359 research outputs found

    Reflection Waveform Inversion of Ground-Penetrating Radar Data for Characterizing Thin and Ultrathin Layers of Nonaqueous Phase Liquid Contaminants in Stratified Media

    Get PDF
    Accurately quantifying thin-layer parameters by applying a targeted reflection waveform inversion methodology to ground-penetrating radar (GPR) reflection data may provide a useful tool for near-surface investigation and especially for contaminated site investigation where nonaqueous phase liquid (NAPL) contaminants are present. We implemented a targeted reflection waveform inversion algorithm to quantify thin-layer permittivity, thickness, and conductivity for NAPL thin (≤ 1/2 dominant wavelength λ) and ultrathin (≤ 1/8λ) layers using GPR reflection data. The inversion used a nonlinear grid search with a Monte Carlo scheme to initialize starting values to find the global minimum. By taking a targeted approach using a time window around the peak amplitude of the reflection event of interest, our algorithm reduced the complexity in the inverse problem. We tested the inversion on three different synthetic data sets and four field data sets. In all testing, the inversion solved for NAPL-layer properties within 15% of the measured values. This algorithm provides a tool for site managers to prioritize remediation efforts based on quantitative assessments of contaminant quantity and location using GPR

    Pavement testing by integrated geophysical methods: Feasibility, resolution and diagnostic potential

    Get PDF
    This work is focused on the assessment of the diagnostic potential of several geophysical methods when applied to the investigation of a rigid airport pavement. The potential and limit of each technique are evaluated as well as the added value deriving from their integration. Firstly, we reconstruct a high-resolution image of the pavement by a large electromagnetic and georadar screening. An advanced processing of georadar data, implemented through the picking of the arrival times of reflections for each profile, provides a quantitative estimation of the deviation between the design and the as-built thickness of layers. Additionally, electrical tomography has been applied to unequivocally identify the anomalous zones, where higher values of resistivity would be associated to porous zones that are prone to degradation and failure. The seismic tomographic survey had the additional purpose to recover the mechanical properties of the pavement in terms of both P- and S-waves and consequently of elastic constants (Poisson's ratio), whose values were consistent with those recovered in literature. The anomalies detected by each technique are consistent in their indications and they can be correlated to failure phenomena occurring at layer interfaces within the pavement structure or to unexpected variations of the layer thicknesses. The cost-effective geophysical campaign has validated the four-layered system deduced from the original design and has been used to reconstruct a high-resolution map of the pavement in order to discriminate fractures, crack-prone areas or areas where the as-built differs from the original design

    3-D characterization of high-permeability zones in a gravel aquifer using 2-D crosshole GPR full-waveform inversion and waveguide detection

    Get PDF
    Reliable high-resolution 3-D characterization of aquifers helps to improve our understanding of flow and transport processes when small-scale structures have a strong influence. Crosshole ground penetrating radar (GPR) is a powerful tool for characterizing aquifers due to the method's high-resolution and sensitivity to porosity and soil water content. Recently, a novel GPR full-waveform inversion algorithm was introduced, which is here applied and used for 3-D characterization by inverting six crosshole GPR cross-sections collected between four wells arranged in a square configuration close to the Thur River in Switzerland. The inversion results in the saturated part of this gravel aquifer reveals a significant improvement in resolution for the dielectric permittivity and electrical conductivity images compared to ray-based methods. Consistent structures where acquisition planes intersect indicate the robustness of the inversion process. A decimetre-scale layer with high dielectric permittivity was revealed at a depth of 5-6 m in all six cross-sections analysed here, and a less prominent zone with high dielectric permittivity was found at a depth of 7.5-9 m. These high-permittivity layers act as low-velocity waveguides and they are interpreted as high-porosity layers and possible zones of preferential flow. Porosity estimates from the permittivity models agree well with estimates from Neutron-Neutron logging data at the intersecting diagonal planes. Moreover, estimates of hydraulic permeability based on flowmeter logs confirm the presence of zones of preferential flow in these depth intervals. A detailed analysis of the measured data for transmitters located within the waveguides, revealed increased trace energy due to late-arrival elongated wave trains, which were observed for receiver positions straddling this zone. For the same receiver positions within the waveguide, a distinct minimum in the trace energy was visible when the transmitter was located outside the waveguide. A novel amplitude analysis was proposed to explore these maxima and minima of the trace energy. Laterally continuous low-velocity waveguides and their boundaries were identified in the measured data alone. In contrast to the full-waveform inversion, this method follows a simple workflow and needs no detailed and time consuming processing or inversion of the data. Comparison with the full-waveform inversion results confirmed the presence of the waveguides illustrating that full-waveform inversion return reliable results at the highest resolution currently possible at these scales. We envision that full-waveform inversion of GPR data will play an important role in a wide range of geological, hydrological, glacial and periglacial studies in the critical zon

    Cross-borehole tomography with full-decay spectral time-domain induced polarization for mapping of potential contaminant flow-paths

    Get PDF
    Soil contamination from industrial activities is a large problem in urban areas worldwide. Understanding the spreading of contamination to underlying aquifers is crucial to make adequate risk assessments and for designing remediation actions. A large part of the northern hemisphere has quaternary deposits consisting of glacial clayey till. The till often has a complex hydrogeological structure consisting of networks of fractures, sand stringers and sand lenses that each contribute to a transport network for water, free phase and dissolved contaminants. Thus, to determine the possible flow-paths of contaminants, the geology must be described in great detail. Normally, multiple boreholes would be drilled in order to describe the geology, but boreholes alone do not provide the needed resolution to map such sand lenses and their connectivity. Cross-borehole full-decay time-domain induced polarization (TDIP) is a new tool that allows for quantitatively mapping not only contrasts in bulk resistivity, but also contrasts in spectral IP parameters. We present a feasibility study with synthetic tests and a field application on a clayey moraine environment with embedded sand lenses, with hitherto unseen ground-truth verification. Indeed, the investigated area was above the water table, which allowed for digging out the entire area after the investigation for an unprecedented description of the lens interconnectivity. The TDIP data were acquired with a full-waveform acquisition at high sampling rate, signal-processed by harmonic denoising, background removal, and de-spiking, and subsequently the full-waveform data were stacked in log-increasing tapered gates (with 7 gates per decade). The resulting TDIP decays, with usable time-gates as early as two milliseconds, were inverted in terms of a re-parameterization of the Cole-Cole model. The inverted models of the field data show a remarkable delineation of the sand lenses/layers at the site, with structure in both the resistivity and the IP parameters matching the results from the ground-truthing. The synthetic examples show that in models both below and above the groundwater table, sand-lenses with thicknesses comparable to the vertical electrode spacing can be well resolved. This suggests that full-decay cross-borehole TDIP is an ideal tool for high-resolution sand-lens imaging

    A Synthetic Study to Assess the Applicability of Full-Waveform Inversion to Infer Snow Stratigraphy from Upward-Looking Ground-Penetrating Radar Data

    Get PDF
    Snow stratigraphy and liquid water content are key contributing factors to avalanche formation. Upward-looking ground penetrating radar (upGPR) systems allow nondestructive monitoring of the snowpack, but deriving density and liquid water content profiles is not yet possible based on the direct analysis of the reflection response. We have investigated the feasibility of deducing these quantities using full-waveform inversion (FWI) techniques applied to upGPR data. For that purpose, we have developed a frequency-domain FWI algorithm in which we additionally took advantage of time-domain features such as the arrival times of reflected waves. Our results indicated that FWI applied to upGPR data is generally feasible. More specifically, we could show that in the case of a dry snowpack, it is possible to derive snow densities and layer thicknesses if sufficient a priori information is available. In case of a wet snowpack, in which it also needs to be inverted for the liquid water content, the algorithm might fail, even if sufficient a priori information is available, particularly in the presence of realistic noise. Finally, we have investigated the capability of FWI to resolve thin layers that play a key role in snow stability evaluation. Our simulations indicate that layers with thicknesses well below the GPR wavelengths can be identified, but in the presence of significant liquid water, the thin-layer properties may be prone to inaccuracies. These results are encouraging and motivate applications to field data, but significant issues remain to be resolved, such as the determination of the generally unknown upGPR source function and identifying the optimal number of layers in the inversion models. Furthermore, a relatively high level of prior knowledge is required to let the algorithm converge. However, we feel these are not insurmountable and the new technology has significant potential to improve field data analysis

    High-resolution imaging of transport processes with GPR full-waveform inversion

    Get PDF
    Imaging subsurface small-scale features and monitoring transport of tracer plumes at a fine resolution is of interest to characterize transport processes in aquifers. Full-waveform inversion (FWI) of crosshole ground penetrating radar (GPR) measurements enables aquifer characterization at decimeter-scale resolution. GPR FWI provides 2D tomograms of the subsurface properties, the dielectric permittivity (ε) and electrical conductivity (σ), which can be correlated with hydrological properties. In the framework of the thesis, we conducted synthetic and experimental tracer tests that were monitored using time-lapse crosshole GPR full-waveform inversion results, to test the potential and limitation to reconstruct the tracer plume. For the synthetic test, we generated a realistic high resolution aquifer model based on previous hydrological and GPR FWI data from the Krauthausen test site in order perform a transport simulation that represents reasonable heterogeneity of the tracer concentration. Using petrophysical relations, we converted the concentration distribution to dielectric properties of specific tracers: saltwater (increase σ only), desalinated water (decrease σ only) and ethanol (decrease in both σ and ε). One important aspect of the GPR FWI is to investigate an optimal way to define adequate starting models especially for the time-lapse data. Therefore, we investigated three different starting model options in the synthetic test, resulting that ε and σ models from the background provide the most accurate FWI of time-lapse data. Hereby, both ε and σ FWI results have shown the potential to derive time-lapse changes. The gained insights of the synthetic optimization tests are applied for an experimental test. To prove the potential of the crosshole GPR FWI also under realistic conditions, we performed an experimental salt tracer experiment at the Krauthausen test site. Thereby, we injected to the sandy aquifer a salt tracer, and monitored the tracer development using crosshole GPR over a timeframe of 14 days within 5 crosshole planes in an area of 11x10 m. These time-lapse data are independently inverted using the background models of each plane as starting models as proposed from the synthetic study to derive the best FWI results. We investigated the consistency of the reconstruction of the plume by temporal and spatial continuity across neighboring planes, by correlating with borehole logging data, and with expectations based on previous tracer experiments from the same site. One challenge arise from the time-lapse GPR data caused by the change of the borehole filling properties over the time and transport of the plume. The salt and freshwater mixture in the tubes couple with the borehole antennae thus influence the GPR data. Fortunately, the processing for the FWI enables accounting this effect by estimating effective source wavelets for each time step and each plane, which compensate for borehole filling effects caused by the salt tracer. If these borehole filling effects would not be considered, errors in the results would occur. Performing the FWI considering the corrected effective source wavelets allows recovery of the aquifer models independently from saltwater-antennae effects. Such effects cannot be incorporated using standard ray-based approaches. In contrast from the synthetic tracer test, investigation of the best starting model for experimental data showed that σ homogenous model rather than from FWI background provides more accurate results for FWI of time-lapse data. This can be explained that possible errors in the FWI background results caused by measurement or starting model uncertainties, are forcing the FWI with these models to be trapped in a local minimum. The time-lapse GPR FWI has shown a reliable manifestation of a tracer of about 0.2 m resolution, which was not observed before from other geophysical monitoring techniques. These improved and higher resolution images of such a tracer transport can help in future to better constraint hydrological properties of interest for hydrological models. In this thesis, we have shown for the first time the potential of the GPR FWI to characterize and monitor tracer experiments using crosshole GPR data. Especially, the application to salt tracers, which traditionally were investigated with ERT, is now also possible with GPR and higher resolution images of the tracer transport are possible to obtain

    Application of coupled-wave Wentzel-Kramers-Brillouin approximation to ground penetrating radar

    Get PDF
    This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR) applications. For the analytical description of the signal generated by the interaction of the emitted pulse with the environment, we developed and implemented a novel time-domain version of the coupled-wave Wentzel-Kramers-Brillouin approximation. We compared our solution with finite-difference time-domain (FDTD) results, achieving a very good agreement. We then applied the proposed technique to two case studies: in particular, our method was employed for the post-processing of experimental radargrams collected on Lake Chebarkul, in Russia, and for the simulation of GPR probing of the Moon surface, to detect smooth gradients of the dielectric permittivity in lunar regolith. The main conclusions resulting from our study are that our semi-analytical method is accurate, radically accelerates calculations compared to simpler mathematical formulations with a mostly numerical nature (such as the FDTD technique), and can be effectively used to aid the interpretation of GPR data. The method is capable to correctly predict the protracted return signals originated by smooth transition layers of the subsurface dielectric medium. The accuracy and numerical efficiency of our computational approach make promising its further development

    Characterisation of the subglacial environment using geophysical constrained Bayesian inversion techniques

    Get PDF
    An accurate characterization of the inaccessible subglacial environment is key to accurately modelling the dynamic behaviour of ice sheets and glaciers, crucial for predicting sea-level rise. The composition and water content of subglacial material can be inferred from measurements of shear wave velocity (Vs) and bulk electrical resistivity (R), themselves derived from Rayleigh wave dispersion curves and transient electromagnetic (TEM) soundings. Conventional Rayleigh wave and TEM inversions can suffer from poor resolution and non-uniqueness. In this thesis, I present a novel constrained inversion methodology which applies a Markov chain Monte Carlo implementation of Bayesian inversion to produce probability distributions of geophysical parameters. MuLTI (Multimodal Layered Transdimensional Inversion) is used to derive Vs from Rayleigh wave dispersion curves, and its TEM variant, MuLTI-TEM, for evaluating bulk electrical resistivity. The methodologies can include independent depth constraints, drawn from external data sources (e.g., boreholes or other geophysical data), which significantly improves the resolution compared to conventional unconstrained inversions. Compared to such inversions, synthetic studies suggested that MuLTI reduces the error between the true and best-fit models by a factor of 10, and reduces the vertically averaged spread of the Vs distribution twofold, based on the 95% credible intervals. MuLTI and MuLTI-TEM were applied to derive Vs and R profiles from seismic and TEM electromagnetic data acquired on the terminus of the Norwegian glacier Midtdalsbreen. Three subglacial material classifications were determined: sediment (Vs 1600 m/s, R > 500 Ωm) and weathered/fractured bedrock containing saline water (Vs > 1900 m/s, R < 50 Ωm). These algorithms offer a step-change in our ability to resolve and quantify the uncertainties in subsurface inversions, and show promise for constraining the properties of subglacial aquifers beneath Antarctic ice masses. MuLTI and MuLTITEM have both been made publicly available via GitHub to motivate users, in the cryosphere and other environmental settings, for continued advancement

    Near-Surface Interface Detection for Coal Mining Applications Using Bispectral Features and GPR

    Get PDF
    The use of ground penetrating radar (GPR) for detecting the presence of near-surface interfaces is a scenario of special interest to the underground coal mining industry. The problem is difficult to solve in practice because the radar echo from the near-surface interface is often dominated by unwanted components such as antenna crosstalk and ringing, ground-bounce effects, clutter, and severe attenuation. These nuisance components are also highly sensitive to subtle variations in ground conditions, rendering the application of standard signal pre-processing techniques such as background subtraction largely ineffective in the unsupervised case. As a solution to this detection problem, we develop a novel pattern recognition-based algorithm which utilizes a neural network to classify features derived from the bispectrum of 1D early time radar data. The binary classifier is used to decide between two key cases, namely whether an interface is within, for example, 5 cm of the surface or not. This go/no-go detection capability is highly valuable for underground coal mining operations, such as longwall mining, where the need to leave a remnant coal section is essential for geological stability. The classifier was trained and tested using real GPR data with ground truth measurements. The real data was acquired from a testbed with coal-clay, coal-shale and shale-clay interfaces, which represents a test mine site. We show that, unlike traditional second order correlation based methods such as matched filtering which can fail even in known conditions, the new method reliably allows the detection of interfaces using GPR to be applied in the near-surface region. In this work, we are not addressing the problem of depth estimation, rather confining ourselves to detecting an interface within a particular depth range

    Bridging the scales: model-driven integrative interpretation of archaeological and geophysical data.

    Get PDF
    Geophysical prospecting in wetland environments is continuously under debate because of the critical unstable environment, but at the same time the richness in cultural heritage. This thesis is part of the interdisciplinary project SFB 1266 of the CRC ‘Scales of transformation’ at Kiel University, which focuses on reconstructing the prehistoric landscape transformation during human occupation. It aims to examine the potential for conventional geophysical survey methods (resistivity, ground penetrating radar and seismics) as site prospection and landscape investigation tools in peatland environments. Two case studies are presented in which multi-geophysical investigations have been performed and validated by archaeological excavations and stratigraphic information. Kettle holes are common ice decay features in formerly glacial landscapes like those in Southern Scandinavia and Northern Germany. In 2017 the Horsens Museum (Denmark) carried out a rescue excavation at Tyrsted which revealed Late Palaeolithic flint of the Bromme type (12.000-11.000 BCE) and worked reindeer antlers. Nowadays, the organic artefact inventory from the Bromme culture is largely unknown due to the scarcity of organic remains and the general lack of proper stratigraphic observations. The available dates concentrate in the (late) Allerød and early Younger Dryas chronozones, but unfortunately most of these dating are tentative only. Therefore, this connection in a Late Glacial horizon at Tyrsted is unique and it has the potential to provide new information in the current archaeological debate. The aim is to investigate a small kettle hole (site 8) using ground penetrating radar (GPR), electromagnetic induction (EMI) and electrical resistivity tomography (ERT) to estimate the extension of the feature. Shear wave reflection and refraction seismics (SH Seismics) were able to detect the whole shape and the bottom sediment of the former lake. Furthermore a seismic event is visible which can be associated to the transition between the Allerød and Younger Dryas sediment making the detection of the Bromme horizon possible. After the non invasive investigation, a location for an open excavation has been chosen in a way to groundtruth the geophysical results allowing the direct comparison with the stratigraphy. These results allow the archaeologists to identify key excavation areas focused on the investigation of the Allerød and Younger Dryas layers in a way to improve the dating information about the Bromme horizon collected so far. At the Mesolithic hunter-gatherers site of Duvensee (10000-6500 BCE) a multi methodological investigation has been carried out too, aiming to reconstruct the ancient landscape during human occupation. GPR, ERT and SH-Seismic have been performed together with corings, DP-EC logs and soil analyses as well for ground-truthing. It turned out that each method is able to distinguish between sediments that differ in grain size, in particular between peat, lake sediment (gyttjas and clay) and basal glacial sand deposits. GPR delivered the location of five former small sand hills that formed islands in the prehistoric lake where clusters of Mesolithic camps have been found. This study delivers depth maps of the three most important sedimentary facies interfaces and a 3D model of the spatio-temporal development of the Duvensee bog which agrees with the spatio-temporal pattern of the previous archaeological finds. GPR is even able to separate between high and low decomposed peat layers which is also clear considering resistivity variations in the ERT computation. From the association between geophysical properties and soil analyses (e.g. water content and organic matter) different gyttjas were distinguished and sismic velocity was correlated to bulk density. Values concerning electrical resistivity, dielectric permittivity, and shear wave velocity have been determined for each sediment and are therefore available to complete and improve the investigation of wetland environments. Both geophysical measurements and sediment analyses presented in this study can finally be useful to map lake sediments in wetland environments offering a potential to shape the common debate regarding wetland heritage management. This thesis concludes that geophysical prospection contributes to wetland archaeology as a tool for site detection and landscape interpretation. Future research should aim to further our understanding of the relationship between geophysical response and peatland soil properties, alongside a more extensive program of surveys and ground-truthing work to improve survey methodologies and archaeological interpretations
    • …
    corecore