6,006 research outputs found

    Development of a cognitive robotic system for simple surgical tasks

    Get PDF
    The introduction of robotic surgery within the operating rooms has significantly improved the quality of many surgical procedures. Recently, the research on medical robotic systems focused on increasing the level of autonomy in order to give them the possibility to carry out simple surgical actions autonomously. This paper reports on the development of technologies for introducing automation within the surgical workflow. The results have been obtained during the ongoing FP7 European funded project Intelligent Surgical Robotics (I-SUR). The main goal of the project is to demonstrate that autonomous robotic surgical systems can carry out simple surgical tasks effectively and without major intervention by surgeons. To fulfil this goal, we have developed innovative solutions (both in terms of technologies and algorithms) for the following aspects: fabrication of soft organ models starting from CT images, surgical planning and execution of movement of robot arms in contact with a deformable environment, designing a surgical interface minimizing the cognitive load of the surgeon supervising the actions, intra-operative sensing and reasoning to detect normal transitions and unexpected events. All these technologies have been integrated using a component-based software architecture to control a novel robot designed to perform the surgical actions under study. In this work we provide an overview of our system and report on preliminary results of the automatic execution of needle insertion for the cryoablation of kidney tumours

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    FusionPlanner: A Multi-task Motion Planner for Mining Trucks using Multi-sensor Fusion Method

    Full text link
    In recent years, significant achievements have been made in motion planning for intelligent vehicles. However, as a typical unstructured environment, open-pit mining attracts limited attention due to its complex operational conditions and adverse environmental factors. A comprehensive paradigm for unmanned transportation in open-pit mines is proposed in this research, including a simulation platform, a testing benchmark, and a trustworthy and robust motion planner. \textcolor{red}{Firstly, we propose a multi-task motion planning algorithm, called FusionPlanner, for autonomous mining trucks by the Multi-sensor fusion method to adapt both lateral and longitudinal control tasks for unmanned transportation. Then, we develop a novel benchmark called MiningNav, which offers three validation approaches to evaluate the trustworthiness and robustness of well-trained algorithms in transportation roads of open-pit mines. Finally, we introduce the Parallel Mining Simulator (PMS), a new high-fidelity simulator specifically designed for open-pit mining scenarios. PMS enables the users to manage and control open-pit mine transportation from both the single-truck control and multi-truck scheduling perspectives.} \textcolor{red}{The performance of FusionPlanner is tested by MiningNav in PMS, and the empirical results demonstrate a significant reduction in the number of collisions and takeovers of our planner. We anticipate our unmanned transportation paradigm will bring mining trucks one step closer to trustworthiness and robustness in continuous round-the-clock unmanned transportation.Comment: 2Pages, 10 figure

    Dynamics of Trust Behaviour in Borderline Personality Disorder

    Get PDF
    Background: Borderline personality disorder (BPD) is associated with difficulty forming trust and maintaining cooperation in trust-based exchanges, but little is known about how the disorder influences the temporal ebb and flow of trust, and what aspects of the disorder might be responsible for these trust patterns. An economic game paradigm, the trust game (TG), was used to examine the trajectories of trust as it formed, dissolved, and restored in response to trust violation and repair. Study 1 examined how these trust patterns varied as a function of the number of BPD traits endorsed. Study 2 investigated whether insecure attachment style, self-protective beliefs, and feelings of rejection moderated the effect of BPD trait count on these trust patterns. Study 3 explored how the social-cognitive reasoning for the decisions made during the TG – before, during, and after the trust violation and repair – varied based on the level of BPD trait count. Method: In all three studies, young adults (N=234) played a 15-round TG in which partner cooperation was varied to signal trust violation and repair, resulting in three phases of trust: formation, dissolution, and restoration. Following the TG, participants were asked to provide the reasoning behind the decisions that they and their partner made. In Study 1, discontinuous growth modelling (DGM) was employed to first model the trajectory of trust during these phases, and the magnitude of the changes in trust in response to the violation and repair, and second, to examine how these trust patterns were influenced by BPD trait count. Study 2 extended the DGM by examining whether the effect of BPD trait count on the levels and trajectory of trust was modified based on attachment style (fearful or preoccupied), endorsing the belief that pre-emptive action should be taken to protect oneself from others, and pre-existing feelings of rejection. In Study 3, 16 of the participants with a high BPD trait count (7-10 traits) and 16 randomly selected, age and gender matched participants with a low BPD trait count (0-2 traits) were asked to provide reasons to explain their own and their partners behaviour during the TG. These reasons were subsequently categorized and compared for between-group differences across each phase of the game. Results: In Study 1, BPD trait count was associated with an incongruous pattern of trust behaviour in the form of declining trust when interacting with a new and cooperative partner, and paradoxically, increasing trust following multiple instances of trust violation by that partner. BPD trait count was also associated with trust restoring at a faster rate than it was originally formed. Results from Study 2 suggest that the slower rate of trust formation associated with BPD trait count was accounted for by pre-existing feelings of rejection and self-protective beliefs, each of which predicted a slower rate of trust growth. In contrast, endorsing a preoccupied attachment style was found to temper the trust-negating effect of BPD trait count when trust was forming. The faster rate of trust growth in response to trust violations associated with BPD trait count was no longer significant after self-protective beliefs were accounted for, but the latter’s effect on trust during this phase did not reach significance. Study 3 found that during trust formation, the high BPD trait group more frequently attributed negative characteristics to the other player and described their own behaviour as a tit-for-tat strategy despite reasoning that their partner was responding with positive reciprocity. Notably, they articulated these reasons markedly less during the restoration phase compared to the formation phase. Both groups provided similar reasons to describe behaviour during the dissolution phase. Overall, the high BPD trait group was also more likely to say that they did not know why they or the other player made the decisions that they did. Conclusions: The studies in this thesis adopted an innovative methodological and analytical approach to illustrate both behaviourally and cognitively how relational disturbances may play out in trust-based interpersonal exchanges for those with a high BPD trait count. Interestingly, the studies revealed a paradoxical style of relating where cooperative partner behaviour elicited less trusting behaviour and more hostile reasoning by those with high levels of BPD traits. In contrast, these individuals appeared to engage in more trusting behaviours in response to trust violation, but this phenomenon requires further investigation. Interventions which focus on improving the capacity and accuracy of social-cognitive reasoning may address the trust-related interpersonal difficulties associated with BPD. In particular, exploring themes of rejection and the need to self-protect may provide further insight into these incongruous trust behaviours

    Mitigating Emergent Safety and Security Incidents of CPS by a Protective Shell

    Get PDF
    In today's modern world, Cyber-Physical Systems (CPS) have gained widespread prevalence, offering tremendous benefits while also increasing society's dependence on them. Given the direct interaction of CPS with the physical environment, their malfunction or compromise can pose significant risks to human life, property, and the environment. However, as the complexity of CPS rises due to heightened expectations and expanded functional requirements, ensuring their trustworthy operation solely during the development process becomes increasingly challenging. This thesis introduces and delves into the novel concept of the 'Protective Shell' – a real-time safeguard actively monitoring CPS during their operational phases. The protective shell serves as a last line of defence, designed to detect abnormal behaviour, conduct thorough analyses, and initiate countermeasures promptly, thereby mitigating unforeseen risks in real-time. The primary objective of this research is to enhance the overall safety and security of CPS by refining, partly implementing, and evaluating the innovative protective shell concept. To provide context for collaborative systems working towards higher objectives — common within CPS as system-of-systems (SoS) — the thesis introduces the 'Emergence Matrix'. This matrix categorises outcomes of such collaboration into four quadrants based on their anticipated nature and desirability. Particularly concerning are outcomes that are both unexpected and undesirable, which frequently serve as the root cause of safety accidents and security incidents in CPS scenarios. The protective shell plays a critical role in mitigating these unfavourable outcomes, as conventional vulnerability elimination procedures during the CPS design phase prove insufficient due to their inability to proactively anticipate and address these unforeseen situations. Employing the design science research methodology, the thesis is structured around its iterative cycles and the research questions imposed, offering a systematic exploration of the topic. A detailed analysis of various safety accidents and security incidents involving CPS was conducted to retrieve vulnerabilities that led to dangerous outcomes. By developing specific protective shells for each affected CPS and assessing their effectiveness during these hazardous scenarios, a generic core for the protective shell concept could be retrieved, indicating general characteristics and its overall applicability. Furthermore, the research presents a generic protective shell architecture, integrating advanced anomaly detection techniques rooted in explainable artificial intelligence (XAI) and human machine teaming. While the implementation of protective shells demonstrate substantial positive impacts in ensuring CPS safety and security, the thesis also articulates potential risks associated with their deployment that require careful consideration. In conclusion, this thesis makes a significant contribution towards the safer and more secure integration of complex CPS into daily routines, critical infrastructures and other sectors by leveraging the capabilities of the generic protective shell framework.:1 Introduction 1.1 Background and Context 1.2 Research Problem 1.3 Purpose and Objectives 1.3.1 Thesis Vision 1.3.2 Thesis Mission 1.4 Thesis Outline and Structure 2 Design Science Research Methodology 2.1 Relevance-, Rigor- and Design Cycle 2.2 Research Questions 3 Cyber-Physical Systems 3.1 Explanation 3.2 Safety- and Security-Critical Aspects 3.3 Risk 3.3.1 Quantitative Risk Assessment 3.3.2 Qualitative Risk Assessment 3.3.3 Risk Reduction Mechanisms 3.3.4 Acceptable Residual Risk 3.4 Engineering Principles 3.4.1 Safety Principles 3.4.2 Security Principles 3.5 Cyber-Physical System of Systems (CPSoS) 3.5.1 Emergence 4 Protective Shell 4.1 Explanation 4.2 System Architecture 4.3 Run-Time Monitoring 4.4 Definition 4.5 Expectations / Goals 5 Specific Protective Shells 5.1 Boeing 737 Max MCAS 5.1.1 Introduction 5.1.2 Vulnerabilities within CPS 5.1.3 Specific Protective Shell Mitigation Mechanisms 5.1.4 Protective Shell Evaluation 5.2 Therac-25 5.2.1 Introduction 5.2.2 Vulnerabilities within CPS 5.2.3 Specific Protective Shell Mitigation Mechanisms 5.2.4 Protective Shell Evaluation 5.3 Stuxnet 5.3.1 Introduction 5.3.2 Exploited Vulnerabilities 5.3.3 Specific Protective Shell Mitigation Mechanisms 5.3.4 Protective Shell Evaluation 5.4 Toyota 'Unintended Acceleration' ETCS 5.4.1 Introduction 5.4.2 Vulnerabilities within CPS 5.4.3 Specific Protective Shell Mitigation Mechanisms 5.4.4 Protective Shell Evaluation 5.5 Jeep Cherokee Hack 5.5.1 Introduction 5.5.2 Vulnerabilities within CPS 5.5.3 Specific Protective Shell Mitigation Mechanisms 5.5.4 Protective Shell Evaluation 5.6 Ukrainian Power Grid Cyber-Attack 5.6.1 Introduction 5.6.2 Vulnerabilities in the critical Infrastructure 5.6.3 Specific Protective Shell Mitigation Mechanisms 5.6.4 Protective Shell Evaluation 5.7 Airbus A400M FADEC 5.7.1 Introduction 5.7.2 Vulnerabilities within CPS 5.7.3 Specific Protective Shell Mitigation Mechanisms 5.7.4 Protective Shell Evaluation 5.8 Similarities between Specific Protective Shells 5.8.1 Mitigation Mechanisms Categories 5.8.2 Explanation 5.8.3 Conclusion 6 AI 6.1 Explainable AI (XAI) for Anomaly Detection 6.1.1 Anomaly Detection 6.1.2 Explainable Artificial Intelligence 6.2 Intrinsic Explainable ML Models 6.2.1 Linear Regression 6.2.2 Decision Trees 6.2.3 K-Nearest Neighbours 6.3 Example Use Case - Predictive Maintenance 7 Generic Protective Shell 7.1 Architecture 7.1.1 MAPE-K 7.1.2 Human Machine Teaming 7.1.3 Protective Shell Plugin Catalogue 7.1.4 Architecture and Design Principles 7.1.5 Conclusion Architecture 7.2 Implementation Details 7.3 Evaluation 7.3.1 Additional Vulnerabilities introduced by the Protective Shell 7.3.2 Summary 8 Conclusion 8.1 Summary 8.2 Research Questions Evaluation 8.3 Contribution 8.4 Future Work 8.5 Recommendatio

    TruPercept: Trust Modelling for Autonomous Vehicle Cooperative Perception from Synthetic Data

    Full text link
    Inter-vehicle communication for autonomous vehicles (AVs) stands to provide significant benefits in terms of perception robustness. We propose a novel approach for AVs to communicate perceptual observations, tempered by trust modelling of peers providing reports. Based on the accuracy of reported object detections as verified locally, communicated messages can be fused to augment perception performance beyond line of sight and at great distance from the ego vehicle. Also presented is a new synthetic dataset which can be used to test cooperative perception. The TruPercept dataset includes unreliable and malicious behaviour scenarios to experiment with some challenges cooperative perception introduces. The TruPercept runtime and evaluation framework allows modular component replacement to facilitate ablation studies as well as the creation of new trust scenarios we are able to show

    Practical identifiability analysis of environmental models

    Get PDF
    Identifiability of a system model can be considered as the extent to which one can capture its parameter values from observational data and other prior knowledge of the system. Identifiability must be considered in context so that the objectives of the modelling must also be taken into account in its interpretation. A model may be identifiable for certain objective functions but not others; its identifiability may depend not just on the model structure but also on the level and type of noise, and may even not be identifiable when there is no noise on the observational data. Context also means that non-identifiability might not matter in some contexts, such as when representing pluralistic values among stakeholders, and may be very important in others, such as where it leads to intolerable uncertainties in model predictions. Uncertainty quantification of environmental systems is receiving increasing attention especially through the development of sophisticated methods, often statistically-based. This is partly driven by the desire of society and its decision makers to make more informed judgments as to how systems are better managed and associated resources efficiently allocated. Less attention seems to be given by modellers to understand the imperfections in their models and their implications. Practical methods of identifiability analysis can assist greatly here to assess if there is an identifiability problem so that one can proceed to decide if it matters, and if so how to go about modifying the model (transforming parameters, selecting specific data periods, changing model structure, using a more sophisticated objective function). A suite of relevant methods is available and the major useful ones are discussed here including sensitivity analysis, response surface methods, model emulation and the quantification of uncertainty. The paper also addresses various perspectives and concepts that warrant further development and use

    ProsocialLearn: D2.5 evaluation strategy and protocols

    No full text
    This document describes the evaluation strategy for the assessment of game effectiveness, market value impact and ethics procedure to drive detailed planning of technical validation, short and longitudinal studies and market viability tests
    • …
    corecore