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Summary 

Spatial distribution of soil types and soil properties in the landscape are important in many 

environmental researches. Conventional soil surveys are not designed to provide the high-

resolution soil information required in environmental modelling and site-specific farm 

management. The objectives of this study were to investigate the relationship between soil 

development, soil evolution in the landscape, updating legacy soil maps and pedodiversity in 

an arid and semi-arid region. The application of Digital Soil Mapping (DSM) techniques was 

investigated with a particular focus to predict soil taxonomic classes and spatial distribution 

of soil types by soil observations and covariate sets representative of s,c,o,r,p,a,n factors.  

In the first study, focus is on establishing relationships between pedodiversity and 

landform evolution in a 86,000 ha region in Borujen, Chaharmahal-Va-Bakhtiari Province, 

Central Iran. From an overview study, we could conclude that landform evolution was mainly 

affected by topography and its components.  

A second study compares various DSM-methods and a conventional soil mapping 

approach for soil class maps in terms of accuracy, information value and cost in central Iran. 

Also, the effects of different sample sizes were investigated. Our results demonstrated that in 

most predicted maps, in DSM approaches, the best results were obtained using the 

combination of terrain attributes and the geomorphology map. Furthermore, results showed 

that the conventional soil mapping approach was not as effective as DSM approach.  

In the third study, different models of the DSM approach were compared to predict the 

spatial distribution of some important soil properties such as clay content, soil organic carbon 

and calcium carbonate content. Among all studied models, the terrain attribute ―elevation‖ is 

the most important variable to predict soil properties. Random forest had promising 

performance to predict soil organic carbon. But results revealed that all models could not 

predict the spatial distributions of clay content properly. 
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The minimum area of land that can be legibly delineated in a traditional (printed) map is 

highly dependent upon mapping scale. For example, this area at a mapping scale of 1:24,000 

is about 2.3 ha but at a mapping scale of 1:1,000,000 it is about 1000 ha. A mapping scale of 

1:1,000,000 is just too coarse to show a fine-scale pattern or soil type with any degree of 

legibility, but finer-scale soil maps are more expensive and time-consuming to produce. 

Thus, spatial variation is often unavoidably obscured. The fourth study of this dissertation 

focuses on downscaling and updating soil map methods. Thus, the objectives were to apply 

supervised and unsupervised disaggregation approaches to disaggregate soil polygons of 

conventional soil map at a scale of 1: 1,000,000 in the selected area. Therefore, soil 

subgroups and great groups were selected because it is a basic taxonomic level in regional 

and national soil maps in Iran. 

In general, we conclude that DSM approach and also disaggregation approach are capable 

to predict soil types and properties, produce and update legacy soil maps. However, still a 

number of challenges need to be evaluated e.g. influence of expert knowledge on CSM 

approach, resolution of ancillary data, georeferenced legacy soil samples data to validate 

disaggregated soil maps. 

 

Samenvatting 

De ruimtelijke distributie van bodemklassen en bodemeigenschappen over het landschap 

is van belang in veel omgevingsstudies. Conventionele bodemkarteringen zijn niet toegespitst 

op het verkrijgen van bodeminformatie in hoge resolutie, zoals nodig voor 

omgevingsmodellering, and voor locatie-specifieke landbouw. De doelstellingen van deze 

studie waren het doen van onderzoek naar bodemontwikkeling in een landschappelijke 

context, naar actualisatie van bestaande bodemkaarten en bodemdiversiteit in een aride en 

semi-aride regio. De toepassingsmogelijkheden van "Digital Soil Mapping" (DSM) 
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technieken werden onderzocht met speciale aandacht voor de voorspelling van taxonomische 

bodemklassen en de ruimtelijke verdeling van bodemklassen, gebruikmakend van 

bodemobservaties en kaarten van hulpvariabelen welke de s,c,o,r,p,a,n factoren 

weerspiegelen. 

In een eerste studie lag de focus op het vaststellen van relaties tussen de bodemdiversiteit 

en de evolutie van de landvormen in een 86.000 ha regio in Borujen, Chaharmahal-Va-

Bakhtiari Provincie, Centraal Iran. Uit een overzichtsstudie konden we concluderen dat de 

evolutie van de landvormen hoofdzakelijk werd bepaald door de topografie en daarvan 

afgeleide componenten. 

Een tweede studie vergelijkt verschillende DSM-methoden en een conventionele 

bodemkartering voor het maken van kaarten van de bodemklasse in termen van accuraatheid, 

informatiewaarde en productiekosten in Centraal Iran. Hierbij werden ook de effecten van de 

steekproefomvang mee beschouwd. Onze resultaten demonstreerden dat, in de meeste kaarten 

geproduceerd met DSM, de beste resultaten werden bereikt gebruikmakend van een 

combinatie van terreinattributen en de geomorfologische kaart. Tevens lieten de resultaten 

zien dat de conventionele bodemkartering niet zo effectief was als de DSM-benadering. 

In de derde studie werden verschillende DSM-modellen vergeleken om de ruimtelijke 

distributie van een aantal belangrijke bodemkenmerken te voorspellen, zoals het gehalte aan 

klei, organische koolstof en calciumcarbonaat. Over alle bestudeerde modellen was het 

terreinattribuut "terreinhoogte" de belangrijkste variabele bij het voorspellen van 

bodemeigenschappen. De Random Forest methode had veelbelovende prestaties bij de 

voorspelling van organische koolstof. Echter, resultaten lieten zien dat geen van de modellen 

de ruimtelijke verdeling van het kleigehalte goed kon voorspellen. 

De minimale oppervlakte die leesbaar kan worden afgegrensd in een traditionele 

(gedrukte) kaart hangt sterk af van de karteringsschaal. Bijvoorbeeld, bij een karteringsschaal 
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van 1:24 000 is deze oppervlakte ongeveer 2.3 ha, maar bij een karteringsschaal van 

1;1 000 000 is deze circa 1 000 ha. Een schaal van 1:1 000 000 is te grof om de fijnschalige 

patronen van het bodemtype leesbaar weer te geven, echter gedetailleerdere bodemkaarten 

kosten meer geld en tijd om te produceren. Dientengevolge is het onvermijdelijk dat de 

ruimtelijke variatie niet wordt weergegeven. De vierde studie van deze dissertatie richt zich 

op neerschalings- en actualisatiemethoden. De doelstellingen waren hier om gecontroleerde 

("supervised") en ongecontroleerde disaggregatiemethoden toe te passen om 

bodemkaartvlakken neer te schalen, uitgaande van een conventionele bodemkaart 

1:1 000 000 van het geselecteerde gebied. Hiertoe werd gewerkt met de taxonomische 

niveaus "subgroup" en "great group" welke in regionale en nationale bodemkaarten in Iran 

worden gebruikt. 

De algemene conclusie luidt dat de DSM-benadering en ook neerschalingsmethoden in 

staat zijn om bodemklassen en bodemkenmerken ruimtelijk te voorspellen en om bestaande 

kaarten te actualiseren. Echter, aandacht blijft vereist voor bijvoorbeeld de invloed van 

expertkennis bij een traditionele bodemkartering, effecten van de ruimtelijke resolutie van de 

hulpinformatie en de aanwezigheid van bodemgegevens met georeferentie om 

neergeschaalde bodemkaarten te valideren. 
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Chapter 1 

General Introduction, Research Necessity, and Objectives 

1.1 Introduction 

Soil is the natural part of the surface of the earth, characterized by layers or horizons 

parallel to the surface resulting from the modification of parent materials by physical, 

chemical and biological processes operating under varying conditions during varying periods 

of time (Thornbury, 1969; White, 2013). 

Soil is limited in quantity and degradable in quality; therefore, this resource is a non-

renewable and irreplaceable capital good in all the productive activities of humans and plays 

a key role in the natural environment (Bouma, 2006). It is important to know the spatial 

distribution of soil types and soil properties in the landscape. Standard soil surveys are not 

designed to provide the high-resolution soil information required in environmental modelling 

and site-specific farm management (Petersen, 1991). Conventional approaches to soil 

mapping produce maps that delineate neither the inherent variability of the soil nor the 

variation of the attributes mapped. Moore et al., (1993) have proven these approaches were 

expensive and often unreliable to mapping the spatial variability soil resources. Therefore, 

there is a vital need for the improvement of accurate and inexpensive approaches of mapping 

the spatial variability of the soil types and soil properties. In the last 30 years, improvement 

of technology and accuracy of Geographic information science (GIS) prepared great potential 

to develop the efficiency and quality of methods used to gather spatial soil information 

(McBratney et al., 2000; Scull et al., 2005). 

In contrast to conventional approach of soil mapping which is expensive, time-consuming 

and unreliable (Moore et al., 1993), digital soil mapping (DSM) can reduce the production 
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costs by establishing relationships between expensive soil observations and inexpensive 

ancillary data (Kempen et al., 2012; McBratney et al., 2003). 

DSM has matured to become a legitimate branch within the soil science domain. DSM has 

evolved from a science-driven research phase of the early 1990s to presently, a fully 

operational and functional process. This evolution is evidenced by the increasing extents of 

DSM projects from small research areas towards regional, national and even continental 

extents (Malone, 2013). 

DSM is defined by Lagacherie et al., (2006) as the creation and population of spatial soil 

information systems by numerical models inferring the spatial and temporal variations of soil 

types and soil properties from soil observation, remotely sensed data, terrain analysis data, 

vegetation, climate and expert knowledge. 

Jenny (1941) proposed that soil development is a function of climate, organisms, 

topography, parent material and time; this hypothesis can be the basic assumption of DSM. 

Hence, soil properties of a location can theoretically be estimated if information about those 

variables is available for the location. McBratney et al., (2003) introduced further variables 

space (spatial position) and soil information derived from other investigations, as soil can be 

predicted from its own properties in the so-called ―SCORPAN model‖. The SCORPAN 

approach is expressed as by the equation: 

    (             )    

where Sc is soil types or soil properties, S is the soil information such as obtained from a 

prior soil map or expert knowledge, C refers to climate, O is organisms such as human 

activity, R is relief, P is parent material, A is age, N refers to neighborhood or spatial position 

and ε is spatial dependent residuals. 

These ancillary data used in DSM usually can be obtained relatively cheaply over large 

areas, e.g. a digital elevation models (DEM) and its derivatives, satellite images and 
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geospatial information (e.g. geology map and geomorphology map). The ancillary data are 

assumed to have some relationship with the soil variables (Goovaerts, 1997). Figure 1-1 

shows the process of DSM, where geo-referenced soil observations are joined with 

environmental variables from the input data. 

 

Figure 1-1- Workflow of Digital soil mapping. 

In Iran, like the most developing countries in the world, precision farming, and agriculture 

are growing activities. Precision agriculture and farm-based planning require high-resolution 

soil maps and reliable application methods. DSM provided this pathway to predict and 

produce soil maps and soil information by the efficient cost and accuracy. 

Although soil survey studies started in 1950 in Iran, some areas have not yet been mapped 

at any scale and most soil surveys have been carried out using traditional methods and also 

only 20 to 25 percent of the country has already been mapped. Iran has a total of 22 million 

ha of agricultural land, while agriculture has played a key role in the economy of the country, 

only 3.3 million ha has been mapped at a scale of 1:20,000, 16 million ha at a scale of 

1:50,000, 1.3 million ha at a scale of 1:100,000 and 1 million ha at other scales. It is obvious 

that more than 50 percent of the agricultural land has been mapped at the scale coarser than 

the scale of 1:50,000 (Banaei et al., 2005). 
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To map the entire country, traditional methods are costly and time-consuming, 

consequently, alternative approaches such as DSM methods can accelerate the preparation of 

soil maps of the country. 

In recent years, the national map of soil types at a scale of 1:1,000,000 was published by 

the Soil and Water Research Institute of Iran (Banaei et al., 2005; Mohammad, 2000). This 

map was prepared based on physiography units and did not illustrate soil variation properly. 

Nevertheless, soil mapping has made certain progress. Conventional soil maps produced in 

the past decades are the major data sources for information on the spatial variation of soil, but 

they are limited in terms of both the levels of spatial detail and the accuracy of soil attributes 

as well as have high requirements of costs and time.  

Regarding the limitations and shortcomings mentioned, this thesis deals with concepts and 

techniques developed in three separate bodies of knowledge: pedodiversity and soil 

landscape, digital soil mapping of soil class and soil properties and finally disaggregation of 

the legacy soil map. 

1.2 Research objectives 

The objectives of this dissertation were to investigate the relationship between soil 

development, soil evolution in the landscape and pedodiversity in an arid and semi-arid 

region (chapter 2).   

The application of DSM techniques was investigated with a particular focus to predict soil 

taxonomic classes and spatial distribution of soil types by soil observations and covariate sets 

representative of s,c,o,r,p,a,n factors. Cost, accuracy, and efficiency in the study area, and the 

effect of sample size were also investigated (chapter 3). 

Chapter 4 compares different models of the DSM approach to predict the spatial 

distribution of some important soil properties such as clay content, soil organic carbon and 

calcium carbonate content.  



 

5 
 

The minimum area of land that can be legibly delineated in a traditional (printed) map is 

highly dependent upon mapping scale. For example, this area at a mapping scale of 1:24,000 

is about 2.3 ha but at a mapping scale of 1:1,000,000 it is about 1000 ha (Soil Survey 

Division Staff, 1993). A mapping scale of 1:1,000,000 is just too coarse to show a really fine-

scale pattern or soil type with any degree of legibility, but finer-scale soil maps are more 

expensive and time-consuming to produce. As a result, spatial variation is often unavoidably 

obscured. Thus, the objectives of Chapter 5 were to apply supervised and unsupervised 

disaggregation to disaggregate soil polygons of conventional soil map at a scale of 

1:1,000,000 in the selected area. In this chapter soil subgroups and great groups were selected 

because it is a basic taxonomic level in regional and national soil maps in Iran. 
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Chapter 2 

Relationships between pedodiversity and landform evolution in a semi-arid region, 

central Iran 

 

Abstract 

This study was conducted to explore the role of landform forming processes on soil 

development, and to investigate soil homogeneity within landform units in terms of soil 

properties and soil classes in a semi-arid region of central Iran. The landform delineation was 

carried out by air photo interpretation (API). A total number of 125 profiles were described 

and classified up to the subgroup level according to U.S Soil Taxonomy. The investigated 

soil properties within the study area in 0-30 cm layer showed high variability. The 

coefficients of variation for all soil properties were high, which indicated high variability in 

soil forming factors across the study area. Almost all coefficients of variation (CV) for soil 

properties in different landforms decreased as compared to overall CV. The CV indicates that 

landform delineation contains information on soil variability and that similar pedogenesis 

processes which occurred within land units led to similar soils. Diversity indices increased 

from the soil order to the soil subgroup, with an abrupt increase from great group to subgroup 

level. Pedodiversity indices-to-area relationships showed that there are additional soil classes 

if the number of observations would increase. It can be deduced that probably the number of 

observations were insufficient in the studied area. It is also proved that soil diversity 

increases with the landforms‘ area. The results suggested that pedodiversity could be 

considered as an effective method to break down soil and landform complexity. 

2.1 Introduction 

Effective soil management needs an understanding of soil distribution patterns within the 

landscape (McBratney et al., 2000). Pedogenetic processes are the main causes of variations 
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in soil properties (Liu et al., 2006). These processes commonly are used for soil 

classification; therefore, soil types represent (at least part of) the variations in pedogenesis 

processes. 

The importance of understanding landscape dynamics, heterogeneity, and environmental 

changes is increasingly acknowledged (Wilson and Forman, 1995). Quantitative techniques 

are needed to analyze landscape and diversity, with emphasis on landscape structure and 

spatial patterns (Turner and Gardner, 1991). Several quantitative approaches of soil diversity 

have been proposed (McBratney, 1995; Saldaña and Ibáñez, 2004). 

Currently, pedodiversity analysis is considered as a branch of pedometrics or mathematics 

applied to pedology. Pedodiversity studies were firstly started by analyzing soil series-area 

relationships (Beckett, 1978). In the end of 20
th

 century, McBratney (1992) and Ibañez et al., 

(1995) explained pedodiversity and expressed a need for it regarding soil conservation. It can 

be simply defined as the variation of soil properties or soil classes within a study area. 

Pedodiversity, as well as biodiversity, is a method to evaluate soil variability, spatial patterns 

and soil species (McBratney, 1992) usually using taxa from soil classification (Minasny and 

McBratney, 2007). Moreover, it is also a way to quantify and understand the structure of the 

soil variation. Ibáñez and Effland (2011) considered pedodiversity analysis as an interesting 

mathematical tool in soil geography.  

The ecological diversity indices introduced as measures of soil diversity, comprise 

richness, abundance, evenness and proportional abundance (e.g. Shannon entropy) (Ibañez et 

al., 1995; Phillips, 2001). Recently, also taxonomic distance was recommended as a 

pedodiversity measure (Minasny and McBratney, 2007; Petersen et al., 2009). Diversity can 

be analyzed in any context where it is possible to establish a classification or taxonomy 

(Ibáñez et al., 2013). Ibañez et al. (1998) calculated the diversity indices at the worldwide 

level for continents based on the FAO Soil Map. McBratney et al. (2000) showed that soils in 
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some continents like Australia are less diverse than South and Central America. In order to 

evaluate pedodiversity in the USA, Guo et al. (2003) calculated Shannon's entropy for 

different taxonomic levels from order to suborder, great group, subgroup, family, and series 

(U.S. Soil Taxonomy). They found an increase in taxonomic richness and Shannon's entropy 

with increasing taxonomic level. Toomanian et al. (2006) and Jafari et al. (2013) studied soils 

on different landscapes in central Iran and reported an increase of diversity indices at lower 

Soil Taxonomy classification levels and soil geomorphologic categories. 

Many researchers used landform analysis to determine and describe soil variability and 

also to delineate homogeneous parts of the landscape (Hengl and Rossiter, 2003; Jafari et al., 

2013; Moore et al., 1993; Toomanian et al., 2006). Landforms should be as homogeneous as 

possible for interpretation of soil as a part of the dynamic ecosystem. 

2.1.1 Objectives  

Unfortunately, the information on spatial distribution of soils in Iran is frequently 

insufficiently available. Generally, the available information is restricted to the soil type, soil 

texture, descriptions of soil diagnostic horizons, and subsoil texture, and is based on the 

conventional soil survey. Therefore, there is little information about soil diversity, landscape 

evolution, soil pedogenesis process and their relationships in arid to semi-arid regions of Iran. 

Thus, the objectives of this study were i) to understand the relationship of soil-landform 

evolution and pedogenesis processes across a toposequence and ii) to analyze pedodiversity 

indices in different landform types in order to explore heterogeneity/homogeneity of soils and 

landforms at various taxonomic levels in a semi-arid region of central Iran. 
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2.2 Materials and Methods 

2.2.1 Description of the study area 

The study area is located between 51° 19′ 9″ to 51° 20′ 45″ E longitude and 31° 41′ 00″ to 

32° 00′ 00″ N latitude, and area covering approximately 86,000 ha in the Borujen region, 

Chaharmahal-Va-Bakhtiari Province, Central Iran (Figure 2-1). The mean annual 

precipitation is 255 mm, mean annual temperature is 10.7°C, and mean elevation of the 

selected area is 2277 m a.s.l (Esfandiarpoor et al., 2009). The main land uses in this area 

include irrigated wheat cropping, dryland farming, and pasture. According to the US Soil 

Taxonomy (Soil Survey Staff, 2014), the study area has a Xeric soil moisture regime and a 

Mesic soil temperature regime. Major landscape units in the study area consist of mountains, 

hills, piedmonts, and lowlands. 
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Figure 2-1- The location of the study area (Landsat ETM+ image; RGB: 243). The black area 

in the upper left of the figure identifies the Chaharmahal-Va-Bakhtiari Province among all of 

the provinces in Iran. The upper right part of the figure shows districts in the Province of 

Chaharmahal-Va-Bakhtiari and the location of the study area. 

2.2.2 Landform delineation 

Air photo interpretation (API) was done to delineate landform patterns using the aerial 

photo (1:50,000), based upon the knowledge on landform formation processes, general 

structure, and morphometry. Hengl and Rossiter (2003) proposed that in the flat or low relief 

regions, where high-resolution images are highly cost demanding, it is superior to use the 

traditional air photo interpretation (API) method to differentiate the landscape patterns. 

Therefore, it could be the cheapest way to delineate the accurate landform boundaries by 

using the reflectance contrasts on aerial photos (Toomanian et al., 2006). The study area 

consists of four dominant landscape units, which comprise of hill land, piedmont, mountain, 

and lowland. Mountain is the main landscape which is composed of mainly rock outcrop 
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landform and occupied 34.90 % of the study area. The other different landforms were 

identified including eroded hill land (Hi1, 4.55%), developed hill land (Hi2, 7.28%), alluvial 

fan (Pi1, 30.36%), wetland (Pl1, 0.35%), lagoon (Pl2, 0.95%), piedmont plain (Pi5, 6.64%), 

river plain (Pi4, 0.66%), pediment (Pi3, 9.20%) and dissected alluvial fan (Pi2, 6.08%). The 

spatial distribution of described landforms and their legends are presented in Figure 2-2 and 

Table 2-1, respectively. 

Table 2- 1- Landscape and landform units of the study area.  

Landscape Landform 
Area 

(km2) 

Percentage of 

total area 

Landform 

codes 
Description 

 

Hill Eroded hill 

lands 
39.21 4.54 Hi1 

Single and low topography 

hills 

 

Developed hill 

lands 
62.91 7.28 Hi2 

Continuous hills with high 

topography 

 

Mountain Rock outcrop 
292.94 33.91 Mo1 

Eroded rock surface, 

shallow soils 

 

Piedmont Alluvial fan 
262.30 30.36 Pi1 

Active fan, cultivated plain 

in lower slope 

 

Dissected 

alluvial fan 
52.57 6.09 Pi2 

Dissected and undulating 

red alluvial fan 

 

Pediment 
79.64 9.22 Pi3 

Shallow soil, colluvial 

material 

 

River plain 
5.74 0.66 Pi4 

Low drainage, young 

terraces 

 

Piedmont plain 
57.41 6.65 Pi5 

Young terraces, moderate 

depth soils 

 

Lowland Wetland 3.02 0.35 Pl1 Low drainage, wetness  

Lake (Lagoon) 
8.17 0.95 Pl2 

Covered by hydrophilic 

plants 

 

2.2.3 Soil surveying method, Sampling, and profile description 

The soil sampling scheme was carried out by applying the conditioned Latin hypercube 

sampling (Minasny and McBratney, 2006) algorithm using Matlab software (MathWorks, 

2009) with all covariates to be mentioned in section 3.2.3 (Table 3-1, chapter 3). Location 

coordinates of 100 soil profiles were acquired by Latin hypercube sampling and 25 legacy 

profiles were added to our dataset. Figure 2-2 shows the distribution of the soil profiles 
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described in the study area. All locations were excavated to a depth of 100–150 cm, 

described, sampled, analysed, and classified up to the subgroup level of the US Soil 

Taxonomy (Soil Survey Staff, 2014).  

 

Figure 2-2. Delineated landform map and sampling points in the study area. Geomorphic surfaces in the legend 

are explained in Table 2-1. 

2.2.4 Diversity indices 

For the analysis of soil diversity (e.g. pedodiversity), all 125 observed profiles in the study 

area were analyzed at different (hierarchical) landform levels. The studied soils were 

classified into four categories including order, suborder, great group and subgroup according 

to U. S. Soil Taxonomy (Soil Survey Staff, 2014). 
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Pedodiversity indices comprising Shannon entropy, richness and evenness were calculated 

for each landform category. To calculate the diversity indices in each landform, the number 

of profiles belonging to a given landform (ni) and the total number of profiles in the study 

area (N) were considered. Richness (S) is a measure of the number of different objects or soil 

types in the site. Therefore, the number of soil classes (at the different taxonomic levels) in 

each landform was considered as the richness of species. Abundance is defined as the 

distribution of the number of soil individuals. The proportional abundance of objects is the 

most frequently used method to estimate the diversity (Toomanian et al., 2006). The Shannon 

diversity index (  ) is the most frequently used proportional abundance index (Ibáñez et al., 

2013; Longuet-Higgins, 1971; Toomanian et al., 2006). The Shannon diversity index is 

defined mathematically as follows: 

    ∑        
 
          (Eq. 2.1) 

where    is the negative entropy, negentropy, or diversity of a population and pi is the 

proportion of individuals found in the i
th

 object. In calculations, instead of the pi, the 

proportion of ni/N was used. 

The maximum possible Shannon diversity index (Hmax) occurs in situations where all 

objects are equiprobable, therefore Hmax is used to measure the evenness (E). The evenness 

index can be used as a measure of the heterogeneity of the distribution of taxa within 

soilscapes (Pielou, 1966) if the following condition is fulfilled: 

H  = Hmax = lnS       (Eq. 2.2) 

Then, evenness takes the following form:  

E = H /Hmax = H /lnS       (Eq. 2.3) 

S here is the richness, the relative number of individuals in each category or landform. The 

Evenness index varies from 0 to 1. The maximum value of H is defined as Hmax=lnS, a value 
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close to Hmax indicates an even proportional contribution of each class (Costantini and 

L'Abate, 2016; Mart  n and  ey, 2000). 

The O‘Neill dominant index (D) was used to examine the deviation of the calculated 

Shannon diversity index from the maximum diversity Hmax (O'Neill, 1988) as follows: 

    ( )  ∑      (  ) 
 

 
       (Eq. 2.4) 

Several indices have been derived from the number of taxa recorded and the total number 

of individuals of all species (numerical species richness). Two of them are presented here, the 

first one is the Margalef‘s index (Magurran, 1988) and is calculated by the following 

equation: 

    
(   )

   
        (Eq. 2.5) 

The other is The Menhinick‘s index (Whittaker, 1977) is calculated as follows: 

    
 

  
        (Eq. 2.6) 

where S is the richness (i.e., soil types) recorded and N is the total number of individuals 

(i.e., the number of samples summed in every landform) overall S species. Both indices 

varied from 0 to l (Saldaña and Ibáñez, 2004). 

Two kinds of functions could display the relationship between the number of species and 

the area: (1) a linear relationship between log S (richness) and log area (power function) and 

(2) a linear relationship between S and log area (logarithmic function) (Saldaña and Ibáñez, 

2004). Toomanian et al. (2006) recommended the richness–area curve for the soil family 

richness versus the area of geomorphic surfaces. In the current study, the relationships 

between the area of landforms and the soil richness (richness-area relationship) and also the 

Shannon diversity index (Entropy–area relationship) at the subgroup level were examined. 
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2.2.5 Statistical analysis  

For statistical analysis of some soil surface (0-30 cm depth) properties, descriptive 

statistical analyses including standard deviation (Std.Dev.), variance, the coefficient of 

variation (CV), mean, minimum and maximum were calculated using the SPSS software 

(version 17.0). One way analysis of variance (ANOVA) was used to analyze the significance 

of landform types on soil properties (Duncan's test at the 5% level of significance).  

2.3 Results and Discussion 

Table 2- 2 presents a brief statistical description of some soil properties of surface soil 

layer (0-30 cm) for the study area. According to this table, the investigated soil properties for 

the entire studied area in 0-30 cm layer had high variability. Soil organic carbon (OC) ranged 

from 0.18% to 8.88%, with a CV of 96.99%. Soil texture analysis also showed high 

variability for particle size distribution, where clay ranged from 15.96% to 64.00%, with a 

CV of 27.48%; silt ranged from 6.00% to 61.36%, with a CV of 33.37% and sand ranged 

from 4.00% to 53.88%, with a CV of 39.74%. Soil calcium carbonate equivalent (CCE) 

showed relatively low variability (CV= 29.90%) with a range of 11% to 72.50%. This low 

variability of CCE might explain that all soils of the studied area are affected by limestone 

parent material, rather than other soil forming factors. Wilding )1985) categorized CV values 

into 3 classes with high (CV > 35%), moderate (15% < CV < 35%) and low variability (CV < 

15%). According to this classification, the coefficients of variation for selected soil properties 

were high, which indicates a broad range of values across the study area. 

Table 2- 2. The coefficient of variation (CV), minimum and maximum for some soil properties in the study area 

for 0-30 cm layer. 

Statistical criteria OC (%) CCE (%) Sand (%) Silt (%) Clay (%) 

CV (%) 96.99 29.90 39.74 33.37 27.48 

Minimum 0.18 11.30 4.00 6.00 15.96 

Maximum 8.88 72.50 53.88 61.36 64.00 

Mean 1.46 35.74 21.82 39.58 38.49 
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Descriptive statistics of some soil properties determined in this study within distinguished 

landforms are presented in Table 2-3. Almost all CVs for soil properties within landforms 

decreased as compared to overall CV throughout the study area, which indicates that 

landform delineation leads to homogeneous units and could explain a part of soil variability 

(Table 2-3). Post et al.,)2008) stated that the CVs or the variances may be used for 

comparison of the variability between the different sources. Other researchers, Borujeni et al., 

(2010) Moore et al., (1993) and Toomanian et al., (2006) also reported that landform 

delineation can partly explain soil variability and therefore can be used to produce more 

homogeneous soil units. 

Table 2-3. Descriptive statistics of some surface soil properties (0-30 cm) in different landforms.  

Landforms Soil properties (%) Std.Dev. Variance CV (%) Min Max Mean 

Hi1 

OC 0.29 0.08 34.56 0.53 1.27 0.85 

CCE 11.25 126.61 38.42 11.30 42.30 29.29 

Sand 3.58 12.80 15.83 19.00 28.00 22.60 

Silt 5.86 34.30 14.79 34.00 49.00 39.60 

Clay 5.93 53.20 15.70 31.00 44.00 37.80 

Hi2 

OC 0.33 0.11 32.20 0.72 1.58 1.03 

CCE 5.57 31.01 28.05 12.25 27.75 19.85 

Sand 1.72 2.97 10.88 14.00 18.00 15.83 

Silt 4.23 17.87 10.48 32.00 44.00 40.33 

Clay 3.49 12.17 7.96 40.00 50.00 43.83 

Mo1 

OC 0.18 0.03 30.82 0.36 0.95 0.59 

CCE 8.81 77.56 22.83 25.30 56.00 35.58 

Sand 8.08 65.33 31.49 12.00 39.00 25.67 

Silt 9.63 92.70 24.58 26.00 58.00 39.17 

Clay 6.37 40.52 18.10 60.00 52.00 35.17 

Pi1 

OC 1.37 1.87 104.44 0.18 5.40 1.31 

CCE 8.67 75.16 22.89 19.75 55.25 37.88 

Sand 9.02 81.42 44.07 4.00 52.00 20.47 

Silt 6.96 48.45 17.64 24.00 60.36 39.45 
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Clay 7.54 56.91 18.93 24.00 57.00 39.86 

Pi2 

OC 0.40 0.16 39.53 0.45 1.81 1.00 

CCE 13.78 189.82 40.07 15.00 49.80 34.38 

Sand 7.61 57.97 40.43 11.00 38.00 18.83 

Silt 8.28 68.57 20.32 30.00 57.00 40.75 

Clay 7.94 62.99 19.64 26.00 50.00 40.42 

Pi3 

OC 0.19 0.04 27.39 0.41 1.05 0.69 

CCE 10.81 116.81 32.76 18.80 60.80 32.99 

Sand 8.01 64.09 31.57 13.00 38.00 25.36 

Silt 5.26 27.65 13.31 30.00 49.00 39.50 

Clay 3.94 15.52 11.21 30.00 43.00 35.14 

Pi4 

OC 0.85 0.72 31.48 1.23 3.90 2.70 

CCE 1.70 2.88 5.24 29.70 35.00 32.40 

Sand 3.55 12.57 16.49 14.00 26.00 21.50 

Silt 6.30 39.64 12.05 44.00 61.00 52.25 

Clay 8.74 76.41 33.78 18.00 42.00 25.88 

Pi5 

OC 0.68 0.46 59.61 0.41 2.23 1.13 

CCE 17.00 289.11 41.38 23.50 72.50 41.09 

Sand 14.28 203.84 58.99 10.20 53.88 24.20 

Silt 8.96 80.23 20.22 30.00 60.00 44.30 

Clay 10.49 109.96 33.29 15.96 44.00 31.50 

Pl1 

OC 2.63 6.90 46.89 1.58 8.88 5.60 

CCE 9.56 91.47 25.10 28.50 53.80 38.11 

Sand 5.99 35.86 43.61 7.84 22.00 13.73 

Silt 13.69 187.46 28.79 30.00 61.36 47.56 

Clay 9.87 97.37 25.49 28.52 50.00 38.71 

Pl2 

OC 0.11 0.02 3.44 3.33 3.60 3.36 

CCE 1.44 2.07 387 35.00 39.00 37.16 

Sand 1.67 2.80 5.40 29.00 33.00 31.00 

Silt 1.60 2.57 22.35 6.00 10.00 7.16 

Clay 1.72 2.97 2.79 60.00 64.00 61.83 

It could be argued that the landform unit with low CV (e.g. Pl2 unit) and landform units 

with high CV (e.g. Pi1 and Pi5 units) are the most homogeneous and heterogeneous units, 
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respectively. Based on the field observations, some part of soil spatial variability could be 

explained by land use management due to different agriculture practices and local-scale soil 

variability. Additional statistical analysis showed that there are significant differences for the 

mean of soil properties among different landforms except for sand content (Table 2-4). 

However, in general, there was no significant difference for sand content. 

Table 2-4. Comparison of the mean values of some soil properties (0-30 cm) in different landforms. 

Landforms OC (%) CCE (%) Sand (%) Silt (%) Clay (%) 

Hi1 0.85cd 29.29ab 22.60a 39.60ab 37.80bcd 

Hi2 1.031cd 19.85b 15.83a 40.33ab 43.83b 

Mo1 0.592d 38.58a 25.67a 39.16b 35.16bcd 

Pi1 1.311d 37.88a 20.47a 39.45b 39.85b 

Pi2 1.007d 33.26ab 18.83a 40.75b 40.41bc 

Pi3 0.699d 32.99ab 25.35a 39.50b 35.14bcd 

Pi4 2.705bc 32.41ab 21.50a 52.25a 25.87d 

Pi5 1.134cd 41.09a 24.20a 44.3ab 31.49cd 

Pl1 5.605a 38.11ab 13.73a 47.55ab 38.71bcd 

Pl2 3.330b 37.50ab 30.00a 6.00c 64.00a 

Note: Values in the same column followed by the same letter(s) are not significant at the 5% level of 

significance according to ANOVA. Landforms defined in Table 1. 

2.3.1 Soil and landform evolution 

The results of soil description and classification indicated the occurrence of three soil 

orders including Inceptisols, Entisols and Mollisols within ten different landform units in the 

study area. The numbers of observed profiles for different Soil Taxonomy categories 

comprising order, suborder, great group, and subgroup are presented in Table 2-5. Five 

suborders, seven great groups and twelve subgroups in the selected area were identified. A 

sequence of evaluated soils throughout the main distinguished landforms is shown in Figure 

2-3. The majority of Mollisols occurred in Pl1 and Pl2 landforms (lowland landscape), where 

the groundwater table is close to the soil surface. Shallower water tables in an arid landscape 

may correspond to increased biomass production which might lead to organic carbon 
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accumulation via humification (see high OC content for Pl1 and Pl2 units in Table 2-4). 

These are two main processes to form a mollic epipedon (Bockheim, 2015). The organic 

carbon (OC) accumulation has a strong relationship with clay contents and climate condition 

(Zeraatpishe and Khormali, 2012). Inceptisols were mainly present in piedmont landscapes 

(Pi) and all Entisols were located in the mountain, piedmont and hill land landscapes (Mo, Pi 

and Hi, respectively). 

Table 2-5. Number of soil classes observed in the study area in different soil taxonomy levels. 

Order 
No. 

profile 
Suborder 

No. 

profile 
Great group 

No. 

profile 
Subgroup 

No. 

profile 

Entisols 36 Orthents 36 Xerorthents 36 
Typic 

Xerorthents 
13 

      
Lithic 

Xerorthents 
23 

Inceptisols 70 Aquepts 3 Endoaquepts 3 
Typic 

Endoaquepts 
3 

  Xerepts 67 Calcixerepts 45 
Petrocalcic 

Calcixerepts 
5 

      
Typic 

Calcixerepts 
33 

      
Aquic 

Calcixerepts 
7 

    Haploxerepts 22 
Aquic 

Haploxerepts 
7 

      
Typic 

Haploxerepts 
15 

Mollisols 19 Aquolls 9 Endoaquolls 9 
Typic 

Endoaquolls 
9 

  Xerolls 10 Haploxerolls 8 
Aquic 

Haploxerolls 
4 

      
Typic 

Haploxerolls 
4 

    Calcixerolls 2 
Typic 

Calcixerolls 
2 
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Based on the field work, observations and laboratory analyses, mollic and ochric 

epipedons were identified. Regarding the abundance of calcium carbonate in the parent 

material (see Table 2-4), some soil surface horizons have high pH and the required cation 

exchange capacity (CEC) and Base Saturation and soil organic matter content to qualify for 

mollic horizon according to U.S Soil Taxonomy (Soil Survey Staff, 2014).  

Within the study area, different subsurface diagnostic horizons were identified: calcic 

horizon (Bk), cambic horizon (Bw), petrocalcic horizon (Bkm) and also subsoil 

redoximorphic features. Regarding the geology map of the study area, soils formed primarily 

from weathered geological formations such as limestone, conglomerates with marl, 

Quaternary deposits, shale, alluvium and colluvial deposits. Moreover, all rock outcrops 

observed in the field were limestone (Borujen Geology Map, 1990). 

The eroded hill land (Hi1) and rock outcrop (Mo1) landforms are distinctly recognizable 

in the study area with shallow soils and in some part with limestone rock outcrops. Most of 

the soils in those landforms are Lithic Xerorthents (Figure 2-3). Developed hill land (Hi2) is 

situated in the eastern part of investigated area, which is continuous hills with high 

topography and deeper soil that is categorized as Typic Calcixerepts, with developed calcic 

(Bk) and cambic (Bw) diagnostic horizons. Among all landforms in the piedmont, the alluvial 

fan (Pi1) is dominant. It is located in an agricultural region with low topography and slope. 

Apart from the development of calcic and cambic horizons in these landforms, agriculture 

practices, and stable topography led to accumulation and cementation of calcium carbonate 

partly and formation of Petrocalcic horizon (Bkm). Typic Calcixerepts, Aquic Haploxerepts, 

Typic Haploxerepts and Aquic Calcixerepts are four main suborders among eight suborders 

observed in piedmont landform (Figure 2-3). 
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Figure 2-3. a) 3D image of the study area with the main landforms in a sequence of soil 

evolution, and b) a schematic transect of soil on the landforms with observed profiles. 

The gently undulating but dissected alluvial fan (Pi2) has formed during the Quaternary 

and is one of the youngest landforms in the study area. Because of the enrichment of calcium 

carbonate in parent material, most of the soils have calcic horizons. The differences between 

the landforms of pediment (Pi3) and piedmont plain (Pi5) are mainly related to their 

topography, where Pi3 commonly occurred at higher slope and elevation positions (Figures 

2-2 and 2-3). The river plain landform (Pi4) is located in the north-west of study area affected 
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by underground water. It contains gley properties (Bg) and calcic horizons (Aquic 

Calcixerepts and Typic Endoaquepts). The lagoon landform (Pl2, Figures 2-2 and 2-3) has 

been created by overland flow and underground drainage. Soils located in wetlands and 

lagoon landforms (Pl1 and Pl2) mainly included Typic Endoaquolls and Aquic Haploxerolls. 

These receive water under closed basin conditions, and have fine textured materials and 

exhibit waterlogging conditions. The landform of the lagoon (Pl2) is located in a geological 

depression (graben) which was created after the uplifting of Zagros Mountains (Alpine 

Orogeny).  

The Zagros range spans the whole length of the western and southwestern Iranian plateau 

(Kelishadi et al., 2014; Mehnatkesh et al., 2013) with a total length of 1,500 km. The Tertiary 

to Holocene events included strong uplift processes, magmatism and volcanism, erosional 

processes, and the associated deposition of extensive alluvial fans from the uplifted 

mountains that occurred in the Zagros zone (Alsharhan et al., 2001). As a result of uplift and 

folding, the Tethys Sea, which once covered the entirety of Iran, was closed. With frequent 

uplifting, a large number of shallow water bodies were created (Hojati and Khademi, 2011). 

These tectonic and geological processes could be the main reason for the existence of lagoon 

landforms in the region (Figure 2-3 a and b). 

Accumulation and cementation by secondary carbonates are the main discriminating 

properties within stable landforms like alluvial fan (Pi1), dissected alluvial fan (Pi2) and 

piedmont plain (Pi5). Hill land and mountain landscapes are pedogenetically undeveloped 

and poorly differentiated due to the dominance of physical weathering process. Soils within 

the river plain landform (Pi4) and the lowland landscape mostly affected by water logging, 

have redoximorphic features and organic carbon accumulation. Generally, in the arid and 

semi-arid regions, soil classes and properties are determined by parent materials and 

landscape position (Jafari et al., 2013; Sağlam and Dengiz, 2015; Toomanian et al., 2006). In 
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general, landform delineations could successfully identify the homogeneous soils that are 

controlled by similar pedogenesis process. 

2.3.2 Pedodiversity indices and landform evolution 

The pedodiversity indices were used to investigate soil homogeneity and heterogeneity in 

Soil Taxonomy hierarchic categories within landform units. The pedodiversity indices at 

different taxonomic levels of the entire study area are presented in Table 2-6. As can be seen, 

diversity indices increase from the soil order to the soil subgroup, but their change and 

increase at soil subgroup level are sudden. It could be because of the simultaneous increase of 

the richness and evenness through soil suborder level (Jafari et al., 2013; Toomanian et al., 

2006). Also, it is concluded that the higher the detail in Soil Taxonomy level, the higher the 

pedodiversity values. 

The Margalef‘s and the Menhinick‘s indices at all soil taxonomic levels showed the same 

tendency with an increase from the soil order to the soil subgroup (Table 2-6). Many 

researchers have shown that how the richness and Shannon indices increased through 

taxonomic hierarchical organizations in small and large scales (Guo et al., 2003; Ibañez et al., 

1998; Jafari et al., 2013; Saldaña and Ibáñez, 2004; Toomanian et al., 2006). 

The diversity indices of landforms at all Soil Taxonomy levels are presented in Table 2-7. 

Pedodiversity indices increased in most of the landforms from the soil order to the soil 

subgroup level. The general trend of increase in the diversity indices in the Hi1 and 

Mo1landform units are not similar to that observed in other units from the order to the 

subgroup. The low diversity in the hill land and mountain landscapes was expected due to a 

limitation in the soil pedogenesis process. These results are in accordance with findings of 

other researchers such as Behrens et al. (2009) and Jafari et al. (2013).  
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Table 2- 6. Diversity indices based on U.S. Soil Taxonomic hierarchy. 

Level of study N S H' Hmax E Dmg Dmn D 

Order 125 3 0.97 1.09 0.88 0.41 0.27 0.13 

Suborder 125 5 1.17 1.61 0.73 0.83 0.45 0.43 

Great group 125 7 1.55 1.94 0.80 1.24 0.63 0.39 

Subgroup 125 12 2.17 2.48 0.87 2.28 1.07 0.32 

N: number of observations; S: richness index; H': Shannon index; Hmax: maximum Shannon index; 

E: evenness; Dmg: Margalef‘s index; Dmn: Menhinick‘s index; D: O‘Neill dominant index 

At the lower Soil Taxonomy categories, the diversity values might increase due to 

variability in parent materials and soil characteristics as reported by Saldaña and Ibáñez 

(2004) and Jafari et al. (2013) for soil family category. Diversity indices of some landforms 

were constant or low increasing from soil order to subgroup (Table 2-7), presumably because 

of low dominance of few pedogenesis processes which occurred within the landform and 

subsequently led to the formation of more homogeneous soils within the landforms. 
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Table 2- 7. Pedodiversity of landform units based on U.S. Soil Taxonomic hierarchy. 
 Order Suborder 

Landforms N S H' Hmax E Dmg Dmn D S H' Hmax E Dmg Dmn D 

Hi1 5 2 0.67 0.69 0.97 0.62 0.89 0.02 2 0.67 0.69 0.97 0.62 0.89 0.02 

Hi2 6 2 0.69 0.69 1.00 0.56 0.82 0.00 2 0.69 0.69 1.00 0.56 0.82 0.00 

Mo1 12 2 0.29 0.69 0.41 0.40 0.58 0.41 2 0.29 0.69 0.41 0.40 0.58 0.41 

Pi1 47 3 0.93 1.10 0.85 0.52 0.44 0.17 3 0.93 1.10 0.85 0.52 0.44 0.17 

Pi2 12 2 0.45 0.69 0.65 0.40 0.58 0.24 2 0.45 0.69 0.65 0.40 0.58 0.24 

Pi3 14 2 0.63 0.69 0.91 0.38 0.53 0.06 2 0.69 0.69 1.00 0.38 0.53 0.00 

Pi4 8 1 0.00 0.00 - 0.00 0.35 0.00 2 0.66 0.69 0.95 0.48 0.71 0.03 

Pi5 10 2 0.33 0.69 0.47 0.43 0.63 0.37 2 0.33 0.69 0.47 0.43 0.63 0.37 

Pl1 5 2 0.50 0.69 0.72 0.62 0.89 0.19 3 0.95 1.10 0.86 1.24 1.34 0.15 

Pl2 6 1 0.00 0.00 - 0.00 0.41 0.00 1 0.00 0.00 - 0.00 0.41 0.00 

Landforms Great group Subgroup 

Hi1 5 2 0.67 0.69 0.97 0.62 0.89 0.02 3 1.05 1.10 0.96 1.24 1.34 0.04 

Hi2 6 3 0.71 1.10 0.65 1.12 1.22 0.39 4 1.33 1.39 0.96 1.67 1.63 0.06 

Mo1 12 2 0.29 0.69 0.41 0.40 0.58 0.41 2 0.29 0.69 0.41 0.40 0.58 0.41 

Pi1 47 4 1.19 1.39 0.86 0.78 0.58 0.20 8 1.84 2.08 0.88 1.82 1.17 0.24 

Pi2 12 3 0.87 1.10 0.79 0.80 0.87 0.23 5 1.42 1.61 0.88 1.61 1.44 0.19 

Pi3 14 3 0.99 1.10 0.90 0.76 0.80 0.11 4 1.20 1.39 0.86 1.14 1.07 0.19 

Pi4 8 3 0.97 1.10 0.89 0.96 1.06 0.12 3 0.97 1.10 0.89 0.96 1.06 0.12 

Pi5 10 3 0.90 1.10 0.82 0.87 0.95 0.20 4 1.17 1.39 0.84 1.30 1.26 0.22 

Pl1 5 3 0.95 1.10 0.86 1.24 1.34 0.15 3 0.95 1.10 0.86 1.24 1.34 0.15 

Pl2 6 1 0.00 0.00 - 0.00 0.41 0.00 1 0.00 0.00 - 0.00 0.41 0.00 

N: number of observations; S: richness index; H': Shannon index; Hmax: maximum Shannon index; E: 

evenness; Dmg: Margalef‘s index; Dmn: Menhinick‘s index; D: O‘Neill dominant index. Landforms defined in 

Table 2-1. 

Among the studied landforms, soils of the alluvial fan (Pi1) were highly diverse. Soil 

pedogenesis processes strongly defined the values of the pedodiversity. In alluvial fan 

landform (Pi1) as compared to other landforms, some soil formation factors such as 

calcification, decalcification and leaching had higher impacts on the divergence of soils. 

Furthermore, the high diversity could be explained by the number of observations and the 

size of the area of study. Firstly, the number of observed soil profiles (N) has a significance 
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effect on diversity and, additionally, Minasny et al. (2010) showed that H′ is closely related to 

the number of soil classes. When the number of different soil classes or richness increases, a 

greater number of fractions are summed in H′. Secondly, the alluvial fan landform is 

distributed in all subareas in the study area (Figure 2-2), therefore, when an area is large 

enough, divergent pedogenesis processes (e.g. calcification and decalcification) lead to 

diverse soils. An increase in soil heterogeneity verifies the existence of divergent soil 

evolution (Saldaña and Ibáñez, 2004). 

Soils within the lagoon landform (Pl2) were homogeneous at all Soil Taxonomy levels 

(Table 2-6). In the local-scale and homogeneous landform, convergent soil pedogenesis 

processes are dominant and lead to similar soils during the time. Number of soil classes also 

increased from the soil order to the suborder level, which means soil richness increased 

through hierarchy Soil Taxonomy (Table 2-6 and 2-7). Rannik et al. (2016) stated that the 

large number of soil species (S) also expressed high heterogeneity. 

The O‘Neill dominant index (D) showed the deviation of the Shannon diversity indices 

(H') from the maximum diversity (Hmax) therefore when the difference of deductions is null, 

maximum diversity would happen (Table 2-7).  

When the number of species (S) are equal in different landforms, the evenness index (E) 

could show how diversity is (Table 2-7). Ibañez et al. (1995) showed that when the evenness 

of objects is equally probable, the diversity is highest when the richness of comparing units is 

the same. 

Low pedodiversity indices were reported in the several studies for mountainous landscapes 

(e.g. (Behrens et al., 2009; Jafari et al., 2013)). In our study, mountainous landscape (rock 

outcrop landform, Mo1) covered approximately 34% of the study area, therefore, because of 

low diversity values, richness–area and Shannon index-area relationships plotted with 

excluding of mountain diversity values. Richness–area relationships were plotted to 
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recognize the close-fitting model (power or logarithmic) in the study area. Figure 2-4 

illustrates the logarithmic and power functions of richness-area relationship. The results 

indicated that both the logarithmic function (Figure 2-4a) and the power function (Figure 2-

5b) had a good fit in the study area. Both figures show an increasing trend with increasing 

area. It is concluded that more additional soil types can be expected in the study area, as 

similar studies elsewhere indicate: Saldaña and Ibáñez (2004) stated that a larger area should 

be sampled to capture the spatial variability of the area. The positive relations between 

richness and area are in agreement with the results of Ibáñez et al. (2005) in the Aegean 

Islands in Greece, the study of Saldaña and Ibáñez (2004) on fluvial terraces in central Spain 

and Toomanian et al. (2006) on Zayandeh-rud Valley, central Iran. 
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Figure 2-4. a) Richness–area relationships; logarithmic functions and b) a power functions. 

***statistically significant (α=0.01), **statistically significant (α=0.05). 

The complexity of environment could be monitored and measured by Shannon index-area 

relationship (Guo et al., 2003; Ibañez et al., 1998; Ibañez et al., 1995; Saldaña and Ibáñez, 

2004; Toomanian et al., 2006). The relationship between Shannon index and the area of 

landforms showed a positive relationship (Figure 2-5a) which was in agreement with the 

results of previous investigations by Guo et al. (2003), Ibañez et al. (1998) and Toomanian et 

al. (2006). Shannon diversity index showed a linear positive relationship with the number of 



 

29 
 

profiles in landforms (Figure 2-5b). It is ascertained that higher pedodiversity and variability 

in the survey area could be achieved if the number of observations or the sample density 

increases. 

 

 
Figure 2-5. a) Shannon index-area relationship and b) number of sampling in landform units. 

**statistically significant (α=0.05), *statistically significant (α=0.10) 
 

2.4 Conclusions 

Soil-landform evolution and pedodiversity-landform analysis as an easy and well-known 

approach to breaking down the complexity of soils throughout landscape were evaluated in 

this study for a semiarid region of Iran. It was confirmed that landform delineation generates 



 

30 
 

more homogeneous units of soil properties and soil types. Furthermore, within landform 

units, soil evolution is better interpretable and comparable regarding the pedogenesis process 

and soil development. Results revealed that pedogenesis processes lead to form uniform soil 

types and properties at the local-scale. On the other hand, within large-scale or extensive 

landform units, divergent processes tended to create distinct soil types and properties, and 

consequently, the differences of soils between landform units were considerable.  

It has already been shown that pedodiversity indices could be used to separate 

heterogeneous/homogeneous soils at different levels. Diversity indices decreased from the 

soil orders to the soil subgroup. The logarithmic and power functions fitted well and 

satisfactory for richness–area relationships. Pedodiversity indices-area relationships showed 

that there are additional soil classes if the numbers of observations or the sampling density 

increase. It seems probable that the number and the intensity of observations were insufficient 

in the study area. Further investigations are suggested to be done for a more profound 

understanding of relationships between soil and landscape evolution in the semi-arid regions 

of Iran. 
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Chapter 3 

Comparing the efficiency of digital and conventional soil mapping to predict soil types 

in a semi-arid region in Iran 

Based on: 

M. Zeraatpisheh, S. Ayoubi, A. Jafari, P. Finke. 2017. Comparing the efficiency of digital and 

conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology, 285: 

186–204, DOI: 10.1016/j.geomorph.2017.02.015. 

 

Abstract 

The efficiency of different digital and conventional soil mapping approaches to produce 

categorical maps of soil types is determined by cost, sample size, accuracy and the selected 

taxonomic level. The efficiency of digital and conventional soil mapping approaches were 

examined in the semi-arid region of Borujen, central Iran. This chapter aimed to (i) compare 

two digital soil mapping approaches including Multinomial logistic regression and random 

forest, with the conventional soil mapping approach at four soil taxonomic levels (order, 

suborder, great group and subgroup levels), (ii) validate the predicted soil maps by the same 

validation data set to determine the best method for producing the soil maps, and (iii) select 

the best soil taxonomic level by different approaches at three sample sizes (100, 80, and 60 

point observations), in two scenarios with and without a geomorphology map as a spatial 

covariate. In most predicted maps, using both digital soil mapping approaches, the best 

results were obtained using the combination of terrain attributes and the geomorphology map, 

although differences between the scenarios with and without the geomorphology map were 

not significant. Employing the geomorphology map increased map purity and the Kappa 

index, and led to a decrease in the ‗noisiness‘ of soil maps. Multinomial logistic regression 

had better performance at higher taxonomic levels (order and suborder levels); however, 

random forest showed better performance at lower taxonomic levels (great group and 
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subgroup levels). Multinomial logistic regression was less sensitive than random forest to a 

decrease in the number of training observations. The conventional soil mapping method 

produced a map with larger minimum polygon size because of traditional cartographic 

criteria used to make the geological map 1:100,000 (on which the conventional soil mapping 

map was largely based). Likewise, conventional soil mapping map had also a larger average 

polygon size that resulted in a lower level of detail. Multinomial logistic regression at the 

order level (map purity of 0.80), random forest at the suborder (map purity of 0.72) and great 

group level (map purity of 0.60), and conventional soil mapping at the subgroup level (map 

purity of 0.48) produced the most accurate maps in the study area. The Multinomial logistic 

regression method was identified as the most effective approach based on a combined index 

of map purity, map information content, and map production cost. The combined index also 

showed that smaller sample size led to a preference for the order level, while a larger sample 

size led to a preference for the great group level. 

3.1 Introduction 

Soil information of good quality and high spatial resolution is essential for adequate 

support of land use management practices, precision agriculture, and ecosystem research. In 

spite of more than 50 yr of soil survey history in the world, in Iran there are just few maps at 

scales appropriate for land use planning and agricultural practices. As an example, the 

conventional soil map of Iran (1:1,000,000) recently was prepared by the Soil and Water 

Research Institute of Iran (Banaei et al., 2005; Mohammad, 2000) based on landform 

delineations of the main physiographic regions, is not sufficiently informative (Hengl et al., 

2007). Detailed maps supporting many applications, however, exist in some countries with 

soil maps at spatial resolutions of 100 m (The Netherlands; De Vries et al. 2003; Kempen et 

al. 2015), 10 m (one-third of Germany; Lösel, 2003), 100-400 m (Germany; McBratney et al. 

2003) and 200-500 m (France;  King et al. 1999). Therefore, it is necessary for Iranian soil 
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scientists and decision makers to produce soil maps at finer scales that provide more detailed 

information. 

Conventional methods of soil mapping are currently considered to be ineffective to 

produce detailed soil maps at a reasonable cost and time (Kempen et al., 2012). Digital soil 

mapping (DSM) is a powerful technique which is increasingly applied by soil scientists and 

environmentalists to map soil types and/or properties using ancillary data (Lagacherie et al., 

2006; McBratney et al., 2003). These ancillary data, termed environmental covariates, can be 

obtained from digital elevation models (DEM), satellite imagery (remote sensing data), maps 

of geology and geomorphology, and legacy soil maps (categorical maps) (Krasilnikov et al., 

2011). 

The basis of DSM is the application of pedometric techniques that predict the spatial 

distribution of soil types and soil properties (Wulf et al., 2015). Here, we focus on making 

maps of soil types because these have been mapped at incomplete coverage until now and the 

desire exists to finalize soil mapping in the most economically feasible way. Recently, 

several novel models have been developed to produce soil type maps from profile 

observations by utilizing auxiliary data (Brungard et al., 2015; Heung et al., 2014; Nelson and 

Odeh, 2009). Many such methods have been investigated for digital soil mapping of soil 

types, including Random Forest (RF) (Brungard et al., 2015; Reza Pahlavan Rad et al., 2014), 

Multinomial Logistic Regression (MLR) (Abdel-Kader, 2011; Brungard et al., 2015; Jafari et 

al., 2012; Kempen et al., 2012), Artificial Neural Networks(Brungard et al., 2015; Jafari et 

al., 2013), Support Vector Machine (Kovačević et al., 2010), Nero-Fuzzy approach (Viloria 

et al., 2016), and Genetic Algorithms (Nelson and Odeh, 2009). 

DSM models are divided into simple, intermediate, and complex models (Brungard et al., 

2015) based on their interpretability and the number of parameters required. In the present 

study, two DSM models including RF (a complex model), MLR (a simple model), and the 



 

34 
 

conventional soil mapping method were compared for predicting soil types. RF and MLR 

compared favourably to other methods in earlier studies in Iran (Jafari et al., 2013; Reza 

Pahlavan Rad et al., 2014). 

RF can be regarded as an ensemble of classification and regression trees (CART) which 

are aggregated to provide the final prediction (Breiman, 2001; Breiman et al., 1984; Cutler et 

al., 2007). RF has several advantages over other statistical modelling approaches (Breiman, 

2001; Liaw and Wiener, 2002). Its input and output variables can be both continuous and 

categorical (Grimm et al., 2008). Moreover, RF has the advantage of incorporating 

‗randomness‘ into its predictions through reiterative bootstrap sampling and randomized 

variable selection when generating each decision tree (Heung et al., 2014). The RF algorithm 

is considered a powerful modelling technique for predicting soil types because (i) it is quite 

robust to noise in predictors, (ii) it shows no over-fitting, (iii) it produces predictions with 

low bias and low variance, and (iv) since it is also fairly fast, it does not require the pre-

selection of variables (Díaz-Uriarte and De Andres, 2006; Prasad et al., 2006; Wiesmeier et 

al., 2011). RF also identifies the most important covariates (Archer and Kimes, 2008; Hua et 

al., 2005). 

Abdel-Kader (2011) reported that the MLR model is the most frequently used statistical 

model for spatial prediction of soil types and spatial modelling in land use and ecology 

studies (Abdel-Kader, 2011; Jafari et al., 2012; Kempen et al., 2012; May et al., 2008; 

Rhemtulla et al., 2007; Suring et al., 2008. However, in recent years only some studies have 

used MLR for digital soil mapping (Abdel-Kader, 2011). 

DSM and CSM approaches are similar in that they both make use of relationships 

between soil properties and more readily observable land surface properties (shape, position, 

and reflectance). Conventional soil maps are limited by the scale of the base map, their 

inability to represent continuous soil classes and spatial variation (Roecker et al., 2010). 
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Production of maps using CSM techniques is also labour-intensive and expensive. DSM-

based maps suffer less from these limitations, thus DSM is generally assumed to be more 

efficient than CSM (Kempen et al., 2012). 

3.1.1 Objectives 

Although several papers have been published on the benefits of DSM compared to CSM 

in recent years, few examples exist that compare DSM techniques with CSM approaches for 

predicting soil types in the same area, especially in arid and semi-arid regions. The objective 

of this chapter, therefore, was to compare two different DSM techniques (MLR and RF) with 

a conventional soil survey for producing soil maps at different taxonomic levels in a semiarid 

region of Iran. This comparison assessed not just map accuracy, but also information content 

and production cost, with the purpose of selecting the most efficient method as a function of 

the taxonomic level of the maps. Because results may depend on sampling density, we 

evaluated the effect of three different sample sizes on our conclusions. 

3.2 Materials and Methods 

3.2.1 Description of the study area 

The study area and soil sampling were described in chapter 2. 

3.2.2 Soil sampling scheme and profile description 

The soil sampling scheme and profile description were explained in chapter 2.  

3.2.3 Environmental covariates 

Environmental covariates were represented by categorical maps of geomorphology and 

geology (scale of 1:100,000), by quantitative maps representing topographic attributes, and 

by remote sensing data. Topography and parent material are the main soil forming factors in 

arid and semi-arid regions (Florinsky et al., 2002; Mehnatkesh et al., 2013; Tajik et al., 2012). 

Therefore, to obtain the topographic attributes, we downloaded a DEM with the cell size of 
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30 × 30 m derived from the Aster GDEM database (Ministry of Economy, Trade and 

Industry of Japan, National Aeronautics and SpaceAdministration, 2009). The terrain 

attributes obtained from the DEM included elevation, the topographic wetness index, the 

SAGA (System for Automated Geoscientific Analysis) wetness index, a multi-resolution of 

ridge top flatness index, a multi-resolution valley bottom flatness index (Gallant and 

Dowling, 2003), curvature, profile curvature, plan curvature, aspect, and slope (Table 3.1). 

Remote sensing auxiliary variables included the normalized difference vegetation index 

(NDVI; Boettinger et al., 2008), the ratio vegetation index (Pearson and Miller, 1972), the 

perpendicular vegetation index (Richardson and Wiegand, 1977), the clay index (Boettinger 

et al., 2008), and the soil adjusted vegetation index (SAVI; Huete, 1988). These indices were 

derived from the Landsat Enhanced Thematic Mapper acquired in 2008 ( U.S. Geology 

Survey, 2004). All extracted environmental covariates were used in the Latin hypercube 

sampling scheme and soil type prediction (Table 3.1). The SAGA GIS was used to derive 

environmental covariates (Olaya, 2004).  

 

 



 

37 
 

Table 3-1. Environmental covariates used as predictors in the study area.  

Environmental covariates 
Nature of the soil variable 

derived 

Name of 

covariate 
Definition Type Reference/source 

Topographic attributes DEM 

El Elevation (m) 

Quantitative 

SAGA GIS 

TWI Topographic Wetness Index SAGA GIS 

WI Wetness Index SAGA GIS 

MrRTF Multi-resolution of ridge top flatness index (Gallant and Dowling, 2003) 

MrVBF Multi-resolution Valley Bottom Flatness Index (Gallant and Dowling, 2003) 

Cu Curvature SAGA GIS 

PrCu Profile Curvature SAGA GIS 

PlCu Plan Curvature SAGA GIS 

As Aspect SAGA GIS 

Sl Slope angle (%) SAGA GIS 

Remote sensing 

attributes 
Landsat ETM 

NDVI Normalized Difference Vegetation Index 

Quantitative 

(Boettinger et al., 2008) 

RVI Ratio Vegetation Index (Pearson and Miller, 1972) 

PVI Perpendicular Vegetation Index 
(Richardson and Wiegand, 

1977) 

CI Clay Index (Boettinger et al., 2008) 

SAVI Soil Adjusted Vegetation Index (Huete, 1988) 

Geomorphology map Landform GEM 
Hierarchical four level classification (31 geomorphic 

surfaces) 
Categorical Arc GIS 

Geology map Geologic unit GEO Lithological units (12 units) Categorical Arc GIS 
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3.2.4 Geomorphology map 

The geomorphological units on the map represent the soil forming factors of parent material 

as well as relief, and are thus expected to be highly relevant in the complex process of soil 

survey. In this study, the geomorphic units were prepared based on a nested hierarchical method 

proposed by (Toomanian et al., 2006). Air photo interpretation was applied to represent the 

complexity of landscapes using four hierarchical geomorphic levels: landscapes, landforms, 

lithology, and geomorphic surfaces that have been formed by a unique set of processes in a 

period of time. The pedological expert knowledge on the landscape and relationship between 

soils and soil forming factors was employed by stereoscopic delineation from aerial photo pairs. 

After ortho-photo geo-referencing of stereoscopically interpreted aerial photos, 31 geomorphic 

surface classes (Table 3-2 and Figure 3-1) were delineated on-screen and imported into an 

ArcGIS environment. 
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Table 3-2 .Four hierarchical levels of the geomorphology map in the study area and the associated units.  

Landscap

e 
Landform Lithology (Codes)  Geomorphic surface 

Code 

Hill Eroded Thick bedded conglomerate with marl (Plcb) Single and low topography hills Hi111 

Developed hill lands Dark grey massive limestone (Kt2) Continuous hills with high 

topography 

Hi211 

Marl, limestone (Klm1) Continuous hills with high 

topography 

Hi221 

Mountain Rock outcrop Dark grey massive limestone (Kt2) Eroded rock surface Mo11

1 

Massive dark grey limestone, marl, shale (Kld) Eroded rock surface Mo12

1 

Mixed deposit of limestone, marl and shale 

(Jklmk) 

Eroded rock surface Mo13

1 

Marl and rare sandstone (Kshgu) Eroded rock surface Mo14

1 

Piedmont Alluvial Fan Older terraces and alluvial fans (Qt1) Active fan, upper section, high slope Pi111 

Active fan, upper section, low slope Pi112 

Young terraces and alluvial fans (Qt2) Active fan, lower section Pi121 

Active fan, lower section, Cultivated Pi122 

Silty clay flat (Qt3) Cultivated plain Pi131 

Cultivated plain, high slope Pi132 

Cultivated clay flat Pi133 

River channel and recent alluvium (Qat) Dryland farming, high slope Pi141 

Dissected Alluvial 

Fan 

Older terraces and alluvial fans (Qt1) Dissected Red Alluvial Fan Pi211 

Young terraces and alluvial fans (Qt2) Dissected Red Alluvial Fan Pi221 

Silty clay flat (Qt3) Dissected Red Alluvial Fan Pi231 

Pediment Dark grey massive limestone (Kt2) High slope pediment, shallow soil Pi311 

Young terraces and alluvial fans (Qt2) High slope pediment, shallow soil Pi321 

Grey marl and conglomerate, Lake deposit (Qmc) High slope pediment, shallow soil Pi331 

River channel and recent alluvium (Qat) High slope pediment, shallow soil Pi341 

Older terraces and alluvial fans (Qt1) High slope pediment, shallow soil Pi351 

High slope pediment, deeper soil Pi352 

River channel and recent alluvium (Qat) High slope pediment, shallow soil Pi361 

Massive dark grey limestone, marl, shale (Kld) High slope pediment, shallow soil Pi371 

River Plain Silty clay flat (Qt3) Cultivated clay flat, low drainage Pi411 

Piedmont Plain Young terraces and alluvial fans (Qt2) Cultivated, shallow soil, high slope Pi511 

Silty clay flat (Qt3) Cultivated, deep soil, low slope Pi521 

Low land Wet land Silty clay flat (Qt3) Low drainage, wetness Pl111 

Lake (Lagoon) Silty clay (Sc) Seasonal lagoon Pl211 
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Figure 3-1 Geomorphology map and sampling points in the study area. Geomorphic surfaces in 

the legend are explained in Table 3-2. 
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3.2.5 Mapping strategy and scenarios 

We used two conditions of prediction, two DSM approaches (MLR and RF), a CSM 

approach, and three training (point) datasets, resulting in twelve DSM prediction scenarios and 

one CSM scenario: 

Two conditions of prediction: Modelling with and without the geomorphology map as a 

covariate. 

Three point datasets: First, 125 samples were randomized and divided into a training dataset 

of 80% (100 observations) and a validation dataset of 20% (25 observations). Modelling was 

done using 100, 80, and 60 samples taken from the training data set. All DSM prediction 

scenarios were applied at four soil taxonomic levels (order, suborder, great group, and 

subgroup), and produced maps with pixels of 30 × 30 m.  

3.2.6 Digital Soil Mapping Approaches (DSM) 

3.2.6.1 Random Forest (RF) 

Random Forest (RF) is currently among the most successful methods to predict soil types 

from numerical and categorical data (Breiman, 2001). The RF method involves two steps. First, 

each tree (of numerous decision trees, e.g., 1000) of the random forest is constructed 

independently using bootstrap sampling from the original data. For each tree, a different 

bootstrap sample is taken from the sample, which is approximately 66% of the available 

observations, n. In this condition, the bootstrap sampling makes RF less sensitive to over-fitting 

in comparison with decision trees. Second, those observations (33%) not in the bootstrap sample 

are referred to as out-of-bag and the proportion of misclassification of these samples (out-of-bag 

error) is a measure of the precision of the method (Peters et al., 2007). The nodes of each tree are 

split based on the best environmental covariate chosen from a randomly selected subset of the 



 

42 
 

input environmental covariates. A second parameter is the number of trees in the forest. The 

selection of optimal input environmental covariate values for modelling at each taxonomic level 

was performed by iterating over environmental covariate values from 1 to the total number of 

covariates (Peters et al., 2007). For each environmental covariate value, the number of trees in 

the forest increased from 100 to 1000 by increments of 100. 

The RF algorithm provides two measures of variable importance: the mean decrease in 

accuracy and the mean decrease in Gini. The node impurity is measured by the Gini index, the 

mean decrease in Gini refers to the improvement of the splitting criterion which measures the 

reduction in class impurity from partitioning the data set (Myles et al., 2004). Mean decrease in 

accuracy is a permutation based measure of variable importance derived from evaluating the 

contribution of a variable to the prediction accuracy. The mean decrease in Gini also measures 

variable importance by permuting the values of each environmental covariate in the out-of-bag 

sample. Environmental covariates associated with a comparatively large increase in out-of-bag 

error are more important. A variable that produces high homogeneity in the descendent nodes 

results in a high mean decrease in Gini (Breiman, 2001). 

Modelling at different Soil Taxonomy levels was performed for all scenarios presented in 

section 3.2.5 using the ―randomForest‖ package (Liaw and Wiener, 2002) in R 3.0.1 (R 

Development Core Team, 2013). In case there is no an independent validation dataset, out-of-bag 

error rates may be used for validation (Heung et al., 2014), but in this study 20% of the observed 

dataset was used for independent validation. 

3.2.6.2 Multinomial logistic regression (MLR) 

The logistic model belongs to the family of generalized linear models and is used when the 

response variable is a categorical variable. Multinomial logistic regression (MLR) describes the 
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relationship between a combination of environmental predictive variables and a binary response 

variable by means of a link function (Hosmer Jr and Lemeshow, 2004).  

MLR was used to model the relationships between the different Soil Taxonomy levels (orders, 

suborders, great groups and subgroups) as categorical dependent variables and the remote 

sensing indices, terrain attributes (quantitative predictors), geomorphic units, and geology maps 

(qualitative predictors) with the same scenarios for RF as explained in section 3.2.5. A MLR 

model (Hosmer Jr and Lemeshow, 2004) with reference category J is expressed as follows: 

   (
   

   
)                        (Eq. 3.1) 

where αj is a constant, βj is a vector of regression coefficients, for j = 1, 2,..., J-1, and xi is a 

vector of explanatory variables. This model is analogous to a logistic regression model, except 

that the probability distribution of the response y is multinomial instead of binomial and there are 

J-1 equations instead of one so that: 

 (    )     
    (    )

  ∑     (    )
 
   

     (Eq. 3.2) 

Then, the probability of reference category is given by: 

 (    )      
 

  ∑     (    )
 
   

     (Eq. 3.3) 

At each classification level of the Soil Taxonomy, the dependent variables have more than 

two categories. At the beginning of modelling, in the MLR, the reference class must be selected. 

In this condition, we selected Entisols (order), Aquepts (suborder), Calcixerepts (great group) 

and Aquic Calcixerepts (subgroup) which are the first in the default alphabetical order, by using 

―nnet‖ package in   3.0.1 (R Development Core Team, 2013). The best MLR model selection at 

each level was determined by minimizing the Akaike information criterion (Akaike, 1974). In 
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this chapter, both the backward and forward stepwise Akaike information criterion approaches 

were used for model selection. The selected model had the fewest independent variables and the 

lowest Akaike information criterion and then was employed for prediction of soil types. The 

stepwise Akaike information criterion was done with the ―MASS‖ package in   3.0.1 (R 

Development Core Team, 2013). 

3.2.7 Conventional soil mapping (CSM) approach 

According to Qi and Zhu (2003) and Qi et al. (2008), soil polygons can be delineated using 

the perceived distribution of landscape units through aerial photo interpretation. The resulting 

map polygons for a soil type then correspond to the spatial patterns of the landscape units. 

Following this assumption, a conventional soil map was produced based on a physiographic 

survey. First, physiographic units were delineated by air photo interpretation and consultation of 

the geology map. Afterwards during the field survey, boundaries of physiographic units were 

verified and adjusted. The delineated polygons were then used to produce the conventional soil 

map at four Soil Taxonomic levels (order, suborder, great group, and subgroup). The CSM was 

based on 80% of the dataset (100 samples), so that the same validation data set was available as 

for the DSM-derived soil maps (next section). The CSM was performed by one co-author who 

was not involved in the construction of the DSM maps to ensure that the DMS and CSM maps 

were produced independently. We did not repeat CSM for different sampling densities as with 

DSM because any CSM mapper would, perhaps unknowingly, use experience from the previous 

mapping during repetitions and it would also involve large additional efforts. 

3.2.8 Cost evaluation  

One of the aims of this study was to compare the cost efficiency of DSM and CSM for soil 

survey and mapping. Therefore, we calculated the costs of field work, laboratory analysis, and 
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the cost of preparing the geomorphology maps and the conventional soil map based on the prices 

declared and approved by National Cartographic Centre (2015) and Soil and Water Research 

Institute (2015) of Iran. Because of the local currency and price levels, we avoided presenting the 

real costs but calculated relative cost (RC) for each soil taxonomic level and scenario (section 

3.2.5) as:  

   
(          )

(         )
       (Eq. 3.4) 

 

where MaxC is the maximum cost, RealC is the real cost, and MinC is the minimum cost. The 

cost models for DSM and CSM are different because different decisions were made in both 

approaches to determine what analyses were necessary. 

3.2.9 DSM cost analysis 

DSM scenarios comprised DSM with a geomorphology map and DSM without a 

geomorphology map as covariate. Based on the expected soil types in the research area (Borujeni 

et al., 2010; Jalalian and Mohmmadi, 1989) for each soil taxonomic level, different laboratory 

analyses were required to establish diagnostic epipedons, subsurface horizons and other 

properties for the soil classification (Soil Survey Staff, 2014). We did all the required soil 

analyses of organic carbon, calcium carbonate, gypsum, soil texture, and soil reaction (pH) for 

all 125 samples at the order level. After distinguishing the order in the study area, some 

additional quantitative and laboratory information were needed to classify at the suborder level. 

At this stage, based on possible suborders, 54 samples needed to be analysed for the 

exchangeable sodium percentage and the sodium adsorption ratio. For classification at the great 

group and subgroup levels there was no need for additional quantitative laboratory information, 
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as qualitative information collected in the field sufficed. The maximum cost (MaxC) was 

calculated by: 

                      (Eq. 3.5) 

where Gp is cost of producing the geomorphology map, ACsg is the maximum absolute cost 

for the most expensive level (which is great group or subgroup), and MoC is modelling cost.  

3.2.10 CSM cost analysis 

This approach was based upon the experts‘ field knowledge assuming that experts were able 

to decide on the number of samples and sort of analyses to be conducted. CSM at the order level 

included soil analyses for organic carbon, calcium carbonate equivalent, and soil texture for all 

125 soil samples, along with gypsum content and soil reaction (pH) for 85 of the soil samples. At 

the suborder level, the situation was the same as suborder in DSM approach (see section 3.2.9). 

At the great group level, 24 additional soil samples were analysed for gypsum characterization 

compared to the order level to distinguish Calciaquolls and Calcixerolls within the suborders of 

Aquolls and Xerolls. To classify at the subgroup level, qualitative information collected in the 

field sufficed, and no additional quantitative laboratory analyses were required. 

3.2.11 Validation strategy and performance indicators 

The performance in terms of map quality of each soil map predicted by the three different 

approaches (MLR, RF, and CSM) was evaluated using the same independent validation dataset, 

being a random subset of 20% of the 125 sampled field profiles (Table 3). Even though this 

subset is not strictly a probability sample because it is drawn from a latin hypercube sample 

combined with a legacy sample, we consider it suitable to evaluate for comparison of the 

performance of the different approaches. For instance, (Brus et al., 2011) suggested that RF 

validation with an independent dataset would be more reliable than RF validation with out-of-

bag error. For assessing the quality of the predicted soil maps, map purity was used based on the 
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confusion matrix (Brus et al., 2011). Map purity (MP) is defined as the proportion of the samples 

or soil types that were correctly predicted over the total number of validation locations: 

   ∑
   

 

 
          (Eq. 3.6) 

where U is the number of classes, Auu is the number of correctly classified observations of 

map unit u, and A is the total number of observations in the study area (validation dataset). Map 

purity measures a range between 0 to 1 where a good map has a value of map purity close to 1 

(Behrens et al., 2010). 

Additionally, Cohen's Kappa coefficient of predicted maps was determined for the two DSM 

approaches and the CSM approach. Kappa (k) indicates the agreement percentage between two 

maps, corrected for chance agreement (Fleiss et al., 1969): 

  
(     )

(    )
         (Eq. 3. 7) 

where Pe is the expected proportion, the hypothetical probability of chance agreement, and Po 

is the observed proportion, that is the relative observed agreement between the maps. 

The detail depicted on a map informs whether it is useful for subsequent spatial studies. A 

map with high spatial detail may be useful in spatial analysis if its accuracy is high as well. We 

derived a proxy for map intricacy using the Shannon entropy index (S) using a moving window. 

The degree of spatial detail was assessed by mapping the entropy using a 3×3 cell moving 

window on the soil type map produced by DSM or CSM. A high entropy in a window coincides 

with a higher map intricacy. The average of the mapped entropies was taken as a proxy for the 

information detail of the entire map. 

The Relative Purity (RP) is calculated as:  

   
(      )

(         )
       (Eq. 3.8) 
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where P is purity, MinP is minimum purity, and MaxP is maximum purity.  The relative 

diversity (RD) is:  

   
(      )

(         )
       (Eq. 3.9) 

where S is the average Shannon entropy index mapped with a 3x3 cell moving window, MinS 

is the minimum Shannon entropy index, and MaxS is the maximum Shannon entropy index.  In 

addition to the above performance indicators, we assessed a combined index, which is the 

product of relative cost, relative diversity for map detail, and relative purity for map quality. By 

multiplying these three factors, we assume that they equally and independently contribute to the 

performance of a map. The combined index was calculated for all scenarios, predicted maps, and 

the conventional map. The schematic illustration of the modelling strategies in this research is 

presented in Figure 3-2.  

 
Figure 3-2 Flowchart of procedures, modelling, and validation used for DSM and CSM 

approaches in this study. 



 

49 
 

 

3.3 Results and Discussion 

In the study area, 31 geomorphic units were identified (by air photo interpretation, Figure 3-2 

and Table 3-1), and Inceptisols, Entisols and Mollisols (Soil Survey Staff, 2014) were the main 

soil orders observed and described by field sampling. The majority of Mollisols occurred in 

geomorphic units Pl111 and Pl211 (low land landscape), where the shallow ground water table 

leads to organic carbon accumulation (melanization) to form a mollic epipedon (Bockheim, 

2015). Inceptisols were mostly concentrated in piedmont landscapes (Pi) and all Entisols were 

located in the mountain (Mo), piedmont (Pi), and hill (Hi) landscapes (Table 3-1, Figure 3-2). 

3.3.1 Digital soil mapping using MLR and RF modelling 

As shown in Table 3, three orders, five suborders, seven great groups, and twelve subgroup 

classes were identified in the study area. The results of MLR and RF modelling indicated that 

scenarios with the geomorphology map as a covariate had in most cases better performance in 

terms of map quality than the scenarios without geomorphology map (Table 3-3). The spatial 

patterns of soil types by MLR and RF followed those of the geomorphic units (Figure 3-2). The 

positive effect of using the geomorphology map on map quality was consistent with that reported 

in previous studies (Behrens et al., 2005; Jafari et al., 2013; Scull et al., 2005). Generally, in arid 

and semi-arid regions, soil types and properties are mostly controlled by parent materials and 

topographic positions (Florinsky et al., 2002; Mehnatkesh et al., 2013; Tajik et al., 2012), which 

are represented well by the geomorphology map. As expected, map purity and the Kappa index 

decreased from the order to subgroup levels for both models, except for the suborder level 

predicted by RF. This is presumably related to the better relationship between environmental 

covariates and the most observed suborder level (Xerepts, see Table 2-5; chapter 2). From the 

order to subgroup level, the Shannon index increased as the map intricacy increased towards the 
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lower taxonomic levels (Table 3-3). This result is in agreement with the findings of Toomanian 

et al. (2006) and Jafari et al. (2013) who found the highest diversity indices at the subgroup level. 
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Table 3-3 Map purity, Kappa and Shannon index for all scenarios and based on four Soil Taxonomic levels in the study area 

Soil Taxonomy 

levels 

Multinomial Logistic Regression (MLR) 

Map purity Kappa Shannon Index 

With Geomorphic 

units 

Without Geomorphic 

units 

With Geomorphic 

units 

Without Geomorphic 

units 

With Geomorphic 

units 

Without Geomorphic 

units 

100 80 60 100 80 60 100 80 60 100 80 60 100 80 60 100 80 60 

Order 0.80 0.80 0.68 0.68 0.64 0.72 0.67 0.67 0.46 0.48 0.41 0.53 0.55 0.55 0.57 0.54 0.54 0.60 

Suborder 0.68 0.64 0.56 0.64 0.68 0.64 0.51 0.47 0.35 0.42 0.48 0.46 0.56 0.59 0.58 0.58 0.60 0.60 

Great Group 0.52 0.48 0.44 0.56 0.56 0.32 0.36 0.30 0.27 0.40 0.38 0.09 0.61 0.59 0.61 0.63 0.63 0.66 

Subgroup 0.40 0.44 0.28 0.32 0.44 0.32 0.31 0.34 0.17 0.19 0.34 0.20 0.61 0.60 0.66 0.65 0.69 0.64 

Random Forest (RF) 

Soil Taxonomy 

levels 

With Geomorphic 

units 

Without Geomorphic 

units 

With Geomorphic 

units 

Without Geomorphic 

units 

With Geomorphic 

units 

Without Geomorphic 

units 

100 80 60 100 80 60 100 80 60 100 80 60 100 80 60 100 80 60 

Order 0.68 0.64 0.60 0.60 0.60 0.60 0.46 0.39 0.33 0.33 0.34 0.33 0.53 0.53 0.56 0.53 0.53 0.53 

Suborder 0.72 0.60 0.56 0.68 0.60 0.48 0.53 0.33 0.27 0.47 0.33 0.14 0.54 0.54 0.54 0.54 0.55 0.55 

Great Group 0.60 0.52 0.48 0.52 0.48 0.44 0.43 0.31 0.24 0.31 0.24 0.17 0.60 0.58 0.59 0.59 0.61 0.61 

Subgroup 0.44 0.36 0.40 0.44 0.44 0.36 0.33 0.23 0.28 0.32 0.32 0.22 0.65 0.63 0.64 0.66 0.64 0.67 
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Contrary to our expectation, producing more detailed maps by MLR from the order to 

subgroup levels did not increase the number of predictors (Table 3-4), showing that the 

environmental covariates used at the order level to represent soil types are able to explain and 

capture the complexity of the lower Soil Taxonomic levels as well. 

Table 3- 4 Selected covariates by stepwise Akaike information criterion for MLR modelling (N=100). 

Soil Taxonomy levels *Environmental covariates in MLR 

Order SAVI+CI+NDVI+GEO+GEM+TWI+WI+PVI 

Suborder SAVI+CI+NDVI+GEO+GEM+TWI+WI+PVI 

Great group SAVI+CI+NDVI+GEO+GEM+TWI+WI+PVI 

Subgroup CI+SAVI+NDVI+GEO+GEM+TWI+PVI 

*Variables abbreviations explained in Table 1. 

The importance of the selected variables for MLR is presented in Figure 3-3. The soil 

adjusted vegetation index (SAVI), clay index, and normalized difference vegetation index 

(NDVI) were the most important covariates across order, suborder and great group levels (Table 

3-4 and Figure 3-3). At the subgroup level, the clay index had the largest contribution. At all 

levels, SAVI contributed more importance than NDVI which may be attributed to the lack of 

dense vegetation in this arid and semi-arid region. NVDI, which reflects the influence of the soil 

on vegetation, was weaker than the SAVI index (Huete, 1988). This was also observed by (Reza 

Pahlavan Rad et al., 2014) when updating a soil map in northern Iran. 
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Figure 3-3 Variable importance for the MLR approach at four taxonomic levels. 

All remote sensing indices were involved in the soil prediction maps at four taxonomic levels, 

showing that the spatial distribution of soils has a strong relationship with surface reflectance. 

Water flow and soil water content had strong impact on the soils formed in the study area, since 

both the SAGA wetness index and topographic wetness index participated in the prediction 

model by MLR (Table 3-4). Wang and Laffan (2009) and Whiteway et al. (2004) showed that 

the topographic wetness index defined flow intensity and potential sediment accumulation, and 

that the SAGA wetness index also indicated the potential degree of wetness. A higher SAGA 

wetness index corresponds with higher potential wetness and organic matter accumulation in 

lowland positions. Debella-Gilo and Etzelmüller (2009) showed that the high probability areas 

for each great group occurred simultaneously with the known landscapes, therefore, the 

recognition of soil–landform relationships could provide a powerful tool to aid soil mapping 

activities (Holliday, 2006). 
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According to the variable importance measurement, two measures for RF modelling are 

shown in Figure 3-4; including mean decrease of Gini and mean decrease of accuracy at the 

order and subgroup levels. Amongst all covariates, at both taxonomic levels (order and subgroup 

levels), geomorphology and geology maps were identified as the most important variables. In 

fact, at the order and subgroup levels, the variables that increased the model accuracy the most 

was the geology map followed by the geomorphology map. In terms of decreasing node impurity 

and increasing map purity for the predicted maps, geomorphology played the most effective role 

(Figure 3-4 a and b). The results of the present work suggest that the geomorphology map had 

the most important impact for both RF and MLR models.  

In comparison with the results of Roecker et al. (2010) (51% for subgroup level); Reza 

Pahlavan Rad et al. (2014) (48.5% for great group level, 51.5% for subgroup levels); and 

Barthold et al. (2013) (51.61% for Reference Soil Groups (FAO classification)), the accuracy and 

performance of RF modelling showed reasonable accuracy in spatial prediction. Reza Pahlavan 

Rad et al. (2014) and Jafari et al. (2013) also observed a reduction in the prediction accuracy 

while there was an increase in taxonomic detail. 
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Figure 3-4 Mean decrease of accuracy, mean decrease of Gini, and covariate importance for RF 

at the (a) order level and (b) subgroup level. Abbreviations of covariates are explained in Table 

3-1. 

 

a 

b 
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3.3.2 Conventional soil survey 

In this study, the CSM was based on air photo interpretation. Soil patterns were mapped using 

knowledge of physiographic units and homogeneous areas (elevation and geology). By the CSM 

approach, two orders, five suborders, seven great groups and twelve subgroups were mapped 

over the ten landforms identified in the study area (Table 3-2). Topography plays a vital role in 

arid and semi-arid regions on the spatial distribution of soils (Cantón et al., 2003). Based upon 

the high variability of topography in the study area, it is believed that this is the major factor out 

of the five soil forming factors proposed by (Jenny, 1941). 

The estimated overall map purity of the CSM map varied from 0.48 to 0.72 at different 

taxonomic levels (Table 3-5). Map purity decreased from the order to subgroup level, but 

increased in the suborder level, likely because the CSM represented well the dominant suborder 

(Xerepts) in the validation set. At the order level, due to map scale (cartographic) limitations, it 

was impossible to delineate Mollisols because this order was not dominant in any map polygon, 

and they were associated with Inceptisols. Zhu (1997) Such limitations are well known in CSM, 

as described by Zhu (1997) and Menezes et al. (2014). The Kappa index ranged from 0.29 to 

0.55. The lowest Kappa occurred at the order level (0.29, Table 3-5), indicating a high 

probability of chance classification in spite of good purity (Girard and Girard, 1999). The 

Shannon index for map intricacy was constant for the CSM approach at all taxonomic levels. 

This is probably due to the cartographic criteria that were followed in CSM, which prevented the 

delineation of small polygons (Figure 3-5e). In contrast, DSM methods might show polygons as 

small as the resolution of the covariate maps. 

Table 3- 5 Validation criteria for CSM-approach at four level of Soil Taxonomy. 

Soil Taxonomy levels Map Purity Kappa Shannon index 

Order 0.60 0.29 0.53 



 

57 
 

Suborder 0.72 0.55 0.53 

Great Group 0.56 0.39 0.53 

Subgroup 0.48 0.39 0.54 

Table 6. Validation criteria for CSM approach at four levels of Soil Taxonomy. 

3.3.3 Statistical comparison 

Both RF and MLR models were trained with the same number of observations. Comparison 

of the results of the two mapping approaches (Table 3-3) clearly showed that both methods had 

higher performance with the geomorphology map as a predictor.   

In terms of map purity and Kappa, MLR showed a better performance at the higher taxonomic 

levels (order and suborder) than RF. On the other hand, RF was more powerful at the lower 

taxonomic levels (great group and subgroup). MLR was less sensitive (more efficient) than RF 

when the number of training observations decreased from 100 to 60 locations. The Kappa index 

for MLR approach was higher than that for RF, which suggested that chance classifications are 

less likely for MLR methods. Shannon index, in most cases, was lower for RF than for MLR. RF 

produced soil maps with more homogeneous units (i.e., map units in Figure 3-5 a and b and 

Table 3-3, lower Shannon index). Kempen et al. (2009) concluded that areas with high 

heterogeneity showed high entropy and low purity, and their prediction was associated with high 

uncertainty. As we found the maps with the highest Shannon index (obtained using MLR) also 

showed the highest purity, this seems a contrasting result. Although the entropy in Kempen et al. 

(2009) refers to the pixel scale (the probability of occurrence of each taxonomic class at each 

pixel is used to calculate Shannon index), which makes it a map precision estimator, we are 

calculating the average Shannon index for the final map using the local entropy of predicted soil 

types in a moving window as a proxy for map intricacy, which makes it a map information 

content indicator. 
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To evaluate the performance of DSM approaches and the CSM approach, we compared the 

maps based on 100 samples. Figure 3-5 illustrates soil classes at the subgroup level for the DSM 

approaches (with and without geomorphology map as covariate) and the CSM approach. In both 

DSM modelling approaches, the soil patterns with and without usage of the geomorphology map 

were similar. In the scenarios without the geomorphology map, most of the soil patterns were 

explained by the geology map. When using the geomorphology map as covariate, a slightly 

higher purity was obtained. These results showed the importance of the parent material, 

represented in the geology map, on the training of DSM methods to predict soil types. The 

number of geomorphologic surfaces (31) is fairly large relative to the sample size (100) and is 

incompletely verified with the validation data (25 samples), but does result in a slightly higher 

map purity. 
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Figure 3-5 Predicted subgroup soils using the same legend for DSM approaches and the CSM 

approach. (a) RF with the geomorphology map, (b) RF without the geomorphology map, (c) 

MLR with the geomorphology map, (d) MLR without the geomorphology map, (e) the CSM 

approach, and (f) the digitized geology map (geology codes explained in Table 3-2). 

 

RF using the geomorphology map wrongly predicted Typic Xerorthents in the Mo111 

geomorphic unit (Rock outcrop, Table 3-2 and Figure 3-5 a and b) instead of Lithic Xerorthents. 

RF also did not recognize Typic Endoaquepts in the river plain landform (Pi411, Table 3-2 and 

Figure 3-5 a and b), while MLR with the geomorphology map correctly predicted it (Figure 3-5 a 
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and c). On the other hand, MLR over-estimated the occurrence of Petrocalcic Calcixerepts (three 

observations in the piedmont landscape). Both approaches (using the geomorphology map) 

correctly predicted Typic Calcixerolls in the alluvial fan landform (Figure 3-5 a and c). MLR 

using the geomorphology map predicted Typic Endoaquolls better than RF. These soil types only 

occur in the lake and wetland landforms (Pl111 and Pl211, Figure 3-5, Table 3-2). In accordance 

with the findings of Brungard (2009), Hengl et al. (2007), Jafari et al. (2012), Kempen et al. 

(2009) and (Barthold et al., 2013), our results suggest that soil types with higher numbers of 

observations had higher prediction accuracy. The conventional approach resulted in a map with 

larger polygons on average, and also a larger minimal polygon size (Figure 3-5 e). The large 

minimal polygon size is related to the classical cartographic criteria applied in creating the 

geology map: the smallest polygon should approximately equal 0.25 cm
2
 printed map, which 

corresponds to 250×250 m
2
 on the terrain at 1:100,000 scale. This is much larger than the pixel 

size of the DSM maps (30×30 m
2
). The larger average polygon size reflects the larger geological 

map as well. As a consequence, the diversity index mapped with a moving window would 

encounter less map unit transitions with CSM than with DSM maps, and thus the averaged 

diversity index would be lower and map intricacy is thus lower. Roecker et al. (2010) concluded 

that map units developed by a conventional approach were over-specified to the soil 

observations. 

With respect to map purity, MLR at the order level (0.80), RF at the suborder (0.72) and great 

group level (0.60), and the CSM approach at the subgroup level (0.48) produced the most 

accurate maps in the study area (Tables 3-4 and 3-6). Zhu et al. (2001), in two case studies in 

different terrains, showed that soil maps produced by CSM were less accurate (61% and 67% 

accuracy) than soil maps produced by the soil-land inference model (81% and 84% accuracy). 
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Menezes et al. (2014) utilized ArcSIE (ArcMap extension) to generate a soil type map and 

then a solum depth map in Brazil, and found a greater accuracy using DSM compared to CSM. 

3.3.4 Performance indicators  

With respect to efficiency in terms of cost (map purity and diversity), it would be optimal to 

produce soil maps with high purity and at low cost, which also well represents soil diversity. We 

developed a combined index to represent all those three criteria for all scenarios (Figure 3-6). All 

the relative indices have the optimum value equal to 1 and the least optimum value equal to 0 

(Figure 3-6). Amongst the two DSM approaches and CSM, MLR was the most effective in terms 

of the combined index. CSM was not as effective as the other methods because while the cost of 

both DSM and CSM were almost equal, CSM did not produce maps with high purity, Kappa, 

and diversity. Therefore, the combined index for CSM was lower than for the DSM methods. In 

DSM, the geomorphology map was applied as the main variant (section 3.2.5). Since most of the 

variability of soil types was explained by the SAVI, the clay index, NDVI, and the geology map 

(section 3.3.3), inclusion of the geomorphology map was not cost-effective (Figure 3-6). Values 

of the combined index were higher (better) at smaller sample sizes (Figure 3-6 c) because the 

decrease in cost outweighs the poorer quality. The combined indices revealed a preference for 

the order level at small sample size, while a larger sample size led to a preference for the great 

group level (Figure 3-6). 
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Figure 3-6 Variation of the combined index, (a)100, (b) 80, and (c) 60 points data training along 

with the CSM approach at the four hierarchic taxonomic levels. 

 

When the cost is considered as a decisive factor for soil surveys, decreasing the operating cost 

is an acceptable strategy. In this study, we decreased the number of training observations (from 

100, to 80, and to 60 observations) for the best scenarios (DSM approaches with the 

geomorphology map). The results revealed that by decreasing the number of observations points 

from 100 to 60, the cost decreased 20-40%, while map purity and Kappa did not decrease with 

the same rates (e.g., map purity decreased from 100 to 60 points for DSM-MLR, 0 and 15% at 

the order level, 5.9 and 17.6% at the suborder level, 7.7 and 15.7% at the great group level, and -

10 and 30% at the subgroup level). However, the lower sampling densities can produce DSM 

maps which are cost effective in comparison of map purity and Kappa. Therefore, we concluded 

that the results at the high sampling density (100) were not persistent at lower sample densities. 

If funds are the limiting factor, decreasing the sample size and mapping at a higher taxonomic 

level is acceptable, although lower accuracy would be obtained. 
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3.4 Conclusions 

Validation results of soil maps produced by DSM approaches with and without using a 

geomorphology map were similar because the geology map (as indicator of parent material) 

already explained the most of the variability and distribution of soil types at different soil 

taxonomic levels. Inclusion of the geomorphology map did slightly improve map purity and 

Kappa, and decreased the noise in soil maps, but the number of geomorphic units is large 

compared to the sample size and conclusions are uncertain. In general, models which were 

developed using all covariates in the most scenarios showed higher performance. One of the 

questions addressed in this study was which DSM approach had the highest performance and 

which approach was the most cost efficient method of soil mapping. The results showed that 

MLR had a higher performance at the higher taxonomic levels (order and suborder levels) while 

RF showed higher performance at the lower taxonomic levels (great group and subgroup levels). 

MLR was less sensitive than RF to a decrease in the number of training observations, thus the 

rate of decrease in map purity and the Kappa index for MLR was lower than for RF. 

Using the combined index, the MLR-DSM was the most effective approach for soil mapping. 

CSM was not as effective as the other methods: costs were similar but Kappa and depicted 

intricacy were lower. Because of the additional cost of the geomorphology map and the 

predictive strength of the geology map, inclusion of geomorphology was not cost-effective in 

this study, but it helped to improve map quality. Since preparation of the geomorphology map is 

costly, air photo interpretation with consultation of a geology map as a covariate (the same 

procedure as CSM approach) might be used as the alternative method in the DSM approach to 

reduce costs. The values of the combined index were higher at smaller sample sizes; a small 

sample size led to a preference for the order level, while a larger sample size led to a preference 
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for great group level. We conclude that in a data-poor region such as Iran, where little soil 

information is available, DSM and low density sampling with high resolution ancillary data can 

be an attractive approach for soil mapping at the large scale.   
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Chapter 4 

Spatial Prediction of Some Soil Properties 

Abstract 

The distribution of soil properties over the landscape is required for a variety of land 

management applications, modelling, monitoring of landscapes and land recourses. This chapter 

considers the ability of different digital soil mapping (DSM) approaches (linear and non-linear 

models) to predict some of the topsoil properties including soil organic carbon (SOC), clay 

content (Cl) and calcium carbonate equivalent (CCE) in Borujen region, Chaharmahal-Va-

Bakhtiari Province, Central Iran. Three non-linear models: Cubist (Cu), Random Forest (RF), 

Regression Tree (RT) and two linear models: Multiple Linear Regression (MLR) and Stepwise 

Multiple Linear Regression (SMLR) were evaluated to predict and map soil properties. 304 soil 

samples in the study area were analyzed and fed to the models to identify the relationship 

between soil properties and ancillary variables (terrain attributes and remote sensing indices). 

Model training and validation was done by the 10-fold cross-validation approach. Root mean 

square error (RMSE), the coefficient of determination (R
2
), adjusted coefficient of determination 

(Adj R
2
) and mean error (ME) were considered as the performance indicators of the models. 

Based on 10-fold cross-validation, the SMLR and RF models showed the highest performance to 

predict CCE, Cl and SOC content respectively. Also, results revealed that all models could not 

predict the spatial distributions of clay content properly. 

The terrain attribute ―elevation‖ is the most important variable among all studied models. As a 

conclusion, we recommend that more observations and denser sampling should be carried out in 

the whole study area. Alternatively, the study area could better be divided into homogeneous 
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sub-areas, stratifying the area by elevation, and then sampled. The stratified sampling and 

applied models in this study, probably will increase the performance of soil property predictions. 

4.1 Introduction 

Accurate and detailed spatial soil information are essential for sustainable land use and 

management as well as environmental modelling and risk assessment. The distribution of soil 

properties over the landscape is required for a variety of land management applications, 

modelling, monitoring of landscapes and land resources. In precision monitoring of land 

recourses, hydroecological and other environmental modelling applications, high-resolution 

spatial information on soils can assist decision makers to better understand the variability of soil 

properties over an area (Forkuor et al., 2017). Therefore, this is crucial for the sustainable use of 

the soil resources particularly in the context of sustainable land use and climate change. 

Traditional soil mapping approaches have mostly depended on ground-based surveys. On the 

other hand, unfortunately, these approaches rarely provide information about the spatial 

distribution of soil properties at the desired resolution over the landscape. Acquiring soil 

information by traditional field surveys including soil sampling and laboratory analyses are time-

consuming, expensive, especially when the mapping is being done at national, regional or global 

scales. So mapping of continuous spatial variation of soil properties is an almost impossible 

effort (Forkuor et al., 2017; Jafarisirizi, 2012). Obviously, it is practically impossible and hard to 

measure soil properties continuously, therefore, it is necessary to have robust systems and 

models that can predict soil properties at a given location or scale. Consequently, fast and 

accurate prediction of soil properties is a necessity for soil scientists and decision-makers to 

overcome the lack of measured soil property information. Considerable progress in the past three 

decades has been made in such predictions following the development of geostatistics and 
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modelling whereby predictions were made with calculated levels of accuracy and error. 

Subsequent advances in a range of sensing techniques (aircraft, satellite, on-the-ground 

spectroscopy etc.) allowed that soil properties can now be accurately predicted with new tools 

and approaches like digital soil mapping (McBratney et al., 2003; Minasny and Hartemink, 

2011). By applying digital soil mapping (DSM), soil properties that are expensive to measure, 

time-consuming or unavailable can be predicted from the point observations and ancillary data 

such as remote sensing data and terrain attributes (McBratney et al., 2003). 

Some soil properties have a high spatial variability, especially in agricultural areas. For better 

soil management practices, it is necessary to know the spatial distribution of soil properties. The 

spatial variability of soil properties is influenced by parent material characteristics, topography, 

climate, vegetation, time and anthropogenic activities (Fenton and Larterbach, 1999; Mulder et 

al., 2011). 

In recent years, several studies have investigated the spatial variability of different soil 

properties such as soil pH (Behera and Shukla, 2015), soil organic matter (Byrne and Yang, 

2016), electrical conductivity (EC) (Ranjbar and Jalali, 2016), phosphorus (Wilson et al., 2016), 

potassium (Behera and Shukla, 2015) and soil texture (Barnes and Baker, 2000).  

Digital soil mapping methods are widely employed to assess the spatial distribution of soil 

properties in agricultural areas and other land resources (Taghizadeh-Mehrjardi et al., 2016; 

Forkuor et al., 2017; Minasny and Hartemink, 2011). The soil properties maps produced by DSM 

approaches show the spatial variation of the desire variables in the area of interest. 

Numerous prediction models have been developed and introduced to correlate ancillary 

variables and soil properties through the DSM framework suggested by McBratney et al. (2003). 

For example, Minasny et al. (2013) introduced a comprehensive review of SOC modelling. 
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Hengl et al. (2015) stated that multiple and linear regression have been used commonly for 

relating SOC to ancillary variables. Comparing to popular approaches, fewer studies used 

generalized linear models (Karunaratne et al., 2014), regression tree models (Martin et al., 2010; 

Taghizadeh-Mehrjardi et al., 2014), random forest (Hengl et al., 2015; Were et al., 2015), 

artificial neural networks (Dai et al., 2014), support vector regression (Forkuor et al., 2017; Were 

et al., 2015), random forest regression (Forkuor et al., 2017), to build the relationships between 

soil properties and ancillary data. The advantage of these modelling techniques is that they have 

the potential for detecting non-linear relationships and might therefore prove more powerful for 

digital soil properties mapping. Soil organic carbon (SOC), soil calcium carbonate equivalent 

(CCE) and clay content are some of the most important soil properties that can define soil quality 

and can also be an indicator of soil fertility. These soil parameters can be highly variable in space 

and time, especially in agricultural areas, with implications for crop production (Bogunovic et 

al., 2017).  

The objectives of this chapter were to predict and map the spatial distribution and variation of 

soil properties (SOC, CCE and clay content) using different digital soil mapping techniques in a 

semi-arid region of Iran. To investigate soil properties variation, five statistical approaches 

comprising multiple linear regression (MLR), random forest (RF), cubist (Cu), stepwise multiple 

linear regression (SMLR) and regression tree (RT) were explored to identify the most suitable 

method for prediction and mapping of soil properties in the study region. The research questions 

of this chapter tried to address: (1) Which DSM approaches offer the best accuracy for predicting 

soil properties? (2) Which ancillary data is the most important for predicting soil properties? 
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4.2 Materials and Methods 

4.2.1 Description of the study area 

The study area and soil sampling were described in chapter 2. 

4.2.2 Soil sampling scheme 

In addition to the samples collected in chapter 2, a number of 209 surface samples (0-30 cm) 

were collected by contributing of quantitative covariates (Table 3-1) and applying cLHS 

approach. In total, 334 observations were collected for prediction and mapping of some soil 

properties (Figure 4-1). 

 
Figure 4-1 Digital elevation model and locations of sampling points with distribution of soil 

organic carbon contents in the study area. 
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4.2.3 Soil properties modelling 

In this chapter, we also used the scorpan spatial soil prediction function framework in the 

mapping procedure (McBratney et al., 2003), where a soil property can be mapped as an 

empirical function of its environmental covariates: soil, climate, organisms, relief, parent 

material, age, and spatial position. In this study, the ancillary covariates presented in chapter 3 

were also applied for the modelling of soil properties. In addition, based on important predictors 

found in the models, the best covariates were presented for each soil property. 

Three machine learning models including Cubist (Cu), Random Forests (RF), Regression Tree 

(RT) and two linear models comprising; Multiple Linear Regression (MLR) and Stepwise 

Multiple Linear Regression (SMLR) were evaluated and applied for predicting, mapping and 

estimate soil organic carbon (SOC), calcium carbonate equivalent (CCE) and clay contents. 

These techniques are described briefly in the following subsections. 

3.2.3.1 Cubist 

Cubist is an advanced version of the regression tree algorithm and was performed using the 

―cubist‖   package (Kuhn et al., 2013; R Development Core Team, 2013). Cubist is an extension 

of the Quinlan's M5 model tree (Quinlan, 1993; Quinlan, 1992). Cubist is similar to common 

regression trees, except that the leaves are in the form of a linear regression of the covariates 

(Malone et al., 2014; Taghizadeh-Mehrjardi et al., 2014). In Cubist, the prediction is based on 

linear regression models instead of discrete values. Cubist constructs different models from 

training data. Each model consists of several rules and each rule has one or several conditions. 

Whenever a case satisfies all conditions of a rule the linear form is applied to predict the value. 

Unlike regression trees, which predict a rigid value for each ―leaf‖, regression rules build a 

multivariate linear function. The rules of one model are sorted in descending order of importance 
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by cubist. This means that the first rule has the greatest contribution to model accuracy of the 

training data; the last rule has the least impact. The Cubist model has been used effectively in 

various soil prediction and mapping procedures (e.g., Bui et al., 2009; Henderson et al., 2005; 

Kidd et al., 2014; Minasny et al., 2008; Viscarra Rossel et al., 2014). 

3.2.3.2 Random Forest 

Random Forest (RF) is a classifier or regression model which consists of many decision or 

regression trees where each tree depends on the values of a random vector sampled 

independently and with the same distribution for all trees in the data. The output of the model is 

an average of all the regression or decision trees. The RF was applied by ―randomforest‖ R 

package (Liaw and Wiener, 2002; Brewer et al., 2015). Breiman (2001) firstly introduced the 

Random Forest, which is a tree-based ensemble method. RF contains many regression trees 

instead of a single standard regression tree, like a forest. RF operates on two subsets: (1) on 

predictor variables at each node and (2) on individual data by a bootstrapping technique. Three 

parameters control the fitting of RF models: (i) the number of trees (ntree), (ii) the minimum 

number of samples in the terminal node nmin, and (iii) the number of predictors to be used for the 

fitting of each tree (Mtry) (Grimm et al., 2008). The importance of the predictive variables is 

determined by two methods in RF, the first one is standard measure and second is the Gini 

measure. In the first method, variable importance replaces the true values of the variable with 

randomly generated (likely incorrect) values for each tree in the grove and assesses the impact on 

classification (Salford Systems, 2004). Then, if there is no impact on the error of the tree the 

significance of the variable decreases. On the other hand, if the tree‘s ability to predict the out-

of-bag error observations is diminished, the variable is considered important. The Gini 
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importance ranks variables according to how clearly the variable separated classes when selected 

at a node (Salford Systems, 2004). 

The number of trees is a compromise between the accuracy and processing time (Oshiro et al., 

2012). The range of the number of trees was set between 100 and 1000 at intervals of 10, and in 

this study we used 520 trees. The relative importance of the predictor variables in modelling of 

soil properties were assessed using the ―importance‖ function in the ―randomforest‖   package 

(R Development Core Team, 2013).  

3.2.3.3 Regression Tree 

The Regression Tree (RT) approach is used to characterize the relationship between soil 

properties and covariates. RT analysis is a parametric data mining technique that can handle both 

non-linear and linear relationships (Breiman et al., 1984; Myles et al., 2004), and it is reported 

that this technique has been widely used in the field of DSM (Taghizadeh-Mehrjardi et al., 

2014). The response as well as the covariates are numeric. The dataset of the response variable is 

split in a tree like manner into successively smaller groups on the basis of the ancillary covariates 

that maximizes the homogeneity of the groups (De'ath and Fabricius, 2000). The RT approach 

was run by ―rpart‖ R package (R Development Core Team, 2013). 

3.2.3.4 Multiple Linear Regression 

The general purpose of MLR is to analyze the relationship between several independent or 

predictor variables and a dependent or predicted variable. Multiple regression analysis fits a 

straight line (or plane in an n-dimensional space, where n is the number of independent 

variables) to the data (Mbagwu and Abeh, 1998). So, the Multiple Linear Regression model is 

used in order to provide quantitative estimation for each soil property. The linear regression 

model can be expressed as, 
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 ( )     ∑   

 

   
        (Eq. 4.1) 

where β0 is the interception of the linear model, Xj represents the auxiliary or secondary 

variables or covariates and βj are the unknown coefficients for the auxiliary covariates and p is 

the number of auxiliary covariates (Hastie and Tibshirani, 2008). Regression methods explore a 

possible functional relationship between the primary variable (soil properties) and explanatory 

variables (SCORPAN factors). The ―rgdal‖   package was used to run the Multiple Linear 

Regression model (R Development Core Team, 2013).  

3.2.3.5 Stepwise Multiple Linear Regression 

Both direction (Backward and Forward combination) Stepwise Multiple Linear Regression 

(SMLR) was performed using the ‗MASS‘ package in R (Venables and Ripley, 2003) and 

covariates selection were determined by minimizing the Akaike Information Criterion (AIC; 

Akaike, 1974). The AIC is presented as follow: 

          ( )       (Eq. 4.2) 

where K is the number of the estimated parameters included in the model, L is maximized the 

value of the likelihood function for the estimated model which is readily available in the 

statistical output and reflects the overall fit of the model. In itself, the AIC value for a given data 

set has no meaning. It becomes interesting when it is compared to the AIC of a series of models, 

here different models constructed based on combination of the different covariate, then one with 

the lowest AIC being the best model. If many models have similarly low AICs, the one with the 

fewest predictor variables should be chosen. 

4.2.4 Models Validation 

Ten-fold cross-validation was used to evaluate the prediction performance of five models 

(Hengl et al., 2015). Cross-validation provides a structure for creating several train/test splits in 
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the dataset and guaranteeing that each data point is in the test set at least once. The procedure is 

simple, at first, the main data is split into 10 equal-sized groups. Then, for 1 to 10, select group 1 

to be the test set and all other (9) groups to be the training set. After that, train the model on the 

training set and evaluate on the test set. Each iteration is called a fold. The advantage of this 

method is that it performs reliably and is unbiased on smaller data sets. This approach requires 

much more computational effort than simple trained-and-tested (hold out) procedures 

(Taghizadeh-Mehrjardi et al., 2014).  

The performances of the models during training and testing in the ten-fold cross-validation 

procedure were evaluated using four different error parameters which are popularly used in 

digital soil mapping by applying the R statistical software package (R Development Core Team, 

2013). 

1.  Root Mean Square Error (RMSE): The RMSE represents the accuracy of the 

model predictions 

     √∑ [     ]
 
   

 

 
       (Eq. 4.3) 

2. Coefficient of determination (R
2
): to determine and evaluate the model 

performance R
2
 was used for  each model according to the following equation: 
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     (Eq. 4.4) 

3. Mean error (ME): a measure of model‘s prediction bias: 

   
 

 
∑ (  
 
      )      (Eq. 4.5) 

4. Adjusted coefficient of determination (Adj R
2
): 
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                 (Eq. 4.6) 

where Pi, Oi, Oave, Pave,and n are the predicted and observed values, average of observed and 

predicted soil properties values at the ith point, and number of data, respectively. 

The results of these criteria allowed comparison of the effectiveness of the different models to 

predict the spatial distribution of soil properties and final maps. Ideally, the best model would 

maximize the R
2
, Adj R

2
 which is close to 1 and minimize RMSE and ME which is close to 0. 

For RT, Cu, MLR and SMLR the variable importance values were converted to relative 

importance by scaling model importance values from 0 to 100%. Consequently, variables with 

higher relative importance values are more important. 

4.3 Results and Discussion 

4.3.1 Soil calcium carbonate equivalent (CCE) prediction and mapping 

The average validation criteria for soil calcium carbonate equivalent (CCE) prediction in the 

studied area are presented in Table 4-1. Among the applied models in the validation data set, the 

most accurate model for predicting of soil CCE was SMLR and the least accurate model for CCE 

was RT. Contrary to the validation results, in the calibration data set the most precise model was 

RF and the least accurate model was Cu. These results indicate that although some models had 

higher performance in the calibration data set, they showed lower performance in the validation 

data. The performance of RF is inferior with RMSE= 9.49 percent and R
2
=0.24 in the validation 

subset comparing to the performance in the calibration subset with RMSE= 3.83 percent and R
2
= 

0.93. 

SMLR and MLR models resulted in similar performances in the both validation and 

calibration data set:  MSE about (≈) 8.2 percent and R
2
≈0.45 for SMLR,  MSE≈8.3 percent and 
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R
2
≈0.43 for MLR,  MSE≈ 8.4 percent and R

2
≈ 0.29 for SMLR,  MSE≈ 8.4 percent and R

2
≈ 

0.30 for MLR. Nevertheless, linear prediction models showed a higher accuracy compared to 

other non-linear prediction models were used. 

According to the dominant parent material and geology (chapter 3; Table 3-2, lithology) 

(Borujen Geology Map, 1990), high soil calcium carbonate concentrations occurred in most of 

the study area. Additionally, because of insufficient precipitation rate and high temperature in the 

arid and semi-arid region (Borujeni et al., 2010), calcium carbonates accumulated in the soil.  

Wilford et al. (2015) concluded that minimal leaching of soil calcium carbonate associated 

with low rainfall, high temperature and evaporation leads to the retention of atmospherically 

sourced calcium including that from rainfall, sea-spray, aerosols and aeolian dust in the soil. 

Therefore, the distribution of CCE in the study area due to rich soil calcium carbonate did not 

show effect by different landform or other soil forming factors (ancillary data). Eventually, the 

models could not build the proper relationship between CCE and the predictors, so the 

predictions led to low performance in terms of accuracy for most models. As a conclusion, the 

main explanation of the soil calcium carbonate distribution is the parent material and the climate 

condition, specifically rainfall and temperature. Parent material is illustrated by high soil calcium 

carbonate concentration (chapter 2, table 2-4) over the highly calcareous bedrock (chapter 3; 

Table 3-2, lithology). 
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Table 4-1- Average validation criteria for prediction of calcium carbonate content (CCE %) from10-fold cross validation. The most accurate method is shown in 

bold. 

 Validation  Calibration 

 RMSE R2 Adj R2 ME  RMSE R2 Adj R2 ME 

RF 9.492±0.611 0.237±0.039 0.226±0.039 0.949±0.088  3.832±0.059 0.933±0.003 0.932±0.003 0.092±0.009 

Cu 8.828±0.997 0.431±0.067 0.422±0.068 0  8.535±0.152 0.273±0.008 0.270±0.008 0 

MLR 8.275±0.687 0.430±0.020 0.422±0.020 0.768±0.524  8.374±0.188 0.300±0.001 0.297±0.001 0 

SMLR 8.178±0.716 0.447±0.040 0.437±0.040 0.768±0.524  8.432±0.197 0.290±0.032 0.288±0.003 0 

RT 9.975±0.226 0.195±0.062 0.191±0.058 -0.139±0.914  7.410±0.443 0.452±0.042 0.450±0.042 0 

RF: Random Forest; Cu: Cubist; MLR: Multiple Linear Regression; SMLR: Stepwise Multiple Linear Regression; RT: Regression Tree; RMSE: Root Mean 

Square Error; Adj R2: Adjusted R2; ME: Mean Error 

 

Table 4- 2- Average validation criteria for prediction of clay content (CI %) from10-fold cross validation. The most accurate method is shown in bold. 

 Validation  Calibration 

 RMSE R2 Adj R2 ME  RMSE R2 Adj R2 ME 

RF 7.452±0.101 0.185±0.101 0.173±0.102 -0.741±1.554  3.041±0.058 0.944±0.001 0.944±0.001 -0.044±0.024 

Cu 7.976±0.032 0.047±0.040 0.032±0.041 0  6.752±0.163 0.206±0.066 0.203±0.066 0 

MLR 7.863±0.208 0.081±0.091 0.067±0.093 -0.802±1.489  6.979±0.072 0.130±0.034 0.126±0.034 0 

SMLR 7.857±0.104 0.079±0.076 0.065±0.077 -0.802±1.489  7.042±0.118 0.114±0.047 0.110±0.047 0 

RT 7.918±0.771 0.134±0.141 0.121±0.143 -0.618±0.827  5.709±0.215 0.417±0.056 0.415±0.056 0 

RF: Random Forest; Cu: Cubist; MLR: Multiple Linear Regression; SMLR: Stepwise Multiple Linear Regression; RT: Regression Tree; RMSE: Root Mean 

Square Error; Adj R2: Adjusted R2; ME: Mean Error 

 

Table 4- 3- Average validation criteria for prediction of organic carbon content (OC %) from10-fold cross validation. The most accurate method is shown in 

bold. 

 Validation  Calibration 

 RMSE R2 Adj R2 ME  RMSE R2 Adj R2 ME 

RF 0.319±0.042 0.627±0.053 0.622±0.053 0.023±0.037  0.150±0.006 0.928±0.004 0.928±0.004 0.003±0.001 

Cu 0.321±0.034 0.616±0.068 0.611±0.068 0  0.284±0.018 0.679±0.032 0.678±0.032 0 

MLR 0.345±0.039 0.560±0.072 0.554±0.074 -0.014±0.045  0.335±0.009 0.531±0.021 0.529±0.021 0 

SMLR 0.344±0.039 0.561±0.070 0.554±0.071 -0.014±0.045  0.338±0.010 0.523±0.018 0.521±0.018 0 

RT 0.357±0.040 0.544±0.072 0.538±0.073 -0.002±0.054  0.273±0.041 0.683±0.086 0.681±0.087 0 

RF: Random Forest; Cu: Cubist; MLR: Multiple Linear Regression; SMLR: Stepwise Multiple Linear Regression; RT: Regression Tree; RMSE: Root Mean 

Square Error; Adj R2: Adjusted R2; ME: Mean Error 
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4.3.2 Clay content (Cl) prediction and mapping 

Table 4- 2 shows the summary of models performance for prediction of clay content (Cl). The 

comparison of models were conducted using 10-fold cross-validation. Results suggested that 

linear models (MLR and SMLR) had similar performance and are not appropriate for the 

prediction of clay content. 

According to the RMSE, R
2
 and ME values in table 4- 2, results indicated that among the 

investigated models in the validation and calibration data set, the RF technique had the highest 

performance to predict clay content. Among the studied models, the cubist model showed the 

highest RMSE and lowest R
2 

for clay prediction and could not explain the variability of this 

property. In spite of reasonable performance in the calibration subset, all of the models did not 

have appropriate performance in the validation data set. 

Validation statistics indicated that the RMSE and R
2 

values were high and low respectively 

for clay content which means none of the models could predict clay content accurately (table 4- 

2). 

4.3.3 Soil organic carbon (SOC) prediction and mapping 

The summary of models performance for soil organic carbon content are shown in Table 4- 3. 

The results of soil organic carbon prediction (SOC) are excellent with  MSE≈ 0.32 percent and 

R
2
≈ 0.63 for RF and  MSE≈ 0.32 percent and R

2
≈ 0.62 for Cu techniques (Table 4- 3). Both of 

these models also had high performance in the calibration data set. These results confirm the 

good correspondence between modeled and measured soil organic carbon. Prasad et al. (2006) 

reported that superior capability of RF is its prediction performance. Our results support this 

assessment with high prediction accuracies in model performance in the validation and 

calibration subsets. The linear models had the same performance in the validation and calibration 
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data set. The correlation between predicted and observed SOC (R
2
) ranged from 0.54 for RT to 

0.63 for RF (Table 4- 3). Overall, all these approaches showed acceptable performance. 

Summary statistics of SOC in the predicted maps and soil dataset are shown in Table 4-4. 

According to the table, the average SOC levels ranged from 0.309 to 2.90 percent. The linear 

models underestimated SOC with high values of standard deviation. Cubist approaches predicted 

SOC content near to minimum and maximum in the observed data. 

Table 4- 4- Descriptive statistics of soil organic carbon content (OC %) in the predicted maps and soil data set  

 
Min 1st Qu Median Mean 3rd Qu Max 

Soil data set 0.309 0.538 0.703 0.855±0.497 0.958 2.900 

RF 0.412±0.011 0.627±0.013 0.712±0.016 0.824±0.011 0.913±0.018 2.435±0.067 

Cu 0.324±0.063 0.611±0.022 0.709±0.024 0.806±0.021 0.895±0.026 2.530±0.138 

MLR -1.810±0.724 0.539±0.024 0.693±0.029 0.787±0.027 0.934±0.037 3.092±0.254 

SMLR -1.520±1.324 0.558±0.042 0.700±0.031 0.798±0.034 0.924±0.021 2.954±0.239 

RT 0.511±0.043 0.642±0.017 0.675±0.051 0.808±0.007 0.836±0.077 2.331±0.291 

Figure 4- 2 showed the plot between observed and predicted SOC content for the calibration and 

validation subsets. The validation subset showed more scattering compared to the calibration 

subset. Excellent agreements were found in both calibration and validation subsets between the 

observed and predicted SOC especially for Cubist and Random Forest. Although the basis of the 

investigated non-linear models are regression trees, the comparison between RF and Cu with RT 

showed that advanced models (i. e. RF and Cu) had better performance than simple RT. RT used 

discrete values in the terminal nodes for splitting the trees but RF and Cu approaches could use a 

regression model in the terminal nodes, and therefore produce a range of predictions (Malone, 

2013). In Figure 4-2, the RT approach predicted discrete values for SOC content. 
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Figure 4- 2- Agreement between observed and predicted of soil organic carbon content (OC %) from five models: Cubist (Cu), Random Forest (RF), Multiple 

Linear Regression (MLR), Stepwise Multiple Linear Regression (SMLR) and Regression Tree (RT). Linear fit between observed and predicted (solid blue lines) 

and concordance 1:1 line (dash red lines). 

 

 



 

86 
 

Figures 4-3 and 4-4 showed the variables of importance for the applied models. The variable 

of importance for RF ‗importance plots‘, presented by two criterions, comprise an increase in 

accuracy and increase in node purity (Figure 4-3). Among all of covariates DEM, clay index 

and PVI come out to be the most important predictors for predicting SOC measured by the 

mean decrease in prediction accuracy (Figures 4-3, left; Figure 4-5 RF SOC prediction map). 

When the Gini measure considered MRVBF, clay index and DEM are the strongest 

predictive variables. These variables helped to decrease the noise in the selected at a node of 

trees. 

Genuer et al. (2010) expressed that the Gini measurement of importance is not fair in favor of 

predictor variables when there are many categories and variables (Strobl et al., 2007), while 

the importance measurement of RF by mean decrease in accuracy is a more reliable 

indicator. However, DEM and clay index both contributed as the most importance variables 

in random forest approach. 

 

Figure 4- 3- Variables of importance for predicting soil organic carbon content (OC %) according to Random 

Forests (RF), increase in accuracy (left) and increase in node purity (right). Variables abbreviation presented in table 

3- 1. 
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For RT, Cu, MLR and SMLR models, the indices of relative importance are calculated for 

each variable, which are the importance of each variable in the 10-fold cross validation for 

prediction SOC content. Clay index, SAVI and MRVBF were considered as the most important 

predictors (Figure 4-4). 

According to Figure (4-4) in the cubist model the clay index, MRVBF and DEM were the 

most important variables which explained more than 50 % of SOC variability (Figure 4-5, Cu). 

Three top variables in the RT approach were included SAVI, RVI and DEM that explain about 

35 % of SOC variability in the studied area (Figure 4-4 and 4-5, RT).  

Three top most variables for linear models were aspect, clay index and MRVBF, however in 

the SLMR model explained more than 80 % of SOC variability while those three most important 

variables in MLR model about 80 % of SOC variability (Figures 4- 4 and 4- 5, SMLR and 

MLR). Based on the results obtained and presented in Figures 4- 3 and 4- 4, it can be concluded 

that the terrain attributes can be the main predictors and on the second level remote sensing 

attributes by relative contribution for SOC content prediction. The results also confirm that other 

used ancillary covariates could not properly capture the variation of SOC in this study area, but 

using those improved the accuracy and purity of predicted maps. (Nath, 2006) reported that the 

terrain attribute ―curvature‖ was the most important factor for prediction of the SOC with 

multiple regression model and described 31 % of its variability. According to the relative 

importance in Figure (4- 4) our results are in line with previous work. Regarding terrain 

attributes Kheir et al. (2010) described the influence of elevation, soil types, and slope for 

prediction of SOC in wet cultivated lands in Denmark. The vertical distribution of SOC content 

was modeled and mapped at five standard soil depth intervals using environmental variables (soil 

map, geology, precipitation, wetness index, land use, aspect, and elevation) in a relatively flat 
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area. Results showed that SOC distribution was influenced by precipitation, land use, soil type, 

elevation, and wetness index (Adhikari et al., 2014). Mosleh et al. (2016) concluded that terrain 

attributes were the main predictors for spatial prediction of some soil properties. 

In contrast to previous studies, in which Minasny et al. (2013) and Taghizadeh-Mehrjardi et 

al. (2016) concluded NDVI and the other remotely sensed vegetation parameters are usually 

good to predict SOC contents, our results demonstrated that in this study area these were not 

good predictors. Such results might be due to the climate conditions in the arid and semi-arid 

region that led to poor vegetation development.  

.
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Figure 4- 4- The significance of each auxiliary variable used in four approaches for prediction of soil organic carbon content (OC %) Percentage represents how 

frequently the auxiliary variable was used in models. 
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Figure 4- 5- Spatial predicted maps of soil organic carbon content (OC %) across the study area using five data mining approaches.
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Prediction maps of SOC content for all five models indicated higher values of SOC in the 

central to west, northern and southern part of the study area, while lower SOC values were 

predicted at the higher elevations with mountains and hills (Figure 4-1 and 4-5). This can 

confirm the influence of elevation and terrain attributes. The previous study by Mishra et al. 

(2009) proposed the high SOC stocks are located in areas with low gradients (>5%) and high 

percentages of poorly drained soils.  

4.4 Conclusions 

This chapter has investigated spatial distributions and variations of soil organic carbon (SOC), 

calcium carbonate equivalent (CCE) and clay content (Cl) by applying five models including 

non-linear and linear techniques within the study area in 0-30 cm layer in a semi-arid region of 

Iran. Among the studied models, the SMLR and RF models had the highest performance to 

predict CCE, Cl and SOC content respectively. Based on R
2
, Random forest is relatively accurate 

and describes the variation of the SOC content higher than 0.63; while regression tree showed a 

poor performance. All models could not predict the spatial distributions of clay content properly. 

The comparison of different models shows that RF can predict relatively spatial distributions of 

CCE content in this region. The most of models revealed that terrain attributes such as elevation 

are the most important variable in all studied models. Finally, to improve the accuracy of 

prediction, we recommend that more observations and denser sampling should be carried out in 

the whole study area.  Alternatively, the study area could better be divided into homogeneous 

sub-areas, stratifying the area by elevation, and then sampled. The stratified sampling probably 

will increase the performance of the used models.  
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Chapter 5 

Disaggregation and Updating of Legacy Soil Map 

Abstract 

In the modern world, the increasing demand for food production, global change and growing 

population are an enormous challenge that we face. Accurate maps and adequate models are 

indispensable tools to assist managers, scientists and decision-makers in addressing these 

challenges. At the level of national or international classification systems, soil polygon maps are 

present in many locations and area. These valuable legacy soil data need effective methods for 

disaggregation and incorporation into digital soil mapping approaches at national and regional 

scales. The objective of this chapter is to disaggregate the legacy soil map of Iran at scale of 

1:1,000,000 by three methods of disaggregation, a supervised classification (DSMART 

algorithm) and two unsupervised classifications (Fuzzy c-means and K-means clustering 

algorithm). The three approaches and their results at two levels of Soil Taxonomy are discussed 

and compared with the overall accuracy of the original map sequentially. Field validation 

indicated that the accuracy of the disaggregated soil maps was lower than that of the 

conventional soil map at both levels of Soil Taxonomy, but disaggregated approaches produced 

more detailed maps. The higher overall accuracy of the conventional soil map was due to soil 

association units which consist of more than one soil class. Fuzzy c-means and DSMART 

methods produced more accurate and detailed disaggregated soil maps at the great group and 

subgroup levels respectively. We conclude, that the decision what method to use depends on the 

map, the level of available information (details of map), expert knowledge and the map‘s legend 

such as the composition percentage of soil maps if it is available or not. 
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5.1 Introduction 

In the modern world, increasing demands for food production, global change and growing 

population are an enormous challenge that we face. At the same time, the priority of land 

management is to prevent land degradation, restore lands that are already degraded, maintain soil 

quality, and sustainable use of land resources. Accurate maps and adequate models are 

indispensable tools to assist managers, scientists and decision-makers in addressing these 

challenges.  

In the context of above challenges and a growing demand for high-resolution spatial soil 

information for scientists and management, fast and accurate methods for updating legacy and 

conventional soil maps are essential. 

It is known that polygon soil maps or conventional soil maps, in general, are not pure units, 

which means that the same polygon may contain more than one soil class or component 

(inclusions) (Soil Survey Division Staff, 1993). Therefore, obtaining information from less 

detailed scale soil polygon maps is difficult and associated with uncertainty. In these cases, 

disaggregation of soil polygons could be an alternative to identify soil classes within the same 

polygon (Holmes et al., 2015; Kerry et al., 2012). 

The disaggregation approach produces a refined delineation map in which each soil map unit 

is assumed ‗pure‘, that is containing one and only one soil type or soil class. In consequence, the 

soil type object and its spatial definition become more consistent with one another. The refined 

delineation map would therefore be expected to be much more powerful and detailed (Daroussin 

et al., 2006). Some approaches and methods for disaggregation of soil polygons have been 

described and explained in Bui and Moran (2001), and also several fundamental ideas and 

theoretical forms of spatial soil map disaggregation were investigated by McBratney (1998). 
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The biggest impediment of disaggregation studies is to determine the spatial configuration of 

the soil classes within each map unit in a quantitative manner. It is often known which soil 

classes occur in each mapping unit, and sometimes there is also information regarding the 

relative proportions of each one. In the polygon soil maps, commonly, spatial explicitness and 

configuration of soil classes within the unit are unknown. This issue is the common difficulty 

faced in studies seeking the renewal and updating of legacy soil maps (Malone et al., 2017). 

At the level of national or international classification systems, soil polygon maps cover many 

locations and areas. These valuable legacy soil data need effective methods for disaggregation 

and incorporation into digital soil mapping approaches at national and regional scales. Sampling 

efforts could reduce by appropriate use of these legacy soil data and utilization of modern digital 

soil mapping methods (Kerry et al., 2012). Some approaches and advantageous reasons were 

proposed by De Bruin et al. (1999) and Eagleson et al. (1999) for legacy soil maps and 

disaggregation of soil polygons. 

Some empirical methods accompanied by other methods were investigated by Bui and Moran 

(2001) for spatial disaggregation of soil polygon maps in the Murray–Darling basin, Australia. 

To disaggregate soil polygon maps, three approaches were proposed by McBratney (1998): 

transfer functions, fractal analysis, and pycnophylactic splines. 

Several studies proposed clustering methods for spatial disaggregation and prediction of soil 

types in areas where no soil profiles were available and no detailed information exists on where 

in the landscape a specific soil type of a complex map unit is located (Häring et al., 2012). 

The K-means clustering method was applied by Bui and Moran (2001) to classify soils with 

Landsat MSS bands, slope position and relief as predictor variables. Fuzzy clustering was used 

by Yang et al. (2011) to quantify soil–landscape relationships on a 1:20,000 soil map in Canada. 
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Smith et al. (2010) disaggregated soil maps in British Columbia, Canada using terrain attributes, 

landform classes, and ecological subzones as predictor variables for fuzzy classification rules.  

In cases where soil profiles as training data were not available on the soil polygon maps, 

unsupervised classifications such as K-means and Fuzzy c-means clustering approaches could be 

applied. Fuzzy c-means and K-means clustering approaches can be used to generate clusters 

from environmental covariates and then the soil classes of map legend can be assigned to each 

cluster (Bui and Moran, 2001; Yang et al., 2011). 

On the other hand, when representative soil profiles as training data are available in combination 

with the legacy soil map, supervised classification is an alternative method for spatial 

disaggregation and prediction. Comparing to the unsupervised classification, supervised 

classification has the benefit that is it able to estimate the prediction accuracy and can identify 

clearly described map units or subunits (Häring et al., 2012). Odgers et al. (2014) present a new 

algorithm called DSMART which stands for Disaggregation and Harmonisation of Soil Map 

Units Through Resampled Classification Trees as supervised classification. This approach needs 

the composition of soil classes in each soil map unit, this information is commonly reported in 

the map legend. Bui and Moran (2001) reported that the approach to disaggregation relies on the 

decomposition of map unit descriptions given in legends and companion reports to soil 

association maps. 

As well as in the work of Odgers et al. (2014), the DSMART algorithm has been used in other 

studies throughout the world. Chaney et al. (2014) used it to disaggregate the entire gridded USA 

Soil Survey Geographic database. Zund (2014) used DSMART to disaggregate land system 

mapping units into land units for an area in Central Queensland, Australia.  
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The national soil map of Iran at scale of 1:1,000,000 is too coarse to show fine-scale patterns 

or individual soil classes with any degree of legibility, but producing a finer-scale soil map for 

the entire country is expensive and time-consuming.  

On the other hand, the soil observations within the national soil map did not have geographic 

coordinates. Moreover, this map was made using only 4250 profile observations which were 

excavated and described in 1990's (Banaei et al., 2005) for the entire country (1.648 million 

km²), that means only 2 or 3 observations located in the study area.  

Consequently, the supervised classification for disaggregation based on point observations of 

legacy soil map is impossible, but supervised classification such as DSMART, using the 

component percentage of map units, is possible. 

A few studies have investigated methods to update and disaggregate the national soil map in 

Iran. The objective of this chapter is to disaggregate the legacy soil map of Iran at scale of 

1:1,000,000 by three methods of disaggregation, a supervised classification (DSMART 

algorithm) and two unsupervised classifications (Fuzzy c-means and K-means clustering 

algorithm). The three approaches and their results at two levels of Soil Taxonomy are discussed 

and compared with the overall accuracy of the original map. 

5.2 Materials and Methods 

5.2.1 Description of the study area 

The study area was described in chapter 2. Figure 5-1 demonstrated the map of the study area 

at a scale of 1:1,000,000 with the soil associations (Banaei et al., 2005; Mohammad, 2000). In 

this map, the soil polygons contain soil associations and commonly include more than one soil 

class. The conventional soil map of the country (Iran) at scale of 1:1,000,000 was prepared based 

on physiography units and did not illustrate soil variation properly (Banaei et al., 2005; 
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Mohammad, 2000). The lowland landscape (Table 2-1) was delineated as non-soil unit in the 

conventional map at scale of 1:1,000,000 (Figure 5-1), while the previous study (Gholamzadeh, 

2014) and also observed profiles in this study proved that more than 90 percent of the area is 

Mollisols at the order level and Typic Endoaquolls at subgroup level. Consequently, Typic 

Endoaquolls were used instead of the non-soil unit. 

 
Figure 5- 1- Soil subgroup aggregation polygons in the study area. 
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In this chapter, we considered the soil map legend (Figure 5-1) to disaggregate soil 

association polygons. In addition, 15 different quantitative terrain attributes were derived from 

the DEM and satellite images (Table 3-1) using SAGA GIS software (Olaya, 2004).  

5.2.2 Disaggregation approaches 

5.2.2.2 K-means disaggregation approach 

Hartigan (1975) and McBratney and Gruijter (1992) described the K-means clustering 

algorithm in detail. The objective of the K-means method is to divide M points in N dimensions 

(M×N matrix) into K clusters so that the within-cluster sum of squares is minimized. The 

clustering does not practical to require that the solution has minimal sum of squares against all 

partitions, except when M, N are small and K=2. Instead, we try to find "local" optima, solutions 

such that no movement of a point from one cluster to another will reduce the within-cluster sum 

of squares. 

The algorithm requires as input a matrix of M points in N dimensions and a matrix of K initial 

cluster centres in N dimensions.  

K-means clustering runs through the following steps (Hartigan and Wong, 1979): 

1- The data points Xi and the number of clusters K are determined.  i=1,2,…,n 

2- The next step could be to continue as below: 

- The data points are randomly allocated into clusters, then each Cj cluster centres are 

calculated          j= 1,2,… k 

- Determination of centre clusters (Cj) 

3- Within each cluster, the Euclidean distance of each data point to its cluster centre is 

calculated as the sum of the squared errors. Here, ―error‖ indicates the distance of each 
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sample to the nearest centre of each cluster. The error sum of squares (ESS) then is 

calculated as the sum over all clusters by the following formula: 

      ∑ ∑ ‖      ‖
  

   
 
        (Eq. 5.5) 

where Cj is the j-th cluster centre and Xij is the data point in the j-th cluster. 

4- Re-assigned the data points to the nearest cluster and update the center of each cluster 

after each allocation. 

5- Repeat steps 3 and 4 until reassignment of point data to the clusters stop (minimum ESS 

obtained). 

The ―cclust‖   package was used to run the K-means clustering algorithm (R Development 

Core Team, 2013).  

5.2.2.2 Fuzzy C-means disaggregation approach 

The Fuzzy C-means algorithm was described by in detail McBratney and Gruijter (1992) and 

Bezdek (2013). In the K-means clustering, each sample or variable belongs to one cluster, and 

the boundary between clusters is distinct, but in the Fuzzy C-means algorithm each sample or 

variable at least belongs to two clusters.  

The centre of clusters determined by minimizing the objective function as follows (Bezdek, 

2013): 

   ∑ ∑    
 ‖     ‖

  
   

 
     1≤m˂∞  (Eq. 5.1) 

where m is any number greater than 1, Uij is the membership of Xi in the j cluster, Xi-th 

sample, Cj is the centre of j-th cluster and ‖     ‖ represents the similarity of samples and the 

center of each cluster.  

In fact, this component (‖     ‖) shows a function of the distance between samples and the 

centres of clusters; that distance can be the Euclidean, Mahalanobis or Manhattan distance. The 
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optimization of the fuzzy C-means clustering algorithm was done by frequent recalculation of 

the objective function under different data assignments to fuzzy clusters. The membership of Uij 

and the cluster centre of Cj is determined by the following function: 

     
 

∑ (
‖     ‖

‖     ‖
)

 
    

   

       (Eq. 5.2) 

    
∑    

    
 
   

∑    
  

   

        (Eq. 5.3) 

where the value of ε is between zero and one and k is the iteration. The algorithm includes the 

following steps: 

1- Initial assignment of value to the matrix of U=[uij] or U
(0) 

2- In the k-th step, calculating the centre of vectors C(k)=[cj] in the matrix U
(k)

 and U
(k+1)

 

    
∑    

    
 
   

∑    
  

   

        (Eq. 5.4) 

3-  Updating the matrixes of U
(k)

 and U
(k+1)

 

4-  If      [|   
       

 |]   occurs, the algorithm will stop; otherwise the algorithm will re-

run from the second step. 

The construction of fuzzy membership functions follows the methods described in (Zhu et al., 

2010). The ―e1017‖   package was used to run the fuzzy C-means clustering algorithm (R 

Development Core Team, 2013).  

5.2.2.3 Disaggregating and harmonizing soil map units through resampled classification trees 

(DSMART) approach 

DSMART provides and describes the methodology to disaggregate legacy soil maps and soil 

map associations into their components for an area of interest. Therefore, by disaggregating soil 

map units it becomes possible to map individual soil classes and soil types. 
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A comprehensive explanation of the DSMART algorithm is provided by Odgers et al. (2014) 

and Malone et al. (2017). 

DSMART predicts the spatial distribution of soil classes by disaggregating the soil map units 

of a soil polygon map. Here soil map units or soil polygons are entities consisting of a defined 

set of soil classes which occur together in a certain spatial pattern and in an assumed set of 

proportions. The disaggregated soil class distribution by DSMART approach presents probable 

soil classes for each one raster cell, so the results contain a set of numerical raster surfaces, with 

one raster per soil class. The data representation for each soil class is given as the probability of 

occurrence. According to Malone et al. (2017), in order to generate the probability surfaces, a re-

sampling approach is used to generate n realizations of the potential soil class distribution within 

each map unit. Then at each grid cell, the probability of occurrence of each soil class is estimated 

by the proportion of times the grid cell is predicted as each soil class across the set of 

realizations. The procedure of the DSMART algorithm can be summarized in 6 main steps 

(Odgers et al., 2014): 

1- Draw m random samples (grid cell location) from each soil map polygon. 

2- Allocate a soil class to each sampling point, using:  

- Weighted random allocation from soil classes in relevant map unit.  

- Relative proportions of soil classes within map units are used as the weights. 

3- Use sampling points and covariate values at these points to build a decision tree to 

prediction spatial distribution of soil classes. 

4- Apply the decision tree across the mapping extent using covariate layers. 

5- Repeat steps 1–4 i times to produce i realizations of soil class distribution. 

6- Using i realizations generate probability surfaces for each soil class. 
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Figure 5-2 Schematic overview of the DSMART algorithm (Odgers et al., 2014). 

DSMART allows the user to set project-specific parameters. The random sample size m was 

set to 15. The model type that Odgers et al. (2014) used was the C4.5 decision tree algorithm 

which was introduced by (Quinlan, 1993a). The type of data mining algorithm implemented in 

DSMART is not prescriptive; as long as it is robust and, importantly, computationally efficient. 

For example, Chaney et al. (2014) used Random Forest models (Breiman, 2001) in their 

implementation of DSMART. In this study, the C4.5 decision tree algorithm was applied. 

The DSMART approach has already been written in the C++ and Python computing languages. 

It is also available in an R package, which was developed at the Soil Security Laboratory. 

Regardless of computing language preference, DSMART requires three main sources of data: 

1- The soil map unit polygons that will be disaggregated (Figure 5-1). 

2- Information about the soil class composition of the soil map unit polygons. In this study, 

for those soil polygons that consist of 3 components, a relative contribution of 50, 30 and 

20 percent was considered for each soil class respectively.   
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3- Geo-referenced raster covariates representing the scorpan factors which have complete 

and continuous coverage of the mapping extent. For this source data, 15 quantitative 

terrain attributes were considered as scorpan factors. 

Implementation of DSMART algorithm in R program contains two working functions and 

packages: dsmart and dsmartR (R Development Core Team, 2013).  

5.2.3 Validation of disaggregation approaches 

The clusters obtained by unsupervised classification (Fuzzy c-means and K-means clustering 

approaches) are assigned to each soil classes in the map legend according to expert knowledge 

and soil type distribution in the landscape. 

In all applied disaggregation approaches, Rock Outcrop units in the map of 1:1,000,000 at the 

subgroup and great group levels have been named as Lithic Xerorthents and Xerorthents, 

respectively. 

To undertake the validation, the disaggregated soil maps predicted by DSMART, fuzzy C-

means and K-means clustering were validated by 125 soil profiles samples collected (see chapter 

2, section 2.2.3). Overall accuracy was used to evaluate the performance of all disaggregation 

approach. 

To comparison the performance of disaggregation approaches, the overall accuracy was also 

computed with 125 soil profiles for the legacy soil map at scale of 1:1,000,000. Overall accuracy 

has a range between zero and one where a good map has a value of map purity close to 1 

(Behrens et al., 2010). 

The detail depicted on a map informs whether it is useful for subsequent spatial studies. A 

map with high spatial detail may be useful in the spatial analysis if its accuracy is high as well. 

We derived a proxy for map intricacy using the Shannon entropy index (S) using a moving 
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window at great group and subgroup levels for 3 soil disaggregated maps and also for the legacy 

soil map (more information in chapter 3).  

By multiplying Shannon entropy index (S) and overall accuracy, a combined index for final 

assessment of the best disaggregation approach was calculated. This index was calculated for all 

disaggregation approaches and the legacy soil map. 

5.3 Results and Discussion 

The study area covers 86000 ha (860 km
2
) of soil map at scale of 1:1,000,000. Based on soil 

map legend at the subgroup level it consists of 7 soil subgroups: Typic Calcixerepts, Typic 

Haploxerepts, Typic Xerofluvents, Lithic Xerorthents, Typic Endoaquolls, Typic Calcixerolls, 

Typic Xerorthents and one non-soil unit including Rock outcrop, which is considered as Lithic 

Xerorthents in this study. There are six great groups and one non-soil unit including Rock 

outcrop as well (Figure 5-1).  

Typic Xerofluvents presented on the soil map at scale of 1:1,000,000 were not observed in the 

field observation locations, on the other hand, in addition to the six subgroups included in the 

legacy map, six extra subgroups were observed in the study area (Table 3-1). Discrepancies and 

mismatches between the number of soil subgroups in the field observation and the legacy soil 

map are due to low accuracy and large scale of the legacy soil map. 

Because information on soil profiles from which the legacy soil map was produced was not 

available, the field observations were used as validation points. The validation points (chapter 2) 

were collected using a cLHS sampling strategy and were intended to cover all the soil types in 

the area. Consequently, the field observations were also used to evaluate the accuracy of the 

legacy soil map. 
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The validation criteria for legacy soil map and disaggregated soil maps are summarized in 

Table 5-1. The overall accuracy of the legacy soil map was 52% and 65% at the subgroup and 

great group levels respectively. While the overall accuracy was high, the map was not reliable 

because each soil polygons consist of more than one soil classes. The inability of this map to 

present soil variability led to the lowest Shannon entropy index (S) (Table 5-1). Based on 

Shannon index (S) the original soil map did not show much more spatial detail. Yang et al. 

(2011) stated that commonly the original map shows less information than the updated map. 

5.3.1 Unsupervised classification 

The original legacy soil map (Figure 5-1) showed that 7 and 6 soil classes existed in the study 

area at the subgroup and great group levels respectively. Additionally, one non-soil unit is 

recognizable that in both unsupervised classifications is assigned to Lithic Xerorthents and 

Xerorthents at the subgroup and great group levels respectively. Therefore by clustering 

approaches, 8 clusters for subgroup and 7 clusters for the great group level were generated. 

Consequently, the disaggregated soil maps were produced with 7 and 6 soil classes at the 

subgroup and great group levels. 

5.3.1.1 Fuzzy c-mean disaggregation approach 

By Fuzzy c-means, the environmental covariates, representing the scorpan factors, were 

clustered. Then 8 and 7 fuzzy membership maps of the environmental clusters based on 

Euclidean distance, the fuzziness degree of 1.3 and with an iteration of 100 were produced for 

the soil subgroup and great group respectively. Afterwards, based on the maximum degree of 

membership from 8 maps of membership (subgroup level) and 7 maps of membership at great 

group level, two maps with 8 and 7 clusters were produced for soil subgroup and great group 

respectively. Each cluster is assigned to one soil subgroup or great group by expert knowledge of 
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the relationships between the soil and the environmental conditions. Zhu et al. (2001) and Qi and 

Zhu (2003) reported that the relationships between the soil and the environmental conditions are 

embedded in associations between environmental clusters and mapped soil types. Therefore this 

knowledge can be extracted and quantified to be useful in digital soil mapping. In this chapter, 

this knowledge is obtained through the construction of fuzzy membership functions. These fuzzy 

membership functions describe how similarity between a local soil and the typical case of a 

given soil type will change as environmental conditions change (Zhu, 1999).  

The disaggregated maps at the subgroup and great group levels by fuzzy c-means are 

presented in Figure (5-3). Estimation of Fuzzy c-means algorithm performance by 125 field 

validation points gave an overall accuracy of 34% and 43% at the subgroup and great group 

levels respectively. This approach resulted in a low Shannon index (Table 5-1). 
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Figure 5- 3- The disaggregated soil map using the fuzzy c-means clustering approach, A) great 

group level, B) subgroup level. 

   A   

    B   
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5.3.1.2 K-mean disaggregation approach 

The disaggregated maps produced by this approach have been validated by 125 field 

observations (Figure 5-4). The results showed that the overall accuracy of the disaggregated 

maps are 15% and 31% in the subgroup and great group levels respectively.  

The Shannon index indicated that this method in both Soil Taxonomy levels produced maps 

with higher diversity rate (Table 5.1) and this increase in the Shannon index led to a slight 

increase in the combined index for this method. Comparing to the field observations Figure (5-4) 

shows that the K-mean disaggregation approach overestimated Xerofluvents and Haploxerepts at 

the great group level and also Typic Endoaqoulls at the subgroup level. 



 

111 
 

 

 
Figure 5- 4- The disaggregated soil map using the K-means clustering approach, A) great group 

level, B) subgroup level. 

   A   

 

 

    B   
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5.3.2 Supervised classification 

The DSMART was run on the 5 soil polygons (Figure 5-1) for n=10 iterations at m=15 

sampling points per polygon and produced probability soil classes for the 6 and 7 soil classes at 

the great group and subgroup levels respectively. The Rock outcrop unit was also classified and 

predicted as Lithic Xerorthents subgroup, the same as in the unsupervised classification. 

The most probable soil classes and the confusion index maps were also calculated. Validation 

on 125 observed soil profiles indicated that DSMART approach has 36% and 33% overall 

accuracy at great group and subgroup levels. This method produced the most detailed 

disaggregated maps with the highest value of Shannon entropy (Table 5-1).  

The study of Chaney et al. (2014) in the USA showed that the DSMART approach can be 

quite a powerful and successful method for disaggregating a legacy soil map. Though DSMART 

has many advantages, this method needs specific inputs, particularly in regards to the soil class 

compositions and their relative proportions within mapping units. In some cases, this kind of 

information is not easily available and needs to be approximated by some means. The other 

disadvantage of DSMART is the computational effort to generate disaggregated prediction maps 

which could be a burden (Malone et al., 2017). 

Table 5- 1 Validation criteria for different disaggregation approaches at two 

 levels of Soil Taxonomy in the study area. 

 Overall accuracy Shannon entropy Combined index 

Great group 

Legacy soil map 0.65 0.55 0.36 

DSMART 0.36 0.69 0.25 

F c-means 0.43 0.61 0.26 

K-means 0.31 0.67 0.21 

Subgroup 

Legacy soil map 0.52 0.55 0.29 

DSMART 0.33 0.70 0.23 

F c-means 0.34 0.63 0.21 

K-means 0.15 0.68 0.10 
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Each location where predictions are made has a probability series consisting of the most 

probable soil classes and their probability (Odgers et al., 2014). The most probable soil classes 

(Figure 5-5) and the confusion index between their probabilities of occurrence (Figure 5-6) were 

mapped at the subgroup level.  

The number of pixels which predicted as Typic Calcixerolls and Typic Xerofluvents almost 

agreed with the field observations. Typic Xerofluvents had not been observed in the field and a 

small number of profiles were observed as Typic Calcixerolls. Consequently, according to the 

expert knowledge, the prediction of DSMART method for these two subgroups are close to 

reality (Figure 5-5). On the disaggregated map, Lithic Xerorthents, Typic Calcixerepts and Typic 

Endoaquolls were identified as the three most probable soil classes (Figure 5-5). 
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Figure 5- 5- Map of the most probable by DSMART method for soil class at subgroup level. 

 

The confusion index provided an estimate of the uncertainty, therefore this index essentially 

measures how similar to classification is between (in most cases) most probable and second-most 

probable soil class predictions at a pixel (Odgers et al., 2014). For instance, if the difference in 

probability between the most probable and second-most-probable soil class is small (e.g. 0.1), we 

are more confused about which is the ―correct‖ class than if the difference in probability between 

the most probable and second-most-probable soil class is large (e.g. 0.9) (Figure 5-6). 
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In the central and western part of the study area, the probabilities of the most probable soil 

classes were low and confusion index almost being around 0.40 and occasionally above 0.65; 

this is the area were the Typic Endoaquolls subgroup was predicted. This means that those soils 

were predicted with high uncertainty. For the area with confusion index higher than 0.60 (most 

part of the study area), the probability of the most probable soil was high and those soils were 

predicted with higher certainty. The confusion index could enhance our understanding of soil-

landscape relationships. 

 

Figure 5- 6- Confusion index of DSMART method for soil subgroup predictions 

 

Tables (5-2 and 5-3) present a summary of the covariate usage across all 10 decision trees. The 

covariate usage for a given covariate is the proportion of leaves in each decision tree which 
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require the covariate at some point in one of the if-then rules descending from the root of the tree 

(Odgers et al 2014). At the subgroup level, elevation, aspect and Multi-resolution Valley Bottom 

Flatness Index had the highest usage in all the decision trees. Almost all of image satellite 

covariates were not used frequently in the decision trees. The covariates with high values of 

standard deviation of usage indicate that some trees used it heavily but others did not (Table 5-

2). The mean usage of covariates decreased at great group level. Elevation, aspect and 

topographic wetness index had the highest usage in all the decision trees (Table 5-3). The 

importance of covariates in the prediction of soil classes can be concluded by the mean usage of 

covariates in the decision trees. 

Table 5- 2- Summary of covariate usage across 10 decision trees at subgroup level. The covariates are briefly 

explained in Table 3-1. 

Covariate n Mean usage (%) StDev usage (%) Minimum usage (%) Maximum usage (%) 

El 10 95.00 8.23 80.83 100.00 

As 10 48.83 22.05 9.17 78.33 

MrVBF 9 43.60 36.70 0.00 100.00 

WI 10 37.92 22.22 9.17 70.00 

TWI 9 37.50 27.93 0.00 93.33 

PrCu 10 34.83 25.21 10.83 100.00 

SAVI 9 32.92 19.48 0.00 67.50 

MrRTF 10 30.08 21.52 6.67 61.67 

CI 10 29.75 19.36 11.67 72.50 

PlCu 7 24.42 23.63 0.00 69.17 

Sl 8 23.25 25.50 0.00 72.50 

Cu 5 21.67 30.26 0.00 87.50 

PVI 8 21.50 22.65 0.00 66.67 

RVI 6 12.42 19.31 0.00 61.67 

NDVI 1 5.08 16.07 0.00 50.83 

 

Table 5- 3- Summary of covariate usage across 10 decision trees at great group level. The covariates are briefly 

explained in Table 3-1. 

Covariate n Mean usage (%) StDev usage (%) Minimum usage (%) Maximum usage (%) 

El 10.00 71.83 29.41 15.00 100.00 

As 10.00 58.17 20.55 30.83 94.17 

TWI 9.00 50.90 36.00 0.00 100.00 

MrRTF 10.00 48.83 27.85 7.50 100.00 
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CI 9.00 47.50 27.59 0.00 85.00 

PVI 9.00 40.30 40.50 0.00 100.00 

WI 9.00 40.20 36.60 0.00 100.00 

PlCu 8.00 33.58 31.15 0.00 85.00 

MrVBF 9.00 30.40 33.40 0.00 100.00 

Cu 7.00 29.40 33.80 0.00 100.00 

SAVI 9.00 23.83 17.76 0.00 47.50 

PrCu 8.00 21.42 20.34 0.00 50.83 

RVI 3.00 21.20 41.70 0.00 100.00 

Sl 7.00 13.58 19.73 0.00 61.67 

NDVI 1.00 3.42 10.81 0.00 34.17 

 

5.3.3 Validation and models comparison 

Generally, the overall accuracy decreased for all approaches because more soil classes were 

observed in the field observations in comparison to the soil classes of soil map at scale of 

1:1,000,000. This led to obtaining low overall accuracy. Among all applied approaches, 

DSMART produced and generated the most detailed maps of soil classes based on Shannon 

entropy and the Fuzzy c-means method generated the least detailed maps of soil classes (Table 5-

1). 

Unlike the unsupervised approaches, DSMART method firstly provides a framework to 

update and legacy soil maps, to realize and acquire soil property information from existing 

polygon soil maps (Malone et al., 2017; Odgers et al., 2015). The comparisons between the 

disaggregated soil maps and conventional soil map showed that all disaggregated soil maps 

contained much greater spatial detail. 

Although Yang et al. (2011) reported that updated soil map by Fuzzy c-means was more 

detailed and accurate, this study did not achieve more accurate disaggregated soil maps. There is 

at least one main reason for this: The proposed methods in this study used the soil classes and 

polygons from the conventional soil map, which showed great difference with field observations 

(more soil classes in comparison with soil classes in the conventional soil map). None of the 
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approaches produced a disaggregated map with greater overall accuracy than the conventional 

soil map but all disaggregated methods generated more detailed soil maps. 

Odgers et al. (2014) reported that only 22.5% of field observations were predicted correctly as 

the most probable soil by the DSMART method. The validation results obtained from all 

approaches showed that they did not have similar predictive capability. The unsupervised 

classification, assigning soil classes to clusters, was very dependent on expert knowledge and in 

the DSMART method, similar predictive capability of models depends on soil information and 

components of the conventional soil map.  

 

5.4 Conclusions 

In this chapter three approaches were evaluated to disaggregate the conventional soil map. It 

is possible to disaggregate a very large areas of interest. For disaggregation purpose of legacy 

soil maps by unsupervised classifications, we had to use our expertise and expert knowledge to 

generate disaggregated maps by their legends. On the other hand, supervised classification like 

DSMART approach needs more details of legacy soil map that in some cases is not available or 

has to be estimated by the users. So, deciding what method to use is a function of the map, the 

level of available information, expert knowledge and the map‘s legend. The DSMART results 

showed that topographic attributes have a significant influence on the prediction of disaggregated 

soil classes at both taxonomic levels of prediction. The proposed methods are appropriate in 

situations where the study area contains legacy soil sample data that were used to produce the 

conventional soil map, and after disaggregation the validation is carried out using the legacy soil 

sample data. In this study area, georeferenced legacy soil samples data were not available, 

therefore validation was carried out using new field observations, which reduced the overall 
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accuracy. In a case study like this situation there is much work left to do and also there are great 

opportunities for applying the outputs of unsupervised and supervised classification. 
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Chapter 6 

Summary and Future Suggestions 

6.1 Summary 

This study involves mathematical models and expert knowledge to test the capability of these 

models to predict soil map classes and some soil properties, to disaggregate soil classes of a 

conventional soil map and to identify the relationship between soils and landscapes. So, the 

objectives of this thesis were: 

(i) to evaluate soil evolution in the landscape and the effect of geomorphic surfaces and 

landforms on soil;  

(ii) to predict soil classes, compare digital soil mapping and conventional soil mapping 

methods with respect to time, cost and accuracy; 

(iii) to predict some soil properties and compare linear and nonlinear prediction models. 

Finally, objective (iv) of this study aimed to disaggregate soil associations of conventional 

soil map to their components.  

The following main conclusions can be drawn from different parts of this study: 

 Pedodiversity indices increased from the soil order to the soil subgroup level. The 

relationships between pedodiversity indices and area showed that probably additional 

soil classes would be observed when the number of observations would increase. So it 

can be deduced that possibly the number of observations was insufficient in the 

studied area. 

 In most predicted maps using DSM, the best results were obtained using the 

combination of terrain attributes and the geomorphology map. 
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 Using the geomorphology map in DSM was not significant but, employing it increased 

map purity and the Kappa index, and led to a decrease in the ‗noisiness‘ of soil maps.  

 For prediction of soil classes at higher taxonomic levels, Multinomial Logistic 

Regression had better performance and Random Forest showed better performance at 

lower taxonomic levels.  

 Multinomial Logistic Regression was less sensitive than Random Forest to a decrease 

in the number of training observations.  

 Based on a combined index of map purity, map information content, and map 

production cost, Multinomial Logistic Regression was identified as the most effective 

approach.  

 The Stepwise Multiple Linear Regression and Random Forest models showed the 

highest performance to predict Calcium Carbonate Equivalent, Clay and SOC content. 

Results revealed that all models could not predict the spatial distributions of clay 

content properly. 

 Elevation is the most importance variable for all studied models to predict soil 

properties.  

 Disaggregated approaches produced more detailed maps compared to the original 

map.  

 Fuzzy c-means and DSMART methods produced more accurate and detailed 

disaggregated soil maps at the great group and subgroup levels respectively.  

 



 

122 
 

6.2 Suggestions for future research 

This study presents different methods of digital soil mapping (DSM) for soil classes and 

properties, and disaggregation approaches. Therefore, there are a few considerations for future 

research. First, this study did not use high-resolution terrain attributes, so future research could 

be evaluated for the effect of ancillary data resolutions on model performance. Secondly, for 

prediction of soil properties, this research recommended that more observations and denser 

sampling should be carried out in the study area. In the area with high topographic variation, the 

study area could probably have been better divided into homogeneous sub-area. Third, in map 

disaggregation studies, data from georeferenced legacy soil samples will increase the validation 

accuracy, so future research could use legacy soil profiles to validate disaggregated soil maps.  

DSMART could be the appropriate disaggregated method for continued mapping at the national 

scale to producing soil classes at the lower taxonomic level (great group and in some cases sub 

group), for instance in relation to the current nationwide 1:1,000,000 soil map. DSMART has 

additional functionality which was not tested in this study. For instance, computing second and 

third most probable soil in each grid cell. Afterwards calculate accuracy for 3 most probable soil 

in each grid cell which enhance the reliability of final disaggregated soil map. 
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