categorical (organic land-
scapes/inorganiclandscapes) and the independent variables
are both continuous (elevation; aspect; slope; plan, profile
and tangential curvature; flow accumulation; flow direction;
rate of change of specific catchment area along the direction
of flow; steady-state topographic wetness index) and cate-
gorical or nominal (soil type; geological substrate; landscape
type).

Four sets of un-pruned classification tree-models were ex-
plored based on (1) all of the variables, (2) the primary mor-
phological/hydrological variables, (3) selected pairs of vari-
ables, and (4) excluding each variable at one time from the
potential pool of predictor variables. Once the trees have
been developed, they encode a set of decision rules that de-
fine the range of conditions (values of environmental vari-
ables) best used to predict each organic or mineral soil oc-
curence. The process is recursive, growing from the root
node (the complete data set) to the terminal nodes in a den-
tritic fashion (Friedl and Brodley, 1997). The trees created
are usually very large with multiple terminal nodes, mean-
ing that the models are intimately fitted on the training data
(Lagacherie et al., 1995). Each terminal node is assigned
to the label of the majority class (Lees and Ritman, 1991).
Splits or rules defining how to partition the data are selected
based on information statistics that measure how well the
split decreases impurity (heterogeneity or variance) within
the resulting subsets (Clarke and Pregibon, 1992). The num-
ber of splits to be evaluated is equal to 2(k−1)

−1, wherek
is the number of categorical classes of predictor parameters
(Breiman, 2001). For example, if the soil type with 8 classes
is considered, 127 splits are tried; if there are 12 classes
(landscape type), 2047 splits are tried. We considered dif-
ferences in the value of a continuous variable up to 1% of
the whole range, which is equivalent to ten thousand classes
(Loh and Shih, 1997).

The algorithm used for evaluating the quality of the con-
structed trees is the Gini splitting method, which is con-
sidered as the default method (Breiman, 2001). The Gini
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Fig. 2. Classification-tree model based on the combination of soil type and steady-state wetness index for predicting the spatial distribution
of hydromorphic organic landscapes.

coefficient is used to measure the degree of inequality of a
variable in terms of frequency distribution. It ranges be-
tween 0 (perfect equality) and 1 (perfect inequality). The
Gini mean difference (GMD) is defined as the mean of the
difference between each observation and every other obser-
vation (Breiman, 2001) (Eq. 1):

GMD =
1

N2

N∑
j=1

N∑
K=1

{∣∣Xj −XK
∣∣} (1)

WhereX is cumulative percentage (or fractions) and their
respective values (j andk) andN is the number of elements
(observations).

Pruning the constructed trees is necessary to prevent the
models from being overfitted to the sample data, and to re-
duce tree complexity. Pruning entails combining pairs of ter-
minal nodes into singles nodes to determine how the mis-
classification error rate changes as a function of tree size. We
used cost-complexity pruning with an independent data set (a
pruning data set) to produce a plot of training misclassifica-
tion error rate versus tree size (Safavian and Norvig, 1991).
Besides, relatively important variables can be pointed out by

counting the times the variable was used in nodes (Bui et al.,
2006). However, inconsistencies within the training dataset,
such as noise or outliers, can greatly affect the classifier’s
accuracy (Lagacherie and Holmes, 1997).

3.5 Production of the predictive organic/inorganic land-
scapes’ map

Using the preferred classification-tree model (having the
highest predictive power, and the lowest number of termi-
nal nodes and predictor parameters), a predictive map of or-
ganic/inorganic landscapes was obtained under a GIS envi-
ronment through the application of the prediction classifica-
tion tree rules (shown in Fig. 2). This map was validated
based on field surveys.

3.6 Accuracy assessment procedure

The basis of the validation techniques was used to exclude
a fraction of the sample from the modeling process and to
compare the predicted value of these samples with their ref-
erence value. We applied two distinct validation procedures
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Table 1. The different terrain parameters (predictors) extracted from DEMs likely to impact on the organic/mineral soil distribution and their
corresponding classes.

Variable Source, description Range

Elevation Lidar Digital elevation models (DEMs) 0 to 85 m
Slope From DEMs by first order finite difference 0 to 64.5◦

Aspect The direction of the steepest downslope slope 0 to 360◦

Plan curvature Curvature of contour drawn through the grid point −8.5 to 10
Profile curvature Curvature of the surface in the direction of steepest descendent −9.9 to 10
Tangent curvature Plan curvature multiplied by sine of slope angle −15 to 15
Flow accumulation Upslope number of grid cells 1 to 59 000
Flow direction Direction of the steepest drop 1 to 255
Specific catchment area Upslope area per unit width of contour 32 to 8 268 160
Steady-state wetness index (CTI) Modeled from DEMs; ln(As/tanβ); As is upslope catchment area,β

is slope (Moore et al., 1993)
3.05 to 36.39

in order to: (i) assess to what extent the constructed clas-
sification tree-models provided accurate prediction of the
hydromorphic organic landscapes (internal validation), and
(ii) derive the overall accuracy of the produced predictive or-
ganic/inorganic landscapes’ map (external validation). The
former uses training samples (80% of the field data or 1233
sites) that were collected within the training area, whereas
the latter uses geographically distinct validation areas (20%
of the field data or 308 sites). The internal validation scheme
is used to test the efficiency of classification tree analysis
(CTA) to predict soil landscape distribution using misclassi-
fication errors. The external validation was carried out on the
full produced predictive organic/inorganic landsacpes’ map.
The accuracy assessment used in the external validation is
summarized in the error matrix. The matrix shows the over-
all accuracy rate which is a simple ratio between the correctly
allocated number of field samples (confusion matrix diago-
nal) and the overall number of classified samples.

4 Results and discussion

4.1 Derived terrain attribute maps

Ten primary and secondary topographic attribute grid maps
were obtained (Table 1). These maps displayed the surface
morphology, zones of soil water saturation and areas likely
to have high soil organic carbon content in the study area.
The steady-state topographic index (CTI) describes the dis-
tribution and extent of zones of soil water saturation. Small
values of CTI generally depict upper catenary positions, and
large values lower catenary positions with an overall range
typically from around 3 to 36. The largest (i.e. high wet-
ness) values are predicted in topographic hollows at higher
elevations (i.e. in local areas with convergent flow lines) and
immediately above gently sloping areas near channels (i.e.
footslopes) in flatted terrain.

4.2 Tree-model evaluation

Training misclassification error rates for the explanatory
trees that were developed using all variables (Model 1) at
a time or the primary morphological/hydrological variables
only (Model 2) varied from 23% to 26%, with quasi-identical
numbers of terminal nodes (71 nodes for Model 1 and 69
nodes for Model 2). The relative importance of the predictor
variables (Gini splitting method) in building those trees and
splitting the corresponding nodes is shown in Table 2.

Applying cost-complexity pruning indicated that Model 1
(based on all variables) would classify correctly 67% of the
tested organic/mineral soil occurence selecting just nine ter-
rain variables (with their relative importance shown in paren-
theses): landscape type (100%), soil type (29%), elevation
(22.5%), steady-state wetness index (20%), flow accumula-
tion (15%), tangent curvature (14%), aspect (11%), and slope
(9%). Model 2 (based on morphological/hydrological vari-
ables only) slightly reduced the explained accuracy and clas-
sified 64% of the text data accurately using five variables:
(1) elevation (100%), (2) slope (36%), (3) aspect (16%),
(4) tangent curvature (8%), and (5) profile curvature (5%).
The number of the terminal nodes was very similar for both
pruned models.

The models based on pairs of variables explained 50–68%
of the variation in organic/mineral soil occurence (Table 3).
The model based on soil type and steady-state topographic
wetness index (CTI) (Model 3) showed the highest predic-
tive power, classifying 68% of the data correctly and pruned
to fourteen terminal nodes. The CTI proved to have a signif-
icant contribution to the estimation of hydromorphic organic
landscapes since it is a predictor of zones of soil saturation,
and organic carbon often accumulates in lowland (concave)
soils for two reasons: (1) on steep slopes, dry soil conditions
prevail due to more rapid removal of water causing an impor-
tant decrease in soil organic carbon, and (2) concave slopes
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Table 2. Relative importance of predictor variables and misclassification error rates in Models 1 (based on all variables) and 2 (based on
morphologic/hydrologic variables only).

Predictor variables Model 1 (explanatory tree) Model 1 (Pruned tree) Model 2 (explanatory tree) Model 2 (Pruned tree)

Elevation 70% 22.5% 100% 100%
Aspect 50% 11% 54% 16%
Slope 37% 9% 47% 36%
Profile curvature 25% 0% 23% 5%
Tangent curvature 34% 14% 12% 8%
Plan curvature 23% 0% 25% 0%
Flow accumulation 30% 15% 4% 0%
Flow direction 25% 0% 3% 0%
Specific catchment area 0% 0% 0% 0%
Steady-state wetness index 37% 20%
Geological substrate 31% 0% Not included in building the tree
Soil type 39% 29%
Landscape type 100% 100%
Misclassification error (%) 23% 33% 26% 36%
Accuracy (%) 77% 67% 74% 64%
Tree size- terminal nodes 71 9 69 10

Table 3. Accuracy explained (%) for pruned classification tree models based on pairs of variables.

Predictor variablesa a b c d e f g h i j k l m

a × 62 64 61 61 61 61 63 61 62 62 63 61
b × 58 56 53 56 51 58 50 54 60 60 60
c × 57 58 59 60 57 60 59 53 62 62
d × 54 53 54 53 54 54 62 60 61
e × 55 55 56 55 56 60 60 62
f × 56 54 56 58 60 61 60
g × 59 51 56 60 60 60
h × 59 58 60 61 61
i × 60 60 62 60
j × 60 68 60
k × 62 62
l × 62
m ×

a a = elevation, b = aspect, c = slope, d = profile curvature, e = tangent curvature, f = plan curvature, g = flow direction, h = flow direction, i
= specific catchment area, j = steady-state wetness index, k = geological substrate, l = soil type, m = landscape type

can concentrate more water and sediments indicating the po-
tential accumulation of a large quantity of soil organic carbon
(SOC).

Without pruning, this model gave similar results to Mod-
els 1 and 2 (75% of accuracy explained), but Model 3 is pre-
ferred because it is easier to understand and faster to use for
making predictions. In addition, pruning the trees to their op-
timal size is a required task because smaller trees may pro-
vide greater predictive accuracy for unseen data than large
trees. In both Models 1 and 3, the predictor variable that was
used statistically to generate the split from the parent node
was the soil type, indicating its potential role in predicting

the geographic location of organic landscapes. The recom-
mended model (Model 3) relies on a small number of rules
and just two independent predictor variables, one of which
can be easily and quickly constructed whenever a DEM is
available, which is the case in most countries (Fig. 2).

Removal of 13 variables one at a time had some effect on
training missclassification error rates (decrease or increase)
depending on the excluded variable. The three variables that,
when excluded from the tree model, caused the greatest in-
crease in error rate were steady state topographic wetness
index, specific catchment area and soil type (Table 4).
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Figure 3. 30 Fig. 3. Map showing the distribution of hydromorphic organic landscapes in the chosen study area within Denmark.

Table 4. Missclassification error rates (%) when excluding each
parameter one at a time from the potential pool of predictor param-
eters.

Predictor parameter Error rate (%)

Elevation 40
Aspect 34
Slope 40
Profile curvature 40
Tangent curvature 39
Plan curvature 40
Flow direction 40
Flow accumulation 40
Specific catchment area 42
Steady-state wetness index 43
Geological substrate 37
Soil type 43
Landscape type 38

The produced predictive map of organic/inorganic land-
sacpes (Fig. 3) at 1:50 000 cartographic scale using the tree
model based on the combination of soil type and steady-
state wetness index, indicates that 7.5% of the wetlands in
the study area correspond to organic landscapes, and 92.5%
to mineral (inorganic) landscapes. The confusion matrix be-

tween the measured organic/mineral soil occurence’ classes
and the modelled ones indicates a good overall accuracy of
ca. 75%. This accuracy value is different from the explained
variance of the preferred decision-tree model (68%), since
it is dedicated to validate all adopted approaches combining
the integration of soil survey collection, geomorphometrical
analysis and decision-tree modeling.

5 Conclusions

Topographic variables (either morphologic or hydrologic)
derived from DEMs are related to the geographic distribution
of organic/inorganic landscapes. The preferred tree-based
models explained 68–77% of the organic/mineral distribu-
tion for a series of chosen field sites in southern Denmark.
Two environmental variables – soil type and steady-state to-
pographic wetness index – proved to be the most important
variables, indicating that complex or secondary topographic
variables show stronger relationships to organic/mineral soil
occurence than primary topographic attributes. This partic-
ular secondary topographic variable incorporated the effects
of slope and upslope contributing area.

The decision-tree modelling approach was easily imple-
mented with available GIS (ArcGIS) software and is suitable
for data exploration and predictive organic/mineral soil oc-
curence mapping. It is explicit and can be critically evaluated
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and revised when necessary. It has the capacity to inte-
grate easily other primary topographic attributes (e.g. slope
length). The inclusion of additional variables might have ex-
plained some of the additional variation in the geographic
distribution of organic/inorganic landscapes.

Future work will first compare the results from this study
with those from other models (e.g. fuzzy logic, artificial neu-
ral networks, etc.), and later seek to gather additional field
data so we can examine whether or not finer-scale DEMs can
predict the distribution and quantitative magnitude of soil or-
ganic carbon with greater precision and reliability.
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