
Faculty Computer Science Chair Software Technology, Software Architecture of Complex Systems

Master Thesis

Mitigating Emergent Safety and
Security Incidents of CPS by a
Protective Shell

Leonard Wagner

Matriculation number: 4767780
Matriculation year: 2018

4th September 2023

Supervisor

Dr.-Ing. Sebastian Götz

Supervising professor

Prof. Dr. Frank J. Furrer

Acknowledgements

First and foremost, I wish to express my deepest gratitude to Prof. Dr. Frank J. Furrer for
his continuous support and insightful advice throughout this research journey. His metic-
ulously crafted topic proposal, coupled with his profound interest in this study field and
invaluable literature recommendations, have played a central role in shaping this thesis. His
collaboration, alongside with Dr.-Ing. Sebastian Götz, consistently provided highly produc-
tive consultations, guiding me through the complexities of my research.

I would also like to express my sincere appreciation to Dr.-Ing. Sebastian Götz. His exten-
sive experience, innovative ideas, and guidance on crucial aspects have been instrumental
in bringing clarity and depth to my work. Additionally, his assistance in navigating through
organisational matters has been immensely beneficial.

On a personal note, I owe a heartfelt thanks to my girlfriend. Her unwavering belief in
my abilities and her relentless support, have been indispensable and a constant source of
strength. Her thoughtful gestures, have lightened the load during challenging periods while
she ensured that I remained focused on this thesis.

Lastly, I would also like to convey my warm gratitude to my family and friends for their
unyielding support and encouragement, while spurring me onward even when faced with
obstacles.

In conclusion, while this master thesis bears my name, it would not have been possible
without the contributions of these remarkable individuals with their support, guidance and
belief in me. For this, I am truly grateful.

1 Master Thesis Topic for Leonard Wagner

Master Thesis Topic for Leonard Wagner

“Mitigating Emergent Safety and Security Incidents
of CPS by a Protective Shell”

Sommersemester 2023

Betreuer: Prof. Dr. Frank J. Furrer
Zweitbetreuer: Dr. Sebastian Götz

Context

In his Hauptseminar paper: “[Wiper]NotPetya - Eine detaillierte Designanalyse des
teuersten Cybersicherheit-Weckrufs”1, Leonard Wagner worked on cybersecurity. He
expressed his interest to continue the work on safety and security of cyber-physical
systems.

Safety-Critical Cyber-Physical Systems

Today’s world heavily relies on cyber-physical systems ([Alur15]). Many of these
systems are safety-critical, i.e., a failure or malfunction may lead to damage or even
loss of life. Good examples are automated planes ([Hersch20]) or autonomous vehicles
([Liu18]).

Designing, implementing, and operating trustworthy cyber-physical systems have
become a vital engineering discipline (e.g.: [Heegaard15] [NAP12] [BMW20]
[Romanovsky17]). Many methodologies, technologies, and development processes

exist (e.g.: [Kavallieratos20]).

Protective Shell

Unfortunately, the complexity of modern cyber-physical systems (CPS) is enormous
and continuously rising. In fact, most CPS are system-of-systems, i.e., networked,
interoperating, dependent systems (e.g.: [Haimes19]).

Today, the awareness slowly rises that it is becoming more challenging to ensure
such complex systems' trustworthiness via architecting, design, realization,

1 Leonard Wagner, Hauptseminar (Prof. Dr. Frank J. Furrer) «Engineering Principles for Safety and Security in

Cyber-Physical Systems», SS 2022, July 2022.

2 Master Thesis Topic for Leonard Wagner

maintenance, and operations. Too many failure modes, malfunctions, malicious
attacks, and emergent behaviour exist.

Therefore, new ways of improving the trustworthiness of CPS’s are being investigated.
One promising avenue is the runtime monitoring of the CPS (e.g.: [Brukman11]): The
CPS is continuously monitored, and anomalous or dangerous behaviour is detected
and contained. A well-designed protective shell around the cyber-part of the CPS then
can act as a “Last Defence” and protect the CPS from failures and attacks or from
their negative impacts (Figure 1).

Deployment
Security- and Safety- aware

Systems Engineering Process

Vulnerability

Malicious

Threat

Failure

La
st D

e
fe

n
se

:

R
u

n
-T

im
e

 M
o

n
ito

rin
g

Residual
Security
Incidents

Residual
Safety
Accidents

Run-Time System

Figure 1:

The idea of a protective shell was presumably first presented by Lance Eliot ([Eliot16]):
He proposed it under the name of «AI Guardian Angel Bot» to improve the
trustworthiness of machine-learning systems. Here the more technically-oriented
(and less esoteric) term «Protective Shell» is used (Definition 1).

The protective shell (Figure 2) works with many inputs, such as:

• Signals from the application software;

• Operational data, such as log, exception, and error files;

• Operational data, such as packet analyzers, anti-malware programs;

• Additional sensor data from the physical part.

Definition 1: “Protective Shell”:
Independent hardware/software layer overlaid on a system using additional information,

such as supplementary sensor data or log files, to detect, analyze, interpret, and mitigate

potentially dangerous or unsafe system behavior, either in realtime, near-realtime, or

batch processing.

3 Master Thesis Topic for Leonard Wagner

Protective Shell

Input

(including Threats)

Updates

Physical Part

Operational

Data

Log

Files

Functional

Specification

Cyber-Part

Big Data Analytics

Anomaly Detection

Functional Divergence Discovery

Accident

Prevention

Figure 2: Protective Shell for a CPS

The protective shell uses powerful real-time or near-real-time analysis techniques to
identify anomalous or dangerous behaviour or diverging behaviour from the
functional specification. Whenever a dangerous or unsafe behaviour is detected (or
suspected), the protective shell immediately takes corrective, protective action, such
as leading the system into a safe state, go into degraded operation, or hand over to
manual operation.

Research Methodology

Many research methodologies for this type of research exist. A particularly well suited
methodology is the “design science”. Central point of the design science are the
research questions (Definition 2).

The research questions are formulated after initial research. They constitute a
strong guidance for the thesis work. Good research questions, therefore, a crucial
for the efficient and effective work ([RQ21]).

Definition 2: “Research Question”:
A research question is a question that a study or research project aims to answer. This

question addresses an issue or a problem, which, through analysis and interpretation of data,

is answered in the study’s result

https://research.com/research/how-to-write-a-research-question

4 Master Thesis Topic for Leonard Wagner

Work Plan

The work plan is as follows:

1. Literature research and study, both theoretical foundations and relevant
material;

2. Formulate the research question

3. Select 4…5 well-documented safety accidents and 4…5 well-documented
security incidents with substantial damage from the literature/Web;

4. Analyse and document the accidents and incidents;

5. Determine and analyse the causes of the accidents/incidents and identify the
weaknesses of the CPS which enabled the accidents/incidents;

6. Develop specific protective shells for the individual accidents and incidents;

7. Assess the impact of the protective shells on each incident/accident: How
effective would the protection shell have been?

8. A protective shell requires additional hardware and software and thus increases
the complexity of the system. For each of the specific protective shells: Have new
failure modes been generated or has the attack surface been enlarged? Are
additional protection measures required?

9. Use the experience gained from the development of the specific protective shells
to derive and formulate general architecture and design principles for protective
shells;

10. Evaluate and assess the value of the “Protective Shell”-technology as a general
means to reduce risks in safety-critical or security-critical CPS;

11. Assessment: Have the research questions been answered?

12. Present conclusions and suggestions for future work.

Deliverables

Master Thesis (Format according to TUD standards) and Presentation (Verteidigung).

Prof. Dr. Frank J. Furrer

Dresden, April 19, 2023

Faculty Computer Science Chair Software Technology, Software Architecture of Complex Systems

Abstract

In today’s modern world, Cyber-Physical Systems (CPS) have gained widespread prevalence,
offering tremendous benefits while also increasing society’s dependence on them. Given
the direct interaction of CPS with the physical environment, their malfunction or compro-
mise can pose significant risks to human life, property, and the environment. However, as
the complexity of CPS rises due to heightened expectations and expanded functional re-
quirements, ensuring their trustworthy operation solely during the development process
becomes increasingly challenging.
This thesis introduces and delves into the novel concept of the ”Protective Shell“ – a real-time
safeguard designed to actively monitor CPS during their operational phases. The protective
shell serves as a last line of defence, designed to detect abnormal behaviour, conduct thor-
ough analyses, and initiate countermeasures promptly, thereby mitigating unforeseen risks
in real-time.
The primary objective of this research is to enhance the overall safety and security of CPS
by refining, partly implementing, and evaluating the innovative protective shell concept. To
provide context for collaborative systems working towards higher objectives — common
within CPS as system-of-systems (SoS) — the thesis introduces the ”Emergence Matrix“. This
matrix categorises outcomes of such collaboration into four quadrants based on their an-
ticipated nature and desirability. Particularly concerning are outcomes that are both unex-
pected and undesirable, which frequently serve as the root cause of safety incidents and
security breaches in CPS scenarios. The protective shell plays a critical role in mitigating
these unfavourable outcomes, as conventional vulnerability elimination procedures during
the CPS design phase prove insufficient due to their inability to proactively anticipate and
address these unforeseen situations.
Employing the design science research methodology, the thesis is structured around its iter-
ative cycles and the research questions imposed, offering a systematic exploration of the
topic. A detailed analysis of various safety accidents and security incidents involving CPS was
conducted to retrieve vulnerabilities that led to dangerous outcomes. By developing spe-
cific protective shells for each affected CPS and assessing their effectiveness during these
hazardous scenarios, a generic core for the protective shell concept could be retrieved, in-
dicating general characteristics and its overall applicability.
Furthermore, the research presents a generic protective shell framework, integrating advanced
anomaly detection techniques rooted in explainable artificial intelligence (XAI) and humanma-
chine teaming. While the implementation of protective shells demonstrate substantial pos-
itive impacts in ensuring CPS safety and security, the thesis also articulates potential risks
associated with their deployment that require careful consideration.
In conclusion, this thesis makes a significant contribution towards the safer and more se-
cure integration of complex CPS into daily routines, critical infrastructures and other sectors
by leveraging the capabilities of the generic protective shell framework.

Keywords
Protective Shell, Run-Time Monitoring, Cyber-Physical Systems, Safety Accidents,
Security Incidents, Explainable Artificial Intelligence

Contents

Abstract 7

1 Introduction 13

1.1 Background and Context . 13

1.2 Research Problem . 14

1.3 Purpose and Objectives . 15

1.3.1 Thesis Vision . 16

1.3.2 Thesis Mission . 16

1.4 Thesis Outline and Structure . 17

2 Design Science Research Methodology 19

2.1 Relevance-, Rigor- and Design Cycle . 19

2.2 Research Questions . 20

3 Cyber-Physical Systems 22

3.1 Explanation . 22

3.2 Safety- and Security-Critical Aspects . 23

3.3 Risk . 26

3.3.1 Quantitative Risk Assessment . 26

3.3.2 Qualitative Risk Assessment . 26

3.3.3 Risk Reduction Mechanisms . 27

3.3.4 Acceptable Residual Risk . 28

3.4 Engineering Principles . 28

3.4.1 Safety Principles . 29

3.4.2 Security Principles . 29

3.5 Cyber-Physical System of Systems (CPSoS) . 30

3.5.1 Emergence . 31

4 Protective Shell 34

4.1 Explanation . 34

4.2 System Architecture . 35

4.3 Run-Time Monitoring . 35

4.4 Definition . 37

4.5 Expectations / Goals . 38

8

Contents

5 Specific Protective Shells 40

5.1 Boeing 737 Max MCAS . 41

5.1.1 Introduction . 41

5.1.2 Vulnerabilities within CPS . 42

5.1.3 Specific Protective Shell Mitigation Mechanisms 43

5.1.4 Protective Shell Evaluation . 48

5.2 Therac-25 . 50

5.2.1 Introduction . 50

5.2.2 Vulnerabilities within CPS . 50

5.2.3 Specific Protective Shell Mitigation Mechanisms 51

5.2.4 Protective Shell Evaluation . 53

5.3 Stuxnet . 55

5.3.1 Introduction . 55

5.3.2 Exploited Vulnerabilities . 55

5.3.3 Specific Protective Shell Mitigation Mechanisms 57

5.3.4 Protective Shell Evaluation . 60

5.4 Toyota "Unintended Acceleration" ETCS . 62

5.4.1 Introduction . 62

5.4.2 Vulnerabilities within CPS . 62

5.4.3 Specific Protective Shell Mitigation Mechanisms 64

5.4.4 Protective Shell Evaluation . 67

5.5 Jeep Cherokee Hack . 70

5.5.1 Introduction . 70

5.5.2 Vulnerabilities within CPS . 70

5.5.3 Specific Protective Shell Mitigation Mechanisms 72

5.5.4 Protective Shell Evaluation . 76

5.6 Ukrainian Power Grid Cyber-Attack . 79

5.6.1 Introduction . 79

5.6.2 Vulnerabilities in the critical Infrastructure 79

5.6.3 Specific Protective Shell Mitigation Mechanisms 82

5.6.4 Protective Shell Evaluation . 84

5.7 Airbus A400M FADEC . 87

5.7.1 Introduction . 87

5.7.2 Vulnerabilities within CPS . 87

5.7.3 Specific Protective Shell Mitigation Mechanisms 88

5.7.4 Protective Shell Evaluation . 89

5.8 Similarities between Specific Protective Shells 91

5.8.1 Mitigation Mechanisms Categories . 91

5.8.2 Explanation . 92

5.8.3 Conclusion . 95

6 AI 96

6.1 Explainable AI (XAI) for Anomaly Detection . 97

6.1.1 Anomaly Detection . 97

6.1.2 Explainable Artificial Intelligence . 99

6.2 Intrinsic Explainable ML Models . 103

6.2.1 Linear Regression . 103

6.2.2 Decision Trees . 105

6.2.3 K-Nearest Neighbours . 108

6.3 Example Use Case - Predictive Maintenance . 110

9

Contents

7 Generic Protective Shell 111
7.1 Architecture . 112

7.1.1 MAPE-K . 113
7.1.2 Human Machine Teaming . 121
7.1.3 Protective Shell Plugin Catalogue . 127
7.1.4 Architecture and Design Principles . 138
7.1.5 Conclusion Architecture . 146

7.2 Implementation Details . 146
7.3 Evaluation . 147

7.3.1 Additional Vulnerabilities introduced by the Protective Shell 147
7.3.2 Summary . 151

8 Conclusion 153
8.1 Summary . 153
8.2 Research Questions Evaluation . 155
8.3 Contribution . 157
8.4 Future Work . 159
8.5 Recommendation . 160

10

List of Figures

2.1 Design Science Research Framework . 20

3.1 Cyber-Physical System . 23
3.2 Tesla Vehicle Safety Report . 25
3.3 Cyber-physical System of Systems . 31

4.1 Design-Time Architecture Deployment . 36
4.2 Run-Time Monitoring . 36
4.3 Protective Shell . 37
4.4 Vulnerability Mitigation and Elimination . 39

5.1 Boeing 737 Max - Climb Gradient Triangle . 43
5.2 Boeing 737 Max - Typical Time Series Trends 45
5.3 Toyota UA - Single Point of Failure . 63
5.4 Ukrainian Power Grid Attack - Initial Intrusion IT network 80
5.5 Ukrainian Power Grid Attack - Spread to OT network 81
5.6 Ukrainian Power Grid Attack - Successful Payload Execution 82

6.1 ML Model Accuracy vs. Interpretability . 100
6.2 Post-hoc Explainability - Neuronal Network Backpropagation 101
6.3 Linear Regression - Threshold Anomaly Detection 104
6.4 Linear Regression - Classification . 105
6.5 Decision Tree - Classification Training . 106
6.6 Decision Tree - Isolation Forest Binary . 107
6.7 Decision Tree - Isolation Forest Depth Based 107
6.8 K-nearest Neighbours - Sphere Classification 109

7.1 Architecture - MAPE-K Protective Shell Overview 114
7.2 Architecture - MAPE-K Monitor Phase . 115
7.3 Architecture - MAPE-K Analyse Phase . 117
7.4 Architecture - MAPE-K Plan Phase . 119
7.5 Architecture - MAPE-K Execute Phase . 121
7.6 Architecture - Human Machine Teaming . 122
7.7 Architecture - Protective Shell GUI . 125
7.8 Architecture - Hitting Set Tree . 133
7.9 Interventions - Flight Envelope . 136
7.10 Evaluation - Emergence Matrix Protective Shell 148

11

List of Tables

3.1 Qualitative Classes for Probability and Damage 27
3.2 Risk Matrix . 27
3.3 Emergence Matrix . 32

5.1 Overview chosen Safety Accidents and Security Incidents 40
5.2 Overview Mitigation Mechanisms employed per chosen Accident and Incident 95

7.1 Generic Protective Shell - Overview Plugin Catalogue Detection Mechanisms 131
7.2 Generic Protective Shell - Overview Plugin Catalogue Interventions 138

12

1 Introduction

This thesis starts with a concise introduction addressing the contextual background of the
research topic. It introduces the evolutionary trajectory of digital systems and the emer-
gence of Cyber-Physical Systems (CPS). The significance of CPS within the modern digital era
is underscored, emphasising their pervasive characteristic across various industry sectors.
Subsequently, the primary research problem confronting stakeholders in the CPS domain
is articulated, alongside the expectations towards the research for addressing this problem
by providing a suitable and reasoned solution. Moreover, the relevance of this issue will be
discussed further, especially in the sphere of safety and security-critical CPS.
Additionally, the thesis states its embraced vision and mission together with its anticipated
impact, broader goals with key objectives, and intended contributions within the CPS appli-
cation domain.
Finally, the thesis will be outlined, presenting an overview of the upcoming chapters along
with a condensed summary of their content, to offer insights into the selected structure of
this thesis.

1.1 Background and Context

In the history of technological evolution, few developments have been as transformative as
the rise of digital systems. From the rudimentary computers of the mid-20th century to the
pervasive smart devices of today, digital systems have continually reshaped the interaction
with the world. As the modern society transitioned into the 21st century, a new paradigm
emerged at the intersection of the computational and physical realms: Cyber-Physical Sys-
tems (CPS).
CPS represents a harmonious merge of computational elements, such as software applica-
tions, algorithms, and communication networks, with physical processes that directly mea-
sure (through sensors) and interact (through actuators) with the real world. This symbiotic
relationship allows CPS to not only gather data from the physical environment but also to
influence it in real-time, creating a feedback loop of continuous interaction.
The significance of CPS in today’s digital era cannot be overstated. They hold the promise of
substantial economic and societal benefits across amultitude of domains, including aerospace,
production automation, transportation, and healthcare. For instance, in the transportation
domain, CPS can be used in the form of autonomous vehicles that seamlessly integrate
the cyber- and physical-part of such systems to navigate complex urban environments. In
healthcare, CPS finds application in advanced medical devices that monitor patient vitals
and administer treatments based on real-time data.

13

1 Introduction

However, the adaptability of CPS extends beyond mere utility. They are envisioned as solu-
tions to some of the most pressing challenges of current times. As the population of indus-
trialised countries struggles with issues like ageing demographics, resource limitations, and
the shift towards sustainable energies, CPS offer innovative solutions. They have the po-
tential to enhance efficiency and human comfort by reducing manual labour, which makes
them indispensable in the pursuit for a better future.
Yet, with great potential comes great responsibility. The direct interaction of CPS with the
physical world means that their malfunction or compromise can have direct and often detri-
mental effects on their operation environment and the entities (including humans) therein.
This great drawback of using CPS will be elaborated in more detail in the subsequent section
about the research problem.

1.2 Research Problem

In the modern world, the rapid growth of CPS utilisation across industries is undeniable.
These systems have seamlessly integrated into various facets of daily lives, becoming perva-
sive and indispensable. Their contributions span awide spectrum, as previously stated, from
enhancing comfort to significantly reducing manual labour. The transformative potential of
CPS is evident in their ability to revolutionise industries, streamline processes, and elevate
the quality of life.
However, as with all technological advancements, the rise of CPS brings forth a set of chal-
lenges. The research problem addressed in this thesis revolves around ensuring the safety
and security of complex CPS, thereby enhancing their trustworthiness during operation.
As expectations and demands from stakeholders in the CPS domain on these systems grow,
so does their complexity. Projects expand in scale, involvingmore engineers, longer develop-
ment times and encompassing higher functional requirements. This escalating complexity is
further amplified when considering many of today’s CPS as cyber-physical systems of systems
(CPSoS). In a CPSoS, multiple constituent systems collaborate, forming a cooperative mesh
to achieve objectives that would be unattainable by any individual system. While this collab-
oration enhances functionality, it also introduces a heightened level of intricacy, making the
resulting system of systems (SoS) considerably more complex and the inner workings less
understandable even to their engineers.
This higher complexity of CPS is the root cause for the identified challenges, which also raises
safety and security concerns from experts, hinting to safety accidents and security incidents
involving CPS occurring occasionally with sometimes catastrophic outcomes.
With ever so rising complexity, building safe and secure CPSoS slowly transitions to an unattain-
able task, even when adhering to industry standards and employing established engineering
patterns for security and safety. The integration of multiple systems leads to unexpected
emerging properties, some of which negatively impact the overall system and its trustwor-
thy operation.
Vulnerabilities, whether they arise from oversights in the development process, through
inadequate risk management, or gaps in testing and model verification, pose significant
threats. Furthermore, the sheer volume of such CPS in operation means that even if the
probability of a malfunction, failure or malicious exploitation resulting from an overlooked
vulnerability or weakness in the system is low, the likelihood of at least a few of the mass-
produced systems encountering extreme, unlikely operational events, such as a bit flip caused
by radiation, becomes a substantial concern.
Another pressing issue is the limitation in testing complex CPS. It is virtually impossible to test
these systems for every conceivable situation byminding every possible operation condition
as there are too many, leading to a scenario where some testing phases can’t be completed
and are inadvertently shifted to the end-users, sometimes with catastrophic consequences.

14

1.3 Purpose and Objectives

Recognising those challenges, there’s an essential need for effectively safeguarding com-
plex CPS during operation. The purpose and objectives of this master thesis regarding this
research problem will be presented in the following section.

1.3 Purpose and Objectives

The research problem underscores the necessity for innovative and effective strategies to
ensure the reliable operation of complex CPS by enhancing their overall safety against fail-
ures and malfunctions, as well as their security against exploitations of vulnerabilities within
the system. Furthermore, addressing negative emergent properties causing abnormal and
unexpected behaviour, that have detrimental effects on the current operation state, is es-
sential to mitigate a substantial portion of safety accidents and security incidents involving
CPS.
The purpose of this master thesis is to investigate a novel concept - the ”Protective Shell“ -
and evaluating its efficiency in addressing the research problem. The protective shell con-
cept shifts the focus from attempting to reduce residual risks of a CPS to an acceptable level
exclusively during the design phase, to additionally leveraging run-time mechanisms to mit-
igate still present, more concealed risks.
It has become evident that focusing exclusively on enhancing the already highly sophis-
ticated development processes, utilising multiple effective vulnerability elimination proce-
dures, falls short of achieving trustworthy operation for complex CPS. Therefore, extending
safety and security measures beyond design-time and integrating dynamic safeguards dur-
ing runtime is a promising strategy. This addition holds the potential to substantially con-
tribute to the overarching objective of ensuring the trustworthy operation of CPS to a satisfying
extent.
The concept should encompassmechanisms capable of promptly detecting unexpected be-
haviour, assessing the CPS’s own ability to handle such anomalies, and determining whether
corrective or protective actions are necessary. This real-time monitoring and intervention
approach tries to enhance the overall safety and security of CPS by mitigating residual run-
time risks, especially in scenarios where unlikely events occur, such as sensor or actuator
failures or vulnerability exploitations.

The protective shell concept was initially proposed by Dr. Lance Eliot in his book ”AI
Guardian Angel Bots for Deep AI Trustworthiness“ [1] and later refined by Professor Frank
J. Furrer in his scientific article ”Safe and secure system architectures for cyber-physical sys-
tems“ [2]. Throughout this thesis, the protective shell concept will be thoroughly elaborated
and further refined. Through a rigorous evaluation process, the viability of the protective
shell effectively addressing the research problem will be assessed.
An essential aspect of this work involves enhancing the protective shell’s ability to identify
abnormal behaviours beyond comparing static functional specifications. This enhancement
will incorporate advanced anomaly detection techniques, integrating artificial intelligence and
machine learning, thereby improving the protective shell’s effectiveness in timely and accu-
rately detecting abnormal CPS behaviour. Additionally, the trainedmachine learning models
can also be used to create suitable intervention actions to lead the CPS back to a safe and
secure operation state.
This and other extensions contribute to the broader objective of expanding the protective
shell’s applicability across diverse domains, making it universally implementable for most
CPS scenarios with just slight configurative adjustments. It entails providing engineers with
the tools necessary to implement their own specific version of the protective shell, facilitated
by a versatile and dynamically adjustable framework. The generic framework should not only
encompass a foundational architecture template but also diverse plugins for different de-

15

1 Introduction

tection mechanisms and interventions, which can be autonomously integrated as required.
Additionally, a comprehensive set of architecture and design principles will provide guidance
throughout the entire lifecycle of each specific protective shell, spanning design, implemen-
tation, maintenance, and operation.
Furthermore, an evaluation methodology will be provided, offering insights into how effec-
tive each individual protective shell is within its operational environment, validating its effi-
ciency in safeguarding CPS and fulfilling its intended purpose.
In summary, the overarching objective of this research task is to propose an innovative so-
lution that ensures the effective realisation of CPS benefits without compromising their se-
curity or safety. By refining the protective shell concept, enhancing its ability to identify
abnormal behaviour and propose appropriate interventions, while providing a comprehen-
sive generic framework, this research aims to promote the widespread adoption of runtime
monitoring in CPS. Therefore, suggestions made in this thesis are well-founded and prag-
matic while strategically aimed to increase industry acceptance for this novel concept. The
subsequent sections will present the concise vision and mission of this thesis, summarising
the most fundamental points.

1.3.1 Thesis Vision

The thesis envisions a modernised society empowered by the capabilities of complex and
highly advanced CPS in a manner that effectively leverages their tremendous inherent ben-
efits without compromising their trustworthy operation by lowering safety or security stan-
dards.
CPS(-oS) can become highly complex, making it increasingly difficult to fully understand their
intrinsic behaviour, even for the engineers designing these systems. As a result, concealed
vulnerabilities aremore likely to evade the riskmanagement processes during development,
and unexpected emergent behaviour among system components can lead to safety acci-
dents and security incidents. In order to mitigate these multifaceted risks, the thesis envi-
sions a solution based on reliable and efficient run-time monitoring. This solution should
utilise machine learning techniques to swiftly identify operation anomalies and initiate rec-
tifying measures, leading the system back to a trustworthy operation state. This solution is
envisioned to be a protective shell, serving as the last line of defence against threats and
failures.
To achieve widespread acceptance, efficiency and applicability within the CPS industry, the
protective shell necessitates a generic architecture, universal design principles, and addmin-
imal complexity to the overall system.
Through this visionary approach, the thesis aims to strike a balance between innovation and
safeguarding, enabling these complex CPS to deliver their advantages while operating with
unwavering safety and security.

1.3.2 Thesis Mission

The primary mission of this master’s thesis is to enhance safety and security of complex
CPS by introducing an additional layer to the defence-in-depth strategy, embracing the run-
time system - the protective shell. Therefore, a generic protective shell framework will be
developed, partly evaluated and presented. This framework contains design and architec-
ture principles as well as concepts for advanced anomaly detection, mitigation mechanisms
and interventions. The goal is to aid industry acceptance and accelerate the adoption rate
among different manufacturers.
Embedded within the thesis is a fundamental mission to raise awareness about the current
challenges complex CPS are facing, as this marks the first crucial step, and to show a viable

16

1.4 Thesis Outline and Structure

solution addressing these issues. To demonstrate the effectiveness of the protective shell,
it will be implemented in CPS that experienced or were involved in accidents and incidents.
During the evaluation, it will be assessedwhether the protective shell can completely prevent
the hazardous situation or dramatically reduce its damage potential. Ultimately, the thesis
has the objective of providing the previously mentioned generic protective shell framework.
Above all, the effort put into this thesis should pave the way for wide-spread usage of mon-
itoring and real-time intervention solutions across the CPS domain, thereby improving the
trustworthy operation of its systems.

1.4 Thesis Outline and Structure

This thesis will maintain its focus on a theoretical exploration rather than delve into real-
world practical implementations of the protective shell concept in specific CPS. Additionally,
no specific code library for the generic protective shell framework will be provided. The pri-
mary concern will be on scientific literature reviews and evaluations of post-incident and
post-accident reports regarding safety accidents and security incidents involving CPS.
This work is precisely structured to offer an in-depth elaboration of the protective shell con-
cept, recognising its promising capabilities for complex CPS as a viable solution to address
their inherent challenges towards trustworthy operation.

The introduction has set the stage, elucidating the context and the central research prob-
lem as well as the thesis’ overarching purpose with its vision and mission. It outlines the
expectations and specific objectives that underpin the subsequent chapters to depict the
common thread leading through the thesis.
Following the introduction, the thesis delves into the methodological approach adopted for
this research 2, in this case the design science research. It sheds light on the balance between
the real-world relevance and the scientific stringency applied throughout the study. There-
fore, the design science cycles get explained alongsidewith the imposed research questions,
which in turn define the structure of the subsequent chapters by contributing to the indi-
vidual cycles and addressing those questions.

After stating the formalities, the thesis explores the state-of-the-art by consulting the un-
derlying scientific knowledge base to define basic terms and paradigms needed. By describ-
ing CPS in chapter 3 and the protective shell concept in chapter 4, it introduces the reader
to the safety- and security-critical aspects of this domain, highlighting the challenges CPS
face when only using conventional risk management procedures as well as the expectations
towards the innovative protective shell concept, thus also towards this thesis. Within these
two chapters essential groundwork is done presenting concepts like CPSoS and its emer-
gence effects on the resulting system as well as dividing the system architecture into the
design-time and run-time architecture and the notion of run-time monitoring. All in all, the
two chapters contribute greatly in establishing a robust foundation upon which the thesis
can confidently build its own research.

In the subsequent chapter regarding specific protective shells 5 the new concept will be
implemented in CPS from various industry sectors that were involved in well-documented
safety accidents or security incidents. It offers a tangible perspective, presenting in-depth
case studies where the main vulnerabilities and weaknesses present in the CPS that led to
such disastrous outcomes will get retrieved from post-accident/incident reports released
by trusted sources. After identifying these vulnerabilities, each individual protective shell is
configured with specialised mitigation mechanisms to efficiently detect and counteract the
abnormal behaviour exhibited during operation. After that, evaluations are conducted ad-

17

1 Introduction

dressing the question, if it would have effectively safeguarded the CPS when implemented
beforehand, and to what extent. To sum up the findings and the lessons learned from those
case studies, the similarities between all developed protective shells and their evaluation re-
sults are enumerated, hinting to a generic core that every protective shell should have, pro-
viding insights what characterises their inner workings.
These real-world scenarios anchor the theoretical concepts discussed in the chapters ear-
lier, emphasising the practical challenges and solutions in implementing protective shells
across diverse systems.

Following, the chapter on artificial intelligence (AI) 6 enables the perspective switch from
a reactive view, developing protective shells utilising deterministic, known information from
reports, to a proactive view, trying to remedy potential hazardous scenarios before they
manifest during operation. There, the important characteristics of machine learning models
are presented and how they can be employed in protective shells for advanced anomaly de-
tection and intervention planning. It highlights essential considerations when integrating AI
into this safety- and security-critical domain and presents some suitable ML models as well
as training approaches.

Once the key terms, concepts, mechanisms and guidelines are presented in the previous
chapters, the generic protective shell framework can be created in chapter 7. There, the
state-of-the-art foundations are paired with the generic core found during the case studies
and the suggestions made for ML models. Additionally, the suitable reference architecture
MAPE-K is refined for better applicability to the concept of protective shells and adoptions
are made to support human machine teaming. Furthermore, a plugin catalogue will get pre-
sented offering a wide variety of modules for detection mechanisms and intervention ac-
tions, alongside with architecture and design principles discovered throughout the thesis.

Collectively, these elements support engineers throughout the development and imple-
mentation of their specific protective shells by guiding them through the individual pro-
cesses, presenting different configuration options for great suitability while also reducing
the likelihood of design flaws. Lastly, an evaluation methodology is presented how specific
protective shells can be assessed on their effectiveness.
The recurring theme throughout this thesis is the indispensable role of designing resilient,
safe and secure CPS in an era of increasingly complex systems. The protective shell concept
emerges as a promising extension to the conventional safeguarding mechanisms employed
in CPS, offering advanced protection against concealed vulnerabilities and weaknesses that
slipped through the risk management process. Through a harmonious combination of the-
oretical discussions and practical insights, the thesis draws a comprehensive picture of the
current CPS challenges, opportunities and tries to pave the way towards increased trust-
worthy operation of CPS.

18

2 Design Science Research
Methodology

This thesis follows the design science research (DSR) methodology as it seems to be a well-
suited, problem oriented option for this research topic. This chapter will shortly introduce
design science research as well as the research questions for the thesis. To dive deeper
into DSR than this chapter, it is recommended to have a look at the ”Design Research in
Information Systems“ by Hevner and Chatterjee [3].

The design science research methodology is a systematic approach that create and eval-
uate innovative solutions to real-world problems under scientific principles in form of so
called artefacts.
Therefore, artefacts represent and embody the proposed solution by the researcher and is
typically evaluated as well as refined throughout the research process. This methodology
is especially common in the computer science domain. Typical artefact solutions include
software prototypes, conceptual frameworks or algorithms.

2.1 Relevance-, Rigor- and Design Cycle

The DSR process, as depicted in figure 2.1, is divided into three cycles, which will be pre-
sented in the following paragraphs. They should be part of every DSR project but don’t have
to follow a sequential order, rather work in symbiosis to create the artefact. Nevertheless,
the term cycle means that it can be refined further with each subsequent iteration.

Relevance Cycle Since the DSRmethodology is problem oriented, the first step is to define
the context or environment where the research problem occurs. That could be a branch of
industry, a specific science field, or many more. However, by looking at this environment it
should be clear which actors participate, which technical and organisational structures are
in place and the existing opportunities as well as challenges actors and organisation face.
After that, the relevance cycle sets three important attributes for the artefact. The applica-
tion context, the requirements and lastly the acceptance criteria. Those attributes will also
be important for the artefact’s evaluation later on.

Rigor Cycle The rigor cycle is responsible for distinguishing the DSR from industrial prac-
tice. All work steps in the relevance and design cycle are also part of the standard develop-
ing/engineering process in the industry.

19

2 Design Science Research Methodology

The rigor cycle separates that by abstracting knowledge gained through the DSR process
and drawing principles or theoretical conclusions.
The foundation of the rigor cycle is the knowledge base, which incorporates existing knowl-
edge, state-of-the-art, theory, and related pre-existing artefacts. The purpose of retrieving
and collecting knowledge in the knowledge base is to influence the design process.
Following the evaluation of the artefact, the acquired knowledge will be fed back and expand
the knowledge base for future reference.

Design Cycle In the design cycle, the artefact finally gets planned and created. Following
that, it gets evaluated according to the expectations and goals set in the relevance cycle. If
the artefact successfully passes the evaluation, the DSR process is finished. Otherwise, the
design cycle has to be absolved again until the acceptance criteria are fulfilled.

Figure 2.1: Design Science Research Framework (based on Hevner [3]) [4]

2.2 Research Questions

Research questions play a fundamental role in guiding the entire research process by spec-
ifying the scientific interest that the entire research effort is targeted at. They are the critical
inquiries that define the scope, purpose, and direction of the study. These research ques-
tions serve four essential purposes:

Problem Identification Research questions help to identify the specific problems or chal-
lenges that the study aims to address. They highlight gaps in knowledge or areas where
existing solutions are insufficient, prompting researchers to seek innovative approaches.

Goal Clarity Clear research questions articulate the goals and objectives of the scientific
work, maintaining focus and preventing the study from becoming too broad or losing its
direction.

Knowledge Advancement By seeking answers to well-defined research questions, design
science research contributes to the advancement of knowledge in a particular field. The
solutions developed and insights gained can be used as a basis for future research and
improve understanding of the problem domain.

20

2.2 Research Questions

Rigorous Evaluation Research questions set the stage for evaluating the proposed design
artefacts. They establish criteria for assessing the success or effectiveness of the proposed
designs, ensuring that the research outcomes have practical significance.

The research questions for this thesis are as follows:

1. Can the trustworthiness of safety and security-critical cyber-physical systems be im-
proved by implementing a protective shell?

2. Can a generic core for a protective shell be developed which is applicable to multiple
application domains?

3. Is it possible to mitigate the risks that emerge when implementing a protective shell to
reduce overall residual risks for safety and security?

The research questions chosen in this thesis focus on investigating the potential bene-
fits of implementing a protective shell in safety and security-critical cyber-physical systems.
Through addressing these questions, the thesis seeks to provide answers on whether the
trustworthiness of such systems can be improved, even when considering potential risks
associated with the implementation of a protective shell. Additionally, the study aims to
identify a generic core for the protective shell concept that is not context-based but broadly
applicable, making it suitable for adoption across various industries.
Ultimately, this research aims to contribute valuable insights to the field of CPS engineering
and initiate future efforts in safety and security enhancement. Through its findings and con-
clusions, this thesis intends to contribute meaningfully to the advancement of safety and
security practices in CPS.

21

3 Cyber-Physical Systems

This chapter presents a comprehensive and fundamental introduction to cyber-physical sys-
tems (CPS) without diving into excessive detail. The primary focus of this chapter lies in the
critical aspects of safety and security associated with CPS. Therefore, after providing defi-
nitions and briefly explaining their architecture, as well as their significance in the modern,
digitalised world, the risks related to CPS usage will be highlighted. To ensure that the bene-
fits of CPS outweigh the risks, it is crucial to enhance their trustworthiness through rigorous
and robust methodologies.
Subsequently, the engineering principles for safety and security, which are considered industry
standards, will be introduced, along with a few concrete examples.
Finally, the concept of system of systems (SoS) will be explained, along with its impact on CPS.
The main concern will be regarding the opportunities introduced by emergent behaviour,
without neglecting the upcoming risks associated with increasing system complexity.

3.1 Explanation

There are several excellent definitions available for CPS. The following quotes present well-
suited definitions for this thesis:

In a cyber-physical system (CPS), some elements are computational and some in-
volve interactions with the physical environment, integrating ”computation, com-
munication, sensing, and actuation with physical systems to fulfil time-sensitive
functions with varying degrees of interaction with the environment, including hu-
man interaction“. A CPS incorporates multiple connected systems, producing a
system capable of developing an awareness of its physical environment and con-
text, making decisions based on that information, and enacting work that can
effect changes in its physical environment.
- Romanosky & Ishikawa, Trustworthy Cyber-Physical Systems Engineering [5]

A cyber-physical system consists of a collection of computing devices communi-
cating with one another and interacting with the physical world via sensors and
actuators in a feedback loop.
- Rajeev Alur, Principles of Cyber-Physical Systems [6]

As depicted in figure 3.1, a system that consists of both cyber and physical components
is referred to as a cyber-physical system. It represents a generalisation of an embedded
system [6]. The cyber part of a CPS comprises all digital components such as software appli-
cations, computing devices, communication networks, and algorithms. The physical part of

22

3.2 Safety- and Security-Critical Aspects

Figure 3.1: Cyber-Physical System [7]

a CPS encompasses all components that directly interact (actuators) or measure (sensors)
the physical world [7]. Sensor readings are evaluated by the cyber part, which then triggers
specific actions for the actuators.
Cyber-Physical Systems hold the promise of significant economic and societal benefits in do-
mains such as aerospace, production automation, transportation, and healthcare [6]. ”Fu-
ture cyber-physical systems will contribute to safety, efficiency, comfort and human health
like never before. They will therefore contribute to solving key challenges of the modern
society, such as the ageing population, limited resources, mobility, or the shift towards re-
newable energies, to name but a few fundamental fields of application.“ [8]

However, due to the dependence on CPS and their direct interaction with the physical
world, they pose direct risks to human life, property, and the environment. Additionally, outages
can bring critical supply chains to a halt.
Therefore, it is crucial to thoroughly examine the safety and security-critical aspects of CPS.

3.2 Safety- and Security-Critical Aspects

As previously defined, cyber-physical systems directly interact with the physical world, cre-
ating an ”intersection ... of the physical and the cyber“ - Edward A. Lee. In this context,
the control software/application can measure and modify environments within the physical
world.

Consequently, a malfunctioning CPS can pose a direct threat to the physical world and the
entities residing within it. Conversely, a well-functioning CPS can offer significant benefits to
its users.

Consider the advancements in agricultural machinery that have been summarised and
evaluated for their benefits and challenges in a scientific paper by Jilin University and Po-
litecnico di Milano [9]. Since the invention of the first industrial robots in the 1950s, CPS
have expanded into the agriculture domain, experiencing rapid evolution [9]. The paper
states that in order to address the challenges posed by the aggravation of population age-
ing and the limitations of traditional labour-intensive and risky farm work, there is a need

23

3 Cyber-Physical Systems

for empowering agricultural activities through more automated control [9]. For instance,
CPS in agriculture, such as automated harvesters, enable a single farmer to supply food to a
significantly larger population compared to pre-modern farming practices. When CPS func-
tion correctly, they offer immense benefits. However, in the event of malfunction, they could
pose potential risks to human workers, lead to crop damage, or even cease functioning al-
together.
The food industry relies heavily on CPS, and widespread unavailability of these systems

could result in severe food shortages and potentially lead to famines.
Hence, it is crucial to implement rigorous and robust methods to ensure the trustworthi-

ness of these systems [6], ensuring that the risks during malfunction do not outweigh the
benefits during normal operation. This thesis specifically focuses on the safety and security
attributes of each CPS as indicators of trustworthiness.
For a system to be considered trustworthy by end-users, it must not only match the safety

and security levels of the predecessor it replaces but exceed them significantly. For instance,
in the case of autopilot systems replacing traditional driving (level 0-2 driving automation),
the autopilot system must exhibit near-perfect levels of security and safety to convey trust
in end-users, even though traditional driving experiences more accidents due to human
error. Tesla, an automobile manufacturer, published their annual vehicle safety report, as
depicted in Figure 3.2. The report demonstrates that vehicles utilising Tesla’s autopilot are
considerably less likely to be involved in accidents compared to their own vehicles with the
autopilot turned off or the average vehicle in the United States. In 2022, a Tesla vehicle us-
ing autopilot was involved in an accident on average every 5.695 million miles driven, while
the United States average for vehicle accidents was one accident every 0.652 million miles
driven [10].
Nevertheless, the latest AAA survey on drivers’ attitudes towards self-driving vehicles indi-
cates a decreasing level of trust in autonomous vehicles [11]. Numerous other surveys also
demonstrate significant scepticism among the majority regarding their trust in autonomous
vehicles, as summarised in a report by the Advocates for Highway & Auto Safety [12].
Therefore, the CPS manufacturers have to work more diligently on increasing trustworthi-
ness for their systems as Nazila Gol Mohammadi said: ”Trustworthiness (...) is a key success
factor for (CPS) use and acceptance by end-users.“

24

3.2 Safety- and Security-Critical Aspects

Figure 3.2: Tesla Vehicle Safety Report [10]

25

3 Cyber-Physical Systems

3.3 Risk

This thesis frequently uses the word risk. Therefore, it makes sense to define this often col-
loquially used term more academically in regard to security incidents and safety accidents.
Risk can be defined as the evaluated threat to a systembased on the frequency of occurrence (prob-
ability of happening) and the impact or magnitude of the potential damage (degree of harm). It
refers to the assessment of the potential harm or danger exposed by this system, taking into
account both the likelihood of the event happening and the severity of its consequences.
Contrary to common belief, the incident or accident risk is not solely determined by the
probability of an event happening. Similarly, the mere potential for an incident or accident
to result in fatalities does not necessarily imply a high risk. Instead, risk assessment involves
a comprehensive evaluation of both the likelihood of an event and the extent of its potential
damage. Therefore, an accident that is very unlikely to occur and has a medium damage
potential would exhibit a rather low risk.
There are two options how risk can be assessed; quantitative and qualitative.

3.3.1 Quantitative Risk Assessment

One approach to assessing risk is through quantitative risk assessment, which involves at-
tempting to quantify risk using a calculation formula. A common formula used is as follows:

R = po · DP

R - risk
po - probability of occurrence
DP - damage potential

Authorities and regulators strongly favour the quantitative approach for certifying critical
CPS due to its inherent objectivity and enhanced transparency in assessing risks. However,
there are several challenges associated with the quantification approach to risk assessment.
Determining probabilities for certain events, such as the occurrence of a bit flip caused by
a single event effect, can be challenging due to their low likelihood. Moreover, probabili-
ties may be influenced by uncontrollable factors like the motivation of potential attackers.
Additionally, relying on statistical data or reliable experience to support the quantification
process can introduce inaccuracies. When these inaccuracies are multiplied, they can have
a significant impact on the resulting risk assessments, potentially leading to erroneous con-
clusions. ”Quantitative approaches are very rarely used, as they require the existence of a
formal model describing the system under study. Attempting to analyse (...) risk has been
shown quantitatively to be either infeasible or inadvisable inmost real-world situations.“ [13]

3.3.2 Qualitative Risk Assessment

Given the limitations of quantitative risk assessment, the industry commonly adopts a qual-
itative risk assessment approach. This method employs distinct classes for the probability
of occurrence and the damage potential, as shown in the table below 3.1. Properly defining
these classes is crucial to achieve consistent classification. Each threat or failure is assigned
a probability class and a damage class, which then determines its risk class within a risk ma-
trix.
The example riskmatrix 3.2 visually represents the classification of risks based on their prob-
ability and damage potential. The risk classes can be categorised as acceptable or unaccept-
able, aiding in the decision-making process for riskmitigation. In the provided riskmatrix 3.2,
the low and medium risk classes are considered acceptable, while the high and extremely

26

3.3 Risk

po DP
very low insignificant
low minor

moderately medium
high large

very high catastrophic

Table 3.1: Qualitative Classes for Probability and Damage

high risk classes are deemed unacceptable. This distinction is illustrated by the black ”accep-
tance line“ drawn diagonally across the matrix, which serves as a predefined threshold for
accepting or rejecting risks during the risk management process.

po

DP
Table 3.2: Risk Matrix

Risk Classes
low

medium
high

extremely high

3.3.3 Risk Reduction Mechanisms

To achieve an acceptable level of risk, engineers have two primary options: reducing the dam-
age potential or decreasing the probability of occurrence.
Reducing the probability of occurrence involves eliminating vulnerabilities within the system.
In an ideal scenario, a systemwithout any vulnerabilities susceptible to exploitation or prone
to failure would pose no risk on its own. Byminimising or eliminating potential attack vectors
or failure mode, the probability of occurrence can be effectively reduced for each individual
risk.
On the other hand, the damage potential can be reduced by implementing additional safety
and security measures. For instance, the inclusion of a safety switch on a lawnmower that
requires continuous pressure on the control bar for operation significantly reduces the dam-
age potential. This safety mechanism ensures that the lawnmower cannot operate without
proper supervision, therebyminimising the risk. Furthermore, if certain functionalities within
the system possess an unmanageable damage potential, engineers must decide not to im-
plement those functionalities, ultimately reducing the overall damage potential.
By employing these risk reduction mechanisms, engineers strive to bring individual risks to
an acceptable level, enhancing the security and safety of cyber-physical systems.

27

3 Cyber-Physical Systems

3.3.4 Acceptable Residual Risk

Risk is an inherent and inevitable aspect of every system, characterised by its imperfections and
the absence of absolute safety or security. Consequently, when implementing an engineered
system, it becomes necessary to set a threshold that defines the level of risk that engineers
are willing to take, known as the acceptable residual risk. Without such a threshold, the sys-
tem would remain inoperable. The National Institute for Standards and Technology (NIST)
has numerous definitions within their glossary to explicate the term residual risk [14]:

• ”Portion of risk remaining after security measures have been applied.“

• ”The potential for the occurrence of an adverse event after adjusting for the impact of
all in-place safeguards.“

• ”Risk that remains after risk responses have been documented and performed.“

3.4 Engineering Principles

The design and development of trustworthy CPS require adherence to engineering prin-
ciples that contribute to safety and security. These principles, also known as industry best
practices, distil proven, reliable knowledge from systems engineering and successful architect-
ing into precise, actionable, and enforceable guidance for the development process [7]. They
serve as a valuable tool for CPS engineers in creating systems with an acceptable residual
risk, as presented in the previous section.
Safety- and security principles are an essential subset of engineering principles. They guide
building a safety- and security-aware CPS architecture, the implementation and operation
by providing blueprints and patterns that have been proven to be suitable for similar sys-
tems.
Therefore, the architecture can be defined as: ”The fundamental organisation of a system,
embodied in its components, their relationships to each other and the environment, and
the principles governing its design and evolution“ [5], where principles play a central role
during the design-phase and the evaluation of the system.
They often offer generic solutions to recurring architectural or design problems encountered in
CPS development projects [7].
Importantly, engineering principles are formulated to be neutral, making them usable in
various project contexts. If these principles were context-specific, they would become rigid
and challenging to implement across different projects. Therefore, engineers must apply a
context-based interpretation when utilising the selected principles in their specific CPS de-
velopment context [7]. One significant advantage of relying on established, rigorously eval-
uated engineering principles, besides saving time and work effort, is that they have been
evaluated and refined by experts over time. This extensive scrutiny makes it more unlikely
that these principles contain obvious flaws compared to solutions solely developed for indi-
vidual projects. By incorporating thesewidely accepted principles, CPS engineers can benefit
from the collective expertise and experience of the engineering community.
In linewith the goal of contributing the engineering principles toolkit, this thesis suggests and
defines a new principle: the generic protective shell. Following the design science method-
ology, the artefact created in this thesis aims to safeguard the CPS during run-time by pro-
viding a comprehensive and adaptable framework, the generic protective shell, for ensuring
safe and secure operation of CPS. This will be elaborated further in chapter 4 Protective Shell.

By adhering to safety and security principles, it enables CPS engineers to create robust
and trustworthy CPSwith effective riskmanagement and protection against potential threats

28

3.4 Engineering Principles

and failures. These principles ultimately contributing to the advancement and maturity of
the CPS field.
Following, an introduction for safety principles and security principles is given, with one ex-
ample respectively. It is important to note that this introduction does not claim to be ex-
haustive, as there exists a vast amount of information available on this subject. For a more
detailed examination and an extensive list of these principles, it is recommended to refer to
Professor Furrer’s book, ”Safety and Security of Cyber-Physical Systems“ [7].

3.4.1 Safety Principles

Safety principles refer to the fundamental guidelines and practices aimed at ensuring the
safety and integrity of systems throughout their design, deployment, and operation phases.
The goal is to prevent accidents, minimise risks, and protect individuals, assets, and the en-
vironment from harm.

Definition Safety:

Safety is the state of being protected against faults, errors, failures, or any other
event that could be considered non-desirable to achieve an acceptable level of
risk concerning the loss of property, damage to life, health or society, or harm to
the environment.
- Frank J. Furrer, Safety and Security of Cyber-Physical Systems [7]

A famous example is the concept of ”no single-point-of-failure“. This principle emphasises
the use of a robust structure that facilitates defence-in-depth [5]. In CPS, where failures
can have significant consequences, this principle promotes the design and implementation
of systems that do not rely on any single component prone to fail for safety. By adopting a
defence-in-depth approach, multiple layers of protection and redundancy are employed to
ensure that a failure in one component or layer does not compromise the overall safety of
the system. This principle is deeply ingrained in the safety engineering practices of CPS and
is crucial for mitigating risks and enhancing system resilience. It contributes to the system’s
fault tolerance and it’s fail-safe design.
Fault tolerance involves designing systems that can continue to operate and provide es-
sential functionalities even in the presence of component failures or environmental distur-
bances. Fail-safe design focuses on ensuring that system failures lead to safe and controlled
states rather than hazardous, escalating situations. Therefore, a hazard analysis needs to
be completed to identify and assess potential hazards within the system and developing
appropriate mitigation strategies.

The utilisation of safety principles in CPS is often guided by regulatory frameworks like
the International Organization for Standardization (ISO) 26262 for road vehicles aiming to
achieve functional safety. These standards provide comprehensive guidelines for the iden-
tification, analysis, and management of safety-related risks throughout the life cycle of CPS,
ensuring a systematic and rigorous approach to safety engineering.

3.4.2 Security Principles

Security principles refer to the fundamental guidelines and practices aimed at protecting
systems from unauthorised access, malicious attacks, and potential data breaches. The pri-
mary objective of security principles is to establish a robust and resilient security posture
that safeguards the confidentiality, integrity, and availability of CPS components, data, and

29

3 Cyber-Physical Systems

operations.

Definition Functional- & Information Security:

Functional security protects the software-system frommalicious, infiltrated code,
both from the outside and from the inside of the organisation.
Information security protects the confidentiality, integrity, and availability (CIA)
of computer system data and information from unauthorised and malicious ac-
cesses.
- Frank J. Furrer, Safety and Security of Cyber-Physical Systems [7]

One security principle example widely adopted is the concept of a ”zero-trust architec-
ture“. This strategic approach to cybersecurity that promotes the continuous validation of
every digital interaction. It eliminates implicit trust by leveraging strong authentication meth-
ods, network segmentation and granular, ”least access“ policies [15]. This principle acknowl-
edges that in CPS, no entity should be intrinsically trusted solely because it is being part of
the CPS architecture, or its association with the system.

Security principles are often governed by various standards and regulatory frameworks,
such as the National Institute of Standards and Technology (NIST) Cybersecurity Framework
and the ISO 27001. These standards provide guidelines and best practices for, besides
others, establishing robust security controls and completing effective risk management pro-
cesses. Compliance with these principles and standards is crucial tomitigating security risks,
safeguarding critical infrastructure, and protecting against emerging cyber threats in the
rapidly evolving CPS landscape.

3.5 Cyber-Physical System of Systems (CPSoS)

In today’s technologically advanced society, the demand for increased functionality and the
great expectations towards modern systems require the engineers to compose the final
system through the integration of multiple constituent systems. This interconnected ar-
rangement, known as a system-of-systems (SoS), is formed by the collaboration of individual
systems to deliver the high functional specifications.

Definition System-of-Systems:

A system-of-systems (SoS) is a set or arrangement of constituent systems that
results when independent and useful systems are integrated into a larger system
that delivers unique capabilities.
- Frank J. Furrer, Safety and Security of Cyber-Physical Systems [7]

The unique capabilities are the ones that no single constituent system would achieve on its
own, but through cooperation towards a higher objective, they can be achieved nonethe-
less. A cyber-physical system of systems (CPSoS) is a specific type of SoS that incorporates at
least one cyber-physical system (CPS) interacting with the physical world within its system
arrangement, as shown in figure 3.3. Likewise to SoS, CPSoS enables the achievement of
higher objectives through collaboration among various constituent systems. For instance,
in the context of driver safety in modern vehicles, no single system can provide the neces-
sary level of safety independently. However, through the cooperation of multiple systems
such as the supplemental restraint system (SRS) airbags, anti-lock braking system (ABS), and
autonomous emergency braking (AEB), the higher objective of driver safety emerges.

30

3.5 Cyber-Physical System of Systems (CPSoS)

Figure 3.3: Cyber-physical System of Systems

3.5.1 Emergence

The main motivation for arranging systems in a cooperative mesh is the emergence of new prop-
erties or behaviours.

Definition Emergence:

An emergent property/behaviour is a property, behaviour, or aggregated infor-
mation, which a collaboration of constituent systems have, but which the individ-
ual constituent systems do not have.
- Frank J. Furrer, Safety and Security of Cyber-Physical Systems [7]

The integration ofmultiple systems with useful functionalities enhances flexibility but also in-
troduces greater complexity to the overall system. Consequently, emergent behaviours may
lead to unintended outcomes that individual systems alone would not cause. Even if the indi-
vidual systems are thoroughly understood, with each failure mode adequately handled and
mitigated, the collaboration of systems can introduce new failure modes.

Trustworthiness is a holistic property that calls for the co-engineering of safety
and cybersecurity, among other qualities. It is not sufficient to address one of
these attributes in isolation, nor is it sufficient simply to assemble constituent
systems that are themselves trustworthy. Composing trustworthy constituent
systems may imply an untrustworthy SoS.
- Flavio Oquendo, 2015

31

3 Cyber-Physical Systems

The emergence matrix 3.3 illustrates the four distinct quadrants that arise in every SoS
and must be considered by system developers.

Desirable (positive) Undesirable (negative)

Expected Emergence
Q1

= Reason for
building the CPSoS

Q2
= Risk-analysis,

understand and mitigate

Unexpected Emergence
Q3
?

Q4
= Source for

Safety accidents,
Security incidents

Table 3.3: Emergence Matrix [7]

Quadrant 1 (Q1) represents the desired and expected outcomes of system collaboration,
which depicts themain reasons for arranging the SoS. In the previously mentioned example,
the enhancement of driver safety throughmultiple systemsworking together exemplifies the
positive impact achieved. All systems contribute, to a varying extent, to the driver safety in
the event of an accident trying to safeguard him from harm.

Quadrant 2 (Q2) encompasses the expected but undesired outcomes resulting from sys-
tem collaboration. These must be identified during the development phase through rig-
orous risk analysis. Engineers hold the responsibility of mitigating such negative emergent be-
haviours, ultimately preventing their occurrence. In the context of driver safety, an example
of an expected but undesired outcome involves the emergency braking system (AEB) trigger-
ing an abrupt stop, catapulting the driver forward. If the driver’s head is in close proximity to
the airbag casing when an impact occurs immediately after emergency braking, the airbag
may explosively inflate, causing severe injury. To mitigate this anticipated undesired out-
come, engineers implemented a seatbelt system to restrain the driver’s body, allowing safe
inflation of the airbag.

Quadrant 3 (Q3) comprises outcomes that were not expected by the systems engineers
but still add value to the overall system. Although rare and unexpected, these outcomes
are desirable and thus require no mitigation measures. Nonetheless, it should be noted
that they are of great interest for the engineers. These outcomes were overlooked during
development and need to be analysed to extract valuable insights in further understanding
the inner workings of the system.

Quadrant 4 (Q4) represents the emergence of unexpected and negative outcomes re-
sulting from the collaboration of constituent systems. They serve as the primary source of
safety accidents and security incidents in CPSoS scenarios, even when CPS engineers dili-
gently follow safety- and security-aware development processes. Such harmful emergence
cannot be effectively addressed through conventional risk management processes due to its unex-
pected nature. Typically, these unexpected emergent behaviours have a very low probability
of occurrence. If, however, they do occur during testing and can be replicated, their causes
can be identified, and potential mitigations explored.
Chapter 5 analyses several accidents and incidents that originate from Quadrant 4 out-
comes. A prominent example is the Toyota ”Unintended Acceleration“ 5.4 safety accident.
The accident was triggered by an unforeseen situation in which the Toyota Electronic Throt-
tle Control System (ETCS) experiencedmemory corruption in its Static Random-AccessMem-

32

3.5 Cyber-Physical System of Systems (CPSoS)

ory (SRAM) due to either a single event effect or software defects, such as stack buffer over-
flows. Regrettably, the Toyota engineers had not anticipated this failure mode and conse-
quently did not implement essential mitigation mechanisms, such as error detection and
correction (EDAC) for SRAM. As a result, unexpected negative behaviours occurred during
run-time, leading to the suspension of critical ETCS tasks and eventually causing an elec-
tronically stuck acceleration pedal, which resulted in numerous accidents.

Unfortunately, most instances of unexpected emergence manifest during normal system
operation (i.e. after the system got deployed to its operation environment), leading to safety
accidents and security incidents in an uncontrolled domain. Several factors contribute to
this, such as the increased likelihood of rare events occurring with higher numbers of the
same CPS being operated or the diverse ways in which different operators handle the CPS,
which cannot be adequately simulated during testing.
When unexpected emergent behaviours occur, the system may mishandle the unknown
situation, triggering a cascade of negative effects that leads to CPS failure and subsequent
accidents or incidents. Although quick manual intervention by the CPS operator can poten-
tially halt such cascading effects, human reaction times are relatively slow compared to the
rapid feedback-loop iterations of the CPS. Consequently, human intervention often fails to
prevent or even detect the impending accident or incident.
This emphasises the need for a tool supporting the CPS operator to react to those emer-
gent failures or attacks more efficiently and/or initiating corrective and protective actions
on it’s own. This tool is called a protective shell and will be extensively elaborated in the
subsequent chapter.

33

4 Protective Shell

This section introduces and elaborates the concept of a protective shell on the current state-
of-the-art. After the introduction, the system architecture is presented, which can be divided
into the design-time architecture and the run-time architecture. The importance of sound
architecture for building trustworthy systems is also emphasised.
Furthermore, the concept of run-time monitoring is explained, followed by a detailed elu-
cidation of the protective shell, its definition and capabilities. Lastly, the expectations and
goals towards the protective shell will be stated.

4.1 Explanation

Modern CPS have become increasingly complex, and this trend is expected to further ac-
celerate in the future. The main reasons for increasing complexity is the rapid growth of
functional requirements for CPS and their rising interconnectedness in obscure networks. Man-
ufacturers are under pressure to integrate CPS into CPSoS to fulfil these high functional re-
quirements, thereby rising the end systems complexity. The complexity of a system directly
correlates with its attack surface, the number of failure modes it exhibits, and the probabil-
ity of unpredictable and unexpected emergent behaviour. These factors contribute to the
growing safety and security concerns in modern CPS.
In the past, the system quality properties - such as safety and security - could be ensured
to a satisfactory extent during the development process of simpler CPS with lower com-
plexity. However, in today’s complex systems, ensuring all quality properties in all operating
conditions during design time is practically impossible [2]. This does not imply that the de-
velopment process for the design architecture needs to be replaced; rather, it highlights
the limitations of developing trustworthy systems solely during the design phase. There is a need
to improve the overall system architecture during operation to ensure the required quality
properties.
The history of system engineering has shown that system quality properties strongly depend
on the underlying system architecture [2]. To build trustworthy andmodern CPS, it is neces-
sary to improve the system’s architecture beyond the implementation of industry-standard
engineering principles and completing risk management processes.
In 2023, Hermann Kopetz presented five results that are unattainable during system de-
sign. These outcomes, referred to as the ”impossible results“, contain various challenges that
cannot be fully resolved during the development process. The impossibilities are as follows:

34

4.2 System Architecture

It is impossible ...

1. to find all design faults in a large system

2. to find all implementation faults in a large system

3. to foresee all operational conditions of the system in its deployed environment

4. to mitigate all consequences of execution platform failures, including hardware fail-
ures, network outages, partner-system unavailability

5. to fully identify emergent properties or emergent behaviour while assembling the
system

This chapter explores the concept of a ”protective shell“ as an additional component in
the run-time architecture of CPSs to enhance their overall safety and security and, at the
same time, to address the aforementioned impossible results during the run-time phase.

4.2 System Architecture

The overall system architecture can be divided into the design-time architecture and the run-
time architecture.
The design-time architecture is created during the development process, where engineers aim
to eliminate known vulnerabilities, follow engineering principles, and complete risk manage-
ment processes. However, the high complexity of modern CPS leads to inevitable vulnerabil-
ities within the design-time architecture, arising from emergent behaviour, unknown weak-
nesses, or disregarded best practices. These vulnerabilities can be intentionally exploited
by malicious threats, leading to security incidents, or they can result in safety accidents due
to unexpected operating conditions. Unfortunately, the refined and sophisticated develop-
ment process leaves little room for safety and security improvements when followed dili-
gently by the engineers.
On the other hand, the run-time architecture of CPS can be further improved to address vul-
nerabilities present in the deployed system. As shown in figure 4.1, once the development
process is completed, and the system is deployed in its operational environment, it becomes
a run-time system that may still contain vulnerabilities. The introduction of additional com-
ponents, such as active run-time monitoring, can enhance the run-time architecture and
provide added safety and security to the system.

4.3 Run-Time Monitoring

Run-time monitoring involves constant evaluation of the current system behaviour in com-
parison to the expected and desired behaviour. As depicted in figure 4.2, the desired be-
haviour is defined through a combination of rules, policies, models, and functional specifi-
cations. Defining such static rule-sets requires consultations with domain experts and the
responsible CPS engineers, necessitating additional work effort. However, this process can
also be automated by training a behaviour baseline through information retrieval from oper-
ational data and log files, using appropriate machine learning algorithms and a vast amount
of such operational information.

The run-time monitor embraces the run-time system and attempts to protect it from the impact
and the consequences of threats and failures, preferably in real-time [2].

35

4 Protective Shell

Figure 4.1: Design-Time Architecture Deployment [2]

Figure 4.2: Run-Time Monitoring [2]

To identify deviations from the expected behaviour, run-time monitoring utilises basic val-
idation and comparison as well as more advanced anomaly detection based on artificial
intelligence algorithms (which will get elaborated in chapter 6). Detection mechanisms are
a crucial element within the protective shell and can be further configured to suit the CPS
requirements exceptionally.
The concept of implementing an additional component similar to the protective shell is not
entirely new. Lance Eliot has presented the idea of having an ”AI Guardian Angle Bot“ su-
pervise underlying deep AI systems to improve their trustworthiness in his book [1]. This
situation is similar since deep AI tend to utilise algorithms and structures that lack intrin-
sic explainability, which can lead to unexpected behaviour. Furthermore, there are already
modern CPS that use deep AI, spanning even stronger parallels to Eliot’s book.

36

4.4 Definition

4.4 Definition

A protective shell is an

Independent hardware/software layer overlaid on a system using additional in-
formation, such as supplementary sensor data or log files, to detect, analyse,
interpret, and mitigate potentially dangerous or unsafe system behaviour, either
in realtime, near-realtime, or batch processing.
- Frank J. Furrer, Master Thesis Topic

Figure 4.3 illustrates the basic architecture of a protective shell. The cyber-physical run-time
system forms the core of the run-time architecture, completely embraced by the protective shell,
which separates it from interfaces to the physical world and external digital networks. The
protective shell has access to all data streams passing through it, acting as a membrane. This
includes, but is not limited to, sensor data, firmware updates, network access, application
signals to actuators, operational data, and log files. Additionally, it may incorporate sup-
plementary sensors, precalculated behaviour models, functional specifications, rules, and
policies obtained from domain experts.

Figure 4.3: Protective Shell [2]

With access to such extensive information, the protective shell can utilise traditional tech-
niques such as range checks for actuators and sensors, as well as plausibility validation.
However, its true strength lies in employing anomaly detection through machine learning
and artificial intelligence. This allows the protective shell to identify if the underlying CPS is
heading into a failure mode or if it remains in a safe operational state. The protective shell
may also detect if the underlying CPS slowly deviates from the predefined desired behaviour
over time.
When an anomaly or a mismatch between desired and actual behaviour is detected, and
the CPS fails to initiate remediation actions on its own, the protective shell assesses the sit-
uation, jumps in as a last line of defence and executes corrective actions by manipulating
the data streams passing through it or directly accesses the CPS.

37

4 Protective Shell

4.5 Expectations / Goals

The protective shell concept has two primary objectives: firstly, tomitigate vulnerabilities that
may have been overlooked during the CPS development process, and secondly, to address un-
desired emergent properties during system operation. As illustrated in figure 4.4, the total
amount of vulnerabilities within a system decreases over the course of the development
process due to rigorous safety and security measures. This process involves thorough risk
analysis, identification, assessment, and mitigation steps, including the validation and verifi-
cation of the architectural design and sophisticated testing methodologies.
However, vulnerabilities may persist from various sources, specifically originating from the
second quadrant of the emergence matrix discussed in section 3.5.1. These vulnerabilities
correspond to expected but undesired behaviour. Engineers might consciously decide to
tolerate these vulnerabilities, assuming that the overall risk (probability of occurrence in re-
spect to the damage potential) exposed by these vulnerabilities is negligible. Alternatively,
ineffective mitigation strategies might be employed for known vulnerabilities, or standard-
ised riskmanagement processesmight be disregarded. Collectively, these factors contribute
to the presence of vulnerabilities that should ideally have been eliminated during a sophis-
ticated development process, yet manage to infiltrate and manifest within the CPS’s design
architecture.
Nevertheless, vulnerabilities may also originate from the fourth quadrant of the emergence
matrix, representing unexpected negative behaviour. These vulnerabilities cannot be elimi-
nated during the development process and are not directly a consequence of disregarded
risk management processes. Since they are unexpected and unknown, no specific mitiga-
tion technique is available other than broadly applying industry best practices to all system
components.
As depicted in figure 4.4, such vulnerabilities persist even after finishing the developmen-
tal process. Particularly in complex CPS, this lingering number of vulnerabilities exposes an
unacceptable level of residual operational risk. This reality necessitates an additional ap-
proach, concept or tool to further mitigate vulnerabilities present within the design-time
architecture. The protective shell, with its run-time monitoring and real-time intervention capa-
bilities, emerges as a promising mechanism to counteract unexpected dangerous behaviour [2]
at the very instant it surfaces. Currently, mitigation is often discovered after the threat or
failure has already surfaced, providing engineers the option to analyse the operational data.
In contrast to this retrospective view, the protective shell could provide immediate protec-
tion against vulnerabilities exploited by threats and failures that were previously unknown.
By implementing a protective shell, it is expected that CPS can better address vulnerabilities
arising from emergent behaviour and reduce their negative impact as well as consequences
during run-time, ultimately enhancing the safety and security of these systems.
This marks a significant advancement in the field of CPS architecture, since the currently
applied, rather static tools within the development process of the design-time architecture
do not provide sufficient protection capabilities against quadrant four negative behaviour
for complex systems. As indicated in figure 4.4, a substantial reduction in total vulnerabili-
ties is achievable through a diligent adherence to safety- and security-aware development
procedures, complemented by a proficiently configured and implemented protective shell
optimised for the embraced CPS.
However, it is important to acknowledge that achieving absolute or perfect safety and secu-
rity remains an unattainable objective. It is essential to recognise that the resulting system,
despite these effective measures, may still contain ”deeply hidden“ vulnerabilities. Nonethe-
less, with this reduced amount of vulnerabilities, the system now possesses a higher prob-
ability of falling within the threshold of acceptable residual risk.

38

4.5 Expectations / Goals

Figure 4.4: Vulnerability Mitigation and Elimination

39

5 Specific Protective Shells

This chapter applies the previously discussed theoretical aspects of a protective shell to
practical scenarios with case studies. To illustrate the implementation of protective shells, a
selection of well-documented safety accidents and security incidents involving CPS is exam-
ined as listed in table 5.1, that could benefit from protective shell implementations. These
accidents and incidents are adequately documented from reliable sources to enable an anal-
ysis of the underlying causes, identification of vulnerabilities, and drawing of conclusionswith
a high degree of certainty. Furthermore, they were chosen from a wide variety of sectors to
have a good overall representation without large biases.

Name
Incident /
Accident

Year Sector Outcome Main Vulnerability

Boeing 737 Max
MCAS

Accident 2018/19 Aviation
two crashes,
346 fatalities

Single Point of Failure

Therac-25 Accident 1985-87 Health
at least 6 fatalities,
several injuries

Software Race Condition

Stuxnet Incident 2010 Research
∼1000 uranium enriching
centrifuges destroyed

Neglected Range Validation

Toyota ”Unintended
Acceleration“ ETCS

Accident 2009-11 Automotive
at least 89 fatalities,

57 injuries
Single Point of Failure

Jeep Cherokee
Hack

Incident 2015 Automotive
1.4 million vehicle recall

by manufacturer
Zero-Trust Architecture

Violation

Ukrainian Power Grid
Attack

Incident 2015/16 Cr. Infrastructure
widespread power outages
affecting >255k customers

Weak Network Segmentation
and IAM

Airbus A400M
FADEC

Accident 2015 Aviation
one crash,

4 fatalities and 2 injuries
No Software Integrity

Checks

Table 5.1: Overview chosen Safety Accidents and Security Incidents

After identifying the key weaknesses in each CPS, a specific protective shell per CPS will
be developed to introduce an additional protection layer in the defence-in-depth strategy,
aiming to reduce the risks to an acceptable level. However, it should be noted that the spe-
cific protective shells will not be refined to an implementable state out-of-the-box; rather,
the protective mechanisms, characteristics and capabilities will be thoroughly explained.
All incidents and accidents discussed in this chapter were based on CPSs with unidentified
or miscalculated risks during development. The analysis now benefits from the availability of
post-event data, such as operation data and log files, allowing for more accurate identifica-
tion of these risks. In a typical CPS development lifecycle, engineers would implementmitiga-
tion measures directly to the CPS design-time architecture to eliminate the newly identified
vulnerabilities. However, in this theoretical academic scenario, the underlying CPS design-time
architecture remains unchanged, and the mitigation techniques are solely implemented in
the protective shell. This approach enables the evaluation of the protective shell’s effective-

40

5.1 Boeing 737 Max MCAS

ness and highlights which mitigation capabilities are frequently used, uncovering similarities
among different protective shells.
Mitigation techniques can leverage the entire capabilities shown in the protective shell ar-
chitecture in figure 4.3. For this theoretical scenario, it can be assumed that domain ex-
perts defined the desired behaviour with functional specifications, rule-sets and policies
completely, consistently and without any (logic) flaws. Additionally, it can be assumed that
the machine learning algorithm retrieved the ideal model from operation data and log files
for exceptional anomaly detection. Risks that may arise due to vulnerabilities outside the
CPS design-time architecture’s influence are mentioned during the weakness analysis but
are considered out-of-scope for the development of the protective shell, since it has no di-
rect influence on them. The primary goal of this academic exercise is to simulate how the
original CPS, now with the newly implemented and specialised protective shell, would have
handled the situation when faced with the same failures or exploitations that caused the
accidents or incidents.
Furthermore, the effectiveness of each specific protective shell will be evaluated based on the vul-
nerabilities that could have been mitigated during run-time and whether the catastrophic out-
comes could have been prevented or their consequences drastically reduced. The evaluation will
also consider a broader perspective on the CPS’s attack surface and fault modes to deter-
mine whether the implementation of a protective shell has increased the number of attack
vectors or failure modes. It is essential to be cautious while implementing mitigating tech-
niques to reduce residual risk, as the system’s complexity increases, potentially introducing
new weaknesses and vulnerabilities.
Finally, the similarities among the different specific protective shells will be summarised,
leading to valuable lessons learned and the identification of core characteristics for protective
shells, holding high significance for the subsequent chapters.

5.1 Boeing 737 Max MCAS

5.1.1 Introduction

The Boeing 737 Max MCAS safety accident occurred in 2018 and 2019, involving two fatal
crashes of Boeing 737 Max aircraft. The Manoeuvring Characteristics Augmentation System
(MCAS) was a newly implemented feature on the 737 Max, designed to prevent the aircraft
from stalling. However, the system relied on data from two angle of attack (AOA) sensors
that were not properly validated, resulting in inconsistent readings. A single sensor provid-
ing incorrect data was sufficient for the MCAS to repeatedly push the aircraft’s nose down,
overriding the pilot’s manual interventions, ultimately leading to the crashes. The safety is-
sue initially came to light following the crash of Lion Air Flight 610 in Indonesia in October
2018, claiming the lives of all 189 passengers and crew members on board. A few months
later, in March 2019, Ethiopian Airlines Flight 302 crashed, killing all 157 people on board.
The investigations revealed that Boeing had not adequately informed pilots of the MCAS
system and how to override it in case of malfunction. Additionally, it was found that the FAA
(Federal Aviation Administration) had not been provided adequate oversight of the certifi-
cation process for the MCAS system. As a result of the accidents, the Boeing 737 Max was
grounded worldwide for almost two years, and Boeing faced significant financial and repu-
tational losses. The incident also led to increased scrutiny of the aviation industry’s safety
practices and regulatory processes.

41

5 Specific Protective Shells

5.1.2 Vulnerabilities within CPS

The Federal Aviation Administration (FAA) identified seven key safety concerns associated
with the Boeing 737 Max crashes [16]. Presented below is a summary highlighting the most
significant issues.

Single point of Failure The most severe safety issue that contributed to the Boeing 737
Max crashes was the single-point-of-failure vulnerability in the MCAS system. The MCAS
system used two angle sensors, located on the left and right sides of the cockpit. It was
anticipated that both sensors would provide similar readings for the MCAS to operate effec-
tively. However, this expectation was not enforced through the validation of sensor readings
to ensure their consistency and reliability.
If one of the sensors failed, it would transmit erroneous data to the flight control computer.
Consequently, the flight control computer would activate the MCAS stabiliser, resulting in
a nose-down command. This meant that the initiation of the nose-down manoeuvre relied
solely on the readings from one sensor and did not require confirmation from other sensor
inputs. Moreover, there was no safeguard in place to respond appropriately if the AOA sen-
sor readings indicated the presence of false data.
Unless the flight crew promptly disabled the stabiliser trim motor, including the MCAS, the
repeated execution of the MCAS-induced nose-down command would lead to a rapid loss
of altitude, acceleration in speed, and ultimately result in a crash. This scenario is a typical
example of a single point of failure, where the failure of a single component has cascading
effects on the entire system, ultimately leading to an accident.

Repetitive Execution of MCAS Commands The FAA discovered that the MCAS activation
was reset too quickly following the initial nose-down command, allowing the flight control
computer to reactivate it and initiate repetitive nose-down commands based on the inac-
curate sensor readings. It was observed that each time the pilot issued an electric trim
command and released the trim switch, the MCAS activation was reset [16]. A correct im-
plementation of MCAS, designed to prevent the aircraft from stalling after executing the
nose-down command, would wait for the aircraft’s angle to stabilise before allowing for any
subsequent MCAS activation.

Static Nose-Down Command When the nose-down command is executed, it causes a
fixed movement of the horizontal stabiliser, regardless of its current position. The repetitive
execution of the nose-down command results in incremental adjustments of the horizontal
stabiliser, with each adjustment adding a fixed amount. It is crucial for the MCAS system
to consider the current position of the horizontal stabiliser before making any adjustments,
ensuring that it remains within safe operational limits.

Insufficient Documentation and Training One significant safety issue with MCAS was the
lack of sufficient documentation and training provided to the flight crews. Following the ac-
cidents, it became apparent that the critical automated system, MCAS, was not adequately
explained in the flight manuals and training materials. As a result, pilots were largely un-
aware of its existence and its potential impact on aircraft control. Insufficient information
and guidance on how to respond to erroneous sensor inputs and MCAS activations con-
tributed to the challenges faced by the flight crews during emergencies. Furthermore, the
alert message if the AOA sensor readings disagree was not visible by default, making it more
difficult for the crew to find the root cause of the error. This highlighted the importance of

42

5.1 Boeing 737 Max MCAS

thorough documentation and comprehensive training programs to ensure the safe opera-
tion of complex automated systems in modern aircraft.

5.1.3 Specific Protective Shell Mitigation Mechanisms

The specific protective shell developed for the Boeing 737 Max MCAS incorporates several
core mitigation mechanisms to address the faults that led to the accidents previously anal-
ysed. In the following section, those mitigation mechanisms are presented and build the
main characteristics of the protective shell.

Reevaluation of Sensor Readings The protective shell can access all sensor readings pass-
ing through it, including the AOA sensors. This enables the shell to perform various checks
on the sensor data, such as cross-validation and plausibility checks. If one of the two AOA
sensors delivers erroneous readings, the simplest way of identifying such failure is to check
if the two AOA sensor readings deviate from each other. If a significant deviation is detected,
it would give a strong indication that the readings could not be trusted, prompting the pro-
tective shell to take appropriate actions, such as deactivating the MCAS system, to prevent
cascading effects.
Furthermore, the protective shell can cross-validate the sensor readings with additional in-
formation. Domain experts have defined the desired behaviour using rule-sets, policies, and
functional specifications, which should include intrinsic information about the correlation
between the AOA sensor, barometer, and speedometer (e.g., a simplified gradient triangle)
as depicted in figure 5.1. The protective shell monitors the ground and/or flight velocity as
well as the pressure change over time and can calculate the distance travelled as well as the
height gained or lost, respectively. Although this presentation retains a simplification for il-
lustrative purposes, neglecting the earth’s curvature by restraining from using the haversine
formula for distance calculation, the angle of attack can be estimated using those distances
and the presumed orthogonal 90-degree angle. Therefore, the different sensors exhibit a
direct correlation. If this correlation does not hold, it serves as a hint to the protective shell
that there must be erroneous sensor readings within the data streams.

Figure 5.1: Boeing 737 Max - Climb Gradient Triangle [17]

Implementation of Supplementary Sensor To enhance redundancy and fault tolerance,
the protective shell can implement an additional, independent AOA sensor to report to the
protective shell. With three independent AOA sensors, the protective shell can employ the

43

5 Specific Protective Shells

”Triple Modular Redundancy“ technique commonly used in safety-critical systems. This ap-
proachmitigates single points of failure and improves availability through voting capabilities.
With two AOA sensors and one of thembeing defective, the defect can be detected, but with-
out further investigation, it is unclear which sensor is functioning correctly.
The advantage of employing three sensors is that, in the event that one fails, the MCAS
system can still receive a sensor reading that is trusted through either majority voting or
average voting.

• Majority voting: This method forwards the sensor reading that occurs at least two
times, eliminating the false reading of the failing sensor.

• Average voting: This method computes the average of all three sensor readings to be
forwarded to the underlying system. It is useful when the three sensors exhibit differ-
ent levels of accuracy or precision. Moreover, if one sensor reading varies significantly
from the other two (beyond a predefined threshold), it can be excluded through outlier
elimination to avoid falsifying the average.

By using three independent AOA sensors and employing appropriate voting mechanisms,
the protective shell can significantly enhance the robustness and reliability of the system,
reducing the likelihood of accidents caused by erroneous sensor data.

Range Validation One of the key mitigation mechanisms that can be incorporated into a
protective shell for the Boeing 737 Max MCAS is range validation for sensors and actuators.
The protective shell should define hard operation ranges for each sensor and actuator, en-
suring that they operate within predefined limits. If any component operates outside these
validated ranges, it would trigger an immediate warning to indicate a potential malfunction.
For instance, in the case of the MCAS system, a range validation mechanism could prevent
it from acting on false angle data. If the readings from the angle of attack (AOA) sensor fall
outside the validated range, indicating a potential defect in the sensor, the protective shell
would block these data streams from reaching the run-time core of the system.
Similarly, the protective shell should implement range validation for other critical actuators
and sensors throughout the aircraft. For example, considering the horizontal stabiliser, the
protective shell could enforce range validation to prevent extreme and unsafe adjustments.
As analysed before, the horizontal stabiliser would be moved by a fixed amount when the
nose-down command is executed. Through repetitive execution of the nose-down com-
mand, it is likely that the horizontal stabiliser was way outside its safe operation range. By
blocking such extreme values from reaching the horizontal stabiliser, the protective shell
would ensure that it remains within its safe operation range, giving the flight crew more
time to respond effectively.

Time-Sequential Analysis and Retrospective Data Evaluation The specific protective shell
designed for the Boeing 737 Max MCAS leverages time-sequential analysis, granting access
to the current operational data and log files of the aircraft. By comparing this real-time data
to predefined models and specifications describing the desired behaviour, the protective
shell gains valuable insights into the system’s performance. Additionally, the protective shell
maintains a retrospective view on the data streams received previously, allowing for a com-
prehensive analysis of historical trends.
For instance, when dealing with sensor readings, the protective shell can contextualise in-
dividual readings by considering past values. This retrospective approach enables the de-
tection of anomalies that may not be apparent from isolated data points. For example, if
an AOA sensor experienced a failure after takeoff, the protective shell would recognise this
abrupt breakdown by examining the time-sequential readings. Such drastic and sudden

44

5.1 Boeing 737 Max MCAS

changes in sensor data are unlikely in the physical world, and the protective shell can use
this information to identify erroneous data. An AOA sensor reading that exhibits an instant
10-degree jump, for instance, would be flagged as an anomaly, given the implausibility of
such a manoeuvre for a Boeing 737 Max passenger aircraft.
Moreover, the protective shell incorporates models and specifications defined by domain
experts to recognise data trends and variations. Figure 5.2 depicts some typical trends and
variations for sensors and actuators over a specific time-span. With this knowledge, the
protective shell can establish expected patterns for various flight scenarios. For instance,
the protective shell would anticipate that AOA sensors typically follow specific trends dur-
ing flights. However, if a sensor diverges beyond a predefined threshold from the expected
trend, the protective shell interprets it as an indication of an approaching failure mode.

Figure 5.2: Boeing 737 Max - Typical Time Series Trends [18]

Block Repetitive Nose-Down Commands One of the key mitigation mechanisms imple-
mented in the protective shell for the Boeing 737 Max MCAS is aimed at blocking repetitive
nose-down commands. The protective shell will actively monitor the commands sent to ac-
tuators, for instance those sent to the horizontal stabiliser like the nose-down command
initiated by the MCAS system. To prevent rapid and continuous nose-down adjustments,
the protective shell will introduce a time-out mechanism. This time-out period will allow suf-
ficient time for the aircraft to react to previous commands and stabilise before accepting
new nose-down commands. By introducing a latency factor to account for the passenger
aircraft response time and the delay in actuator control from the cyber component, the pro-
tective shell ensures that the aircraft first returned to a safe flight angle. Additional MCAS
activation and consequently nose-down commands will only be permitted when the aircraft
drifts back from a save angle to an angle where it could experience stalling.
This mechanism ensures that the aircraft’s stabilisation is prioritised, reducing the risk of

45

5 Specific Protective Shells

rapid altitude loss, speed acceleration, and potential crashes caused by continuous nose-
down adjustments.

BehaviourModel Training In addition to the previously discussedmitigationmechanisms,
the specific protective shell for the Boeing 737 Max MCAS leverages behaviour model train-
ing to enhance its overall effectiveness. While the previous mechanisms were based on
predefined functional specifications, policies, and rule-sets established by domain experts,
they inherently have limitations as they primarily address known vulnerabilities. However,
within this academic scenario, there exists the opportunity to develop a more precise and
specialised desired behaviour, carefully tailored to address accidents triggered by MCAS.
Defining such a precise desired behaviour manually is challenging and time-consuming,
making it impractical in real-world applications where unforeseen emergent properties may
arise. To overcome this, the protective shell incorporates anomaly detection based on be-
haviour models that are automatically trained using appropriate information retrieval tech-
niques.
To create the behaviour model, the protective shell requires a vast amounts of operational
data and log files from various components of the Boeing 737 Max. These data-sets con-
tain a wealth of intrinsic information, including correlations, patterns, rules, and time series,
that can be challenging for human experts to extract comprehensively. Leveraging machine
learning algorithms, the protective shell can analyse thousands of Boeing 737 Max flights to
understand how the MCAS system should function ideally. This analysis results in the pre-
calculation of a behaviour baseline, which serves as a reference for identifying deviations
from the expected behaviour of the MCAS system.
By incorporating behaviour models, the protective shell gains a deeper understanding of
the MCAS system’s expected behaviour, allowing it to identify abnormal patterns or actions
that could potentially lead to safety risks. This automated and data-driven approach signifi-
cantly enhances the protective shell’s ability to respond effectively to anomalies, even those
that might not have been explicitly defined in the initial static guidelines provided by domain
experts.
For a more comprehensive exploration of the behaviour model training and its impact on
the protective shell’s effectiveness, further details will be covered in chapter 6 of this thesis.

Alerting and Logging The protective shell developed for the Boeing 737 Max MCAS sys-
tem incorporates several crucial mitigation mechanisms to enhance the overall safety and
security of the CPS. One of the primary features is its alerting capabilities, which play a vi-
tal role in promptly notifying the CPS operator whenever anomalies are detected, leading
to necessary interventions. This immediate alerting ensures that the operator is aware of
potential dangerous behaviours the aircraft is experiencing or the failure mode it is heading
to.
By alerting the operator in real-time with the anomalous findings, the protective shell grants
them the opportunity to analyse the situation independently and, if necessary, take over
manual control. This capability not only empowers the operator to take corrective actions
but also puts pressure on the manufacturer, Boeing, to investigate the cause of the alarm.
In the event of unexpected negative behaviour being identified, appropriate mitigationmea-
sures can be put in place promptly. Alternatively, if the alert turns out to be a false alarm,
the protective shell can be adjusted accordingly, preventing unnecessary disruptions.
It is crucial that the protective shell maintains a comprehensive log of all instances where
it passively alarms the operator or actively executes protective actions. Additionally, when
the protective shell monitors the CPS without detecting any anomalies, logging should be
considered, although the volume of data generated must be balanced to remain practical.
Extensive logging is particularly critical when anomalies are detected and protective actions

46

5.1 Boeing 737 Max MCAS

are initiated, as this data will provide engineers with valuable forensic insights into the CPS’s
behaviour and help identify the reasons behind the protective shell’s actions.
Furthermore, detailed logs are essential in case of incidents where the protective shell’s ac-
tions might have resulted in fatalities, injuries, or property damage. Having access to com-
prehensive logs will enable themanufacturer to analyse the sequence of events, understand
why the protective shell made specific decisions, and offer explanations in case of any unin-
tended consequences.
The alerting capabilities of the protective shell must be seamlessly integrated into the oper-
ator’s user interface to ensure timely and effective communication. Alarms should be dis-
played prominently and clearly, avoiding any overlap with other screen elements. The alert
should not be automatically hidden or obscured like it was implemented in the MCAS sys-
tem where the alert that the AOA sensors disagree was not visible by default, as this defeats
the purpose of the warning. While the operator may manually suppress the alert if it turns
out to be a false alarm, the protective shell should prioritise displaying critical notifications
noticeably to avoid oversight and ensure quick response in critical situations.
Overall, the specific protective shell developed for the Boeing 737 Max MCAS system in-
corporates alerting capabilities and extensive logging to enhance safety, provide necessary
information for further analysis, and empower operators to respond effectively to anomalies
in real-time.

47

5 Specific Protective Shells

5.1.4 Protective Shell Evaluation

This section evaluates whether the two fatal safety accidents involving Boeing 737 Max air-
craft could have been prevented if the specific protective shell, equipped with the presented
mitigationmechanisms, had been implemented. The protective shell for the Boeing 737Max
MCAS aims to address vulnerabilities identified in the original MCAS, particularly the single-
point-of-failure issue associated with the Angle of Attack (AOA) sensors, which led to incor-
rect nose-down commands and fatal accidents. This evaluation examines if the protective
shell’s features effectively mitigate these single-point-of-failures through various monitoring
and validation processes, and if new vulnerabilities got introduced.

Remediation of Old Failure Modes The original MCAS design featured two AOA sensors
contributing to a fail-safe design through redundancy, capable of detecting a defective sen-
sor if employed correctly. However, flawed implementation allowed one erroneous reading
to cause the entire failure. Therefore, the first mitigation mechanism contained in the pro-
tective shell was to remedy the ineffective implementation done by the engineers, to truly
contribute to a fail-safe design by first checking if the two sensor readings deviations exceed
measurement inaccuracies, and if so block the erroneous data from being forwarded to the
MCAS.
Another keymechanism is cross-validating data from the two AOA sensors against other cor-
related data streams, enabling the protective shell to identify and discard erroneous read-
ings.
The implementation of a third independent AOA sensor adds redundancy and fault toler-
ance, utilising voting mechanisms to ensure reliable sensor data.
Furthermore, the protective shell enforces range validation for critical sensors and actua-
tors, ensuring they operate within predefined safe limits.
Lastly, the protective shell also employs time-sequential analysis and retrospective data eval-
uation, comparing sensor readings with trained data trends and reevaluating current data
points against previously sent data sets. This enables the detection of anomalies when an
AOA sensor abruptly malfunctions or gradually becomes unreliable over time.
Therefore, the MCAS is now safeguarded through several mitigation mechanisms from AOA
sensor failure, reducing the associated risk of AOA sensor failure to an acceptable level.

Nevertheless, assume the AOA failure could spread to the MCAS despite safeguards or
MCAS would experience a fault exposed by another vulnerability. The specific protective
shell suggests mitigation mechanisms that would isolate a malfunctioning MCAS, preventing
cascading negative effects. If the MCAS initiates manoeuvre actions like nose-down com-
mands repetitively deviating from the trained behaviour, the protective shell would inter-
vene and block it from reaching actuators like the horizontal stabiliser and transfer control
to the pilots. This is because the protective shell assumes that if it allows MCAS to act out-
side the behaviour model, the aircraft could drift into a failure mode that might lead to an
accident.

Lastly, the protective shell features alerting and logging capabilities, providing pilots with
valuable insights into detected anomalies through alarms, allowing them to initiate manual
interventions. Furthermore, the detailed logs provide Boeing, the manufacturer, with valu-
able insights into CPS’s behaviour, aiding in further analysis and understanding the reasons
behind the protective shell’s actions.

Identification of New Vulnerabilities While considering new vulnerabilities introduced by
the protective shell, it is essential to analyse potential risks introduced by the mitigation

48

5.1 Boeing 737 Max MCAS

mechanisms. In the case of MCAS, the protective shell’s mechanisms could lead to angle
readings being discarded, potentially hindering the initiation of correct manoeuvres. In an
unlikely event, this could result in the aircraft stalling due to a high angle of attack and ex-
periencing a loss of lift, leading to a fall. However, pilots can counteract this situation by
initiating recovery procedures, such as reducing the angle of attack and increasing speed.
It is crucial to note that the probability of such an event is very low because the protective
shell employs cross-validation and other techniques to block sensor readings only when
there is high certainty of their inaccuracy. Additionally, pilots are promptly made aware of
any blocking actions taken by the protective shell, allowing them to intervene if necessary.

Conclusion The specific protective shell developed for the Boeing 737 Max MCAS effec-
tively addresses the vulnerabilities present in the original MCAS design. By employing vari-
ous mitigation mechanisms, the protective shell significantly enhances the trustworthiness
of the CPS. However, the protective shell has no influence on the insufficient documentation
and training provided by Boeing.
With the implementation of this protective shell, it is plausible that the two fatal safety acci-
dents involving Boeing 737 Max aircraft could have been prevented, potentially saving nu-
merous lives and avoiding the subsequent worldwide grounding of the aircraft. The thor-
ough evaluation of the protective shell’s features and their impact on avoiding failure modes
demonstrates the significance of such safety measures in cyber-physical systems, particu-
larly in critical domains like aviation.

49

5 Specific Protective Shells

5.2 Therac-25

5.2.1 Introduction

The Therac-25 medical device was involved in one of the first documented safety accidents
involving CPS in the mid-1980s. The Therac-25 was a radiation therapy machine utilised for
treating cancer patients. It was designed to deliver high doses of radiation to tumours while
minimising exposure to healthy tissue. Unfortunately, a software design flaw in the control
system led to massive overdoses of radiation to at least six patients, resulting in severe
injuries and fatalities.
The software flaw was specifically associated with the system’s user interface, which had
been designed to enhance user experience compared to its previous version. The user
interface allowed operators to manually input treatment parameters, including the type and
dosage of radiation to be delivered. However, a race condition within the software existed,
whereby if the operator entered certain parameters too quickly, the systemwould not check
them for consistency before proceeding with the treatment. Consequently, several incidents
occurred where patients were exposed to radiation doses significantly higher than intended
[19].
This incident underscored the critical importance of incorporating safety design principles,
such as system interlocks, during the development of safety-critical systems.

5.2.2 Vulnerabilities within CPS

No Hardware Interlocks The engineers at Atomic Energy of Canada Limited (AECL) incor-
porated pre-existing in-house software from the Therac-6 and Therac-20 into the Therac-25,
introducing electron-beam therapy and megavolt x-ray functionality simultaneously. Unfor-
tunately, the legacy software contained bugs that were inherited by the Therac-25 software.
Unlike its predecessors, the older radiation therapy machines relied on hardware interlocks
to validate crucial safety parameters before starting treatment. These interlocks concealed
the software defects, but did not issue any warnings to the system’s operator. A significant
safety concern with the Therac-25 was the absence of these hardware interlocks, resulting
in the electron-beam operating in high-energy mode even when the required target was not
in place [19]. The engineers made the decision to rely solely on software checks to ensure
safe operation and neglected to implement an interface for the hardware components to
verify they are operating as intended.

Software Bugs As previously mentioned, the Therac-25 contained several software bugs
that resulted in radiation overdoses for the patients. One of these bugs stemmed from a
race condition during the configuration of parameters. When the doctormistakenly selected
x-raymode and quickly switched back to electronmode, the electron-beamwas erroneously
set with a radiation dose approximately 100 times higher than intended [20].
A second issue arose from a software bug during the field-lightmode. The intended purpose
of the field-light mode was to only illuminate the specific area of radiation which was con-
figured, for refined adjustments, directly on the patient. However, the software bug caused
the electron-beam to activate during this pre-check mode, leading to radiation burns, poi-
soning, and three deaths as a consequence of the overdose.
The final significant software bug which will be discussed in this paragraph involves an arith-
metic overflow within one of the system’s flag variables. Those flag variables play an impor-
tant role in essential safety checks prior to starting the treatment. However, this flag variable
progressively increased in value after each operation until it exceeded the supported range,
thereby bypassing crucial safety checks [19].

50

5.2 Therac-25

No Thorough Testing Insufficient testing, although not inherently a vulnerability, opens
the door for software bugs. It is crucial to highlight the shortcuts taken by the engineers
at AECL during the development process, which compromised safety and security require-
ments.
As previously mentioned, AECL utilised in-house code from the Therac-6 and Therac-20 as
the foundation for the Therac-25 software and operating system. The trust placed in this
in-house code was so strong that it was deemed unnecessary to have an independent en-
tity review it. The engineers held a collective belief that the software was free of bugs. This
overconfidence led AECL to assure their customers that overdoses caused by the Therac-25
were impossible, slowing down the thorough analysis of post-accident issues [21].
Remarkably, the Therac-25’s development process entirely neglected a risk management
procedure such as the failure mode and effect analysis (FMEA). The engineers should have
diligently followed this safety risk assessmentmethodology to identify potential failuremodes,
assess their impact, and, if possible, implement mitigation measures prior to their occur-
rence during system operation. Furthermore, it became evident that AECL did not conduct
thorough testing of the entire CPS. Instead, they sporadically tested the software and hard-
ware separately. Consequently, the testing of the complete assembled CPS began at the
customers’ hospitals, involving real patients, rather than being conducted beforehand.

5.2.3 Specific Protective Shell Mitigation Mechanisms

The specific protective shell developed for the Therac-25 incorporates several core mitiga-
tionmechanisms to address the vulnerabilities that led to the accidents previously analysed.
In the following section, those mitigation mechanisms are presented, which build the main
characteristic of this protective shell.

Integrity Validation for Parameters One crucial mitigation mechanism implemented in
the protective shell is the integration of back-end validation for parameters configured through
the graphical user interface (GUI) by the operator. The desired behaviour of the Therac-25 is
established by domain experts throughwell-defined specifications, rules, and policies, which
outlines the radiation dose for different modes, such as x-ray, electron, and field-light. De-
pending on the selected mode, the protective shell validates whether the radiation dose
falls within safe operating ranges, establishing a restricted operation envelope (like used in
the aviation domain with its safe flight envelope). Notably, the radiation dose in x-ray mode
is significantly higher than in electron mode, and no radiation dose is allowed in field-light
mode.
One crucial mitigation mechanism implemented in the protective shell is the integration

of back-end validation for parameters configured through the graphical user interface (GUI)
by the operator. The desired behaviour of the Therac-25 is established by domain experts
through well-defined specifications, rules, and policies, which outlines the radiation dose for
different modes, such as x-ray, electron, and field-light. Depending on the selected mode,
the protective shell validates whether the radiation dose falls within safe operating ranges.
Notably, the radiation dose in x-ray mode is significantly higher than in electron mode, and
no radiation dose is allowed at all in field-light mode.
If the parameters set do not match the rules specified, the protective shell will block the
treatment to start, discarding the application signals send to the actuators to proceed with
the treatment.
The implementation of this validationmechanism effectively prevents race conditions during
rapid mode switching by the operator. Additionally, the protective shell incorporates crucial
safety checks before the treatment starts already existing in the Therac-25 software, provid-
ing redundancy. This addresses the vulnerability in the Therac-25 where safety checks were

51

5 Specific Protective Shells

bypassed due to an arithmetic overflow of an important flag variable. By reexamining safety
checks within the protective shell, this vulnerability is mitigated.
Consequently, this added layer of protection ensures that erroneous or faulty parameters
are not accepted by the Therac-25. If the protective shell identifies any concerns regard-
ing the correctness of provided parameters, it blocks the treatment initiation, safeguarding
against potential accidents.

Supplementary Sensor and Actuator Data An essential enhancement introduced in the
protective shell involves the inclusion of hardware interlocks, which were lacking in the orig-
inal Therac-25 design. With engineers neglecting to implement hardware interlocks and the
decision to solely rely on software checks with vulnerabilities present in the application, it
made the safety accidents possible. By implementing previous suggestedmitigationmecha-
nisms to reevaluate parameters provided by the operator, the software checks should now
be effective. However, these interlocks play a crucial role in ensuring fault tolerance and fur-
ther fortifying the safety measures. To implement hardware interlocks, the protective shell
requires access to additional data streams, including operational data from various compo-
nents and supplementary sensors.
One valuable hardware interlock is themechanical position verification. It consists of supple-
mentary sensors, such as limit switches and proximity sensors, to detect the presence and
position of crucial components before the treatment starts. For instance, before enabling
the electron-beam in high-energy mode, the interlock would verify if the required target is
correctly in place and properly aligned.
Another vital hardware interlock is the radiation monitoring system. This system continu-
ously measures the intensity and direction of the radiation beam. If any deviation from the
expected radiation levels or direction is detected, the hardware interlock automatically halts
the treatment, preventing potential harm to the patient.

Alerting and Logging Similarly to the mitigation mechanisms presented in the Boeing 737
Max, the Therac-25 also needs alerting and logging capabilities for likewise reasons. These
features serve crucial purposes in ensuring transparency and aiding operators in under-
standing and responding to potential issues promptly.
If the protective shell blocks treatment initiation, an alarm must be displayed on the op-
erator’s GUI, providing a clear explanation of the reason for the treatment’s suspension.
Additionally, in cases where hardware interlocks suspend an ongoing treatment due to de-
teriorating operational conditions, the operator is immediately informed about the detected
issues and provided with relevant guidance on resolving them.
Furthermore, the protective shell maintains extensive logs whenever it detects anomalies
and intervenes. These logs serve as valuable data for the manufacturer to conduct thor-
ough analyses. They facilitate the identification of underlying issues within the Therac-25
architecture and contribute to refining the protective shell’s behaviour, especially if the de-
tection of anomalies was erroneous.

52

5.2 Therac-25

5.2.4 Protective Shell Evaluation

This section critically assesses whether the severe injuries and deaths associated with the
safety accidents of the Therac-25 medical device could have been prevented through the
implementation of a specific protective shell, equipped with previously presentedmitigation
mechanisms. The primary objective of the protective shell is to address vulnerabilities iden-
tified in the original CPS architecture of the Therac-25.
This evaluation aims to determine the effectiveness of the protective shell’s capabilities in
mitigating identified vulnerabilities through various monitoring and validation processes,
thereby reducing residual risk. Additionally, it investigates whether the implementation of
the protective shell resulted in new vulnerabilities.

Remediation ofOld FailureModes The original Therac-25 architecture lacked crucial hard-
ware interlocks, and its flawed software implementation allowed treatments to be initiated
with dangerous parameters. Therefore, the first important mitigation mechanism incorpo-
rated in the specific protective shell was to rectify the flawed software implementation and
ensure proper validation of treatment parameters. Any parameters not adhering to the poli-
cies and rule-sets specified by domain experts in the protective shell’s desired behaviour
are promptly deemed invalid, thereby preventing potential harm to patients and blocking
the treatment from starting.
Furthermore, safety checks implemented in the application were replicated in the protec-
tive shell to effectively adhere to the hard rules. This duplication significantly reduces the
likelihood of bypassing these safety checks due to arithmetic overflows or other software
flaws, providing an additional layer of protection.

Another key mitigation mechanisms is the implementation of hardware interlocks, as pre-
sented previously. These interlocks act as a fail-safe measure, intervening if hazardous op-
eration conditions persist despite software-based safety checks. For instance, hardware
interlocks can promptly interrupt the treatment if an incorrect radiation dose is detected or
if the target in electron beam mode is misplaced.

Lastly, the protective shell features alerting and logging capabilities, offering doctors valu-
able insights on their GUI regarding detected anomalies or invalid parameters, guiding them
how to address the issues. Additionally, detailed logs provide the manufacturer, AECL, with
valuable information about the CPS’s behaviour, aiding in further analysis and understand-
ing of the protective shell’s actions.

Identification of New Vulnerabilities Since the mitigation techniques employed in this
specific protective shell imposes more stringent operational parameters compared to the
original Therac-25, no new failure modes or attack vectors are introduced. However, it is
essential to acknowledge that these stricter specifications and hardware interlocks might
result in an increased number of false-negatives, leading to reduced recall (also known as
sensitivity). Nevertheless, this decrease in recall should not be considered critical, as the
treatment parameters can be validated by the medical staff and restarted. The primary con-
cern is preventing dangerous treatments from being initiated, making the precision value
more safety-critical than its recall counterpart.

53

5 Specific Protective Shells

Conclusion The protective shell designed for the Therac-25 incorporates multiple miti-
gation mechanisms, significantly enhancing the system’s trustworthiness. It effectively ad-
dresses the vulnerabilities present in the original Therac-25 design. By validating parame-
ters, implementing hardware interlocks, and providing alerting and logging functionalities,
the protective shell effectively reduces the risk of accidents and ensures a higher level of
confidence in the system’s operation.
It is highly plausible that the injuries and fatalities resulting from the Therac-25 safety acci-
dents could have been prevented with the implementation of this protective shell. However,
it is essential to note that the protective shell cannot rectify issues arising from insufficient
testing during the development process or miscommunication by AECL, where they wrongly
assured customers that radiation poisoning could not be attributed to their Therac-25 prod-
uct.
The thorough evaluation of the protective shell’s features and their impact on avoiding failure
modes demonstrates once again the significance of such safety measures in cyber-physical
systems, also in critical domains like medical applications.

54

5.3 Stuxnet

5.3 Stuxnet

5.3.1 Introduction

The Stuxnet cyberattack is widely acknowledged as one of the most sophisticated incidents
in the history of cyber warfare. It was discovered in 2010 and is believed to have undergone
several years of development prior to its identification. This attack specifically targeted Iran’s
nuclear facilities by exploiting vulnerabilities within Microsoft Windows operating systems
and Siemens software used in industrial control systems. The malware successfully infil-
trated and manipulated programmable logic controllers (PLCs) used in uranium-enriching
centrifuges. Upon payload delivery, the malware caused the centrifuges to spin out of con-
trol and subsequently self-destruct.
Quantifying the extent of damage inflicted by Stuxnet is a challenging task, as much of the
information surrounding the attack is classified. However, it is widely speculated that this
malicious software caused significant harm to Iran’s nuclear program, resulting in a consid-
erable setback and operational disruptions. While it is commonly believed that the United
States and Israel collaborated on this cyber offensive against Iran, neither nation has offi-
cially acknowledged their involvement in the attack.

5.3.2 Exploited Vulnerabilities

The Stuxnet worm successfully bypassed numerous obstacles by exploiting multiple vulner-
abilities, ultimately achieving its goal of setting back Iran’s nuclear program.

Initial Infection The nuclear facility had stringent physical and network restrictions. Only
authorised personnel were permitted to enter, and access to the internet from the internal
network was mostly disabled. These conditions can be described by the term ”Air-Gap“ - an
insulating layer that separates everything behind it [22]. Therefore, it was assumed to be
near impossible to launch a successful cyberattack on the nuclear facility.
However, as mentioned earlier, Stuxnet managed to infect the internal computer network
of the facility. It is widely believed that Stuxnet crossed the Air-Gap by means of an infected
USB stick. Once an employee connected such infected USB stick to an internal computer
within the facility it automatically spread to the computer, infecting it also.
This highlights several vulnerabilities that allowed the worm to bypass the insulating layer.
Firstly, there was human error involved, as the same USB stick was used across different
levels of security zones. By connecting this drive, which could potentially contain malware,
to an internal computer, it exposed the internal network to external threats.
Secondly, the internal computer seemed to not be hardened enough against such threats.
It is common practice to disable USB ports or remove them completely to prevent this way
of initial infection in the first place.
Thirdly, the physical access control at the facility did not effectively prohibit employees from
bringing in external hard drives. Either it was not explicitly forbidden or the enforcement
was not thorough enough.

Privilege Escalation Once Stuxnet successfully infected the victim’s computer, it needed
to acquire administrator privileges in order to fully leverage its capabilities. To achieve this,
it utilised one of two privilege escalation zero-day exploits for the Windows 32-Bit operating
system. The term ”zero-day“ refers to a software vulnerability that the software vendor was
unaware of at the time of exploitation. This means that the software company had zero days
to mitigate the risk, and only the discoverer of the vulnerability could exploit it.

55

5 Specific Protective Shells

The first available zero-day exploit in Stuxnet for gaining elevated privileges targeted a vul-
nerability in the Windows task scheduler (CVE-2010-3338). The task scheduler is a common
feature in operating systems that enables users to schedule the execution of specific pro-
grams at designated times and under specified security contexts. The Windows task sched-
uler had certain flaws that allowed a standard user without administrator privileges to run
an arbitrary program with system permissions. To make this work, the user had to manipu-
late the task in a certain manner during its creation. By scheduling a program that modifies
the permissions for the local user and executing it with elevated permissions, the user suc-
cessfully and persistently escalated their privileges.
The second privilege escalation zero-day in Stuxnet’s arsenal involved exploiting a vulnera-
bility in the Windows 32-Bit kernel (win32k.sys). A local user could flip a Bit at an arbitrary
kernel address through a particular system call. This call was mishandled by the Windows
kernel, resulting in the user elevating their permissions to system [23].

Infecting new computer One of the key characteristics of computer worms is that they
replicate themselves to infect as many computers as possible. By infecting a larger number
of computers, the probability of successfully delivering the payload, thereby achieving an
overall successful attack, increases. In the case of Stuxnet, the goal was to navigate through
the network until reaching the Siemens PLCs and reprogram them. Consequently, Stuxnet
was equipped with several powerful tools to spread to new computers while minimising the
chances of being trapped in a dead end.
The first tool utilised by Stuxnet to gain a foothold within the facility was the .LNK/.PIF zero-
day exploit (CVE-2010-2568). By specifically crafting .LNK/.PIF shortcuts, the engineers be-
hind Stuxnet were able to execute arbitrary code on the victim’s machine simply by the local
user opening a folder containing such a shortcut. Therefore, when the infected USB stick
was connected to a PC and the user opened the folder, their machine became infected. Fur-
thermore, Stuxnet also spread to new, uninfected drives that were connected to an infected
machine by creating these invisible shortcuts [24].
The second method of spreading to new computers involved the internal network connec-
tion. If network drives were accessible, Stuxnet attempted to copy itself onto those drives
and infect any machine accessing them. Another option for infecting computers on the local
network was through remote procedure calls, along with trying different user credentials.
Lastly, the most effective way for Stuxnet to spread through the network was by exploiting
another zero-day vulnerability known as the Print Spooler Service Impersonation Vulner-
ability (CVE-2010-2729). This vulnerability is particularly severe as it allows the attacker to
remotely execute arbitrary code on the victim’s machine. To exploit this vulnerability, printer
sharing needed to be enabled on the target machine. The attacker could then send a ma-
nipulated print request, bypass spooler access permission validation, and ultimately create
files in the system directory [22].

Payload Delivery As previously mentioned, the ultimate objective of Stuxnet was to hinder
and delay Iran’s nuclear program. To accomplish this, the attackers aimed to sabotage the
uranium-enriching centrifuges in the nuclear facility. These centrifuges were controlled by
programmable logic controllers (PLCs), specifically the Siemens Simatic-S7. If Stuxnet man-
aged to propagate deep into the facility’s local network and reach a computer connected
to the S7, it would be possible to reprogram the PLCs by redirecting, altering, or intercept-
ing calls to the centrifuges. However, simply reprogramming the PLCs would be an easily
reversible task, leading only to the destruction of the current batch of enriched uranium,
which would likely be noticed by personnel. Considering the significant monetary and time
investment required to develop such a sophisticatedmalware, it seems unlikely that the tem-
porary delay of a few weeks in the nuclear program would justify the effort. Consequently,

56

5.3 Stuxnet

the reprogramming of the PLCs had to cause more severe and lasting damage to the facility.
This highlights the first major vulnerability in the combination of Siemens Simatic-S7 and the
centrifuges.
The centrifuges have a designated safe operating frequency range between 807 Hz and
1210 Hz [22]. The CPS should have validated and enforced this range to prevent the cen-
trifuges from operating outside the norm. However, this validation did not occur, allow-
ing the attacker to send instructions for the centrifuges to spin at high frequencies (1410
Hz) initially and later at low frequencies (2 Hz). During the high-frequency operation, the
components of the centrifuges experienced accelerated degradation and increased failure
rates over time. After subjecting the centrifuges to wear, the sudden reduction in operating
frequency to 2 Hz, as instructed by Stuxnet, led to desynchronization and significant mis-
alignment between the rotor and casing. This imbalance disrupted the smooth and efficient
operation of the centrifuges, further accelerating their deterioration. Eventually, the bear-
ings failed, causing irreparable damage to the centrifuges.
The second major vulnerability in this CPS was the personnel’s inability to accurately mon-
itor the centrifuges with their programs. The degradation process initiated by Stuxnet was
not rapid, but rather a gradual one that likely took several months before noticeable effects
appeared in the centrifuge components. Therefore, it was crucial for the success of the at-
tack to delay detection for as long as possible. Any deviation in the rotation speed of the
centrifuges outside the frequency range predefined by the personnel, would be detected
rather quickly. Hence, when Stuxnet reached the Simatic-S7, it did not actively start the
attack, rather passively monitored the operating frequency of the centrifuges for approx-
imately 13 days before taking over control. Once Stuxnet started modifying the rotation
frequencies of the centrifuges, it would simultaneously transmit false rotation speeds pre-
viously collected back to the personnel’s monitoring systems, signalling that everything was
functioning normally [24]. The underlying vulnerability exploited in this case was a flaw in
the system’s design. The integrity of the centrifuges’ sensor data must be protected, and
any tampering should be immediately detected. Additionally, the monitoring system should
retrieve input data directly from the sensor source without any potential for malicious mod-
ifications.

5.3.3 Specific Protective Shell Mitigation Mechanisms

The specific protective shell developed for uranium-enriching centrifuges incorporates var-
ious core mitigation mechanisms to address the vulnerabilities discovered in the previously
analysed security incident. The purpose of this protective shell is to safeguard the CPS, con-
sisting out of the centrifuges and the programmable logic controllers. Consequently, the
protective shell does not directly contribute to the security of the Windows computer sys-
tem that Stuxnet exploited to spread to the operational technology (OT) network.
In the following section, the mitigation mechanisms are presented that constitute the main
characteristics of this protective shell.

Range Validation The protective shell relies significantly on the implementation of range
validation for sensors and actuators reporting to the Siemens Simatic-S7 system. This crucial
mitigation mechanism involves defining strict measurement and operation ranges for these
components, respectively. The ranges for sensors are established based on physical laws
or specifications provided by the sensor manufacturers. Simultaneously, for actuators, hard
operational constraints are introduced, ensuring their operation remains within predefined
limits.
The process of establishing these validated ranges involves the expertise of domain experts,
who define functional specifications, rules, and policies that accurately reflect the capabili-

57

5 Specific Protective Shells

ties of the components and the requirements they must fulfil. By doing so, the protective
shell can effectively monitor and enforce the permissible ranges, safeguarding the integrity
of the CPS.
For instance, in the case of uranium-enriching centrifuges, the desired behaviour dictates
a safe operation frequency range of 807 Hz to 1210 Hz. Consequently, the protective shell
would diligently prevent any operation that falls outside this range, effectively mitigating po-
tential risks associated with excessive degradation of the components. By adhering to the
specified validated ranges, the protective shell ensures that the centrifuges operate within
their safe and efficient operational parameters, reducing the likelihood of unexpected fail-
ures or unauthorised activities.
Furthermore, by establishing clear limits through range validation, the protective shell rein-
forces the stability and reliability of the system, thus enhancing the overall safety and security
of the uranium-enriching process. This comprehensive approach plays a critical role in mit-
igating potential threats and faults, as it enables the protective shell to act proactively and
prevent any deviations from the expected behaviour of the components, thereby protecting
it from potentially harmful operations.

Behaviour Model Training Ensuring the trustworthiness of the centrifuges controlled by
Siemens PLCs can be achieved through continuous comparison with a precalculated be-
haviour baseline. This behaviour baseline can be created best automatically by analysing
a vast amount of operational data and log files from similar centrifuges that have success-
fully enriched uranium. Since this process is rather strict, the underlying data records would
exhibit highly similar timelines and characteristics. Therefore, it simplifies the process of cre-
ating a behaviour baseline and makes it uncomplicated to identify anomalies by centrifuges
that slightly deviate from their normal procedure.
This not only helps detect attacks similar to Stuxnet with great deviations but also aids in
recognising subtle variations resulting from component degradation ormore concealedma-
licious intent.
The Stuxnet attacker explored potential methods to disrupt the uranium enrichment pro-
cess further by targeting batches of uranium hexafluoride gas. As Iran had a limited supply
of this gas, its destruction could have significantly set back the nuclear program. While the
destruction of centrifuges would have a more profound impact on the program, it was un-
certain whether such an approach was feasible with Stuxnet at that time. By manipulating
the operation frequency of the centrifuges and only deviating it a bit from the normal pro-
cedure (within safe operation frequencies), the attacker could destroy the current batch of
gas. These subtle variations in operation frequency could be challenging to detect through
conventional range validation mechanisms, or even by human supervisors monitoring the
centrifuges. Therefore, the implementation of effective anomaly detection is important.
Another use case of employing anomaly detection through an automatically trained be-
haviour model, besides malicious modification of operation parameters, is predictive main-
tenance. Over time, components may experience slight and hard noticeable changes in
their operation behaviour, which could compromise product quality and potentially disrupt
critical processes, such as present in a nuclear program. Implementing predictive mainte-
nance helps by timely repairing systems before they experience faults and stopping cas-
cading negative effects on surrounding components. In time-critical processes, such as a
nuclear program, unpredicted maintenance could set back the program considerably. Pre-
dictive maintenance detection is a great opportunity to be implemented in the protective
shell. In this case it can prevent damage to property, but in other safety-critical CPS it might
protect human lives.

58

5.3 Stuxnet

Monitor Data Protection To counteract sophisticated attacks like Stuxnet, robust mecha-
nisms must be implemented to protect the operational data transmitted to personnel mon-
itoring systems. Stuxnet was particularly insidious as it initially recorded normal operational
data from the centrifuges and later sent back tampered data to deceive personnel, making
them believe that everything was operating as expected while the attack was underway and
rotation frequencies were being manipulated.
Two essential mitigation techniques work collaboratively to reduce the effectiveness of such
tampering:
1. Operational data sent to personnel monitoring systems should be signed using asym-
metric cryptography to ensure data integrity and authenticity. In the event of a man-in-the-
middle attack, where an attacker intercepts the connection between the CPS and the mon-
itoring system, the signed data remains secure. The attacker cannot tamper with the data
since any alteration would invalidate the signature, and the personnel monitoring system
can verify the authenticity of the data using the associated certificates. This cryptographic
approach safeguards the operational data from outside attackers by assuming an insecure
connection between CPS and monitoring system.
2. However, in cases like Stuxnet, where the worm infects the CPS itself, cryptographic mea-
sures alone might prove inadequate if the attacker gains access to the certificate within the
CPS’s run-time core or can send out fake operation data with valid signatures on his own. To
address this concern, the second mitigation mechanism comes into play. The responsibility
for reporting operational data lies with the protective shell. The protective shell acts as an
intermediary between the CPS core and the personnel monitoring system. It receives sen-
sor readings, signs them using the cryptographic keys, and forwards them to the monitoring
system before the potentially compromised CPS core can tamper with or discard the data.
By effectively blocking and discarding any invalid operational data sent by the infected CPS
core, the protective shell ensures that only accurate and trustworthy data is transmitted to
the monitoring system. The firmware of the protective shell is protected by code-signing,
allowing its operation only after its code integrity has been thoroughly checked. This strin-
gent protection makes it significantly difficult for attackers to compromise the signing and
forwarding process. Further details on the effectiveness of this code-signing approach will
be elaborated in the specific protective shell example of the Jeep Cherokee security inci-
dent in section 5.5.3. The combination of these two mitigation techniques ensures that the
monitoring systems receive a ”clean feed“ of the centrifuges’ operational data, which is not
susceptible to manipulation by attackers. However, it is essential to recognise that if the
monitoring systems themselves are infected, the protective shell’s influence on ensuring
the accuracy of the displayed data would be limited.

Alerting and Logging Similar to previous protective shells, the specific protective shell de-
signed for the uranium-enriching centrifuges incorporates essential alerting and logging ca-
pabilities. These features play a critical role in maintaining the security and integrity of the
CPS by ensuring prompt responses to potential threats and enabling post-incident analy-
sis. Whenever the protective shell detects abnormal behaviour or has to intervene with the
CPS intended actions, the personnel must be alerted through their monitoring systems and
extensive logs have to be written. By receiving real-time alerts, personnel can take immedi-
ate actions to investigate and respond to potential security breaches or impending failures.
Additionally, the extensive logs are invaluable during post-incident analysis, as they can pro-
vide insights into the goals of the cyber-attack, or in case of predictive maintenance, what
components are prone to failures and need replacement frequently.

59

5 Specific Protective Shells

5.3.4 Protective Shell Evaluation

This section presents a critical assessment whether the malicious destruction of uranium-
enriching centrifuges during the Stuxnet cyber-attack could have been prevented through
the implementation of a specific protective shell, equipped with previously presented mit-
igation mechanisms. The primary objective of the protective shell is to safeguard the cen-
trifuges controlled by PLCs from destruction due to malicious instructions sent to them.
Consequently, the protective shell must address the identified vulnerabilities in the original
design architecture uncovered during the incident analysis.
The evaluation aims to determine the effectiveness of the protective shell’s capabilities in
mitigating the identified vulnerabilities through variousmonitoring and validation processes,
thereby reducing residual risk. Additionally, it investigates whether the implementation of
the protective shell introduced any new vulnerabilities.

Remediation ofOld Attack Vectors The original centrifuges controlled by Siemens Simatic-
S7 PLCs lacked crucial range validations, allowing Stuxnet to manipulate the centrifuges ro-
tations outside their safe operation frequency. To counter this, the first important mitigation
mechanism incorporated in the specific protective shell provided the CPS with the safety-
critical range validations. Instructions send to the centrifuges that violate these range valida-
tion are intercepted and discarded by the protective shell, mitigating potentially dangerous
outcomes.
Furthermore, more sophisticated anomaly detection through a behavioural model provides
the protective shell with additional capabilities for detecting rather concealed malicious ac-
tivity and enables predictive maintenance. Consequently, deviations from the normal ura-
nium enrichment process, whether caused by unauthorised activities or failing components,
can be promptly and efficiently detected, enhancing the overall system’s reliability and trust-
worthiness. This approach reduces failure modes arising from unpredicted maintenance or
malicious actions.
Moreover, the protective shell introduces improvements in the protection of operational
data forwarded to external monitoring systems. This enhancement ensures more reliable
and trustworthy monitoring for personnel overseeing the centrifuges controlled by PLCs
and mitigates the risk of falsified operation data being used for distraction.
Lastly, through the incorporation of alerting and logging capabilities, personnel can rapidly
respond to detected intrusions, limiting potential damages at an early stage. Additionally, the
logs aid in post-incident analysis, enabling the discovery of primary attack goals, exploited
vulnerabilities, and informing strategies to reinforce security solutions. This remediates the
failure mode observed during the Stuxnet attack, where the malware operated undetected
for several months.

Identification of New Vulnerabilities Similar to the specific protective shell for the Therac-
25, the mitigation techniques employed here impose more stringent operational parame-
ters compared to the original design. Consequently, identifying new attack vectors or failure
modes becomes challenging. One potential concern is that the protective shell might falsely
interrupt the current uranium enrichment process, if an anomaly is detected, causing the
current gas batch to be unusable. However, it is essential to prioritise the protection of the
centrifuges than trying to save the gas batch and risking a more permanent set-back of the
nuclear program.

60

5.3 Stuxnet

Conclusion The evaluated protective shell incorporates multiple mitigation mechanisms,
significantly enhancing the system’s trustworthiness. It effectively addresses the vulnerabil-
ities found in the PLCs controlling the centrifuges. However, since Stuxnet affected many
more systems along its way through the nuclear facility network, this protective shell only
adds safeguards to the centrifuges and the Siemens controllers.
Considering the evaluation, it is highly plausible that the Stuxnet’s primary goal of destroy-
ing the centrifuges could have been prevented with the implementation of this suggested
protective shell, thereby reducing the risk of compromise and potential property damage to
critical uranium-enriching centrifuges.
The thorough evaluation of this protective shell’s features and their impact on avoiding fail-
ure modes underscores the significance of such security measures in CPS, particularly in
critical domains like military and research.

61

5 Specific Protective Shells

5.4 Toyota "Unintended Acceleration" ETCS

5.4.1 Introduction

Starting in 2002, there was an increased number of reports regarding unintended accel-
eration (UA) in newer Toyota vehicles, resulting in instances of uncontrollable vehicles and
subsequent crashes. Initially, Toyota attributed these incidents to their floor mats, suggest-
ing that they were causing UA by holding down the acceleration pedal. Consequently, Toyota
initiated a recall of floor mats in an attempt to mitigate the occurrence of UA accidents.
However, there were cases where floor mats could not have caused the accidents, either
because they were stored in the trunk or were not used at all.
The second component implicated by Toyota was the acceleration pedal itself. The so-called
”sticky gas pedals“ were believed to cause UA due to complete failure of the spring respon-
sible for returning the throttle, or insufficient strength to do so. Despite an expanded recall
encompassing these ”sticky gas pedals“, it failed to significantly reduce the number of UA
accidents.
Fast-forward to 2010, CBS News reported a total of 6,200 complaints, 57 injuries, and 89
deaths, all of which were correlated with Toyota UA incidents. As a result, a congressional
investigation was launched against Toyota, with a team at NASA assigned to examine the
technical aspects of UA, including the electronic throttle control system (ETCS). ETCS oper-
ates by electronically decoupling the direct mechanical connection between the accelerator
pedal and the engine, with the pedal position directly influencing engine power. Conse-
quently, ETCS governs air and fuel flow within the system, as well as the ignition spark to
regulate engine power. Undeniably, ETCS is a safety-critical system, as its failure can lead to
fatalities, injuries, and significant property damage.
During subsequent court trials involving Toyota, technical experts testified that the malfunc-
tioning of the ETCS was likely the cause of many UA accidents. They discovered software
glitches and hardware failures, leading the jury to side with the prosecution against Toyota.
Furthermore, these trials revealed that Toyota had not provided NASA with all the necessary
information regarding ETCS during the congressional investigation and had, on multiple oc-
casions, misrepresented the safety mechanisms implemented.
Engineering principles such as fail-safe design, redundancy, and system testing were disre-
garded or ignored in the design of the ETCS. The Toyota UA trials served as a clear demon-
stration that corporations can be held accountable for negligently disregarding safety stan-
dards and developing unreasonably dangerous products for their intended use. Moreover,
the presence of safety regulations, akin to those governing the aviation sector under the
Federal Aviation Administration, is not a prerequisite for prosecuting corporations in sectors
lacking such regulations. In sectors like the automotive industry, where no central authority
enforces specific regulations, it is sufficient to establish corporate liability by demonstrating
the defect’s existence in the intended use of the product and establishing the link between
this defect and the security incident or safety accident.

5.4.2 Vulnerabilities within CPS

Vulnerabilities within Toyota’s ETCS were found by NASA commissioned by US Department
of Transportation [25] and during the Bookout versus Toyota & Schwarz versus Toyota trials
[26].

Single Point of Failure In Toyota’s ETCS design, there are two independent sensors, VPA1
and VPA2, which serve as inputs for the accelerator pedal position, as depicted in Figure 5.3.
This design aims to provide redundancy, wherein if one sensor fails, the monitor ASIC can

62

5.4 Toyota "Unintended Acceleration" ETCS

identify any discrepancies in sensor readings and take appropriate action. However, both
signals are routed to the same analogue/digital converter, creating a single point of failure.
If the converter malfunctions, incorrect calculations for both sensors are transmitted to the
main CPU, rendering the redundant schema ineffective. The main CPU lacks the capability
to validate the input from the monitor ASIC since the sensor readings have already been
calculated, whichmay result in falsified results. Consequently, amalfunction in the converter
could lead to an electronically stuck accelerator pedal.

Figure 5.3: Toyota UA - Single Point of Failure [25]

No Brake Override In the Toyota models affected by unintended acceleration, the braking
system was power-assisted, allowing the driver to apply only a fraction of the force required
on the brake pedal, with the remaining force provided by a vacuumpump to achieve the nec-
essary braking power. However, when the throttle was engaged, the brakes were no longer
power-assisted, resulting in a reduction of the force applied to the brakes by approximately
8 to 10 times. NASA calculations revealed that in order to compensate for full-throttle ac-
celeration, the driver would need to exert a force of 80 kg on the brake pedal [25].
Furthermore, when the throttle was engaged, the brakes not only lacked power assistance
but also did not override the throttle input. This means that there was no mutual exclusion
implemented in the ETCS to prevent simultaneous acceleration and braking. In a robust
safety architecture, the brake signal should take priority over the accelerator signal, ensur-
ing fail-safe operation in the event of an electronically stuck accelerator pedal.

No Error Correcting Code for RAM Toyota informed NASA that they had implemented
error detection and correction (EDAC) for the static RAM used in the ETCS. This involved in-
corporating additional bits inmemory to guard against bit errors by utilising error-correcting
code algorithms, which can detect and sometimes even correct such errors.
However, it was later discovered that Toyota had not actually implemented EDAC for the
SRAM utilised in the ETCS. Given that the ETCS is a safety-critical system, a single bit flip could

63

5 Specific Protective Shells

potentially lead to an accident. Bit flips can occur due to software defects or as a result of
a phenomenon known as a single event effect. Single event effects refer to the continuous
radiation of highly energetic particles in the surroundings, which can impact sensitive nodes
and cause them to change state (i.e., experience a bit flip).
Both causes, software defects and single event effects, must be effectively mitigated in
safety-critical systems to prevent run-time errors that could result in unpredictable out-
comes.

Stack Buffer Overflow and Software Defects In the Bookout trial, experts concluded that
the ETCS code contained software defects that led to stack buffer overflow [26]. Stack buffer
overflow is a software vulnerability that occurs when a programwritesmore data into a fixed-
size buffer on the stack than it can hold. As a result, it can overwrite data at addresses used
by other functions, leading to unexpected behaviour.
One of the identified software defects was the use of unprotected recursion, resulting in
memory corruption. As mentioned earlier, this memory corruption was not protected by
EDAC and could lead to the suspension of critical ETCS tasks. Furthermore, some of these
task suspensions were not detected by fail-safe mechanisms that should have restarted the
entire system. These gaps in fail-safe behaviour rendered the ETCS software less robust, as
failures in either hardware or software components could compromise the system’s overall
safety.
Undoubtedly, there are likely numerous other software defects present in the ETCS. In the
Bookout trial, experts discovered approximately 80,000 violations of MISRA C rules within
296,100 lines of code [26]. MISRA C is a coding standard for the C programming language
that provides guidelines and rules to ensure the safety, reliability, and portability of em-
bedded software. It aims to minimise potential vulnerabilities and improve code quality by
enforcing strict rules regarding language usage, syntax, and coding practices. As a general
guideline, it is often estimated that for every 30 MISRA C rule violations, the software likely
contains one major bug.

5.4.3 Specific Protective Shell Mitigation Mechanisms

The specific protective shell developed for the Toyota electronic throttle control system
(ETCS) incorporates several core mitigation mechanisms to address the vulnerabilities that
led to the accidents previously analysed. The purpose of this protective shell is to safeguard
the CPS electronically controlling the throttle from failures. In the following section, those
key mitigation mechanisms are presented, which build the main characteristics of this pro-
tective shell.

Reevaluation of Sensor Readings One critical vulnerability in the original ETCS design was
attributed to a single-point-of-failure in the analogue/digital converter, leading to potential
conversion errors and an electronically stuck acceleration pedal. To address this core vul-
nerability, the protective shell incorporates a fundamental mitigation mechanism.
As depicted in the protective shell’s architecture 4.3, it actively monitors all sensor readings,
including the two accelerator pedal positions (VPA) and the application signals sent to actua-
tors, such as the throttle position (VTA) transmitted to the engine. Given the high correlation
between the accelerator pedal and throttle positions, the protective shell can effectively de-
tect anomalies by comparing the movements of these parameters. Typically, pressing the
accelerator pedal down results in an increased throttle, and vice versa. However, if the ac-
celerator pedal is moved up while the throttle position remains unchanged, the protective
shell identifies an anomaly and intervenes by adjusting the signals sent to the engine to re-
duce power accordingly. Additionally, redundancy is introduced through the utilisation of

64

5.4 Toyota "Unintended Acceleration" ETCS

two sets of sensors for VPA and VTA, which are continuously validated for any deviations
between them. This redundancy ensures that the protective shell is not reliant on a single
sensor, mitigating potential single-point-of-failures.
Moreover, there are several other correlations between the accelerator pedal sensor and
other variables, such as engine torque and speed. These correlations enable cross-validations
that can be incorporated into the predefined desired behaviour by domain experts, either
through specifications and rule-sets or as part of the trained behaviour baseline, which will
be discussed in more detail below.
To enhance robustness, the protective shell may include a redundant A/D converter to con-
tinuously monitor the functionality of the primary converter within the ASIC chip as another
mitigation approach to failures. While the additional computation overhead and value com-
parison introduce some latency compared to the more efficient cross-validation and plau-
sibility checks, this redundant, fault-tolerant setup completely mitigates the single-point-of-
failure vulnerability.

Brake Signal Priority An additional essential mechanism in preventing unintended accel-
eration is signal prioritisation or more specifically brake override. By implementing mutual
exclusion for simultaneous acceleration and braking, with the brake signal taking priority,
the protective shell can effectively prevent the vehicle from accelerating when the brake is
applied, providing the driver with a means to intervene in hazardous situations.
It is essential to note that there is no practical scenario where the driver would need to ac-
celerate and brake simultaneously. Thus, when both acceleration and brake signals are re-
ceived simultaneously by the protective shell, an anomaly is detected, triggering corrective
actions to prioritise the brake signal. Since accelerating and braking are exactly counter-
acting, a false signal could equalise or diminish the correct signal and its actuator actions.
Moreover, the brake signal does normally lead the system into a safe state, in contrast to
uncontrolled acceleration.
As part of the sensor readings reevaluation within the model specified by domain experts,
the protective shell incorporates the understanding of the inverted nature and direct cor-
relation between the accelerator and brake signals. By recognising this relationship, the
protective shell can promptly discard any acceleration request to the ETCS when brakes are
pressed, further enhancing the safety and responsiveness of the system.

Behaviour Model Training In line with other protective shells, Toyota’s ETCS can signifi-
cantly benefit from implementing a behaviour baseline that extends the static models spec-
ified by domain experts and is trained using real-world operation data from the vehicles.
While the concept of the behaviour baseline has been explained in detail previously, it is
worth highlighting the specific advantages it brings to the implementation of Toyota’s ETCS.
The behaviour baseline plays a crucial role in the reevaluation of operation data, facilitating
cross-validation against known correlations, and conducting thorough plausibility checks. By
analysing historical data and comparing it to established behaviour patterns, the behaviour
baseline helps ensure that the system operates as expected and identifies any deviations
that may indicate potential anomalies or hazards.
Furthermore, the behaviour baseline provides an effective means for detecting emergent,
negative properties that may not have been anticipated during the system’s development.
A prime example is the unpredicted suspension of critical ETCS tasks due to software de-
fects or memory corruption. In such cases, where certain tasks lack monitoringmechanisms
(e.g., a watchdog timer) to ensure their proper operation, the behaviour baseline can step
in and acquire intrinsic knowledge about the expected behaviour of these tasks through
analysis of application events recorded in log files. With this knowledge, the protective shell
becomes equipped to detect anomalies caused by software defects, memory corruption, or

65

5 Specific Protective Shells

single event effects. If any such anomalies are detected, the protective shell can respond
promptly and appropriately by taking corrective actions. For instance, in the event of a criti-
cal ETCS task failure, the protective shell first detects it and may attempt to restart the failed
task or even initiate a system-wide restart, mirroring the actions of a watchdog mechanism.
By leveraging anomaly detection through a trained behaviour model, Toyota’s ETCS can en-
hance its ability to anticipate and address unexpected issues, ultimately enhancing the sys-
tem’s trustworthiness while ensuring its continued reliability during real-world operation.

Time-Sequential Analysis and Retrospective Data Evaluation Another crucial mitigation
mechanism employed in the protective shell is time-sequential data analysis, similar to the
approach implemented in the Boeing 737 Max MCAS protective shell. By considering pre-
viously received data streams, the protective shell can assess whether the ETCS is experi-
encing or heading towards a failure mode. For example, when examining data related to
an electronically stuck acceleration pedal, a single data point may not immediately reveal an
anomaly. However, when viewed in the context of previous values, non-fluctuating readings
would indicate that something is wrong, as human drivers cannot consistently maintain the
acceleration pedal at the same position for an extended period, except for full throttle or no
throttle. Time-sequential analysis empowers the protective shell to identify deviations and
anomalies by tracking data trends and variations.
Furthermore, time-sequential analysis enables the protective shell to counteract unpre-
dictable algorithm outcomes arising from software defects, memory corruption, or similar
issues. Algorithms are inherently deterministic, meaning they should produce the same
output for the same input. Consequently, application signals should correlate strictly with
sensor readings. By analysing historical data vectors combining sensors, actuators, and ap-
plication signals and leveraging the trained behaviourmodel, the protective shell can project
these data sets into the near future and determine individual value expectations and accept-
able thresholds (using data trends and variations as references). For instance, if a vehicle is
travelling at 50 km/h and the protective shell has a sampling frequency of 100 Hz (acquiring
100 data points per second or 1 data point every 10 ms), the protective shell can calculate
the expected speed value for the next iteration.
Suppose the vehicle is exhibiting an accelerating trend, and the protective shell calculates
an expected speed value of 50.2 km/h for the next data point. However, considering the
possibility of the driver initiating emergency braking or accelerating more rapidly, the pro-
tective shell establishes possible thresholds based on the expected value, such as 48 km/h
as the lower bound and 50.5 km/h as the upper bound. Consequently, when the next data
vectors are reported to the protective shell, it can efficiently and rapidly assess whether the
values can be trusted or if they indicate anomalies. Values that are reported as impossi-
ble or highly unlikely based on the established thresholds will prompt the protective shell
to take appropriate actions to address potential issues and ensure the system’s continued
safe operation.

Alerting and Logging Alerting and logging capabilities are also required for this protective
shell but deviate a bit from the others CPS previously introduced. In the context of vehi-
cles, the protective shell must be equipped with alerting and logging capabilities to keep
passengers and drivers informed about the system’s status and any detected anomalies. As
the majority of drivers are not experts in vehicle mechanics, the protective shell needs to
provide clear and concise alerts displayed on the infotainment display. These alerts should
not delve into excessive technical detail but rather deliver essential information, such as the
necessary steps to be taken (e.g., visiting a service centre) or if the protective shell has al-
ready taken corrective actions.

66

5.4 Toyota "Unintended Acceleration" ETCS

Real-time information is crucial, as it empowers drivers to assess the situation and take ap-
propriate protective measures on their own. By receiving timely alerts, drivers can quickly
understand the potential risks and make informed decisions to ensure their safety and the
safety of their passengers.
On the other hand, the operational logs generated by the protective shell must be very de-
tailed. These logs serve as a valuable resource for experts who analyse them to identify
various scenarios. Experts need to be able to distinguish between an isolated problem that
affects only one vehicle, a broader issue affecting a fleet of similar vehicles, or instances
where the protective shell may have triggered a false alarm.
By striking the right balance between clear and concise alerts for drivers and detailed logs
for experts, the protective shell can enhance the overall safety and security of the vehicle.
Drivers can respond promptly to potential risks, while experts can gain insights from the
logs to address specific anomalies and improve the system’s reliability.

5.4.4 Protective Shell Evaluation

This section presents a rigorous evaluation of whether the ”Unintended Acceleration“ acci-
dents in Toyota vehicles could have been prevented through the implementation of a spe-
cific protective shell equipped with the previously described mitigation mechanisms. The
primary objective of the protective shell is to safeguard Toyota’s ETCS from faults that have
been identified as contributing factors to safety accidents resulting in numerous injuries and
fatalities. Therefore, the protective shell must effectively address the vulnerabilities in the
original ETCS design that were uncovered during the accident analysis.
The evaluation seeks to assess the effectiveness of the protective shell’s capabilities in miti-
gating the identified vulnerabilities through a series of monitoring and validation processes,
ultimately reducing the residual risk associated with potential failures. Additionally, the eval-
uation investigates whether the implementation of the protective shell introduced any new
vulnerabilities that could compromise the overall safety and reliability of the system.

Remediation of Old Failure Modes The protective shell is equipped with several effective
mitigation mechanisms to address the failure mode of an electronically stuck acceleration
pedal. If the A/D converter fails, causing the main CPU to erroneously perceive the accel-
eration pedal as being in a fixed position for an extended time, the protective shell would
identify this anomaly through monitoring and validation processes.
Firstly, the reevaluation of the acceleration pedal signal in relation to the throttle level serves
as a key indicator of abnormal behaviour, prompting the protective shell to intervene imme-
diately. Secondly, cross-validation to several correlated data streams to the throttle position
enables the protective shell to detect an unresponsive engine power control to the pedal,
thus triggering safety fallbackmeasures, such as safely bringing the vehicle to a stop. Thirdly,
the time-sequential analysis and anomaly detection based on the behaviourmodel reinforce
the protective shell’s identification of an electronically stuck pedal condition. The presence
of multiple methods to underline an anomaly ensures a sound and reliable assessment by
the protective shell, thereby enhancing the overall trustworthiness of the system and pro-
viding increased explainability of its actions.

Another critical failure mode addressed by the protective shell is the lack of power as-
sistance in the brakes during unintended acceleration, making it challenging for the driver
to apply sufficient pressure on the brakes to counteract the acceleration force and slowing
the vehicle down. The implementation of brake override in the protective shell guarantees
that any throttle signal is overridden by brake signals, swiftly stopping ongoing acceleration
and enabling the vacuum pump to provide the intended power assistance for the brakes.

67

5 Specific Protective Shells

The safety accidents resulting from this fault were not instantaneous, as drivers typically had
enough time to react and take protective measures on their own. For instance, in the tragic
crash on August 28, 2009, involving driver Mark Saylor, a highway patrol officer and vehicle
inspector, and three passengers falling victim to an unintended acceleration accident while
being on an emergency phone call with 911. This shows that the driver had sufficient time to
react to the upcoming safety accident if he could initiate an emergency call while the vehicle
accelerated. The protective shell provides the driver with the capabilities to initiate strong
protective actions by enforcing brake override.

Furthermore, the protective shell seeks to prevent failure modes associated with soft-
ware defects, memory corruption, and other similar issues. The unpredictability of algo-
rithm outcomes in certain operation conditions, caused by single event effects, software
bugs (indicated by numerous MISRA C rule violations in the ETCS’ code base), and memory
corruption, has the potential to lead to faults during run-time, increasing the risk of safety
accidents. While the protective shell does not directly improve the underlying architecture
of the run-time core, such as implementing much-needed Error Detection and Correction
(EDAC) for the SRAM, it deploys mitigation mechanisms to detect and rectify safety-critical
tasks that exhibit unpredictable behaviour before they propagate into system-wide negative
effects.
The behaviour model’s anomaly detection plays a central role in identifying early signs of
system drift towards failure, analysing the origins of negative properties, and taking appro-
priate corrective actions, such as isolating task signals to actuators and restarting them to
address run-time errors. By actively monitoring and addressing such issues, the protective
shell contributes significantly to maintaining the overall safety and reliability of the ETCS.

Identification of New Vulnerabilities While the protective shell offers substantial benefits
in mitigating known failure modes, it is essential to consider potential new vulnerabilities
that may be introduced by its implementation to ensure a thorough evaluation of its effec-
tiveness for the CPS.
One new failure mode introduced with the implementation is caused by the protective shell
falsely detecting anomalies, such as unintended acceleration, leading to the gradual reduc-
tion of engine power and bringing the vehicle to a stop. In such a scenario, the effectiveness
of the protective shell depends on the timely response of the driver and passengers to the
alerts displayed on their infotainment system’s display. If they fail to react promptly, stop-
ping the vehicle on an active lane instead of the hard shoulder could significantly increase
the risk of rear-end collisions and potential hazards to other road users.
Furthermore, the prioritisation of brake signals by the protective shell may render the ve-
hicle non-driveable if incorrect brake signals are received. This situation can pose serious
risks to the occupants, particularly in critical driving conditions where the vehicle’s respon-
siveness is crucial for safety.
Additionally, the automatic restart of individual tasks or the entire system during operation
is another aspect that requires careful consideration. While restarting can be a valuable
recovery mechanism for resolving certain failures, it must be approached with caution. Au-
tomatic restarts should only be employed if the alternative presents a greater risk, and the
protective shell must be capable of distinguishing between transient errors and persistent
faults. For instance, if a non-critical task fails, it might be safer to display a warning to the
driver to restart the vehicle safely, rather than automatically restarting specific tasks. Addi-
tionally, if the error persists even after a restart, the vehicle should ideally be outside road
traffic, in a safe location where the driver can seek expert assistance.
To ensure the overall effectiveness of the protective shell and maintain a high level of safety,
these potential new failure modes should be thoroughly assessed, and suitable safeguards

68

5.4 Toyota "Unintended Acceleration" ETCS

should be implemented to mitigate their impact. Striking a balance between proactive inter-
vention and ensuring human control and decision-making is critical in achieving a reliable
and robust protective shell for this specific CPS.

Conclusion The evaluated protective shell incorporates multiple mitigation mechanisms,
significantly enhancing the system’s trustworthiness by effectively addressing most of the
vulnerabilities found in Toyota’s ETCS. However, some vulnerabilities in the run-time CPS
cannot be entirely eliminated by the protective shell alone, but their risks they are exposing
for failures can be substantially reduced. For instance, the protective shell cannot provide
the underlying CPS run-time systemwith error detection and correction techniques for their
SRAM.
Notably, the protective shell introduces a few new failuremodes; nevertheless, their risks re-
main within acceptable ranges and are considerably lower than the failure modes that have
been successfully remediated. Overall, the implementation of the protective shell reduces
the residual risk to an acceptable level.
Considering the evaluation, it is highly plausible that many safety accidents associated with
ETCS failures could have been prevented with the suggested implementation of this pro-
tective shell, thus significantly reducing the risk of injuries and fatalities in Toyota vehicles
caused by unintended acceleration. The thorough assessment of the protective shell’s fea-
tures and their impact on avoiding failuremodes underscores the importance of such safety
measures in CPS, particularly in critical domains like the automotive industry.

69

5 Specific Protective Shells

5.5 Jeep Cherokee Hack

5.5.1 Introduction

The Jeep Cherokee Hack was a well-known security incident in the automotive industry and
caused the first physical recall of a mass-produced product because of a software security
issue.
In 2015, two security researchers demonstrated that they were able to remotely take control
of a Jeep Cherokee through its Uconnect infotainment system, which had besides others a
cellular connection to the internet. The researchers were able to access the vehicle’s criti-
cal systems, including the brakes and steering. The ethical hack was conducted by Charlie
Miller and Chris Valasek, without endangering any persons or causing property damage. The
researchers informed Chrysler of the vulnerability, and the company issued a recall for 1.4
million vehicles to apply security patches.
The incident raised concerns about the security of connected vehicles and the potential for
cyberattacks. It highlighted the need for automotive manufacturers to pay closer attention
to the security of their products and ensure that appropriate security measures are in place.
While adding more and more functionalities and increasing usability of their products, the
attack vector increased drastically and the sheer amount of codemade software vulnerabili-
ties almost certain. Therefore, a safety- and security-aware development process is required
while developing safety- and security-critical systems and leverage the principle of safety and
security by design. Otherwise, safety and security will fall behind while the developers try
to meet time-to-market requirements with high management expectations and low overall
budget.

5.5.2 Vulnerabilities within CPS

The following vulnerabilities are summarised and carefully selected from Charlie Miller’s and
Chris Valasek’s extensive report, ”Remote Exploitation of an Unaltered Passenger Vehicle“
[27].
In a modern car, the attack surface is significantly large. In addition to wired connections
such as USB ports, there are numerous wireless connections. Nowadays, the multimedia
system is often equipped with Bluetooth and W-iFi capabilities to facilitate easy connec-
tivity with mobile devices. Moreover, some cars have cellular connections for Over-the-Air
firmware updates. Lastly, certain internal components, like the tire-pressuremonitoring sys-
tem (TPMS), are also connected wirelessly. Consequently, an attacker has a wide range of
potential intrusion points.
Upon successful infiltration, the ultimate objective is to transmit arbitrary controller area
network (CAN) messages. These messages are sent and received on the CAN bus by vehicle
components to facilitate communication among themselves. While some messages pertain
to less safety-critical components like the radio or navigation system, there are also highly
safety-critical components involved, such as ABS, the engine, and the self-parking assistant.

WeakWPA2 Password Generator Asmentioned previously, one attack vector involves the
built-in Wi-Fi Hotspot. Uconnect utilised the WPA2 security protocol standard, which is still
considered secure today. In order to establish a connection to the Wi-Fi Hotspot, the user
had to enter a seemingly random password displayed on the infotainment system’s screen.
However, this purportedly ”random“ password was not truly random.
To begin with, it is important to understand that computer algorithms do not possess true
randomness in and of themselves. Algorithms are deterministic, meaning that for the same
input, an algorithm will always produce the same output. Generating a genuinely random

70

5.5 Jeep Cherokee Hack

number is a non-trivial task for a computer. Variousmethods exist to simulate a form of non-
determinism. One popular approach involves initially seeding the algorithm. A seed is an
additional input that should incorporate pseudo-randomness, which the algorithm cannot
generate on its own. By inputting a seed, the algorithm can exhibit randomness equivalent
to that of the original seed.
Returning to the issue of weakWPA2 password generation in the Uconnect system, onemay
speculate that the chosen seed for the algorithm was flawed. Uconnect seeded the gener-
ation process based on a timestamp in seconds from when the vehicle, specifically the info-
tainment system, was first booted. Consequently, an attacker could significantly reduce the
potential password space to approximately 15million passwords if they could determine the
production year. Furthermore, by imposing the condition that the car was initially turned on
during the day, the attacker could further decrease the number of possible passwords to 7
million. Even as early as 2015, it took merely an hour to brute force 7 million WPA2 pass-
words, with an expected time of approximately 30 minutes to find the correct password.
However, the password generator was discovered to be far more insecure. The infotain-
ment system required a cellular connection to synchronise the current time with a server
during its initial boot. Unfortunately, many vehicles were startedwithin the factory for testing
purposes, where a cellular connection was either unavailable or unstable. Since time is cru-
cial for numerous functionalities, the developers decided to set the time to a default value
(01.01.2013) if no cellular connection could be established during the first boot. Even if the
user manually adjusted the time later on, it would not alter the static WPA2 password once
it was set. Consequently, most vehicles ended up generating one of a few WPA2 passwords,
with the first few seconds of 2013 as the seed.

Insecure Configuration When connected to the Uconnect local network, an NMAP scan
can be initiated to search for hosts and open ports. The car’s Wi-Fi interface reveals multiple
open ports, one of which belongs to the D-Bus service. D-Bus facilitates interprocess com-
munication among different internal applications. Therefore, it is essential to have a firewall
in place to block external communication.
Participating in D-Bus communication usually requires authentication, limiting access to
trusted entities. However, the D-Bus was configured to allow anonymous logins and un-
restricted participation in the communication.
Next, the attacker needs to acquire command line execution capabilities on the car’s head
unit, possibly through the running D-Bus service. Security analysts Charlie Miller and Chris
Valasek discovered several opportunities for command line injection within the methods
provided by the D-Bus services. By crafting a parameter that escapes the current context
with special characters, the system would interpret the remaining parameter as bash com-
mands.
However, upon analysing the potential D-Bus servicemethods, they found a standardmethod
called ”execute“ that simply executes the given parameter on the command line. As a result,
no command line injection was necessary.
Lastly, to infiltrate the system further and establish persistence, the typical next step would
involve exploiting privilege escalation vulnerabilities to elevate the permissions of the cur-
rently running shell command. However, the D-Bus service was executed as root, granting
full system permissions.

Later, it was found that not only did the Wi-Fi interface have several ports open, but also
the cellular interface. Therefore, the entire attack pattern was not only possible from a close
distance via theWi-Fi connection but enlarged the attack vector to a global scale by assigning
the car host an IP address.

71

5 Specific Protective Shells

No Firmware Signing As previously explained, the ultimate objective is to transmit arbi-
trary CAN messages on the interior high-speed CAN bus in order to control devices that are
listening on this bus. Car manufacturers promote the security of their vehicles by highlight-
ing the built-in air gap between the infotainment system chip, which has extensive connec-
tivity, and their safeguarded safety-critical systems.
This secure design principle is absolutely crucial in mixed critical systems. However, what
they fail to mention is that the infotainment chip is not completely isolated from the CAN
bus to the extent one might assume when hearing the term ”air-gapped.“ While it is true
that this chip cannot directly send CANmessages, certain functionalities of the infotainment
system require CAN connectivity. Consequently, there is another chip on the board that
is connected to both the CAN bus and the infotainment chip. When the infotainment sys-
tem requires a functionality covered by specific CAN messages, it communicates with the
second chip through their Serial Peripheral Interface (SPI) connection, and the second chip
then sends out the required CAN messages on its behalf.
There is no inherent capability to send arbitrary CAN messages from the infotainment chip.
However, since users can update the firmware by connecting a USB stick to the infotainment
system’s USB hub, there must be an update mechanism initiated from the first chip to the
second chip with CAN bus connectivity. One could imagine manipulating the firmware of
the second chip in such a way that a backdoor is implemented, enabling the infotainment
chip to transmit arbitrary CANmessages to the CAN bus instead of just predefined ones that
the second chip would forward. Typically, manipulated firmware is non-functional because
during startup, its integrity and authenticity are verified by validating the included signature.
However, in cars using the Uconnect system, no code signing measures were in place to
mitigate such an attack.

Ultimately, security analysts CharlieMiller andChris Valasek successfullymanaged to trans-
mit arbitrary CANmessages and gain control over significant portions of the car’s digital com-
ponents. They were able not only to fully control the multimedia system, air conditioning,
and GPS tracking but also to access safety-critical systems such as the brakes, speedometer,
steering, lock mechanism, and even shut down the engine.

The insecure software within the Uconnect system, developed by Harman International,
can be considered a supply chain vulnerability that impacted a wide range of Fiat Chrysler
Automobiles brands, such as Jeep, Dodge, and RAM. This serves as a fitting illustration of
the disregard for Zero Trust Architecture across multiple interfaces, where communication
lacked both security and authentication measures. It is crucial to isolate critical systems
from less secure and easily accessible systems, such as infotainment, in order to minimise
the potential harm resulting from a single security breach.

5.5.3 Specific Protective Shell Mitigation Mechanisms

The specific protective shell developed for the Uconnect infotainment system incorporates
several core mitigation mechanisms to address the vulnerabilities that led to the security in-
cident previously analysed. The purpose of this protective shell is to safeguard the CPS from
attacks, that controls some important features in the car and has indirect access to the in-
ternal CAN bus communicating to safety- and security-critical components. In the following
section, those key mitigation mechanisms are presented, which build the main characteris-
tics of this protective shell.

Brute-force Attack Detection One of the important mitigation mechanisms employed to
address cyber-attacks on the Uconnect system is the implementation of brute-force attack

72

5.5 Jeep Cherokee Hack

detection and prevention. Brute-force attacks involve repeated attempts to guess a pass-
word or key in order to gain unauthorised access. Although this mechanism may be consid-
ered relatively insignificant in the context of the cyber-attack analysed previously, it plays a
crucial role in a broader context for the Uconnect system security and its protection.
A key challenge for the protective shell is that it lacks direct control over the generation pro-
cess of the WPA2 password and cannot modify design decisions related to using the system
time as a seed and its pseudo-randomness. Consequently, the protective shell relies on so-
phisticated data analysis of packets traversing through it to identify and restrain undesired
Wi-Fi access attempts by potential attackers. To accomplish this, the protective shell adopts
mechanisms commonly employed in network-based Intrusion Detection Systems (IDS) and
Intrusion Prevention Systems (IPS). Two primary techniques are utilised: rate limiting and
address blocking.
Rate limiting is employed to restrict the number of login attempts processedwithin a defined
time-frame. By artificially slowing down the processing rate of login attempts, brute-force
attacks are rendered impractical, as the sheer volume of possible combinations makes it
infeasible to guess the correct password within a reasonable timeframe.
Address blocking is another crucial mechanism utilised to counter brute-force attacks. It
involves temporarily banning addresses that exhibit suspicious behaviour, such as multiple
failed login attempts. By blocking access from these suspicious addresses, the protective
shell mitigates the risk of unauthorised access attempts.
To specifically address brute-force attacks targeting the Uconnect system, the protective
shell forwards only a limited number of authentication requests to the Wi-Fi module per
given time-frame, discarding any excess requests. By doing so, the protective shell effec-
tively attackers from trying different passwords rapidly. Furthermore, the protective shell
has the capability to detect suspicious behaviour from specific addresses and block further
communication, particularly in cases where attackers do not employ MAC address spoofing.
By identifying and isolating these suspicious addresses, the protective shell enhances the
overall resilience of the Uconnect system against brute-force attacks.

Emulated Firewall Following the publication of the report by Miller and Valasek [27], Fiat
Chrysler released a security update for the Uconnect system to rendering the exact attack
pattern from Miller and Valasek ineffective. This update involved a key mitigation mecha-
nism, the restriction (status filtered) of ports on the Uconnect interfaces for both Wi-Fi and
cellular connections to external devices. The protective shell can adapt this technique by
effectively emulating this firewall behaviour, thereby mitigating the insecure configuration
that existed in the original Uconnect design.
The protective shell acts as a filtering barrier, intercepting and discarding network communi-
cation packets from external devices that are intended to reach internal components of the
Uconnect system. This strategic filtering prevents direct communication with internal com-
ponents from external devices, which was not an intended use case in the original Uconnect
design. By imposing this restriction, the protective shell significantly reduces the attack vec-
tor available to potential malicious users.
In the original Uconnect design, certain open ports allowed external access to core system
components, including the D-Bus service. However, with the implementation of the artificial
emulated firewall in the protective shell, external devices are prevented from reaching these
core system components through open ports. This restriction effectively limits an attacker’s
ability to infiltrate and propagate through the Uconnect system, thereby enhancing its over-
all security posture.
By discarding network communication packets destined for internal components from ex-
ternal devices, the protective shell ensures that communicationwith critical systemelements
is tightly controlled and restricted following the zero-trust architecture principle. This proac-

73

5 Specific Protective Shells

tive approach is a crucial step towards safeguarding the Uconnect system from unautho-
rised access and cyber-attacks.

Behaviour Model Training Another critical mitigation mechanisms involves the training of
a behaviour model, utilised for advanced anomaly detection, similar to the other specific
protective shell discussed previously. One might state that in this case the implementation
of strict firewall rules described above would completely remedy known attack vectors (like
the incident analysed) and additional mitigation mechanisms are not necessary. That is of
course not the case, since it is essential for the protective shell to follow a multi-layered
defence-in-depth approach to protect against unknown attack patterns and eliminate vul-
nerabilities effectively. Assuming an attacker gains the capability to send D-Bus or CAN-Bus
messages through an alternative attack path other than the Wi-Fi and cellular interface; the
protective shell must counteract such malicious activity to prevent security-incidents.
A promising mechanism for detecting malicious activity in the Uconnect system’s D-Bus and
CAN-Bus communication is through anomaly detection based on a precalculated behaviour
baseline derived from operation data and log files. As the communication in the Uconnect
system follows relatively static patterns with similar payloads (e.g., the infotainment chip
sending a D-Bus message to regulate air conditioning), a meaningful behaviour model can
be established.
A primary indicator of an anomaly is the absence of built-in authentication functionality in
packets sent to the D-Bus, if all standard components communicating used it. While it is
possible for packets to be sent anonymously in the original Uconnect design, the lack of
authentication raises immediate suspicion by the protective shell, leading to their discarda-
tion. However, it should be noted that there is no specific information provided regarding
whether the components in the original design used authentication, rendering this tech-
nique useless if they would also anonymously.
Nevertheless, through deviation from the established behaviour model, packets sent by at-
tackers can be quickly identified if they don’t follow given operation trends during exploita-
tion. For instance, if the payload of packets substantially differs from the normal payload as-
sociated with a specific message type (as is the case during command line injection attacks),
the protective shell promptly detects this abnormal behaviour and prevents forwarding the
packet to its intended receiver, safeguarding it against undesired effects.
Another deviation noticeable by anomaly detection could be the sudden use of message
types (service calls) that are typically not utilised during normal operation. For instance, the
execute servicemessage should either never or very rarely be usedduring normal operation,
as it is primarily intended as a debug tool for engineers to test and control the underlying
system. Normally, all D-Bus functionalities are baked into service methods to be called, ex-
posing and limiting the needed functionality for components. If the protective shell detects
frequent use of this powerful execution tool during regular operation, it indicates suspicious
behaviour that necessitates further investigation.
Moreover, anomaly detection can leverage correlations between messages in the Ucon-
nect system to support security efforts. For instance, consider the process of unlocking the
car with a remote. First, a radio package is sent to an internal receiver, authenticated and
checked for replay-attacks. Upon successful validation, a CAN-Bus message is triggered to
unlock the doors. If the protective shell detects a plain CAN-Bus message unlocking the
doors without the preceding interaction with the radio receiver and validation processes, it
indicates an abnormal behaviour that may require blocking.
Last but not least, this advanced anomaly detection capability might help to isolate attackers
who have successfully infiltrated one component, preventing them from spreading to other
components. Given the limited options for triggering messages on the CAN-Bus on behalf
of the Uconnect system, the protective shell can detect unallowed CAN-Bus messages orig-

74

5.5 Jeep Cherokee Hack

inating from the Uconnect system and block them from reaching other components. This
isolation effectively contains the attacker’s influence, when the CAN-Bus service got infil-
trated, and limits the potential damage they can cause within the system.

Code Integrity Code and firmware signing is a critical mitigation mechanism that plays a
significant role in safeguarding CPS during cyber-attacks. Code signing is a process that en-
sures execution is limited to trusted code only. In the context of the protective shell, this
mechanism involves verifying the integrity and authenticity of its own code and that of the
underlying CPS it encompasses during initial startup, and whenever there is a change to the
executed code base.
To achieve this, asymmetric cryptographic operations are used, where a trusted party, such
as the CPSmanufacturer, signs the current code version of the protective shell with its certifi-
cate. This signing process prevents any undetected manipulations to the code and provides
assurance that the running version of the protective shell was released by a trusted and
legitimate source, the CPS manufacturer. For the protective shell to validate its own code
base, it requires knowledge of the trusted manufacturer’s public key necessary for verifying
the code’s signature.
It is important to note that the protective shell has no control over adding or adjusting code-
signing practices for the underlying CPS application software and components firmware in
the design architecture. As a result, this mitigation mechanism must be applicable to sys-
tems that run unsigned code, such as the Uconnect system. To address this, the protective
shell maintains a trusted hash of the underlying CPS code base and recalculates and com-
pares it during startup. By doing so, the protective shell ensures that the CPS operates
only with trusted, unmodified, and integrity-proofed code. In cases where the code valida-
tion checks are unsuccessful, the protective shell intervenes and blocks the startup process,
rendering the CPS non-functional. This approach not only enhances the security architec-
ture of the CPS but also provides protection against safety accidents caused by corrupted
firmware.
However, the Jeep Cherokee security incident highlighted a specific vulnerability wherein
the attacker exploited the ability to update the firmware of the second chip connected to
the CAN-Bus. To counteract this potential threat, the protective shell not only checks the
firmware integrity upon startup but also verifies firmware integrity before permitting any
firmware updates. When a firmware update request is sent from the infotainment chip to the
second chip, the protective shell validates whether it recognises the new firmware hash be-
fore forwarding the firmware update request and allowing the update. Therefore, an update
to the underlying code base does always require an update to the protective shells stored
hashes, resulting in a resigning of the protective shells code. This authenticated update pro-
cess ensures that any changes to the underlying software/firmware require approval and
validation, providing an additional layer of protection against unauthorised modifications.
As a result, the implementation of the CAN-Message backdoor in the firmware would not
be possible because any modification to the firmware would cause the firmware hash to
change, violating its integrity. Consequently, the protective shell would not trust this altered
firmware version and would effectively block the update.

Alerting and Logging Similarly to the mitigation mechanisms presented in the other spe-
cific protective shells, the Uconnect system safeguarded by the protective shell also needs
alerting and logging capabilities for likewise reasons. The protective shell must inform the
driver when it detects anomalies and executes protective actions. Alerts serve to notify the
driver of potential cyber-attacks, prompting them to seek professional analysis. Detailed
operation logs aid in the forensic analysis of security incidents, allowing the discovery of

75

5 Specific Protective Shells

previously unknown vulnerabilities and the improvement of overall system reliability and
trustworthiness through future updates.

5.5.4 Protective Shell Evaluation

This section presents a rigorous evaluation of whether the ”Jeep Cherokee Hack“ security
incident could have been prevented through the implementation of a specific protective
shell equipped with the previously described mitigation mechanisms. The primary objective
of the protective shell is to safeguard the Uconnect system from successful exploitation of
the identified and analysed vulnerabilities. Therefore, the protective shell must effectively
address those vulnerabilities in the original Uconnect design.
The evaluation seeks to assess the effectiveness of the protective shell’s capabilities in miti-
gating the identified vulnerabilities through a series of monitoring and validation processes,
ultimately reducing the residual risk associated with potential incidents. Additionally, the
evaluation investigates whether the implementation of the protective shell introduced any
new vulnerabilities that could compromise the overall security and reliability of the system.

Remediation of Old Attack Vectors The protective shell significantly reduces the effec-
tiveness of brute-force attack targeted at the Uconnect’s Wi-Fi module, thereby lowering the
risk of attackers gaining unauthorised wireless access. With the presented brute-force at-
tack detection and prevention mechanisms, the protective shell successfully remediates the
exploited failure mode and the initial intrusion point in the attack pattern.
In case an attacker attempts to brute-force theWPA2password, theywould need tomaintain
close proximity to the driving car for an extended period due to the limited authentication
tries per minute. Moreover, a more sophisticated brute-force attack would be necessary,
requiring the attacker to constantly spoof their MAC address to avoid automatic blocking
by the protective shell. Such an attack is easily detected by the protective shell, triggering
an alarm for the driver to initiate manual protective measures, such as disabling Wi-Fi, and
alerting them of a potential targeted attack.

Another critical vulnerability is mitigated by the protective shell’s emulated firewall capa-
bility. In the original Uconnect system, an insecure configuration allowed external devices
connected via Wi-Fi or cellular network to communicate with internal components and ser-
vices, including the D-Bus service. With the emulated firewall in place, the protective shell
effectively blocks any communication attempts made by external devices to the internal
components or services, significantly mitigating the failure mode of controlling automotive
features from external devices and aligning with the principles of a zero-trust architecture
essential for mixed critical systems.

In the event that an attacker successfully infiltrates the infotainment system and attempts
to spread and take control of core vehicle components, the protective shell is equipped with
mitigation mechanisms designed to limit the attacker’s capabilities and isolate them from
further spreading. By utilising advanced anomaly detection based on behaviourmodel train-
ing, the internal processes and component communications are continuously monitored for
suspicious activities. Any abnormal behaviour deviating from the trained baseline, such as
the attacker sending out malicious messages, is promptly identified by the protective shell,
triggering an alert to the driver and initiating protective actions. Therefore, the protective
shell provides fundamental defence against attackers who have infiltrated the Uconnect sys-
tem and attempts to slow down their ongoing cyber-attack.
Furthermore, the code-signing capability of the protective shell enforces integrity checks

76

5.5 Jeep Cherokee Hack

upon the protective shells and the CPS’s code base, mitigating failure modes where attack-
ers could easily update underlying components with manipulated firmware. In the context
of the analysed security incident, it prevents the implementation of a backdoor that would
allow the sending of arbitrary CAN messages. Additionally, it also addresses potential ma-
licious intent to update a component with non-functional firmware, which could render its
functionality useless making it unavailable. Such unauthenticated updates are prevented,
thus limiting the attackers to exploit already present vulnerabilities in the system.

Further failure modes can be mitigated through a thorough analysis of the operation logs
provided by the protective shell whenever anomalies are detected or intervention becomes
necessary. Together with its alerting capabilities, this aids Harman in continuously improving
their Uconnect system by effectively eliminating newly detected vulnerabilities.

Identification of New Vulnerabilities The implementation of the brute-force attack detec-
tion and prevention mechanisms may, in rare cases, lead to the blocking of normal users
from authenticating. Two reasons for this could occur. First, during an active brute-force
attack, the protective shell forwards only a limited number of authentication requests per
minute to the Wi-Fi module and discards the rest. As a result, if a valid user attempts to au-
thenticate during such an attack, their authentication request might get discarded, leading
to a situation similar to denial of service. Second, if a user initiates too many authentication
attempts with the wrong password, the protective shell may temporarily block their MAC ad-
dress. In such cases, after a short waiting period, the user should be able to make another
attempt at authenticating with the correct password.
Another failuremode thatmight arise from the protective shell is falsely detecting anomalies,
such as suspicious messages on the CAN-Bus, and subsequently blocking them. Although
this situation is unlikely, the consequences could be severe, especially if the affected mes-
sages are safety-critical. To address this, the protective shell must be trained using suitable
machine learning algorithms based on a vast amount of trustworthy operational data and
log files. The resulting behaviour model must be thoroughly evaluated by domain experts.
Additionally, the protective shell must consider the severity of each message concerning the
system andmay choose not to intercept a suspicious CANmessage if the message does not
compromise the overall safety and security of the system.

The last new weakness identified in this evaluation are the consequences a more com-
plex update mechanisms brings due to the code-signing capabilities of the protective shell.
While such security mechanisms are widely accepted in the industry, inexperienced manu-
facturers may encounter difficulties in signing new code versions and rolling out updates for
their CPS. This could lead to increased waiting times for important safety- or security-critical
updates to reach their customers, providing attackers with an extended time-frame during
which vulnerabilities remain exploitable or failures to cause larger amount of preventable
accidents.

77

5 Specific Protective Shells

Conclusion The evaluated protective shell incorporates multiple mitigation mechanisms,
significantly enhancing the system’s trustworthiness by effectively addressing most of the
vulnerabilities found in the Uconnect infotainment system. Notably, the protective shell in-
troduces a few new failure modes; nevertheless, their risks remain within acceptable ranges
and are considerably lower than the failure modes that have been successfully remediated.
Overall, the implementation of the protective shell reduces the residual risk to an acceptable
level.
Considering the evaluation, it is highly plausible that the protective shell successfully pre-
vents the attack pattern presented by the security experts Miller and Valasek and con-
tributes further to the resilience of the Uconnect system to cyber-attacks. The thorough
assessment of the protective shell’s features and their impact on avoiding failure modes un-
derscores the importance of such security measures in CPS, particularly in critical domains
like the automotive industry.

78

5.6 Ukrainian Power Grid Cyber-Attack

5.6 Ukrainian Power Grid Cyber-Attack

5.6.1 Introduction

The Ukrainian Power Grid attacks refer to a series of coordinated cyber-attacks that targeted
the country’s power grid in 2015 and 2016. The analysis focus will be on the cyber-attack
executed on the 23rd of December 2015, as it exhibited noteworthy similarities to the inci-
dent in 2016.
The consequences of this attack were far-reaching, resulting in a widespread power outage
across multiple regions and impacting over 225,000 customers. It marked the first large
scale cyber-attack on electric infrastructure to be recorded. The attack focused on three
electric power distribution companies and took out more than 30 of their substations. The
responsive companies acted promptly though diligently and managed to manually restore
power to their customers within a range of 1 to 6 hours. Given that the attack occurred dur-
ing winter, there was immense time pressure to restore power promptly, as any delay would
risk freezing water pipes and pumps, thus permanently damaging household components
which would lead to prolonged heat outages.
Nevertheless, it took several months for the electric companies to fully recover their digital
infrastructure and resume normal operations.
The overall damage caused by these attacks is estimated to be in the millions of dollars. The
Ukrainian government has accused Russian state-sponsored hackers of carrying out these
attacks, while Russia has vehemently denied any involvement. It is widely believed that the
objective of these attacks was to destabilise the Ukrainian government and economy.
This incident stands as one of the most significant instances of cyber-attacks on critical in-
frastructure, serving as a warning of the potential risks posed by cyber-attacks on power
grids and other crucial infrastructure. It also served as a wake-up call for other nations to
reassess the security of their critical infrastructure and bolster their cyber defences.

5.6.2 Vulnerabilities in the critical Infrastructure

The following attack pattern and vulnerabilities were gathered from reports by the Interna-
tional Society of Automation (ISA) [28] and the U.S. Homeland Security NCCIC [29].

Insufficient Social Engineering Protection Training Eight months prior to executing the
payload, the attacker initiated the preparation and reconnaissance phase. To gain initial
access to the IT network, they launched a spear-phishing attack aimed at employees on
the business side of the power supplier. By exploiting social engineering techniques, they
manipulated inadequately trained employees into opening malicious email attachments in
the form of Microsoft Office documents, which instructed them to enable macros. Once
the macros were enabled, the employees’ computers were infected with the Black Energy 3
Trojan.

Black Energy 3 is a malware suite equipped with powerful components such as the KillD-
isk wiper and utilities for keystroke logging. The attackers utilised the Trojan to conduct
network scans, propagate to new devices within the local network, and extract credentials,
including those fromWindows domain controllers. They gathered intelligence on further de-
vice vulnerabilities, familiarised themselves with the network structure, installed additional
malware, and established backdoors.

No Network Monitoring During the post-incident analysis, it became evident that the at-
tackers could have been stopped in the reconnaissance phase if there was proper network

79

5 Specific Protective Shells

Figure 5.4: Ukrainian Power Grid Attack - Initial Intrusion IT network [28]

supervision. The absence of network monitoring for suspicious packets made the execution
of extensive vulnerability scans and network mapping possible. Otherwise, the attackers
would likely not have been stayed undetected crawling through the network for months.
Nowadays, intrusion detection systems (IDS) or intrusion prevention systems (IPS) would
automatically identify large-scale network scanning operation packets as suspicious amidst
a sea of ”good“ packets. They would promptly notify administrators or might as well initiate
protective actions. Nevertheless, even manual monitoring of network traffic without deep
analysis or behaviour-based anomaly detection could have detected the intelligence gath-
ering conducted by the attackers in this case.

Insecure Network Segmentation Companies tend to take cybersecurity in their IT net-
work not as serious, assuming that their operation technology (OT) network is completely
segmented from it. This false sense of security is often reinforced by the term ”Air-Gap“. As
illustrated in figure 5.4 above, there was indeed a firewall separating the IT network from
the (control) OT network. However, employees were granted remote access to devices in
the OT network through a VPN for maintenance purposes.
During the reconnaissance phase, the attacker managed to infiltrate numerous devices in
the IT network and discovered on one device an open SSH tunnel to the OT network. They
began recording keystrokes to obtain important information. They were able to collect VPN’s
credentials used by the employees to remotely control their SCADA systems. During non-
office hours, they established the SSH tunnel to the OT network and started to infect the
first devices there.

Effective network segmentation offers enhanced security against cyber-attacks only if it
cannot be easily bypassed. The credentials used were either found directly on the local
machines or could be gathered by keyboard stroke recording. Ideally, a strong segmentation
or the operation of two distinct networks would be optimal. However, if remote operation
from employees in the IT network is necessary, robust multifactor authentication should be
implemented, and strict remote access policies must be enforced.

80

5.6 Ukrainian Power Grid Cyber-Attack

Figure 5.5: Ukrainian Power Grid Attack - Spread to OT network [28]

Bad Firmware Updates During the execution phase of the cyberattack on the 23rd of De-
cember, the attackers gained remote access to the SCADA systems and deliberately opened
several circuit breakers at over 30 substations. This caused a power supply disruption for
more than 225,000 households. In order to hinder swift restoration efforts by employees
remotely closing the breakers, the attackers initially locked themout and changed their pass-
words. Furthermore, after deploying their malicious payload, they proceeded to delete nu-
merous files stored on workstations and servers using the KillDisk wiper. This served the
purpose of obfuscating the attackers’ tracks and impending the recovery phase of the af-
fected companies.
Additionally, the attackers rendered the serial-to-ethernet converters useless by remotely
updating their firmware with non-functional versions, utilising credentials obtained during
the preparation phase. These converters play a vital role in providing industrial machinery
with an interface for Ethernet communication, converting various RS standards. By inca-
pacitating these converters with ”faulty“ firmware, the electric energy supplier companies
suffered a complete operational loss of their grid distribution systems.
Lastly, they disabled the uninterruptible power supply (UPS) located at the control centre
by also overwriting the used firmware with a non-functional one. Consequently, the control
centre also experienced blackouts as the UPS failed to provide backup power.

The affected companies need to evaluate the necessity of remote firmware updates for
such low-level components and determine whether the additional risk outweighs the bene-
fits. Given that the functionalities of ethernet-to-serial converters and UPS are typically static
and do not require frequent updates, locally performed firmware updates would be suitable
in most scenarios.
However, allowing unsigned firmware to run on these devices should not be a subject of de-
bate. Manufacturers of critical infrastructure components should consistently provide digi-
tally signed firmware to mitigate the risks associated with the use of potentially malicious or
counterfeit firmware.

81

5 Specific Protective Shells

Figure 5.6: Ukrainian Power Grid Attack - Successful Payload Execution [28]

Supply Chain Vulnerability One potential factor that may have contributed to the success
of the cyber-attack is the historical relationship between Ukraine and Russia. However, it
is important to note that limited information is available on this matter, and thus, it should
be considered as a possibility rather than a definitive fact. Numerous authorities from dif-
ferent countries have attributed the cyber-attack to Russia. It is noteworthy that significant
portions of the Ukrainian power grid were built before the collapse of the Soviet Union and
subsequently upgraded using components manufactured in Russia. Consequently, the Rus-
sian attackers possessed insider knowledge of the system’s operation, were familiar with its
overall architecture, and may have been able to identify initial vulnerabilities in their own
components. Additionally, the attackers were already acquainted with the software used to
control the power grid, which suggests the possibility that they had received prior training
to familiarise themselves with its functionalities.
The fact that the attackers had extensive knowledge of the power grid infrastructure archi-
tecture and were familiar with the software used does not inherently constitute a vulnerabil-
ity. As stated by Kerckhoffs’s principle, ”There should be no security assumptions based on
system obscurity.“ However, there is always the potential for suppliers in the critical infras-
tructure supply chain to ship components with intentionally or unintentionally incorporated
vulnerabilities or the components run with outdated and unpatched software.

5.6.3 Specific Protective Shell Mitigation Mechanisms

The specific protective shell developed for the SCADA systems controlling the Ukraine power
grid breakers incorporates several core mitigation mechanisms to address the vulnerabili-
ties that led to the security incident previously analysed. The purpose of this protective shell
is to safeguard the CPS responsible for controlling critical power infrastructure and deliv-
ering services to thousands of customers and corporations. In this section, key mitigation
mechanisms are presented, defining the main characteristics of this protective shell.

Reconnaissance Detection As previously analysed, the attacker remained undetected in
the power distributor’s networks for months, engaging in network device crawling and scan-

82

5.6 Ukrainian Power Grid Cyber-Attack

ning. While the protective shell does not encompass the entire IT/OT network and thus can-
not replace a rigorous network monitoring solution, it effectively covers the SCADA system
and its components. This allows for the detection of suspicious scanning activities within
the CPS, providing a reconnaissance detection mitigation mechanism. During the attacker’s
planning and information-gathering phase before executing the cyber-attack and deliver-
ing its payload, they must have left traces of scanning devices within the OT network, in-
cluding the SCADA system and its underlying components. Although these traces may be
non-persistent and only manifest as packets in the SCADA communication, the protective
shell can detect those suspicious messages and alert personnel to investigate further. Con-
sequently, the attackers are placed under time pressure upon detection, or they can only
execute minimal scanning operations, trying to avoid detection large scale network map-
ping scans would have. This mitigation capability is achieved in cooperation with the next
mitigation mechanism, the behaviour model training.

BehaviourModel Training Another critical mitigationmechanism involves the training of a
behaviour model used for advanced anomaly detection, similar to the other specific protec-
tive shells discussed earlier. This training is based on a vast amount of operational data and
log files generated by the SCADA systems and their underlying supervising components. The
established behaviour baseline encompasses normal operation conditions, which is trained
using suitable machine learning algorithms. One use case where advanced anomaly detec-
tion proves crucial for CPS security is the reconnaissance detection mentioned earlier. By
employing anomaly detection, the protective shell can identify increasing amounts of analy-
sis data and scanning activities in the SCADA systems, triggering alerts for personnel.

Another promising use case for anomaly detection based on the behaviour model is so-
phisticated Identity and Access Management (IAM). The behaviour model would contain var-
ious intrinsic knowledge about login attributes in addition to the username and password.
For example, an employee’s login pattern is relatively static, involving logins during workdays
at consistent times, from the same IP address (or at least the same region to which the IP
address belongs), and using the same computer. Minor deviations from this pattern, such as
logging in four hours late due to an appointment or using a new computer, may be permit-
ted. However, during the security incident analysis which involved using stolen credentials,
abnormal behaviour was clearly evident. The attacker used the stolen credentials to log in
at out-of-office times and from different computers with external IP addresses. While the
protective shell does not cover the employees’ Windows computers, it can effectively detect
abnormal behaviours, such as the attacker’s actions within the OT network, initiating SCADA
systems operations during out-of-office hours from previously unknown IP addresses. This
would be a very obvious abnormal behaviour to detect by the protective shell and initialis-
ing protective actions, alerting the employees and blocking the credentials that performed
suspicious actions.
IAM features were formerly defined by static rule-sets and specifications. However, since the
login and authentication process can gather many more secondary attributes linked to the
user, there is a pursuit to use more sophisticated evaluations to determine if a user should
be given access or not. The whole range of data sets can’t be easily evaluated by static rules,
therefore the behaviour model anomaly detection seems suitable.

The third interesting use case for advanced anomaly detection in this protective shell is
monitoring user actions. The protective shell gives each user session has a limited number
of actions they can initiate in the SCADA system. Once this limit is reached, the user must
either re-authenticate and/or obtain approval from a second user. This tactic, commonly
used in API tokens, limits their potential for damage if they fall into the wrong hands. For

83

5 Specific Protective Shells

instance, if a user makes several settings changes and initiates numerous API calls within a
short period, the user is prompted to re-authenticate, sometimes with different authentica-
tion factors, to restore ”balance“ to their token and regain the system’s trust.
This technique is adopted by the protective shell, which defines a non-limiting amount of
actions provided to user accounts for their day-to-day activities in the SCADA systems. The
protective shell calculates this during the behaviour model training phase. For example, the
model might incorporate practices such as ”allowing one user to open a maximum of five
circuit breakers in the power grid every hour“, as the protective shell has learned that no
single user would normally be restricted by this rule. However, such a rule would slow down
power grid cyber-attacks, such as the one analysed previously, which aimed to open asmany
circuit breakers as fast as possible. All user actions in the SCADA system are continuously
monitored and evaluated by the protective shell to determine if this user exhibits any ab-
normal behaviour.
An effective mitigation mechanism fitting this situation, that the protective shell does not
provide is multifactor authentication, either during initial authentication or for re-validating
the current session with added trust.

Code Integrity Another critical mitigation mechanism employed by the protective shell,
to safeguard the SCADA system with underlying components, is code and firmware signing
capabilities. As already explained in section 5.5.3, this technique ensures that execution is
limited to trusted code only.
In this case, it effectively prevents attackers from manipulating the code base of the em-
bracedCPS. For instance, if attackers attempt to update the firmware of the serial-to-ethernet
converters with a non-trusted version, the protective shell’s automatic integrity checks would
fail, and the update request would be intercepted. Therefore, updates with ”faulty“ firmware,
which could render the components nonfunctional as exploited in the analysed security in-
cident, would be prevented.
Unfortunately, the protective shell does not embrace the UPS located at the control cen-
tre, which also became nonfunctional due to manipulated firmware, and therefore has no
influence on providing security mechanisms for them.

Alerting and Logging Similar to the mitigation mechanisms presented in other specific
protective shells, the SCADA system and components safeguarded by the protective shell
also require alerting and logging capabilities for likewise reasons. Particularly in this scenario,
where a potential cyber-attack affects many other devices in both the IT and OT network,
timely informing employees whenever an anomaly is detected or when the protective shell
initiates protective and corrective actions is crucial. This aids in promptly initiating and guid-
ing the security incident response by experts.
Furthermore, detailed operation logs aid in the forensic analysis of security incidents, en-
abling the discovery of previously unknown vulnerabilities and improving overall system re-
liability and trustworthiness through future updates.

5.6.4 Protective Shell Evaluation

This section presents a rigorous evaluation of whether the ”Ukraine Power Grid“ security
incident could have been prevented through the implementation of a specific protective
shell equipped with the previously described mitigation mechanisms. The primary objective
of the protective shell is to safeguard the SCADA system and underlying components from
successful exploitation of the identified and analysed vulnerabilities. Therefore, the protec-
tive shell must effectively address those vulnerabilities in the original critical infrastructure
design.

84

5.6 Ukrainian Power Grid Cyber-Attack

The evaluation seeks to assess the effectiveness of the protective shell’s capabilities in miti-
gating the identified vulnerabilities through a series of monitoring and validation processes,
ultimately reducing the residual risk associated with potential incidents. Additionally, the
evaluation investigates whether the implementation of the protective shell introduced any
new vulnerabilities that could compromise the overall security and reliability of the system.

Remediation of Old Attack Vectors In this case, the protective shell has limited influence
in remediating some attack vectors along the attack path. Notably, the protective shell can-
not improve the insufficient social engineering protection training described in the analysis,
as it falls outside its sphere of influence. Similarly, due to its location embracing only a small
subset of the OT network, it cannot fully address the networkmonitoring problem, which so-
phisticated IDS and IPS would typically cover for the entire IT and OT network. Consequently,
the protective shell cannot directly improve the insecure network segmentation configura-
tion or implement security mechanisms to enhance segmentation barriers, as described in
the analysis. Lastly, the protective shell has no influence on the underlying CPS architecture,
including which components get implemented from which supplier. Therefore, the possible
supply chain vulnerability discovered in the analysis is out-of-scope for the protective shell.

However, the protective shell can implement core mitigation mechanisms that address a
subset of the identified failure modes. For instance, the implemented reconnaissance de-
tection for SCADA controlled systems allows for early detection of cyber-attacks during the
information gathering phase. Therefore, the attacker might not stay undetected for months
during their reconnaissance, rather could be detected as soon as they start scans on the
SCADA systems. This serves as an intrusion detection mechanism further along the attack
path, even if the intrusion point is located outside the protective shell’s influence.

Additionally, the advanced anomaly detection based on the trained behaviour baseline
provides the protective shell with capabilities to remediate several failure modes. The IAM
canbe improved using identity attributes for authentication processes previously not utilised.
This could identify malicious abnormal user activity if the attacker would log in with stolen
credentials from unknown IP addresses during out-of-office hours. Moreover, the protec-
tive shell closely monitors user actions, limiting the number of changes one user session
can make to the SCADA system and its components, before they need to re-authenticate
and/or get approved by a second user, the protective shell drastically limits the damage po-
tential one user can expose to the system. Therefore, during the payload delivery phase, the
protective shell would slow down the cyber-attack by placing hurdles in the attacker’s way
like temporarily revoking user rights to open anymore circuit breakers for a specified period.

Another valuable mitigation mechanism implemented by the protective shell is the code
and firmware signing process. By enforcing this process, the protective shell remediates
the failure mode where attackers could remotely initiate unsigned firmware updates to crit-
ical infrastructure components in the SCADA systems. With this mitigation mechanisms, the
protective shell first validates that the new firmware update is trusted and not manipulated
before allowing the update request to be forwarded to the components. In this case, the
serial-to-ethernet converters would not have been rendered unusable with the malicious
firmware blocked by the protective shell, enabling the power grid employees to communi-
cate with the power grids critical components remotely. Consequently, the circuit breakers
could have been closed directly from accessing the OT network and not needing to send
workers to the breakers to manually close them, which would reduce the mean-time-to-
recovery (MTTR) significantly.

85

5 Specific Protective Shells

Identification of New Vulnerabilities Despite its advantages, the protective shell intro-
duces a few new risks that need to be considered. In emergency situations, such as ca-
ble fires or floods, where rapid opening of many circuit breakers is necessary, the protec-
tive shell may misinterpret user actions as abnormal and restrict access, potentially slowing
down the emergency response. However, given the cooperative nature of controlling crit-
ical infrastructure components, it is unlikely that only one user would have remote access
in such situations or trying to close them alone, rather several users would work together
limiting the damage amount.
Furthermore, the protective shell’s detection of abnormal login patterns might occasionally
block non-malicious users from accessing the system, leading to reduced user experience.
Although this is not safety- or security-critical, it enhances the overall trustworthiness of the
system.
Additionally, the protective shell’s false detection of anomalies and subsequent triggering of
alerts could lead to significant work efforts in containing fictional cyber-attacks. Analysing
log files and identifying false positives may delay other important processes, such as devel-
opment and expansion projects, prioritising cyber incident response.
The last new weakness identified in this evaluation are the consequences a more complex
updatemechanisms brings due to the enforced code-signing process by the protective shell.
While such security mechanisms are widely accepted in the industry, inexperienced man-
ufacturers may encounter difficulties in signing new code versions and rolling out updates
for their CPS. This could lead to increased waiting times for important safety- or security-
critical updates to reach their customers, providing attackers with an extended time-frame
during which vulnerabilities remain exploitable or failures to cause numerous amounts of
preventable accidents.

Conclusion This evaluation showed that the protective shell alone did not completely elim-
inate the identified vulnerabilities as desired, given the nature of cyber-attacks that can span
beyond the protective shell’s specific sphere of influence. Nevertheless, the protective shell
still has a considerable effect in preventing catastrophic outcomes especially targeting its
embraced CPS, as analysed before.
The evaluated protective shell incorporates multiple mitigation mechanisms, significantly
enhancing the system’s trustworthiness by effectively addressing core vulnerabilities found
within the SCADA system.
Notably, the protective shell introduces a few new failure modes; nevertheless, their risks
remain within acceptable ranges and are considerably lower than the failure modes that
have been successfully remediated. While the implementation of the protective shell may
not reduce the residual risk of the power distributors’ networks to an acceptable level, it
effectively safeguards the SCADA system and its components in cases of cyber-attacks.
Considering the evaluation, it is highly plausible that the protective shell successfully inter-
feres with the attack chain when the attacker reaches the SCADA system, blocking and slow-
ing down the cyber-attack. The thorough assessment of the protective shell’s features and
their impact on avoiding failure modes underscores the importance of such security mea-
sures in critical infrastructure domains.

86

5.7 Airbus A400M FADEC

5.7 Airbus A400M FADEC

5.7.1 Introduction

The Airbus A400M is a military transport carrier designed for transporting cargo and troops.
On May 9, 2015, a safety accident resulted in a fatal crash of an A400M aircraft near Seville,
Spain.
On that day, a pre-delivery check flight for the Turkish Air Force was scheduled. Shortly after
takeoff, the crew transmitted an SOS signal, requesting an emergency landing due to tech-
nical difficulties. While attempting an emergency landing in a field, the aircraft collided with
a high-voltage line and caught fire. The crash claimed the lives of four Airbus Defence and
Space personnel and left two crew members injured.

The Technical Investigation Commission on Military Aircraft Accidents (CITAAM) analysed
the flight data obtained from the two ”black boxes“ - the flight data recorder (DFDR) and
the cockpit voice recorder (CVR). Their findings revealed that three of the four turboprop
engines did not respond to the pilots’ input, with only one functioning engine providing in-
sufficient power to sustain the aircraft airborne.
During the investigation, it was discovered that a software vulnerability existed in the Full
Authority Digital Engine Control (FADEC) system. The FADEC system controls the engines of
the A400M and manages their performance. During the software installation, crucial torque
calibration parameter data was inadvertently erased from the threemalfunctioning engines.
Consequently, the FADEC system was unable to interpret how to operate the engines, re-
sulting in the engines being locked at maximum power after takeoff.
As a result, the A400M rapidly ascendedwhile accelerating. The crewwas contacted by tower
controllers when the aircraft reached a maximum altitude of 1725 feet, instructing them to
maintain the predefined altitude of 1500 feet. The crew attempted to comply with the order
by reducing thrust, unaware that the faulty engines could only operate at full power or idle.
Unfortunately, after reducing the thrust, the engines remained locked at idle, leaving only
one engine operational. Within seconds, the plane descended and crashed into the field.

Some safety experts view this crash as an illustration of how failures, although rare, can
arise in increasingly complex aircraft systems when multiple weaknesses align to create a
significant risk [30]. Themain vulnerability in this instance was attributed to inadequate test-
ing and validation of the FADEC software. This accident underscores the critical importance
of conducting thorough testing and validation of software in safety-critical systems such as
aircraft engines.

5.7.2 Vulnerabilities within CPS

Insufficient Mitigation for a Known Issue CITAAM revealed that the engine developer and
manufacturer, Euro Prop International (EPI), had already notified both Airbus and the Euro-
pean Aviation Safety Agency (EASA) about a software installation error that could result in
the loss of engine data. According to a safety document reviewed by Reuters, under the de-
sign of the A400M, pilots would only receive their first warning of the engine data problem
when the aircraft reached an altitude of 400 feet. There is no cockpit alert available on the
ground [31]. CITAAM concluded that the mitigation measures implemented by Airbus and
EASA were inadequate [32].

It is likely that the Airbus management did not prioritise addressing this issue due to time-
to-market pressures, declining profit margins, and the need to fulfil their military contracts.

87

5 Specific Protective Shells

The A400M was developed for Spain, Belgium, Britain, France, Germany, Luxembourg, and
Turkey, and has been plagued by delays and cost overruns, which have significantly sur-
passed the initial budget of 20 billion euros [30]. As early as 2009, the A400M project was
already 5 billion euros over budget, 3 to 4 years behind schedule, and costing Airbus be-
tween 1 billion and 1.5 billion euros annually [33]. Moreover, a PricewaterhouseCoopers
audit projects a budget overrun of approximately 11.2 billion euros upon the completion of
the project.

No Software Integrity Checks Before every system start, it is essential to conduct software
and data integrity checks to ensure that the underlying code base is complete and unaltered.
Otherwise, the start-up must be interrupted. This is particularly crucial for safety-critical sys-
tems like FADEC before the aircraft can proceed with its pre-takeoff preparations.
In addition to cockpit alarms indicating failed software verification, the engines should re-
main idle until they receive the appropriate data. The only reason the A400M was able to
take off without torque calibration parameter data in three of its engines was because they
could be powered at full throttle.

Responsibility Dispute According to the CITAAM investigators, there is a disagreement
between Airbus and EPI regarding who was responsible for installing the engine software.
CITAAM concluded that the lack of coordination between Airbus and EPI, among other fac-
tors, contributed to the safety accident.
The software was installed by Airbus workers using the plane maker’s systems, but EPI ar-
gues that it should have been loaded by their own staff using EPI systems, as they possess
the necessary civil authorisation.
Airbus claims that since the A400M is a military aircraft, their personnel were responsible
for uploading the software [32]. This highlights the regulatory confusion surrounding the
civil and military jurisdiction over the aircraft at the time of the accident. The A400M is a
rare hybrid, being a military plane with European civil certification. Spanish officials have
supported Airbus by asserting that the assembly line is a defence facility and not subject
to civil regulations [30]. However, this dispute should have been resolved prior to the final
assembly of the aircraft.

Marwan Lahoud, the Chief Strategy Officer of Airbus at the time, informed the German
press that ”The black boxes attest... that there are no structural defects, but we have a
serious quality problem in the final assembly“. This concisely summarises the underlying
causes of the safety accident.

5.7.3 Specific Protective Shell Mitigation Mechanisms

The specific protective shell developed for the Airbus A400M FADEC system incorporates
several core mitigation mechanisms to address the vulnerabilities that led to the previously
analysed safety accident. The primary objective of this protective shell is to safeguard the
CPS from failures that could impede its ability to deliver the safety-critical feature of engine
control. In the following section, those key mitigation mechanisms are presented, which
build the main characteristics of this protective shell.

Hardened Process for Software Installation In this academic scenario, benefiting from a
retrospective view, most of the vulnerabilities discovered and mitigated within the protec-
tive shell were previously unknown before the accident/incident. However, it is important to
note that in this special case, the vulnerability of an erroneous software process was already

88

5.7 Airbus A400M FADEC

known and had been brought to attention by EPI. Consequently, Airbus should have proac-
tively implemented similar mitigation mechanisms, as presented below, before the safety
accident occurred.
The protective shell provides an isolated installation environment for the FADEC software,
wherein the installation process is encapsulated to access only the FADEC software files.
Meanwhile, the configuration files per engine are kept separate from this encapsulation to
preserve their integrity between software versions. If reconfiguration becomes necessary,
the protective shell offers an additional, separate process for conducting the adjustments.
Moreover, considering the information published by EPI regarding the conditions under
which software installation errors might occur and how to detect them, the protective shell
can closely monitor the installation process and promptly notify the operator if any anoma-
lies are detected. To ensure the successful installation of the FADEC software, the protective
shell could adopt a process similar to Continuous Integration / Continuous Development
(CI/CD) pipelines commonly used in the industry. Such a process involves conducting tests
and further analysis to verify the integrity of the installation.

Code Integrity Another critical mitigation mechanism implemented in the protective shell
is the use of software integrity checks before allowing system start-up. While this technique
was previously employed in protective shells to prevent malicious users from manipulating
the code base, in this scenario, it serves to verify the completeness, unaltered state, and
trustworthiness of the code base containing the FADEC software and configuration files.
The mechanisms are identical to the process already described in the specific protective
shell for the Uconnect system 5.5.3.
During system start-up, the protective shell calculates the hash of its encompassed CPS
code base and compares it with a predefined, trusted hash stored within its own (signed)
code. Even a slight deviation in the code results in a complete hash value change, indicating
the presence of a non-trusted version of the CPS software. This capability is instrumental
in preventing start-up with missing torque calibration parameter data for one or several
engines, which was one of the main contributing factors to the Airbus A400M crash. With
this implemented mitigation mechanism, the protective shell would intercept the start-up
process, preventing any functionality provided by the CPS until the issues are resolved.

Alerting and Logging Similar to other specific protective shells, the protective shell for the
FADEC system requires alerting and logging capabilities for similar reasons. While the other
mitigation mechanisms enable the protective shell to detect and correct failure modes, it is
equally important to inform the CPS operator and manufacturer about the detections and
interventions.
Alerts serve to notify the operator of detected anomalies and assist them in locating and
resolving issues promptly. For example, if the engine calibration data is missing, a meaning-
ful cockpit alert must be displayed while the aircraft is on the ground. Additionally, detailed
operation logs are instrumental for themanufacturer in discovering previously unknown vul-
nerabilities and improving the overall system reliability and trustworthiness through future
updates. These logs can provide valuable insights into the system’s performance and aid in
iterative refinement to enhance safety and security.

5.7.4 Protective Shell Evaluation

This section presents a rigorous evaluation of whether the Airbus A400M accident could
have been prevented through the implementation of a specific protective shell equipped
with the previously described mitigation mechanisms. The primary objective of the protec-
tive shell is to safeguard the FADEC system from faults related to engine failure, which was

89

5 Specific Protective Shells

the contributing factor leading to the safety accident. Therefore, the protective shell must
effectively address the vulnerabilities in the original FADEC design that were uncovered dur-
ing the accident analysis.
The evaluation aims to assess the effectiveness of the protective shell’s capabilities in miti-
gating the identified vulnerabilities through a series of monitoring and validation processes,
ultimately reducing the residual risk associated with potential failures. Additionally, the eval-
uation investigates whether the implementation of the protective shell introduced any new
vulnerabilities that could compromise the overall safety and reliability of the system.

Remediation of Old Failure Modes The protective shell is equipped with several highly
effective mitigation mechanisms to address the failure modes related to uncontrollable en-
gine turbines.
Firstly, the protective shell provides a hardened installation process for the FADEC software
on each turbine to prevent installation errors and their side effects, such as the inadver-
tent deletion of torque calibration data. If an error occurs during the monitored installation
process, the protective shell promptly alerts the operator and provides detailed information
about the cause of the error. Furthermore, in cases where the software is installed without
errors, the protective shell triggers the next CICD step to test the installation at hand. These
mitigation mechanisms effectively prevent the failure mode of missing calibration data after
an erroneous installation process, thereby reducing the risk of a turbine running with an
incomplete FADEC software version.

Secondly, the protective shell provides code signing capabilities and integrity checks for
its own and the CPS’s code base. This ensures that the Airbus A400M turbines cannot op-
erate without a verified and complete FADEC code version. In this way, the protective shell
intercepts engine start off if the code integrity checks fail, ultimately preventing lift-off. This
mitigation mechanism addresses the failure mode of operating the Airbus A400M with an
unverified and incomplete FADEC code version.

Identification of New Vulnerabilities With the implementation of a more sophisticated
and secure installation process and the inclusion of code integrity checks, the evaluation
did not identify any new vulnerabilities worth mentioning. The protective shell effectively
resolves known issues while not introducing any obvious drawbacks.

Conclusion The evaluated protective shell incorporates multiple mitigation mechanisms,
significantly enhancing the system’s trustworthiness by effectively addressing vulnerabilities
found in the FADEC CPS. Importantly, during the evaluation, no new failure modes intro-
duced by the protective shell were identified, indicating that Airbus could have implemented
similar mitigation mechanisms without overly risking adding new vulnerabilities to the sys-
tem.// Considering the thorough assessment of the protective shell’s features and their im-
pact on avoiding failure modes, it is highly plausible that the Airbus A400M crash associated
with engine failures could have been prevented with the suggested implementation of this
protective shell, thus significantly reducing the residual risk. The comprehensive evaluation
underscores the importance of such safety measures in CPS, particularly in critical domains
like aviation.

90

5.8 Similarities between Specific Protective Shells

5.8 Similarities between Specific Protective Shells

This section provides a summary of the different mitigation mechanisms employed in the
presented specific protective shells. Each mitigation mechanism can be classified under
one of the following category umbrella terms. However, it is important to note that not
every specific protective shell utilises mitigation mechanisms from every category, as their appli-
cability depends on the security or safety improvement they provide to the embraced CPS.
Consequently, different protective shells may employ distinct mitigation mechanisms if the
general architecture permits it. The following categories were derived by analysing over-
lapping mitigation mechanisms that were frequently employed, summarising the common
characteristics exhibited by the different protective shells.
After presenting the list of mitigation mechanism types, they will be briefly explained. This
section draws upon the experiences gained from analysing security incidents and safety ac-
cidents while developing and evaluating the specific protective shells, which was the main
focus of this chapter. By summarising the observed similarities and carrying them forward
to the next chapters, this thesis aims to formulate more general architecture and design
principles for protective shells in a generic framework.

5.8.1 Mitigation Mechanisms Categories

1. Alert and Logging

a) Meaningful Alerts

b) Detailed Logs

2. Code Base Integrity Checks

a) Firmware/Software Signing

b) Data Completeness

3. Sensor Readings / Application Signals

a) Reevaluation (Range Validation)

b) Cross-Validation

c) Time-sequential Analysis (Retrospective Data Evaluation)

d) Supplementary Sensors

4. Monitor

a) Communication

b) Processes

c) IAM

5. Behaviour Model Training

91

5 Specific Protective Shells

5.8.2 Explanation

1a. Meaningful Alerts In all the different protective shells discussed, the capability to pro-
vide meaningful alerts to the CPS operator was consistently necessary. These alerts were either
displayed directly on an integrated screen, such as in aeroplanes or vehicles, or forwarded
to an external monitoring solution, as seen in SCADA systems. The purpose of these alerts
was to notify the operator whenever the protective shell identified an anomaly, when a val-
idation process was unsuccessful, or when corrective and protective actions needed to be
initiated to intervene with the CPS’s intended actions.
The alerts as real-time status information helps the operator to investigate and take man-
ual actions in response to impending failure modes. Immediate alerts are crucial because
abnormal behaviour might otherwise only be detected upon analysing operation logs, and
therefore potentially not detected at all. If the protective shell did not intervene, it could lead
to security incidents or safety accidents within the underlying CPS. Furthermore, such alerts
put pressure on CPSmanufacturers to analyse the cause of the alert andmitigate any found
vulnerabilities or adjust the protective shell. By doing so, either the CPS or its safeguarding
protective shell gets enhanced.

1b. Detailed Logs Detailed logs of protective shell operations were also found to be necessary
in all the presented sets of mitigation mechanisms providing means for forensic analysis. These
logs primarily aid the protective shell manufacturer in analysing alerts reported by operators
or during post-accident / incident processes. Having detailed logs is crucial for finding the
root cause after catastrophic CPS behaviour, understanding it, and being able to mitigate
it effectively. In instances where a false alarm occurs from the protective shell, adjusting
the detection mechanisms to prevent further false alarms of that type may be necessary.
Detailed logs provide manufacturers with a better understanding of the often complex CPS,
enabling them to eliminate newly detected vulnerabilities or improve the protective shell to
better safeguard the CPS.

2a. Firmware/Software Signing While not every specific protective shell employed code
signing as amitigationmechanism, those that did found significant benefits in enhancing the
system’s overall trustworthiness. Code signing relies on a trusted entity, such as the man-
ufacturer, to sign the protective shell’s code base. This code base also includes knowledge
about the ”fingerprint“ or hash of the embraced CPS’s code base. During the CPS startup
process, the protective shell verifies if the embraced CPS code version is valid, unaltered and
trusted. If the checks are unsuccessful, the protective shell intercepts the startup process,
preventing any functionality provided by the CPS until the code version reverts to a known
one, thereby preventing undesired behaviour.
This mechanism is also applicable when updating embraced components in the CPS dur-
ing run-time, which always requires an update to the protective shell’s trusted hash values
before permitting the update. By utilising this mitigation mechanism, the protective shell
safeguards itself and the embraced CPS from malicious modifications, such as backdoor imple-
mentations or non-functional firmware rendering the component useless.

2b. Data Completeness The code base integrity checks offer protective shells not only
the capacity to safeguard against malicious intentions, but also to abstain from executing
incomplete installed versions characterised by missing operational or configuration data. This
ensures that operators can confidently rely on the CPS in use, possessing a code version that
is not only trusted and integrity-verified, but also one that is complete without any missing

92

5.8 Similarities between Specific Protective Shells

parts. This approach thereby prevents situations similar to the Airbus A400M crash, where
essential calibration data was missing after take-off.

3a. Reevaluation (Range Validation) Reevaluation of sensor readings and application sig-
nals is a core functionality found in most of the specific protective shells developed. It pro-
vides plausibility checks on isolated sensor, actuator or application data by validating if they
fall within predefined operation ranges. For example, the best temperature sensors cannot
measure below -273.15◦C due to physical barriers, so if a sensor reading states -300◦C, it is
certain that this value is erroneous.
Similarly, the CPS defines safe operation ranges for its actuators, and if an actuator report
falls outside these ranges, it is likely that the actuator poses a danger to human life or prop-
erty, even without interaction with other CPS components. For instance, the rotation fre-
quency of centrifuges used in a nuclear facility operating outside the safe range, thereby
destroying themselves.

3b. Cross-Validation Cross-validation of data streams traversing through the protective
shell is another commonly implemented mitigation mechanism in the presented scenarios.
It expands the isolated view of the reevaluation mechanism by considering data from other
sensors, application signals, or actuator reports that may be dependent or correlated with
each other. Domain experts define these correlations by establishing rule-sets or functional
specifications, or, as described later in point 5, arise from intrinsic information within the
trained behaviour model. If a data point does not adhere to these established correlations,
it serves as an anomaly indicator, prompting the protective shell to investigate further.

3c. Time-sequential Analysis (Retrospective Data Evaluation) Time-sequential analysis,
also known as retrospective data evaluation, widens the isolated view of the reevaluation
mechanism not by considering additional data streams but by evaluating entire time series
of the same data stream. This anomaly detection mechanism is used in some of the pre-
sented specific shells and offers real-time anomaly detection in certain scenarios. Common
trends or variations in data series are part of the established desired behaviour for the pro-
tective shell to compare against. Sensor readings, application signals, and actuator reports
are evaluated based on their previously sent data values.
If a data stream does not follow the expected trend/variation or pattern, it serves as a strong
anomaly indicator. For example, sudden jumps in sensor readings are likely to indicate an
anomaly because abrupt changes are uncommon in the physical world when the sampling
rate is high enough.

3d. Supplementary Sensors While not universally applicable due to the additional imple-
mentation effort and its impact on the overall architecture, some specific protective shells
employed supplementary sensor data as a new information stream utilised in further miti-
gation techniques. Supplementary sensors are employed when protective shell decisions cannot
be reliably made due to missing context information. They provide exceptional useful data and
enhance the flexibility of the protective shell. For example, in cases such as the Therac-25
or the Boeing 737 Max, the protective shells greatly benefited from supplementary sensors
in efficiently safeguarding the CPS.

4a. Monitor Communications Communication andmessagemonitoring by analysing sent
packets in the CPS component network is a useful mechanism to identify primarily malicious

93

5 Specific Protective Shells

intent and sometimes failure. This mechanism is often employed by protective shells specif-
ically safeguarding against security incidents. The monitoring process can trigger protective
actions, such as discarding malicious messages that attempt to initiate undesired behaviour
or exploit vulnerabilities in components.
The identification of abnormal packets often relies on previously trained behaviour models
and patterns (will be further elaborated in chapter 6), as well as the desired behaviour spec-
ifications established by domain experts.
An example of this communication monitoring providing added security capabilities was
shown in the specific protective shell for theUconnect system, which effectively slowed down
brute-force attacks and prevented the sending of arbitrary CAN- and D-Bus messages.

4b. Monitor Processes Processmonitoringwas implemented in various specific protective
shells and provided both safety and security enhancements for the underlying CPS. It is
especially useful when there exist critical tasks in the CPS that cannot be fully trusted due
to software defects or security concerns.
The monitor mechanism relies on predefined functional specifications, rule-sets, or models.
For instance, the specific protective shell for Toyota’s ETCS employed process monitoring
to detect critical but unreliable tasks that crashed under specific operation condition or
due to software defects that were previously undetected. With this monitoring in place, the
protective shell could detect such failures and initiate corrective actions.

4c. Monitor IAM Monitoring identity and accessmanagement processeswere implemented
only in the specific protective shell for Ukraine’s power grid SCADA systems. Nevertheless,
it provided significant security enhancements for the overall system by closely monitoring
login and access attempts made by employees that formerly just got approved if username
and password were correct.
IAM monitoring evaluates login requests and similar actions with a broader view, considering ad-
ditional attributes such as time, IP address, and the requested resource. The monitoring
mechanism relies on behaviour models trained and established through suitable machine
learning techniques. By monitoring employee login patterns, the protective shell could iden-
tify anomalous behaviour if employees logged in outside office hours or from unknown lo-
cations. Additionally, it could identify abnormal access attempts, such as accessing higher
than usual amounts of resources or initiatingmore actions than usual within the operational
technology (OT) network. Upon detecting such anomalous behaviour, the protective shell
could dynamically restrict access to prevent potential security breaches. This dynamic re-
sponse mechanism helped to proactively mitigate security risks and safeguard the integrity
of Ukraine’s power grid SCADA systems.

5. Behaviour Model Training Behaviour model training and advanced anomaly detection
based on the established behaviour baseline were used as mitigation mechanisms in many
specific protective shells. This approach involves importing vast amounts of real-world op-
eration data and log files from the embraced CPS into machine learning and information
retrieval algorithms. These algorithms then produce a behaviour baseline that represents
normal CPS operation scenarios, serving as a template for what is expected from the CPS.
Behaviour model training is often a prerequisite for other mitigation mechanisms to function ef-
fectively. It is a versatile and almost universally applicable tool that deserves a closer look in
this thesis.
This mechanism will serve as a bridge to the next chapter 6, where behaviour model train-
ing leveraging artificial intelligence algorithms will be explained in more detail, along with the
presentation of advanced anomaly detection capabilities.

94

5.8 Similarities between Specific Protective Shells

5.8.3 Conclusion

This section concludes the analysis of well-documented safety accidents and security in-
cidents, with a primary focus on identifying key weaknesses and vulnerabilities within the
deployed CPS. The objective has been to develop specific protective shells tailored to re-
mediate these identified failure modes and attack vectors, followed by an evaluation of the
effectiveness of each protective shell. The mitigation mechanisms employed within each
developed protective shell are summarised in table 5.2, along with an assessment of the
overall effectiveness in mitigating the identified vulnerabilities and ensuring safe and secure
CPS operation.
Furthermore, this marks a pivotal point in this thesis where the first research question can
be addressed: ”Can the trustworthiness of safety and security-critical cyber-physical systems
be improved by implementing a protective shell?". The evaluation of those seven case stud-
ies has clearly demonstrated that the specific protective shells offer valuable mechanisms to
address run-time issues, thus enhancing the trustworthiness of CPS during operation. Therefore,
the answer to this question is a resounding ”yes“.
However, the ultimate effectiveness of a protective shell once it is implemented depends on
the extent towhich the identified vulnerabilities fall within its realmof influence. For instance,
if vulnerabilities are exploited within security incident attack paths that do not originate from
the CPS, the protective shell has limited control over addressing them. Furthermore, when
weaknesses are rooted in poor development practices or inadequate training of CPS oper-
ators, the protective shell is powerless to rectify such issues. Consequently, the evaluation,
as depicted in table 5.2, varies significantly from ”completely mitigated“ to ”minimally miti-
gated“ based on the number of failure modes and attack vectors that reside within the CPS
and are therefore accessible for remediation by the protective shell. Nevertheless, since
the research question is formulated qualitatively, it is safe to assert that each of the seven
protective shells had a positive impact on enhancing the trustworthiness of the individual
safety and security-critical CPS. This chapter lays the groundwork for the subsequent chap-
ters, especially for chapter 7 where a more detailed exploration of a generic protective shell
approach is undertaken, further advancing the applicability of protective shells in safeguard-
ing CPS.

Name
Incident /
Accident

Used Mitigation
Mechanisms

Protective Shell
Evaluation

Boeing 737 Max
MCAS

Accident
1a, 1b, 3a, 3b,
2c, 3d, 4a, 5

Mostly
Mitigated

Therac-25 Accident
1a, 1b, 2b, 3a,

3b, 3d
Completely
Mitigated

Stuxnet Incident
1a, 1b, 2a, 2b,
3a, 3c, 4a, 5

Partially
Mitigated

Toyota ”Unintended
Acceleration“ ETCS

Accident
1a, 1b, 3a, 3b,

3c, 4b, 5
Partially
Mitigated

Jeep Cherokee
Hack

Incident
1a, 1b, 2a, 2b,
4a, 4b, 4c, 5

Completely
Mitigated

Ukrainian Power Grid
Attack

Incident
1a, 1b, 2a, 4a,

4c, 5
Minimally
Mitigated

Airbus A400M
FADEC

Accident
1a, 1b, 2a, 2b,
3a, 3b, 3c

Mostly
Mitigated

Table 5.2: Overview Mitigation Mechanisms employed per chosen Accident and Incident

95

6 AI

The retrospective view of the previous chapter offered an in-depth exploration of the de-
velopment of specific protective shells, utilising deterministic, known information from past
safety accidents and security incidents. By analysing log files, operational data, and post-
incident/accident reports, previously hidden vulnerabilities and weaknesses were identified,
forming the foundation for mitigation mechanisms implemented in the protective shell.
Nonetheless, while this academic scenario proves valuable in comprehending protective
shell architecture characteristics and identifying their commonalities, it offers limited practi-
cal guidance to CPS manufacturers seeking to enhance the trustworthiness of their existing
systems. Consequently, the mitigation mechanisms alone without advanced anomaly de-
tection, provide limited and often insufficient protection against unknown, unexpected and
emerging vulnerabilities. In the modern world, large and complex systems face run-time er-
rors and unpredictable behaviour due to various contributing factors, as exemplified by the
concept of impossible results discussed in section 4.1. Consequently, it is crucial to equip
such the protective shells of complex CPS with the ability to detect and counteract hidden vulnera-
bilities in the system and emergent behaviour that may threaten system safety and security
(i.e. the two system quality attributes focused in this thesis).
Mitigationmechanisms, as presented in section 5.8.1, often rely heavily on advanced anomaly
detection, where real CPS behaviour is compared to precalculated and trained behaviour
models. Those get established through information retrieval and machine learning algo-
rithms analysing vast amounts of operational data and log files, thus forming the behaviour
baseline.
This section explains the whole concept of behaviour model training, as already teased and
partly used in previous chapters. By equipping the protective shell with suchmodels it allows
the switch from a retrospective view of vulnerabilities and weaknesses to a present view, enabling
it to enhance its embraced system’s resilience against unexpected and unpredictable yet
unknown behaviour, endangering safe and secure operation.
The section begins with a short introduction to anomaly detection, covering different types
of anomalies and training methods. The term "Explainable Artificial Intelligence" (XAI) is then
elaborated, and its attributes, such as accuracy, interpretability, and intrinsic explainability,
are defined. Additionally, the importance of specific ML model characteristics in safety- and
security-critical domains is discussed, followed by an introductory tutorial of some suitable
ML models that possess the recommended characteristics. The information retrieval and
training processes for these models are elaborated and illustrated how they can effectively
detect anomalies.
Finally, the section highlights predictive maintenance as one of many scenarios where ad-
vanced anomaly detection, based on the presented ML models, can provide CPS with in-

96

6.1 Explainable AI (XAI) for Anomaly Detection

sights and capabilities to monitor even the slightest deviations, thereby protecting them
from far worse outcomes when left undetected.

6.1 Explainable AI (XAI) for Anomaly Detection

When I think about anomaly detection, I immediately think of my own intuition,
my Spidey-sense that something is not quite right. You know that feeling, that
early warning deep inside, where your subconscious seemingly known some-
thing before you do, right? That’s your internal anomaly detector at work, using
rules and patterns that you might not even realise you have set up.
- Jeff Barr, 2023, VP and Chief Evangelist at Amazon Web Services

How great would it be to equip safety- and security-critical systems (especially CPS) with
such ”Spidey-senses“ to enable early detection of potential dangerous scenarios approach-
ing or to employ some form of self-interpretation/self-awareness if they currently are oper-
ating as expected. This self-awareness is a prerequisite for initiating ”self-healing“ actions,
such as corrective interventions of operating parameters. The machine learning-powered
anomaly detection serves as the counterpart to human’s natural intuition, allowing systems
to identify and respond to unknown emergent behaviour that threaten safe and secure sys-
tem operation. However, merely equipping systems with mathematical intuition in the form
of models that offer little insight into their functioning and decision-making raises serious con-
cerns about their trustworthiness. The black-box character of such machine learning models
renders them unsuitable for implementation in safety- and security-critical systems, as con-
sidered in this thesis.
CPS exposing high risks to users, bystanders, or the environment, and those capable of caus-
ing costly property damage, must comply with regulations and need to earn users trust first.
This is where explainable AI (XAI) comes into play, providing explanations for the model’s
decision-making process and ensuring that the system’s actions are reflecting the constant
effort to operate within the defined and desired behaviour.

6.1.1 Anomaly Detection

Anomaly detection finds widespread use in various domains, often serving a mission-critical
role in risk reduction

Definition Anomaly Detection:

Anomaly detection is the process of discovering outliers, abnormal patterns, and
unusual observations that deviate from established normal behaviours and ex-
pected characteristics in a system, dataset, or environment.
- Cheer Simon, Deep Learning and XAI Techniques for Anomaly Detection [18]

Detecting abnormal patterns within long-standing systems, which have accumulated exten-
sive amounts of operational data, can be challenging due to the rarity of outliers. However,
advancements in information retrieval and machine learning have shown promising results
in addressing the rarity of anomalies, modelling complex high-dimensional data, and iden-
tifying novel, previously unknown anomalous classes [18]. Types of anomalies:

• Point Anomaly: An individual data point deviates significantly from expected or typ-
ical values. For instance, a sensor in a CPS may exhibit point anomaly if its reading
significantly differs from typical values during normal operation.

97

6 AI

• Collective Anomaly: A group of correlated data points, either from different sources
or the same source, collectively deviate fromexpected values. For instance, the Therac-
25 applying a high radiation dose during field-light mode.

• Contextual Anomaly: An anomaly of a single data point or a group of data points
when viewed against contextual attributes such as location and time. For instance,
when the Ukraine power grid attackers logged in with stolen credentials, a contextual
anomaly surfaces.

While retrospective analysis of operational data after an accident or incident occurredmakes
the identification of anomalies simple, setting boundaries for normal and abnormal be-
haviour beforehand can be challenging. Overfitting occurs if domain experts and engineers
define the desired behaviour too strictly, resulting in numerous false positive identifications
of anomalies.
Conversely, if they define desired behaviour too imprecise, the model may include not only
valid operational states but also some failure modes, leading to numerous false negatives
where anomalies go undetected.
Balancing themodel’s representation of the training data how close themodel should reflect
them is crucial and depends on risk tolerance levels and domain-specific considerations.
There is no one-size-fits-all anomaly detection solution, and thus, section 6.2 presents a va-
riety of anomaly detection models found to be suitable for protective shell scenarios. This
offers engineers implementation suggestions and templates to configure and design a pro-
tective shell that suits their specific CPS.

Anomaly Detection Training The training procedure for anomaly detection typically falls
into three classes:

• Supervised: The machine learning model is trained on a labelled dataset. In the
protective shell context, the label is either normal or abnormal operation and is best
based on actual observation of the system. That means, if the CPS has experienced a
failure mode, an incident or accident, the resulting operational data would be labelled
as abnormal. Otherwise, if the CPS successfully served its purpose, the operational
data would contribute to the normal behaviour category. The scarcity of abnormal
data records and their imbalance compared to normal data records can make precise
representation of the normal class challenging [18].

• Semi-supervised: The machine learning model is trained on a large amount of unla-
belled and a small amount of labelled data records.

• Unsupervised: The machine learning model is trained on unlabelled data records.
The identification of outliers solely depends on the assumption, that they are less likely
to appear.

In safety- and security-critical environments, supervised learning is strongly recommended. CPS
engineers and domain experts can oversee the system and identify drifts to failure better
than in non-CPS scenarios. Therefore, they can aid the training process by labelling data
records accordingly, contributing to more effective abnormal behaviour detection. Further-
more, in the event of safety accidents or security incidents, the ML model can be retrained
using the new recorded instances of labelled abnormal operation.
The unsupervised approach is not suitable in this scenario, as domain experts must oversee
the training process to enhance confidence in the resulting model.
The semi-supervised training approach may be suitable for certain cases where labelling
all gathered operational data is impractical. Hence, labelled data serves as the ”gold stan-
dard“ due to manual mapping by experts, it requires additional work effort. If labelling vast

98

6.1 Explainable AI (XAI) for Anomaly Detection

amounts of operation data is not feasible, the semi-supervised approach becomes a more
suitable alternative than training the entire model on completely unlabelled records.
Regardless of the training approach, the main objective is to establish a precise boundary be-
tween truly normal and abnormal behaviour, as this determines the model’s accuracy of the
anomaly detection predictions.

Furthermore, it is crucial that themodel’s training process employed in the protective shell
remains isolated from the operational phase. A diligent and systematic approach should be
taken, wherein the model undergoes extensive training to a satisfactory extent, under the
supervision of domain experts, followed by rigorous testing and reassessment, before being
deployed into the safety and security-critical operational environment.
This isolated training approach for themachine learningmodel is particularly advisable within
the context of the protective shell due to the numerous benefits it grants. Notably, this
methodology provides robustness, stability, and produces more predictable outcomes, as
opposed to models undergoing frequent updates during active operation. The isolation
also enables extensive testing and validation, thereby ensuring to meet specifications and
performance metrics. Moreover, this rigorous testing reduces the risk of unexpected be-
haviour during run-time, thus enhancing overall operational reliability. Lastly, the isolated
approach provides data consistency within training records, serving as a protectivemeasure
against potential adversarial attacks initiated by external entities. Operational data records
captured during real-time operation may significantly deviate from the preprocessed train-
ing dataset, while isolation enables essential preprocessing steps such as outlier removal,
feature scaling, normalisation, and over- or undersampling.
An alternative training methodology, commonly employed in modern deep learning applica-
tions, is continuous reinforcement learning. This approach offers higher adaptability by contin-
uously training the model using newly encountered operational data, allowing the model to
adapt to changing conditions. Moreover, this strategy leverages real-time feedback within a
feedback loop to swiftly updatemodel behaviour based on user interactions and operational
outcomes, with the objective of progressively enhancing overall model prediction accuracy
over time.
However, within the context of the protective shell, it is strongly suggested to restrain from
utilising continuous reinforced learning, favouring instead the well-structured sequential,
isolated training process. Continuous reinforcement learning, with its frequent model up-
dates, finds particular utility in domains necessitating high adaptability, wherein deploying
immaturemodels paves theway tomature ones. For instance, the example of Tesla’s autopi-
lot assistant training, gathering vast amounts of operational data to conduct reinforcement
learning to its current model, exemplifies this approach, with the ultimate goal of achieving
level 5 autonomous driving capabilities.

6.1.2 Explainable Artificial Intelligence

Definition XAI:

XAI is an emerging research field that studies the approaches, methods, tools
and frameworks to provide human-legible explanations about the inner workings
of an AI system and increase confidence in model predictions with quantifiable
factors.
qtd. in. - Cheer Simon, Deep Learning and XAI Techniques for Anomaly Detection [18]

The primary goal of XAI is to reliably satisfy the interests and expectations of all stakeholders
within the CPS’s application domain. This includes regulatory requirements that CPS man-
ufacturers must comply with by law, necessitating explanations for the model’s decision-
making process that then allows evaluation of regulatory compliance. Furthermore, the

99

6 AI

manufacturer has a high interest in fully understanding its CPS, thereby improving its overall
architecture by enhancing accuracy and reliability over time. Therefore, ML model explana-
tions should shed light on the inner workings of the protective shell’s anomaly detection process.
Lastly, the CPS operator and bystanders are expecting the explainable nature of the CPS
decision-making to trust the system’s abilities. Social trust in a CPS is a key success fac-
tor for its acceptance. For instance, autonomous vehicles lacking human-understandable
decision-making may be perceived as violating ethical guidelines, hindering the acceptance
rate in the society.

Accuracy vs. Interpretability Better performing, more accurate, and efficient ML algo-
rithms often rely on higher complexity, reducing their inherent interpretability for humans.
Deep learning neural networks exemplify this characteristic, providing accurate predictions
with low computational overhead during operation but lacking interpretability, making it
challenging to consistently deliver human-understandable explanations for their actions.
On the other hand, inherently interpretable models, like linear regression, provide less ac-
curate predictions. As depicted in the figure 6.1, those two attributes are counteracting,
and it relies within the engineer’s choice to pick an ML model upon their requirements. The
trade-off betweenmodel accuracy and interpretability must be carefully balanced to comply
with regulations and fulfil functional requirements. In safety- and security-critical scenarios, a
more conservative approach is advised, favouring less complex models to reduce the likelihood of
unexpected behaviour exhibited directly by the protective shell.

Figure 6.1: ML Model Accuracy vs. Interpretability [18]

The main distinction between explainability and interpretability lies in the scope of their
contributions. Explainability provides reasoning for themodel’s decisions, while interpretabil-
ity measures the extent to which the model’s overall behaviour is understood. That means,
that explainability shows how the model behaves in human understandable terms. In con-
trast, interpretability assesses whether the given explanations of how the model behaves
make sense in real-world practice [18].
In the safety- and security-critical CPS context, interpretability is welcome aiding in obtain-
ing a deep understanding of the model, while explainability is essentially required. However,
more complex, multidimensional models may lack interpretability and intrinsic explainability
while providing higher efficiency and accuracy in predictions. Therefore, active and emerging
research focuses on providing post-hoc explainability for such complex models.

Intrinsic Explainability vs. Post-hoc Explainability Machine learning models exhibit intrin-
sic explainability by limiting their overall complexity and dimensionality during the initial de-
sign phase. In contrast, machine learningmodels with high complexity and high-dimensional
datasets lack intrinsic explainability and rely on post-hoc explainability, employing algorithms
to calculate explanations and analyse themodel’s behaviour after training. In the safety- and
security-critical CPS domain, it is essential to avoid post-hoc explainability, as the goal is not to
find a mathematically suitable explanation of what happened but to identify the root cause

100

6.1 Explainable AI (XAI) for Anomaly Detection

of the protective shell’s actions.
A significant advancement in the domain of AI explainability took place in June 2023, when
the European Union Parliament ratified their Artificial Intelligence Act (EU AI Act). This legisla-
tive milestone marks the start of lawmaker negotiations aimed at finalising the new regula-
tory framework. This legislative act underscores the necessity of explainability in AI systems,
stating: ”Members seek to strengthen citizens’ rights to file complaints about AI systems and
receive explanations of decisions based on high-risk AI systems that significantly impact their
rights.“ [34]. Foreseeably, this legislative direction will serve as a guiding force for establish-
ing the initial legal norms on a national level across the European Union.
Intrinsic explainable models, as shown in figure 6.1, are intentionally designed and con-
structed with simple structures to be self-explanatory. Conversely, ML models requiring
additional models or post-processing to provide explanations are categorised having post-
hoc explainability [18].
In models with intrinsic explainability, the influence of a feature (independent variable) on its
target (dependent variable) can be determined by examining the weights and biases for lin-
ear and logistic regression. Therefore, explanations for specific predictions can be obtained
by analysing the weight matrix and attention scores in each model.
Conversely, post-hoc explainable models lack such linear or logistic coefficients that can be
directly visualised as explanations. Consequently, for every prediction that requires an ex-
planation, the model must be evaluated using an explainability algorithm, approximating
the model’s behaviour as best as possible. This approximation legitimately raises concerns
about the explanations’ faithfulness and trustworthiness, as it is not a direct representation
of the model’s behaviour. Post-hoc explainability algorithms often focus on feature impor-
tance, assessing how model accuracy deviates after permuting the values of a specific fea-
ture to obtain prediction scores [18]. For instance, deep neural networks lack interpretability
and intrinsic explainability for humans, relying on post-hoc explainability methods to shed
light on the hidden layers’ inner workings. One such tool is the activation maximisation
framework, which provides insights into preferred inputs for specific layers of neurons and
their activation.
Figure 6.2 demonstrates the search for an explanation for the output of a neural network
using a gradient-based backpropagation algorithm for feature attribution. This algorithm
assigns importance scores at the final output layer and calculates local activation gradients
across each intermediate layer until it reaches the input layer, thereby producing a viable
explanation for the output [18].

Figure 6.2: Post-hoc Explainability - Neuronal Network Backpropagation [18]

101

6 AI

Ignoring explainability by solely focusing on complex, high-dimensional models that de-
liver consistently more accurate predictions is not a valid approach. During design time,
engineers and domain experts may not be able to consistently develop a model that accu-
rately and adequately reflects real-world scenarios. As a result, the model’s predictions may
be highly accurate based on the training data, but the model may deviate substantially from
the real-world problem. Reevaluating the suitability of the established model in addressing
real-world problems is crucial, especially in safety- and security-critical CPS domains. Regu-
latory compliance cannot be achieved, and users won’t rely on an AI-supported CPS that is
not considered trustworthy.
In summary, in the CPS context, an intrinsic explainable model with adequate accuracy is al-
ways preferable to a complex model with high accuracy [18]. Therefore, the following section
presents a selection of intrinsic explainable MLmodels that extract business-critical insights
and achieve transparency, ultimately establishing trust in the system. Some of thesemodels
are inherently interpretable, while others lack this attribute in exchange for more complex
ML techniques.

102

6.2 Intrinsic Explainable ML Models

6.2 Intrinsic Explainable ML Models

Traditional rule-based anomaly detection methods, manually crafted by domain experts,
have historically offered inherent interpretability. However, these methods face limitations
in their scalability when dealing with high-dimensional data and are challenging to maintain
[18]. As a result, they are best suited for capturing fundamental system characteristics that
are expected to remain stable. Their rigid nature allows them to define broad boundaries
based on functional specifications and policies, but if applied to more dynamic and flexible
limits, they can hinder system development.
It should be noted that this section provides a concise introduction to suitable ML models
for protective shells. Therefore, certain aspects not directly relevant to this thesis have been
omitted in order to keep the scope of content about AI to an acceptable level.

6.2.1 Linear Regression

Concept Linear regression is a fundamentalmachine learning technique employed tomodel
the relationship between a dependent variable (target) and one or more independent vari-
ables (features). This technique assumes a linear model as its foundational learning frame-
work. In the linear model, the target ŷ = fw,b is expressed as a linear combination of input
features X1, ..., Xn [35].
One of the key advantages of linear regression is its inherent interpretability, coupled with
having an analytical solution that enables learning of the optimal linear model [35]. The goal
is to find a linear equation that best represents the relationship between these features.
The linear regression equation, along with a bias term, has the following form:

fw,b(x) = w⃗ · x + ⃗b

Where:
fw,b - represents the target values the model aims to predict
x - denotes the independent features
w⃗ - represents the weights
⃗b - represents the biases

Training/ Information Retrieval Training a linear regression model necessitates a labeled
dataset consisting of input-output pairs, thereby employing supervised training. Throughout

the training process, the optimal values for w⃗ and ⃗b need to be determined, minimising the
discrepancy between predicted values and actual values within the training dataset. Typi-
cally, this is achieved using an optimisation algorithm such as gradient descent, iteratively
adjusting the weights until convergence.

Detection Process Linear regression can be applied in two variants for anomaly detection
during run-time. The first method involves identifying anomalies within a sequentially or-
dered stream of data points. The linear regression model is trained to learn data trends
and variations in individual sensor readings, actuator reports, and application signals. By
assessing recent values and extrapolating them into the future while considering learned
common trends/variations from operational data, the protective shell can compute the an-
ticipated value likely to be observed next in the data stream. As illustrated in figure 6.2.1,
this regression task calculates an expected value for each sensor, actuator, and application
signal in the forthcoming sampling frequency iteration.

103

6 AI

Additionally, themodel learns the standard deviation for each data stream, which is utilised
to set an anomaly detection threshold. This threshold, defined by lower and upper bounds,
enables anomaly detection for each data stream validating the next value against this range,
as depicted in figure 6.3.

Figure 6.3: Linear Regression - Threshold Anomaly Detection [36]

The second approach employing linear regression for anomaly detection operates at a
system-wide level. Leveraging the linear classification strategy, the model predicts whether
the entire CPS is functioning normally or experiencing a failuremode. Themodel is trained to
assign a positive fw,b value to all datasets indicative of ”operating as intended“ and a negative
fw,b value to those indicating ”failure modes“. To achieve this, the model learns to span an
optimal straight-line boundary that separates failure mode points situated below the line
from correct operation points located above the line, as shown in figure 6.4.
Once this boundary is defined (employing appropriate mathematical techniques to project
multidimensional points onto a single layer), the linear classification can efficiently determine
the current operational state, identifying potential failure modes or correct operation.
It is important to acknowledge that linear regression alone might not be sufficient for

complex anomaly detection tasks, especially when variables exhibit non-linear relationships.
More advanced techniques such as support vector machines or deep neural network learn-
ingmight be necessary to handle complex datasetswith high-dimensionality and non-linearity.
Nevertheless, the simplicity of linear regression renders it immediately interpretable and in-
fuses trust in its predictions.

104

6.2 Intrinsic Explainable ML Models

Figure 6.4: Linear Regression - Classification [37]

6.2.2 Decision Trees

Concept Decision trees are robust machine learning models utilised for both classification
and regression tasks, similar to linear regression 6.2.1. In the context of anomaly detection,
classification is employed to assess whether the CPS is operating according to its design or
if it is likely in a failure mode. Furthermore, regression tasks are used to predict forthcoming
values for the individual data streams that the protective shell is expecting next [35].
A decision tree models a decision-making process in a tree-like structure, often realised as
binary trees. Internal nodes represent decisions based on specific features or attributes,
while leaf nodes correspond to class labels (in classification) or predicted values (in regres-
sion tasks).
The tree is built through a process of recursively partitioning the data based on the feature
that provides the best separation of classes or the best prediction of values.

Training/ Information Retrieval Two measures play a crucial role in decision tree training:
entropy and the information gain.
Entropy is a measure of impurity or disorder in a set of data. In the context of decision trees,
it represents the uncertainty of class labels within a subset of data. A lower entropy indicates
that the subset is more homogeneous with respect to the target variable.
Information gain is a metric used to decide which feature to split on. It quantifies the reduc-
tion in entropy achieved by partitioning the data based on a particular feature. A higher in-
formation gain implies that the feature separates the data intomore distinct classes, thereby
improving the ability to make decisions.

The training process starts at the root of the tree with the entire dataset, as depicted in
figure 6.5 for the classification use case where X0 and X1 are features. The feature providing

105

6 AI

Figure 6.5: Decision Tree - Classification Training [38]

the highest information gain is selected to partition the data into subsets based on feature
values, building the first internal node. This procedure gets repeated for each subset until
a stopping criterion is met (e.g., maximum depth, minimum samples per leaf, or no further
information gain). Upon subset purity (all instances belong to the same class) or meeting
the stopping criterion, a leaf node is generated with the class label corresponding to the
majority class.
To mitigate overfitting, pruning can be applied to remove branches that do not notably en-
hance the model’s generalisation.
In summary, the training process of a decision tree involves recursively selecting the best
features to split the data based on information gain, calculating entropy to measure impu-
rity, and creating nodes and branches to form a tree-like structure. This process continues
until certain stopping criteria are met, or the tree becomes pure.

Detection Process There are various approaches in leveraging decision trees for anomaly
detection. A very promising approach is the concept of isolation forests. As anomalies are
defined by their deviation from themajority of data records, they tend to be isolated in fewer
splits, thus residing closer to the root of the tree. As shown in figure 6.6 the outliers can be
isolated from the inlier area often by few splits, establishing a binary decision boundary.

Consequently, anomalies tend to exhibit shorter paths from root to their leaf due to their
distinctiveness. Depth-based methods utilise the leaf node’s depth as an anomaly score.
Figure 6.7 demonstrates that data points requiring short path lengths for isolation often
correspond to anomalies, while long paths suggest expected operational states in the CPS
scenario.
In conclusion, decision tree models surpass linear regression in complexity while remain-
ing inherently interpretable and can learn non-linear relationships in the underlying data.
Despite the algorithm’s greedy nature leading to a local optimal solution but can’t guaran-
tee a global optima, decision trees are efficient in yielding solutions within a reasonable
timeframe. Nonetheless, they are prone to overfitting, leading to false positive anomaly de-

106

6.2 Intrinsic Explainable ML Models

tection. Therefore, processes like pruning are essential to mitigate overfitting tendencies.

Figure 6.6: Decision Tree - Isolation Forest Binary [39]

Figure 6.7: Decision Tree - Isolation Forest Depth Based [40]

107

6 AI

6.2.3 K-Nearest Neighbours

Concept The dominant focus of numerous existing machine learning methods centres
around point anomalies. However, the emergence of complex interconnected CPS, gener-
ating multidimensional data streams, pose a new opportunity for the domain of multimodal
anomaly detection. Instances ofmultidimensional anomaliesmanifest when one ormore di-
mensions deviate from the anticipated range of values, or when multiple dimensions cease
to exhibit long-standing correlations [18]. Addressing this scenario, the k-nearest neigh-
bours (k-NN) model stands as a suitable solution to detect such multidimensional anoma-
lies, inherently possessing higher dimensionality than the previously presentedmodels. The
k-NN model is a fundamental technique within in the machine learning domain, serving var-
ious applications, including the use case of anomaly detection.

At its core, the k-NN algorithm is rooted in non-parametric and instance-based learn-
ing, operating upon the principle of similarity. Consequently, k-NN has no fixed number of
parameters and instead engages in a comparative assessment between new data records
and the dataset encountered during the training phase. The dimensionality of the k-NN
model corresponds directly with the number of data streams traversing through the pro-
tective shell. Therefore, for every component transmitting or receiving data within the CPS,
a distinct feature axis is created. While the typical k-NN model relies on labelled datasets,
adaptations allow its operation with unsupervised learning paradigms.
The k-NNmodel proves particularly useful for identifying complex and subtle patterns in data
that may not be captured by conventional parametric models such as linear regression.

Training/ Information Retrieval K-NN is not typically ”trained“ in the same way as tradi-
tional machine learning models, as it is a ”lazy learner“. Instead, the feature vectors of the
training data get stored in memory, so that the algorithm can compute distances and find
neighbours efficiently during the prediction phase. However, for vast amounts of training
data, k-NN can leverage time-memory trade off by not saving all individual data records
as points in the multidimensional space, but calculating classification spheres instead. As
shown in figure 6.8, the sphere got calculated by approximating the placement area of data
record points labelled as operating as intended.
The resulting model may have intrinsic knowledge about the CPS on a very detailed level,
that is infeasible for domain experts to extract manually.

Detection Process The initial step involves defining the parameter ’k’, representing the
count of nearest neighbours considered in decision-making. This parameter should remain
static once defined, as its alteration could drastically change the model’s behaviour.
Subsequently, the newly recorded data point is located within the space, and distances to
the training data points are computed. Common distance metrics include Euclidean dis-
tance, Manhattan distance, and most important, cosine similarity, which gains preference in
models featuring high dimensionality because of its performance advantage.
Following, the ’k’ data points having the shortest distances to the new point get identified.
Classification is accomplished through majority voting among k-nearest labels. Alternatively,
a distance-based score is computed, unveiling the probability of the new point being an
anomaly. Anomalies are often associated with data points that have high average distances
to their neighbours, attributed to their rare occurrence.
The utilisation of precalculated spheres within the multidimensional space avoids the need
for distance calculations after the sphere training, thereby enhancing operational efficiency.

108

6.2 Intrinsic Explainable ML Models

Figure 6.8: K-nearest Neighbours - Sphere Classification [41]

While k-NN provides intrinsic explainability and greater versatility in comparison to previ-
ously introduced algorithms, it is not inherently interpretable and does raise substantial per-
formance concerns. In simple scenarios characterised by low-complexity CPS, k-NN can yield
significant benefits. However, this thesis concentrates on complex CPS instances demand-
ing high-dimensional k-NNmodels to accurately depict their behaviour. In high-dimensional
spaces, the ”curse of dimensionality“ can pose tremendous negative effects on k-NN’s perfor-
mance. Distance-based methodologies might encounter challenges in locating meaningful
neighbours within such spaces.
Furthermore, the selection of ’k‘ significantly influences the algorithm’s efficiency. A small
’k‘ could lead to overfitting, whereas an overly large ’k’ might cause the algorithm to over-
look local patterns. For scenarios targeting over 20 features per instance (corresponding to
more than 20 data streams and, hence, a dimensionality surpassing 20), k-NN proves un-
suitable. Nevertheless, in scenarios involving up to 20 features and extensive training data,
k-NN emerges as a highly viable choice, providing the advantage of preserving training data
during training without information loss due to its non-training nature [35].

109

6 AI

6.3 Example Use Case - Predictive Maintenance

Predictive maintenance is a crucial application of machine learning in the field of industrial
operations. Real-time data produced by interconnected devices presents enormous op-
portunities for predictive analytics in structural health checks [18]. Through such advanced
analytics and the use ofmachine learning techniques to predict when equipment ormachin-
ery is likely to fail, timelymaintenance interventions aremade possible to prevent unplanned
downtime and optimise maintenance schedules. Anomaly detection plays a central role in
predictivemaintenance, as it helps identify deviations fromnormal operating conditions that
might indicate impending failures or issues.
Inadequatemachinemaintenance is the primary cause of unplanned downtime inmanufacturing.
Improving equipment availability and performance is critical in avoiding unnecessary main-
tenance costs and increasing productivity in industrial workloads, thereby ensuring business
continuity [18].
The three machine learning algorithms presented previously — linear regression, decision
trees, and k-nearest neighbours — can be employed to facilitate anomaly detection in pre-
dictive maintenance scenarios.

1. Linear Regression: In the context of anomaly detection for predictive maintenance,
linear regression can be utilised to establish a baseline of normal behaviour for a machine
or system. By training a linear regression model on historical sensor data, the algorithm
learns the expected patterns of behaviour. Deviations from the predicted values can then
be flagged as anomalies like higher electricity consumption’s or when an operational hour
limit is reached, potentially indicating an impending failure if left ignored.

2. Decision Trees: In predictive maintenance, decision trees are useful for creating a hier-
archical structure of rules based on historical data patterns. Anomalies can be identified by
traversing the decision tree and observing the path that a new data point takes. If the path is
uncommon or diverges significantly from the established patterns, it suggests the presence
of an anomaly. Decision trees are particularly effective for capturing complex interactions
among multiple variables like temperature fluctuations or pressure changes.

3. K-Nearest Neighbours: In the context of predictive maintenance, k-NN can be em-
ployed to find similar historical instances of normal behaviour. If a new data point is signif-
icantly distant from its neighbours, it indicates an anomaly. k-NN is especially useful when
the decision boundary between normal and anomalous instances is irregular or nonlinear,
like vibration levels and performance deviations.

Predictive maintenance is a vital application of machine learning in industrial contexts, al-
lowing organisations to reduce downtime, enhance operational efficiency, and extend the
lifespan of machinery. Anomaly detection using algorithms like linear regression, decision
trees, and K-nearest neighbours empowers businesses to proactively identify and address
potential issues, thereby maintaining the health and reliability of their equipment. By lever-
aging these techniques, industries can transition from reactive maintenance practices to data-
driven, proactive maintenance strategies.

Equipped with the presented ML models used for advanced anomaly detection outlined
in this chapter 6, the summarised mitigation mechanisms collected in chapter 5 as well as
the goals, expectations and state-of-the-art from chapter 3 and 4, the subsequent chapter
provides insights how a generic protective shell architecture can look like, universally appli-
cable and dynamically adoptable for a wide range of application domains.

110

7 Generic Protective Shell

The necessity for a generic protective shell that can be universally applied acrossmultiple ap-
plication domains arises from the previously discussed and well-reasoned challenges faced
by modern IT systems. These challenges are repeated here to underscore and recall the
core issues:

1. The conventional development process, despite its sophistication, cannot identify and
mitigate all vulnerabilities in the system’s design-time architecture before deployment
despite typically involving risk management, vulnerability elimination, system model
verification, testing, and various other techniques.

2. The high complexity of modern systems is known for generating emergent properties,
which can include negative emergent behaviour and vulnerabilities.

Therefore, the primary objective of this thesis is to enhance the trustworthiness of such com-
plex systems during their operation by introducing an additional layer of defence – run-time
monitoring in the form of a protective shell. In situations where complex systems exhibit
emergent negative behaviour, the protective shell is designed to detect and analyse this
abnormal behaviour. Subsequently, it aims to counteract impending safety accidents or se-
curity incidents by mitigating the potential damage they may cause.
This chapter introduces the concept of a generic protective shell with the objective of achiev-
ing universal implementability across various application domains. Establishing a dynamic pro-
tective shell framework not only enables its adaptability through blueprints and templates
but also aligns with broader engineering principles, serving as a prerequisite for widespread
industry acceptance.
The groundwork for this thesis involved an examination of the key actors, current techno-
logical landscape, opportunities, and challenges within the CPS environment. It aimed to
uncover the functional requirements sought by organisations and individuals in this domain,
thereby absolving the design science research relevance cycle to leverage opportunities and
find solutions to exposed problems. Among the identified challenges lies the research prob-
lem addressed in this thesis, focusing on emerging safety accidents and security incidents in
complex CPS scenarios.
Furthermore, this chapter offers a summary of pivotal methodologies, frameworks and prin-
ciples drawn from the scientific knowledge base. These methodologies either partially ad-
dress the research problem or provide useful functionality to be refined, adopted, and in-
tegrated into the proposed solution. Notably, it explores the integration of the AI guardian
angel bots suggestion [1], the run-time monitoring principle, and various machine learning
models. These elements collectively establish the foundation and provide a robust basis to
build the artefact of the generic protective shell.

111

7 Generic Protective Shell

The design cycle, which already started in chapter 5, involved the development and evalua-
tion of specific protective shells for CPS applications across various industries. This iterative
process unveiled similarities, laying the groundwork for the core of the generic protective shell
framework. Chapter 6, contributing to the rigor cycle, delves deeper into additional founda-
tions and methodologies from the machine learning and anomaly detection domains. This
enriches the design and architecture principles of the protective shell by providing guidance
on important ML model characteristics and training approaches.

In this chapter, the focus lies on the core architecture of the generic protective shell frame-
work. Firstly, theMAPE-K control loop is introduced and tailored to the context of the protec-
tive shell. Its suitability for the protective shell concept is elucidated.
Additionally, a comprehensive list of protective shell detection capabilities is presented, en-
compassing a wide range of advanced anomaly detection mechanisms, machine learning
classifications, and simpler static rule-based approaches for identifying abnormal behaviour.
Likewise, a list of protective shell intervention capabilities is introduced, addressing various
potential outcomes of intervention decisions. These capabilities span passive alerting and
active corrective/protective actions, whenever possible in real-time.
Both lists contribute to the protective shell’s plugin catalogue, offering a wide variety of mod-
ules that can be directly implemented if they provide functionality suitable for monitoring or
safeguarding the specific embraced CPS. Furthermore, an automated process for analysing
and interpreting abnormal behaviour is outlined to enable purposeful and aimed protective
actions.
To conclude the generic protective shell architecture, the identified design and architecture
principles are enumerated. These principles are intended to guide engineers in the success-
ful implementation of protective shells tailored to their specific CPS applications. Subse-
quently, required adaptations to the overall CPS development process necessitated by the
introduction of the protective shell are discussed.
Finally, an evaluation of the generic protective shell framework is conducted, focusing on
residual risks, effectiveness, the potential introduction of new failure modes, and its impact on the
attack surface. This chapter serves to enrich the scientific knowledge base with the created
artefact by offering a viable solution to the research problem, which organisations operating
in the CPS application domain can readily adopt.

7.1 Architecture

The primary objective of the protective shell is to address undetected vulnerabilities stem-
ming from the development process and emergent negative properties within the CPS’s run-
time environment. This section outlines a sound architecture equipped with the necessary
capabilities to meet the functional requirements of protecting the system during run-time.
Firstly, the well-suited reference architecture, MAPE-K, gets introduced, followed by an in-
depth analysis of each phase within this architecture.
Subsequently, two lists of ”plugin/modules“ get presented to provide the flexibility required
to tailor the protective shell to individual CPS instances and their specific use cases. The first
list covers the various anomaly detection and abnormal behaviour identification techniques
that can be incorporated, while the second list encompasses the diverse intervention ac-
tions available to the protective shell.
This section concludes by consolidating all the design and architecture principles identified
throughout the preceding chapters, including any novel insights discovered during the ar-
chitecture’s definition.

112

7.1 Architecture

7.1.1 MAPE-K

A quite suitable reference architecture for the protective shell to follow is the MAPE-K model,
which employs a feedback loop to continuously monitor and validate the current system be-
haviour. When abnormal behaviour is detected, it plans and executes adaptions to restore
the system to a desired operational state.
The acronym MAPE-K represents the core phases constituting this feedback loop, standing
forMonitor, Analyse, Plan and Execute, with each phase of this feedback loop relying on an
underlying Knowledge base. This reference architecture is especially useful for self-adaptive
(including self-healing) and autonomous systems within domains like CPS [42]. Self-adaptive
systems, like CPS, are a class of systems that have the ability to autonomously modify their
behaviour or properties in response to changes in their environment, operating conditions,
or internal state to be resilient and flexible. These systems are designed to achieve and
maintain certain goals or objectives while dynamically adjusting to varying circumstances.
In this thesis, the MAPE-K architecture gets adopted and used for the protective shell, safe-
guarding the embraced CPS against run-time failures and threats.
Given that the CPS itself operates in a similar feedback loop, in this thesis the protective
shell’s MAPE-K loop gets referred to as the ”control loop“. Both loops are interdependent
and cannot operate in parallel; they must be sequentially processed for each iterative cy-
cle. The feedback loop awaits data streams, including sensor readings, application signals,
and actuator reports, which pass through the protective shell during the control loop. Con-
versely, the control loop awaits new data streams sent out or requested by the CPS feedback
loop. This introduces concerns regarding latency, which can lead to system instability, par-
tial paralysis, and delayed responses. This issue will be addressed in detail during in-depth
analysis of relevant MAPE-K phases and subsequently addressed through the specification
of especially tailored design principles. The entire MAPE-K control loop is managed by the
protective shell’s application software, with each phase continuously consulting the knowl-
edge base containing, but not limited to, run-timemodels, functional specifications, policies,
rule-sets, machine learning models, and anomaly detection capabilities.
A concise overview of the refinedMAPE-K reference architecture is illustrated in the following
figure 7.1, while a more detailed depiction can be found in the appendix of this thesis.

113

7 Generic Protective Shell

Execute

Execute Actions

Analyse

Detection Mechanisms

Plan

Interventions

Monitor

Collect & Aggregate
Data

Abnormal Behaviour

Publish Intervention
Actions

Provide collected
Information Knowledge

 Base

Detection Log

Intervention

Log

Desired

Behaviour

Protective/

Corrective

Actions

Forward

Data Streams

Operating as
intended

New

Datapoint

Provide

Predictions
Provide Plan

Drift to Failure / Incident

HMT

Meaningful Alert

+
Intervention Plan

Human

Operator

GUI

Async

Regression Tasks Prepare Plan

Async

Figure 7.1: Architecture - MAPE-K Protective Shell Overview

114

7.1 Architecture

Monitor

Knowledge Base

Async.

Process

Async.

Process

HMT

Monitor

Analyse Plan

Execute

Monitor
Data Stream Mapping
Context Information

Passing Data Streams

are collected / monitored

Figure 7.2: Architecture - MAPE-K Monitor Phase [2]

In themonitor phase of the control loop, the protective shell not only collects sensor read-
ings, similar to the CPS’s feedback loop but also gathers application signals, actuator reports,
network access information, update requests, and additional context data sources that are
indirectly linked to the CPS. The primary objective of the monitoring phase is to gather data
from the self-adaptive CPS and its operating environment [42], with all information sources
predefined andmapped in the underlying knowledge base that the monitor phase consults.
Sensors provide the protective shell with environmental information, equivalent to what the
embraced CPS requires for its operation. Software probes, on the other hand, offer insights
into the resource usage, response times, and currently executing tasks of CPS applications.
This data is collected, persisted, and utilised in run-time models to guide subsequent analy-
sis of abnormal behaviour, anomaly detection, and decisions regarding protective and cor-

115

7 Generic Protective Shell

rective actions [42].
To optimise resource utilisation and ensure efficient data management, the monitor phase
frequently undertakes preprocessing of the quite voluminous data streams. This preprocess-
ing may encompass data aggregation, wherein information from diverse sources is consoli-
dated before onward transmission to the analysis phase. By employing such measures, the
monitor phase strives to alleviate storage constraints, optimise bandwidth utilisation, and
reduce the computational overhead associated with handling copious data streams.

Analyse

Within the analyse phase of the control loop, the protective shell predicts the need to in-
tervene in CPS-initiated actuator commands or other data streams linked to the CPS by
analysing the information received from the monitor phase. It assesses whether adapta-
tions are required to enhance the CPS’s run-time safety or security. This assessment hinges
on whether the CPS is currently operating as intended, as defined by its desired behaviour, if it
is gradually deviating from a safe and secure operational state into instability, or if it currently
exhibits abnormal behaviour.
The knowledge base underpins the analyse phase, providing the necessary information to
enable anomaly detection, operating state classification, cross- and range-validation, check-
ing correlations, as well as manual established functional specifications, rule-sets, policies,
models, and patterns. These resources converge harmoniously during each control loop
iteration to evaluate the current CPS behaviour and subsequently compare it against the
desired behaviour.
During analysis, the protective shell predicts whether the CPS can achieve its defined goals
within safety and security constraints while adhering to agreed-upon quality of service spec-
ifications. This fully automated process must enable rapid responses to environmental
changes, emergent situations [42], threats through malicious intent, or faults resulting from
hardware or software failures. However, the validation of CPS behaviour during analysis
by the protective shell itself introduces latency to data streams, such as sensor readings
reaching the CPS, and increases response times for actuators following CPS instructions.
Consequently, the responsiveness of the self-adapting CPS decreases, and its reaction times in-
crease, which can lead to system instability.
This latency is particularly problematic in CPS scenarios with high sampling frequencies and
real-time requirements, such as autopilots, where response times are critical for prevent-
ing accidents. Therefore, it is crucial to optimise the analysis phase’s efficiency, reducing
the latency factor to a minimum. One effective strategy is to leverage regression tasks from
trainedmachine learning models or established data trends to project previous and current
values into the future, thereby predicting the next expected values. This asynchronous pro-
cess can handle the computationally intensive work outside the feedback and control loop’s
sequential nature, prior to receiving the next data point to reduce the anomaly detection
computational part during analysis to comparison only, while data streams are blocked.
The expected value ranges can also already be validated and verified against static rule-sets
defined by domain experts for desired behaviour. If any part of the expected value range
violates these rules, the ranges are adjusted accordingly to adhere to these boundaries.
Diagram 7.3 illustrates how the analyse phase compares real values collected with already
provided predictions generated by a separate asynchronous process, which continuously
calculates expected values through regression tasks, pattern recognition, and data trend
analysis. In return, this asynchronous process receives the current data point in every loop
to enhance prediction precision for future expected values.
If one or more of the current values violate the threshold range of its expected counterpart,
it indicates an anomaly. Additionally, if the predicted system classification does not match

116

7.1 Architecture

Knowledge Base

Async.

Process

Async.

Process

HMT

Monitor

Analyse Plan

Execute

Analyse Functional Specifications

Rule-Sets

Policies

ML Models

=> Desired Behaviour

Async

Append new

Datapoint

Provide

Predictions

Drift to Failure / Incident

Identified

Abnormal Behaviour

identified

Detection Log

Operating as

intended

Forward

Data Streams

Figure 7.3: Architecture - MAPE-K Analyse Phase
Pictures: [36], [40], [37], [38], [41], [18]

the current collected values, and the system state would be classified as not operating as
intended, it would be decisive for the analysis identifying abnormal behaviour. Furthermore,
the system-wide classification can also be supported by regression tasks. In the k-NNmodel
or the linear regression model, the system state is being represented as a data point at
any given time. When this point approaches the boundary (in linear regression the straight
line and in k-NN the sphere boarder) over several time steps, indicating a gradual drift to-
wards failure, the protective shell can anticipate such negative behaviour before it occurs
and proactively plan interventions. The same applies to decision trees with slowly decreasing
path depths, indicating a drift towards failure.

117

7 Generic Protective Shell

There are numerous analysismechanisms available for utilisation by specific protective shells,
which will be discussed in more detail in section 7.1.3. These mechanisms provide distinct
insights into the system’s behaviour and collaborate to determine whether the system is
operating as intended.
The analysis phase results in a binary decision: either no abnormal operation is detected,
and the protective shell assumes the CPS is functioning as designed, or an anomaly is iden-
tified, prompting the protective shell to conclude that the CPS is not operating as expected.

Case "operating as intended": The majority of results in the analysis phase should indi-
cate that the monitored, embraced CPS is operating as intended with no operation flaws
that could have been identified, instilling higher confidence in the system’s ability to achieve
its defined goals. The comparison of predicted and expected values in this ”operating as in-
tended“ confirmation from the protective shell control loop is highly efficient and introduces
negligible latency in the CPS feedback loop.
Additionally, the system-wide analysis, classifying the current CPS state as either ”desired“ or
”abnormal“ behaviour, must be efficient. Engineers have to optimise this classification task’s
efficiency by selecting a suitable machine learning model tailored to their CPS characteris-
tics.
This outcome represents the base scenario for a properly implemented protective shell and
CPS combination, due to the rarity of unexpected, emergent behaviour and its deeply hid-
den vulnerabilities. It is of upmost importance to forward the interrupted data streams as
quickly as possible. Diagram 7.1 illustrates how this ”operating as intended“ case shortcuts
the loop by immediately executing the forward action and returning to the monitor phase,
bypassing the planning and execution phases. However, it is possible to strictly adhere to
the MAPE-K architecture by first planning the forward action and then executing it in the
appropriate phases. As this makes no functional difference, it is presented in the shortcut
manner in the architecture overview 7.1 to emphasise the need for efficiency in this step.

Case "abnormal behaviour identified": The second, rarer and possibly dangerous scenario
involves the analyse phase concluding that the CPS is exhibiting abnormal behaviour, which
is safety- and/or security-critical and could pose direct risks if left unattended. This decision
should not be taken lightly, as it directly affects the CPS’s feedback loop, either by manipulat-
ing the data or at least by prolonging the exchange time for such data streams. Therefore,
protective shell engineers must thoroughly understand the implications of this analysis de-
cision on their specific CPS and evaluate, during the design phase, the potential impacts
of operation delays. Depending on this evaluation, the protective shell may decide during
the analysis phase that the detected deviations from desired behaviour are not significant
enough to be labelled as abnormal behaviour. In such cases, further investigation is re-
quired, involving additional detection mechanisms to fortify the evidence or confirming that
the CPS is operating as expected. This underscores the importance of the collaborative effort
among various detection mechanisms to achieve a high certainty score for this critical decision.
When indeed abnormal behaviour is identified, the protective shell generates the required
detection log for subsequent forensic analysis and transitions to the planning phase.

Plan

In the plan phase, adaptations and interventions in the system’s behaviour are planned with
the overall objective of returning the CPS to a trusted operational state and provisionally
mitigate any negative impact while the system operates outside its intended scope. The
analyse phase communicates the identified abnormal behaviour to the plan phase, often

118

7.1 Architecture

Knowledge Base

Async.

Process

Async.

Process

HMT

Monitor

Analyse Plan

Execute

Plan

Provide prepared

Intervention Plan

Async

Abnormal Behaviour
identified

Drift to Failure / Incident

Identified

Protective Actions

Corrective Interventions
Degraded Operation

Safe States

Intervention Plan

Figure 7.4: Architecture - MAPE-K Plan Phase
Pictures: [43], [44], [45], [46], [47], [48], [49]

already indicating the affected area the anomaly manifested and providing initial insights
into the factors that may have led to the situation.
Similar to the analyse phase, the planning phase utilises an additional asynchronous process
to reduce the computational workload during control loop iterations. This process prepares

119

7 Generic Protective Shell

and plans intervention strategies for likely occurring scenarios of abnormal behaviour. It gets
notified by the asynchronous analyse process when the system is gradually deviating from
desired behaviour, approaching classification boundaries, or when a data stream is consis-
tently moving toward its threshold limits. These scenarios provide the basis for forecasts
that the CPS might soon not be evaluated any more as ”operating as intended“, initiating the
preparation of intervention plans outside the planning phase. It plans ahead intervention
actions for the most likely occurring abnormal scenarios provided by the analyse regression
task evaluation.
Therefore, when the control loop reaches the planning phase, it first searches for already
existing intervention plans for the current abnormal scenario. If a matching plan already
exists for a highly similar scenario, it can either be immediately published to the executing
phase or quickly adjusted to better align with the current system state. Consequently, this
minimises the latency introduced when creating an intervention plan from scratch and helps
efficiently mitigate impending failure modes or limit damage potential during a security in-
cident.
In cases where no prepared plan is available, the intervention actions have to be planned
during the sequential control loop. This process mirrors the asynchronous process, but
now incorporates specific inputs related to the identified abnormal behaviour. The planning
phase can create actions targeting faulty components for deactivation or counteracting the
negative effects they introduce into the system. For example, if the analyse phase identifies
a malfunctioning AOA sensor, akin to the incidents involving the Boeing 737 Max, the plan-
ning phase plans a protective action to deactivate the MCAS system or a corrective action
to recalculate the angle using correlated data streams and override erroneous values.
While identifying the abnormal behaviour sources, the Hitting-Set-Tree algorithm is useful
and will get presented in section 7.1.3.
In scenarios involving vulnerability exploitations and malicious threats to the CPS, the plan-
ning phase establishes active intrusion responses, such as filtering suspicious packets, au-
tomatically isolating dubious tasks, or enforcing strict identity and access management by
blocking abnormal user actions.
Furthermore, the planning phase can choose to transition the CPS’s operation state to a
degraded mode, restricting complex and potentially higher-risk functionalities in the current
scenario. If predefined, the intervention plan may include actions to fall back to a safe op-
erational state or revert to a safe operational envelope. Moreover, in scenarios where safety-
or security-critical tasks are malfunctioning or were suspended, the intervention plan en-
compasses actions to safely restart those tasks or processes. In severe situations where the
planning phase cannot identify suitable counteractivemeasures and sufficient time remains,
the intervention plan may include handing over to manual control by the CPS operator.
Additionally, the planning phase can access the underlying knowledge base to retrieve pre-
defined and common reaction patterns for likely scenarios that can bemitigated with simple
steps, such as blocking out-of-range actuator values or interrupting startup when code in-
tegrity checks fail. The protective shell must have a means to rapidly assess the severity
of abnormal behaviour. If the impact on the trustworthy operation of the CPS is minimal,
corrective actions don’t need to be crafted as precisely, favouring the lower computational
effort, thus lower latency, of simpler interventions that would otherwise threaten system sta-
bility due to slow control loop iterations. However, in high-severity situations where safety-
or security-critical components are affected, protective actions must be rigorously assessed
and validated for their effectiveness, reducing the risk of interventions that make the situa-
tion worse. This requires additional computational effort and, consequently, higher latency.
Once the intervention plan is prepared, it is typically sent directly to the execute phase to
initiate the planned actions. However, in the adapted MAPE-K architecture of the protective
shell, the intervention plan is an essential part of the human machine teaming (HMT), which

120

7.1 Architecture

will be discussed in Section 7.1.2. Therefore, it first undergoes collaboration with the CPS
operator during this step, facing additional decision processes before being passed to the
execute phase.

Execute

Knowledge Base

Async.

Process

Async.

Process

HMT

Monitor

Analyse Plan

Execute

Figure 7.5: Architecture - MAPE-K Execute Phase

The execute phase executes planned actions without introducing additional logic.

7.1.2 Human Machine Teaming

The human machine teaming (HMT) paradigm is specifically engineered to promote collab-
orative partnerships between human operators and autonomous machines. It goes far be-
yond the degree of collaboration expected in human-on-the-loop and human-in-the-loop
systems, emphasising interactions, partnerships, and teamwork between humans andmachines
[42].

In the context of safeguarding safety- and security-critical CPS, the basicMAPE-K reference
architecture provides for fully autonomous monitoring and adaptations of the embraced
CPS. Nevertheless, it is imperative to account for the human operator’s role, who often di-
rectly interacts with the CPS or periodically supervises its operations. The human operator
possesses additional information sources, experience, and contextual knowledge, making
it crucial to consider his observations and actions when striving to ensure the trustworthy
operation of the CPS.
Rapid advancements in artificial intelligence, inherently supported by MAPE-K’s knowledge
base, have shifted the focus from traditional human-directed robots to fully autonomous
ones that do not require explicit human control and take full advantage of machine auton-
omy to perform tasks independently, efficiently, and quickly [42]. However, there have been
also made notable advances in HMT, capitalising on the respective strengths of both hu-
mans and machines, while compensating for each of their potential limitations [42]. There
exist three key attributes that facilitate effective HMT: Transparency, Augmented Cognition and
Coordination.
Transparency is concerned about the observability and predictability of machine tasks, hu-
man actions, and their respective intentions.
Augmented cognition encompasses the adaptations of the CPS, safeguarded by the protective
shell, while ensuring that the operator remains informed of critical issues and abnormal be-
haviours through alerts. Furthermore, it employs a shared solution space, allowing both the

121

7 Generic Protective Shell

Knowledge Base

Async.

Process

Async.

Process

HMT

Monitor

Analyse Plan

Execute

Meaningful Alert

with Explanation and

Certainty Score

Intervention Plan

with reasonable Intent and

Success Probability

Human

Operator

Publish Intervention
Actions

GUI

Operator

Decision

Proceed Adjust

Manual Control/

Discard

Intervention

Execute Decision

Intervention Plan

Confidence /

Trust
Reliability

Severity
Success

Probability

Alert Only

(Discard Intervention Plan)

Protective Shell evaluated not to go
forward with that Interventions

Alert & Wait

Interventions require Operator

approval and have ample time

Alert & Execute Directly
Interventions are time-critical, thus

bypass initial Operator Decision

+

Intervention

Log

Figure 7.6: Architecture - Human Machine Teaming

122

7.1 Architecture

machine and the operator to suggest interventions, enabling collaborative problem-solving
and finding a common ground.
Lastly, coordination provides the operator with the means to override the protective shell’s
decisions and authoritatively dictate actions to be undertaken. Nevertheless, coordination
also injects trustworthiness into the overall system, increasing the operator’s confidence
when working with the CPS. Trust metrics like the certainty score of an alert’s authenticity or
the success probability of an intervention plan play a significant role in this context.
As depicted in figure 7.6, the protective shell architecture incorporates HMT after the anal-
ysis phase and the planning phase. When abnormal behaviour is detected, the protective
shell automatically alerts the human operator, providing information on the cause, region, a
certainty score, and a detailed explanation that illustrates the analysis process mechanisms
and results, as depicted in the GUI (Graphical User Interface) in figure 7.7. Subsequently,
after the intervention action planning phase in the background is complete, the plan is ap-
pended to the existing alert on the operator’s GUI when the protective shell determines it
suitable for publication. Otherwise, if the plan does not meet certain criteria, it will be dis-
carded, and the operator will only be alerted.
It is essential to recognise that the primary aim of any feedback / control system is to reduce
human involvement by removing them from the loop, emphasising autonomous decision-
making and self-adaptation while maintaining the autonomous characteristics of the CPS
itself, under the protective shell’s safeguard [42]. Therefore, the two decision steps delin-
eated in figure 7.6 are crucial.

Protective Shell Execute Decision

Initially, the protective shell evaluates its prepared intervention plan by considering attributes
such as the severity of abnormal behaviour in terms of its impact on safe and secure opera-
tion, the success probability of the intervention actions, the reliability of anomaly detection
and planning mechanisms, and the overall confidence and trust within its predictions.
For instance, if abnormal behaviour is detected with limited influence on the current trust-
worthy operation of the CPS, and the protective shell cannot leverage highly promising miti-
gation techniques, it may decide to alert the operator and discard its intervention plan. Con-
versely, in cases where abnormal behaviour significantly impacts the CPS’s safe or secure
operation and the protective shell can plan effective protective actions with a high prob-
ability of success, the decision may be made to bypass the operator decision and directly
execute the planned interventions. The operator alert and the display of executed or ongo-
ing intervention actions remains untouched and can be viewed on the GUI, with the option
for manual intervention or, if feasible, to revert made changes.
However, the majority of protective shell execution decisions should lead to themiddle path
in figure 7.6, referred to as ”Alert & Wait“. This decision encompasses scenarios where the
protective shell has established a suitable plan that does not require immediate interven-
tion. In such cases, the protective shell can suggest intervention actions to the CPS operator,
benefiting from collaboration through manual reassessment and validation. Hence, plans
with lower success probabilities, lower prediction reliability, or overall moderate trust levels
greatly benefit frommanual processes to establish an overall effective intervention that can
be executed with higher confidence later on.

Operator Execute Decision

The second decision process centres around the operator’s analysis of the situation and
the evaluation of proposed interventions. Three possible outcomes emerge: discarding the
plan and/or taking manual control, approving the interventions as presented, or adjusting

123

7 Generic Protective Shell

the interventions before approval. When the operator decides to discard the plan, it may
be because he did not detect the abnormal behaviour himself and thus distrust the protec-
tive shell’s findings, he evaluated that the proposed actions do not contribute to restoring
the CPS’s trustworthy operation, or he assessed that taking manual control can mitigate the
dangerous situation more swiftly and reliably.
On the other hand, when the operator chooses to approve and proceed with the intervention
plan, it indicates that he either identified the same abnormal behaviour or trusts the protec-
tive shell’s detection based on the provided in-depth explanation. Additionally, it shows that
he also believes that the proposed actions are suitable for remedying potential hazardous
scenarios.
Lastly, the middle ground allows the operator to adjust the presented intervention actions
before approving their execution.

GUI

To facilitate the cooperation between the operator and the protective shell, a suitable GUI is
indispensable. This GUI should provide an exceptional user experience (UX) by simplifying
information access for the operator and making interactions as effortless as possible while
offering all essential functionalities required for effective HMT. As illustrated in figure 7.7, a
GUI suggestion is presented, populated with alerts and linked intervention actions based on
the Boeing 737 Max safety accident example 5.1 to offer a conceptual representation of its
operation. It’s essential to clarify that this suggestion does not aim to provide the optimal
user-friendly solution; rather, it serves as a foundation showing basic functionality that can
be provided. Nonetheless, this foundation should be further improved through focus group
interviews and usability testing, representing considerations that are outside the scope of
this thesis.
Furthermore, it’s important to differentiate between the two primary types of operators in
CPS HMT scenarios:

Professional Operators These individuals possess in-depth knowledge and training in the
specific CPS they operate. For instance, an aircraft pilot falls into this category. They are
well-equipped to delve into discovered abnormal behaviour, understand intervention plans,
and even provide their own manual protective actions. Therefore, the GUI for professional
operators should cater to their need for detailed information and control.

Casual Operators Casual operators, like car drivers in semi-autonomous vehicles, often
have limited expertise in the system’s operation. They require a simplified view with min-
imal options and clear instructions. Casual operators are less likely to provide their own
analysis or actions, let alone feel comfortable to adjust provided intervention plans. Their
preferences typically lean towards straightforward choices, such as being alerted and having
options to just accept or refuse proposed interventions. Hence, the GUI for casual opera-
tors should prioritise simplicity and ease of use.

This distinction highlights the significantly different expectations and requirements of these
two operator types when it comes to GUI design.
Concluding, in the design of the GUI for CPS, HMT should consider the specific needs and
expertise levels of the operators who will use it. This consideration will be included as a
design principle in section 7.1.4.
The GUI presented in following figure 7.7 is target towards professional operators, as it is
based on the Boeing 737 Max example, given its complexity and the range of available op-
tions.

124

7.1 Architecture

Explanation
Predictive Maintenance Horizontal Stabiliser

Explanation
Defect Angle of Attack Sensor

Abnormal Behaviour
Certainty

Score
First Detected Explanation Intervention Plan

Success

Probability
Intent Status

Operator

Decision

Defect Angle of Attack
Sensor

95%
17.08.2023

12:00 CEST

1. Block Erroneous Angle Readings

2. Forward Assumed Calculated
Angle

90%

Predictive Maintenance
Horizontal Stabiliser

60%
17.08.2023

12:04 CEST
X X X Alert Only

Repetitive Nose-Down
Commands

99%
17.08.2023

12:06 CEST

1. Discard Repetitive Nose-Down

Commands

2. Await Safe Flight Angle before

allowing another MCAS Activation

95%

Protective Shell GUI: Alerts and Interventions
Found Anomalies: Completed (in Percent):

Wait Operator

Decision for

10 Seconds

Approve Adjust Decline

Approve Adjust Decline

Skipped

Operator

Decision First

3 33%
Operator Unavailable

Operator Available

1. Two AOA Sensor disagree

2. Data Series Trend violated

3. Correlations to Barometer and
Speedometer do not hold

1. Higher Vibration Levels

2. Longer Execute Times

3. Higher Energy Consumption

Time

V
a
lu

e

Intent
Repetitive Nose-Down Commands

1.Account for Actuator and

Aircraft Response Times

2.Stabiliser Movement is

fixed; Wait first for safe

AOA

Click to open

Explanation

Protective Shell

Click to open

Explanation

Click to open

Explanation

Click to open

Inten

Click to open

Inten

Figure 7.7: Architecture - Protective Shell GUI
Pictures: [18], [50]

On the left side of the table are the alerts categorised according to the detected abnor-
mal behaviour. Each alert includes a certainty score, indicating the reliability of the detec-
tion, and is sorted based on the time of detection. This sorting approach results in a static
overview, preventing the continuous rearrangement of alerts when sorted by severity dur-
ing hazardous scenarios, which could lead to operator confusion by loosing overview. In this
software-supported analysis, the operator analysis a representation of the CPS’s behaviour
and/or state through the GUI.
HMT faces the challenge that humans require prolonged time to understand and analyse
information for informed decision-making, hinting to static system snapshots that, unfortu-
nately, become outdated rapidly. Therefore, GUI support for HMT should include dynamic
run-time views that continuously update to reflect the current system state and historical informa-
tion about past behaviour, rather than presenting just static snapshots of the system [42].
Furthermore, each alert is accompanied by an explanatory report that can be opened to
assist the operator’s manual evaluation of the situation by providing in-depth, comprehen-
sive insights into the detection process reasoning. Two examples of such explanations are
depicted in the lower half of figure 7.7. For instance, the explanation for the defective angle
of attack sensor could include a data series diagram displaying the abrupt change in angle
readings, which is unrealistic in real-world scenarios. Additionally, it could also picture both
angle of attack sensor reading streams side by side to illustrate the deviation and therefore
the disagreement between them.

On the right side of the table are the linked intervention plans aimed at restoring the
system’s current behaviour to its predefined desired state. It initially lists the actions to be
executed sequentially, along with a success probability indicating the predicted likelihood of
these actions alone remediating the abnormal behaviour or significantly reducing its neg-
ative impact on the CPS. Similar to the alerts, a report detailing the intent behind the in-
tervention plan is attached to provide the operator with insights into the protective shell’s
rationale for selecting these actions. An example of such intent reasoning is presented in
the lower-right corner of figure 7.7, justifying protective actions. The protective actions of
discarding repetitive nose-down commands and the time-out period before allowing addi-

125

7 Generic Protective Shell

tional MCAS activations are justified as follows: Repetitive nose-down commands are not
accounting for the delay between command execution moving the horizontal stabiliser and
the passenger aircraft reflecting those changes. Furthermore, if the aircraft’s AOA does not
reduce to a safe range after executing the nose-down command, there must be something
wrong with the horizontal stabiliser or the sensors. Continuously, executing non-functional
commands does endanger the system’s safe operation without providing benefits.
These justifications serve to clarify why these actions were chosen and how they contribute
to the system’s safety.
Moreover, in the two right-most columns, the current status of the intervention plans is dis-
played, alongside buttons for the operator’s decision-making. The status may indicate, for
example, that the protective shell is waiting for a defined amount of time for the operator to
decide before automatically executing the intervention actions. Alternatively, it may indicate
that the operator’s decision has been initially skipped but still allows for approval, adjust-
ment, or rejection of the intervention plan at a later time.
Above the buttons, the operator has the option to ”log off“ from supervising the CPS. While
this feature may not be applicable in scenarios like the Boeing 737 Max, where constant
human supervision is indispensable, there are CPS that do not require continuous human
oversight. This switch assists the protective shell in its decision-making process, determining
whether to skip operator decision-making if there is no operator present and the timeframe
for executing the protective actions is limited. In such cases, the protective shell might de-
cide to directly bypass the operator decision to ensure timely responses.
Next to the ”log off“ radio buttons, there is an additional button intended for emergency
situations, allowing for the immediate shutdown of the protective shell. While a more com-
prehensive explanation of the rationale behind this feature will be provided in subsequent
sections, notably in section 7.1.4 where design and architecture principles are enumerated,
as well as in section 7.3.1, which outlines new failure modes introduced by the protective
shell, its primary purpose is to swiftly deactivate the protective shell in instances where the
protective shell itself encounters run-time errors and negatively impacts the embraced CPS.
Consequently, when an operator activates this button, the entire functionality provided by
the protective shell is promptly disabled, and all data streams are directly forwarded to their
respective receivers, replicating the scenario as if no protective shell were implemented at
all.

Nevertheless, a decision is ultimately reached regarding whether or how to execute the
intervention actions through the presented HMT process. This decision, along with accom-
panying explanations, intent, and linked data, is extensively recorded in the according inter-
vention log. Subsequent post-analysis of this operational data allows for the determination
of why abnormal behaviour was identified initially and how intervention actions were col-
laboratively planned. Consequently, in the event of a safety accident or security incident, it
becomes possible to ascertain the degree of responsibility held by the protective shell, the
operator, or whether the fault lies beyond the purview of both.

In cases where operators intervene with the protective shell’s actions by reconfiguring
objectives or plans, or when they take over manual control, the potential for a tug-of-war
scenario arises, where humans and machines create competing plans [42]. For example,
in the Boeing 737 Max safety accident, the pilots and the MCAS had conflicting plans of let-
ting the aircraft ascend and pulling the nose down respectively, resulting in two crashes. To
mitigate such situations, operators can always override initiated actions by the protective
shell, as presented previously, and have in the worst case the capability to shutdown the
protective shell completely. More detailed considerations regarding this tug-of-war aspect
will be discussed in section 7.1.4 regarding architecture and design principles.

126

7.1 Architecture

Through this rigorous decision process, the three key attributes required by HMT - trans-
parency, augmented cognition, and coordination - are manifested in the protective shell ar-
chitecture. This establishes the foundation for effective cooperation between the operator
and the protective shell, yielding the associated benefits of effective collaboration.

7.1.3 Protective Shell Plugin Catalogue

The two subsequent sections provide plugin lists for both detection mechanisms and interven-
tions. Engineers can select plugins during the development process that align best with the
specific characteristics of their CPS. This approach enables modularity within the protective
shell framework, enhancing code reusability and quality by leveraging open-source, peer-
reviewed code bases. Additionally, it reduces the work efforts in implementing protective
shells across various projects by utilising pre-existing plugins.
As stated several times previously, it is crucial to configure the protective shell for its em-
braced CPS to efficiently operate, make accurate predictions, and propose suitable inter-
ventions. Failure to adjust the protective shell accordingly can introduce operational risks
and hinder its ability to fulfil its objective of enhancing CPS trustworthiness during run-time.
Hence, the existence of a plugin catalogue is essential and should be expanded over time.

Protective Shell Detection Mechanisms

The protective shell’s detection mechanism list encompasses all determined methods for
identifying abnormal behaviour discussed in this thesis. By combining multiple techniques,
the protective shell can leverage the true potential of anomaly detection during the analysis
phase. It calculates a certainty score by consulting individual mechanisms, overlays their
findings, and ultimately integrates the results into a comprehensible explanation.

Functional Specification Divergence Functional specifications are established by domain
experts and engineers, outlining the system’s desired behaviour. These specifications, al-
though relatively static, set the broad boundaries for the system’s functionality. A vital func-
tional specification for any cyber-physical system involves range validations for sensors and
actuators. Those are special types of input-output relationships that can get defined through
functional specifications and enforce safe actuator operation within predefined limits and
specify unattainable sensor readings.
Additionally, for CPS that have various operating modes or states, functional specifications
assist the protective shell in acquiring knowledge about possible state transitions, associ-
ated actions, and processes.
Furthermore, functional specifications describe anticipated interactions with external sys-
tems, delineating protocols and used interfaces.
Functional specifications can encapsulate various other CPS attributes to define intended
behaviour. The protective shell utilises these specifications to monitor CPS operation, and
determines if it can identify any divergence from the defined desired behaviour. This moni-
toring helps to ensure that the CPS adheres to its intended purpose, operates reliably, and
meets stakeholder functionality expectations.

Rule-sets Violation Rule-sets form the most fundamental operational model of the CPS
and are manually crafted by domain experts and engineers. Their stringent nature permits
the establishment of directives that must always be followed. Rule-sets find utility in defin-
ing event handling procedures, control logic, and ensuring adherence to safety and security
constraints.

127

7 Generic Protective Shell

Additionally, rule-sets play a crucial role in safe and secure system operation, employing
safety interlocks, shutdown procedures, access control rules, encryption protocols, and
more. They facilitate decision-making by guiding the CPS in selecting appropriate actions
based on specific criteria.
Furthermore, rule-sets can define quality of service requirements for the CPS, for instance
in the healthcare domain where availability and reliability requirements are crucial. Through
criteria based rules, the CPS is guided in selecting the most appropriate course of action.
The protective shell leverages these rule-sets to evaluate whether the current CPS oper-
ation violates established rules, indicating abnormal behaviour. Rule-sets ensure the CPS
responds adequately to a range of conditions and events, all while achieving its objectives.
They provide engineers and domain experts with a structured means to define CPS desired
behaviour.

Policies Compliance Issues Policies, often formulated at the management level of organi-
sations or by regulators, define industry-specific guidelines that CPS operating within a given
sector must adhere to. For instance, the aviation domain has strict regulations and policies
in place that CPSmust comply with to reduce the risk of aviation operations to an acceptable
level. Regulations such as the Federal Aviation Regulations (FARs) from the United States or
the European pendant from the European Union Aviation Safety Agency (EASA) regulations.
Moreover, various standards and certifications established that all contribute to safety, se-
curity, and additional system quality attributes.
On an organisational level, CPS manufacturers can voluntarily establish policies like ethical
use policies restricting morally questionable misuse of their systems, security update poli-
cies ensuring that systems aren’t running outdated software versions, or privacy policies
which extend the mandatory privacy regulations compliance.
The protective shell incorporates policies that are feasible to validate during run-time. If
compliance issues arise it directly indicates that the CPS is not operating in accordance with
engineers’ intentions or regulatory mandates.

Defying Correlations CPS often exhibit correlations among sensor readings, application
signals, and other data streams. These correlationsmay stem fromphysical laws or software-
defined relationships. Engineers and domain experts are responsible for retrieving as many
of such faithful correlations for their system as possible, assessing their plausibility, and
making them accessible to the protective shell for continuous verification. Additionally, the
protective shell can introduce supplementary sensors to establish additional correlations
and gain insights into the inner working of the CPS in areas where it suffers from informa-
tion scarcity.
For instance, in the Boeing 737 Max’s MCAS, a correlation exists between the horizontal
stabiliser and the angle of attack. When the horizontal stabiliser moves, the angle of attack
should subsequently adjust shortly after. Some correlationsmay be complex, spanning from
several data streams and are likely not manually retrievable. In such cases, training machine
learning models with hidden inherent knowledge in the training data can aid in uncovering
these correlations, as elaborated in more detail later in section 7.1.3.
Nevertheless, sudden deviations from established correlations indicate the presence of ab-
normal behaviour and guides the protective shell toward its error source. Establishing and
validating correlations is essential for the trustworthy operation of CPS, while also testing
the engineers’ comprehension of their own system’s inner workings.

Data-series Analysis Individual data streams often exhibit variations and trends through-
out their reporting periods. For fundamental variations or trendswithin the CPS, it is valuable

128

7.1 Architecture

to persist them in the desired behaviour for the CPS. Furthermore, similar to correlations,
machine learning models can aid in identifying more concealed trends and variations that
might get overlooked by domain experts and engineers.
Data-series analysis, synonymous with time-sequential analysis as often referred to in chap-
ter 5, evaluates whether current data series deviate from their anticipated trends or varia-
tions. When a data stream significantly diverges from its expected counterpart, it indicates
the protective shell abnormal behaviour. For instance, during a specific flight route, the
barometer should exhibit consistent trends across different flights on that same route. De-
tecting unusual height gain or loss during the current flight signals abnormal behaviour.

Code Integrity Checks Code integrity checks serve two critical purposes. Firstly, they en-
sure that only trusted code, including the embraced CPS application software, component
firmware, and protective shell software, is executed. Secondly, integrity checks also guaran-
tee the completeness and compatibility of required data and information within the CPS.
Code signing procedures safeguards the protective shell and embraced CPS frommalicious
update requests seeking to bypass security or safety measures by manipulating code that
later gets executed. Data completeness and compatibility checks prevent the CPS from
running with incomplete installation states, missing configuration data, or incompatible re-
sources. These checks are performed during startup and whenever an update request is
detected or configuration data is adjusted, imposing minimal latency during normal CPS op-
eration.
Informing the protective shell about trusted entities, from which signed update requests or
configuration changes are considered valid, enables it to rapidly identifymistrusted requests
by employing asymmetric cryptographic mechanisms.
In summary, code integrity checks empower the protective shell to ensure that the CPS op-
erates with a trusted, unaltered, complete, and compatible code base, thereby increasing
trustworthiness.

Advanced Anomaly Detection Advanced anomaly detection relies on trainingmachine learn-
ing models to establish a detailed behaviour baseline, complementingmanually crafted desired
behaviour by the engineers and domain experts, as shown in chapter 6. Particularly through
detection mechanisms linked to AI, the protective shell facilitates a shift from conservative
reactive mitigation approaches to proactive identification of emerging negative behaviour,
providing the first step to counteract potential dangerous outcomes.
Engineers must select a suitable ML model that aligns with their CPS characteristics to en-
sure accurate and efficient anomaly detection. Linear regressionmodels may be suitable for
CPS exhibiting linear relationships among its data streams, while non-linear relationships
might require decision trees. K-NN models are ideal for scenarios with large multidimen-
sional data records.
While the choice of MLmodel largely depends on CPS characteristics, there are essential ML
model attributes that are strongly suggested, no matter what model gets ultimately chosen,
when taking into consideration for implementing in a protective shell. The ML model should
be in the best case inherent interpretable or at least has intrinsic explainability. This is crucial
for providing timely explanations to operators during run-time and aiding manufacturers in
evaluating operational data during forensic analysis.
Additionally, models should support supervised or semi-supervised training to establish a
behaviour baseline guided by domain experts.
The following detection mechanisms predominantly rely on ML models and provide the pro-
tective shell with the capability to compare current system behaviour to an extensive be-
haviour baseline holding viable intrinsic information, that is not achievable with static and
manually crafted detection mechanisms.

129

7 Generic Protective Shell

Regression Task Comparison Regression tasks project recorded data series into the fu-
ture, calculating expected values based on past data combined with trained behaviour for
each data stream. They are fundamental detection mechanisms that reduce computational
work during the analysis phase and enable early identification of impending abnormal be-
haviour like drift to failure or first sign of security incidents.
After calculating the expected next average value (for each data stream), the protective shell
defines upper and lower limits, forming acceptable thresholds for comparison. How narrow
these threshold ranges are depends on the predictability of the data stream, the reliability of
correlated data, and the overall accuracy of the model. During analysis, the protective shell
compares the real recorded values with the precalculated expected ranges, swiftly identify-
ing unexpected behaviour and providing initial clues to its error source.
To profit from the benefits of regression tasks, calculations must outpace the feedback loop
of the embraced CPS, meaning expected value ranges should be computed in less than

1
SamplingFrequency , where sampling frequency defines how often the protective shell receives

new data records per second.

Pattern Recognition and Variance Evaluation Pattern recognition is essential for es-
tablishing behaviour baselines for processes not directly tied to numeric values. This in-
cludes patterns related to component communications via packets and messages, as well
as user login and access patterns within Identity and Access Management (IAM). The pro-
tective shell can employ this detection mechanism to monitor network traffic and access,
inspecting packet payloads for malicious or known malware signatures. Furthermore, the
protective shell can leverage IAM capabilities to evaluate user behaviour and detect signifi-
cant variances in their current activities or access patterns, such as suspicious authentication
requests, abnormal actions, or patterns indicative of privilege escalation attempts to gain el-
evated access rights.
Patterns can also be learned during ML model training, for example, when different com-
ponents collaboratively work toward a common goal, they communicate in predictable pat-
terns. Deviations from such patterns or the discovery of entirely new patterns aid the pro-
tective shell in identifying abnormal behaviour.

Software Probes Examination Software probes are retrieved during CPS monitoring,
providing information from application software and firmware reporting tools. By establish-
ing a behaviour baseline for safety- and security-critical tasks within the CPS, ML models
learn typical resource usage, normal response times, and foremost what crucial tasks are
running.
Processmonitoring enables the protective shell to swiftly detect non-responsive, suspended
tasks critical for providing essential functionality. Moreover, it identifies when the CPS ap-
proaches its resource limits, potentially resulting in performance degradation upon reaching
bandwidth, storage, or computational power thresholds.
Lastly, the protective shell can examine software probes to detect (attempted) intrusions
during impending security incidents, limiting attackers’ access and preventing further spread
through CPS components.

Classification Classification is a key detectionmechanism that offers a holistic view of the
entire system, instead of looking into specific little details like most other detection mecha-
nisms presented, by considering all accessible data streams and evaluating them based on
a pre-trained ML model. This model, trained with (preferably labelled) operational data and
log files indicating if this corresponded to a normal operation, or the system experienced a
safety accident, security incident or other undesired behaviour.

130

7.1 Architecture

By overlaying this model, splitting those two statuses apart, as a classification template onto
the current system state, the protective shell efficiently determines if the CPS is currently
operating as expected or deviating from desired behaviour.
This technique can be further enhanced by incorporating previous classifications into a re-
gression task, projecting the most likely next classification. Consequently, early detection
of the system drifting toward undesired behaviour becomes possible. The efficiency of this
classification task depends on the chosen ML model and its classification mechanism. Fur-
thermore, it is important for engineers to not only chose a suitable ML model according to
the CPS characteristics, but also select valuable training data and apply trainingmechanisms
procedures to reduce overfitting tendencies.

Conclusion In conclusion, engineers and domain experts must choose suitable detection
mechanisms to equip the protective shell with the means to identify abnormal behaviour.
While employing multiple detection mechanisms enhances the protective shell’s ability to make re-
liable predictions and increase overall certainty scores, it also necessitates greater computational
resources for evaluation, potentially increasing control loop latency.
Additionally, the use of ineffective detection mechanisms, such as flawed desired behaviour
specifications, policies, or rule-sets, or selecting inappropriate ML models for CPS charac-
teristics, can result in inefficient predictions with low accuracy and a higher likelihood of
subjecting the system to dangerous and unnecessary interventions. Therefore, specifying
detection mechanisms with care, absolving peer-reviews, and rigorous testing is of upmost
importance to mitigate the risk of unintentionally implementing logic flaws or incompatible
measures.
The subsequent table 7.1 provides a comprehensive summary of the presented detection
mechanisms. The first column regarding the view indicates the capability of these mecha-
nisms to identify abnormal system behaviour on a system-wide scale, unbound of any asso-
ciation with a singular error source, or, conversely, to identify detailed abnormalities linked
to specific or limited error sources. The adaptability inherent to each detection mechanism
corresponds to the ease with which adjustments can be made to their underlying desired
behaviours. For instance, the process of retraining or enhancing a machine learning model
is notably simpler by just providing new operation data than the task of manually formulat-
ing logical expressions within functional specifications. For computational complexity and
implementation effort, relative metrics are given that can vary based on the specific imple-
mentation and system requirements.

Name
Detailed /

System-wide View
Adaptability

Computational
Complexity

Implementation
Effort

Functional Specifications
Divergence

both rigid Low High

Rule-sets Violation both rigid Low to Moderate High

Policies Compliance
Issues

system-wide rigid Low Moderate

Defying Correlations detailed semi-variable Moderate Moderate

Data-Series Analysis detailed semi-variable Moderate to High Moderate

Code Integrity Checks system-wide variable Low Low

Regression Task
Comparison

both variable Low Low to Moderate

Pattern Recognition detailed semi-variable Moderate Moderate

Software Probes
Examination

system-wide variable Moderate Low to Moderate

Classification system-wide variable Moderate to High Low

Table 7.1: Generic Protective Shell - Overview Plugin Catalogue Detection Mechanisms

131

7 Generic Protective Shell

Protective Shell Interventions

The protective shell intervention list encompasses all protective and corrective actions dis-
cussed in this thesis. Through the combination of several of these interventions, the pro-
tective shell can prepare an effective counteracting plan against abnormal behaviour by
leveraging its influences on the embraced CPS. By employing multiple actions working co-
operatively to guide the CPS back to trustworthy operation, the protective shell can lay out
its intervention plan’s intent, elucidating how to effectively address the issues found and
predicting the probability of success.

Hitting Set Tree Algorithm Nevertheless, after identifying that the CPS is exhibiting abnor-
mal behaviour, it might not be inherently clear where the issue(s) originate. When the detec-
tion mechanisms identify single-point anomalies, the error source is obvious. Furthermore,
the analysis phase can consult several detection mechanisms and evaluate them by over-
laying their results, which will often be enough to narrow down the error area sufficiently.
However, there will be cases where these methods are ineffective, and the protective shell
is unable to identify a single component or the main contributing parts.
The hitting set tree algorithm is a well-established method for evaluating abnormal behaviour
identified from formal specifications, rule-sets, and other logical expressions in formal lan-
guage that represent the syntax of defined desired behaviour cast in several axioms. The
algorithm was first introduced by Reiter in 1987 and further refined by Horridge, Parsia, and
Sattler in 2009 [51]. Its objective is to efficiently compute all justifications that directly induce
the inconsistency, thus revealing the logical flaw that produces mathematical expressions
that are unfulfillable once the variables are populated with the current data sets. Justifica-
tions, in this context, are nothing more than individual explanations for the error the CPS is
currently exhibiting.
After finding all justifications, the algorithm also provides an indication which of those expla-
nations, pinpointing a potential error source, is most likely the real cause.
Firstly, theminimal axiom subsets are calculated, which exhibit such inconsistencies on their
own from the whole set of logic expressions accessible to the protective shell. This can be
done iteratively by taking the entire set of axioms and splitting them in half, while checking
if the inconsistency still occurs in one of the split subsets. When that is the case, it gets fur-
ther reduced until the subset is free of inconsistencies, indicating that one step earlier, the
minimal subset was found.
Once the minimal sets of axioms are found, the hitting set tree algorithm constructs nodes
from these minimal sets of axioms and edges from individual data sources. As depicted
in figure 7.8, starting from the root, single data sources like sensors, actuators, or signals
are excluded and labelled along the edges to the next node. If excluding this specific data
source from the formal reasoning resolves the inconsistency, the algorithm stops by show-
ing a checkmark. However, if after excluding this specific source another justification for the
inconsistency can be found, it is appended as the next node.
In the next node, the process can be sped up, as indicated by the cross for sensor 1 de-
picted in figure 7.8, because the data sources that have already resolved the inconsistency
in higher levels of the tree don’t need to be checked again in other branches. The algorithm
completes when no justification can be appended as the next node while still holding this
inconsistency.
By examining the created tree, each path leading to a checkmark indicates a possible expla-
nation. However, they have varying probabilities of being the real cause of this abnormal
behaviour. For instance, looking at figure 7.8, which shows that just by removing the sen-
sor 1 data source from the formal evaluation, the desired behaviour defined by the logical
expression holds again. Consequently, by removing Sensor 2, Actuator 2, and Application

132

7.1 Architecture

Signal 1 from the logical reasoning, the desired behaviour is fulfilled as well. However, both
explanations vary significantly in their probability of occurrence. In the first explanation, only
one sensor has to malfunction, whereas in the second explanation, it is required that three
data sources deliver false data simultaneously. Conversely, the deeper the path until the
checkmark, the more unrealistic the explanation becomes.

Justification 1

{?1 ... ?n}

Sensor 2
Sensor 1

Functional Specifications; Rule-Sets;
Logical Expressions:

as Axioms ?

Justification 2

{?1 ... ?n}
(without Sensor 2)

Actuator 1Sensor 1

Justification 3

{?1 ... ?n}
(without Sensor 2
and Actuator 2)

Actuator 2

Actuator 3 Application Signal 1

Figure 7.8: Architecture - Hitting Set Tree

Interventions When either during the analysis phase or at the planning phase the source
of abnormal behaviour could have been identified, the protective shell is tasked with select-
ing suitable intervention actions to address the issues. As shown in figure 7.6, the protective
shell has to decide between only alerting the operator, alerting and suggesting to the op-
erator an intervention plan needing approval, or alerting and directly executing planned
corrective/protective actions.
Obviously, when the error source can’t be identified that causes the abnormal behaviour,
the protective shell can’t initiate purposeful interventions aimed directly at the problematic
area andmight only create universally applicable actions like going into degraded operation.
Therefore, in such scenarios, the most likely decision would be to only alert the operator.
However, in scenarios where the supposed error-causing source could be identified, the
protective shell needs to evaluatemore deeply which decision path to take. For this decision-

133

7 Generic Protective Shell

making process, it is important to note that the overall risk of a safety accident or security
incident occurring is not decisive for whether the protective shell should take action. In-
stead, it is the difference between the calculated risk of the impending accident/incident without
interventions executed by the protective shell and the residual risk of such an accident/incident
after protective measures are initiated. For instance, just because a safety accident is much
more likely after an aircraft’s turbine defect does not mean that the protective shell stops
providing interventions because of the overall elevated operation risk. The protective shell
continues to provide its functionality whenever it evaluates that it provides added value for
the trustworthiness of the embraced CPS.
Therefore, during the decision-making process regarding how to execute the planned inter-
ventions, it considers a wide variety of linked attributes like the severity of found abnormal
behaviour concerning the negative impact it could have on the CPS, the reliability of the in-
formation received from data sources, the success probability of the plan, and others. One
of the most important factors in the decision if the operator’s approval should be bypassed
or not is the estimated available timeframe to react before the planned actions become insuf-
ficient or the impending accident/incident can’t be remediated any more. Therefore, if such
a timeframe is too short for the operator to analyse the situation and form their own opin-
ion, the protective shell tends to execute the actions directly. However, if such a timeframe
is sufficient to consult the operator, a second manual evaluation often proves valuable.

Alerting and Logging Alerting and logging are the only two passive mechanisms employed
by the protective shell, besides simply forwarding all data streams when no abnormal be-
haviour is identified. This means that while executing these mechanisms, the protective
shell does not actively change the system’s behaviour, manipulate components, or engage
in other intrusive interventions directly influencing the CPS.
Meaningful alerts contain the abnormal behaviour found, an explanation often pointing to
the error’s cause, and a certainty score indicating how confident the protective shell is with
this prediction. Extensive logs are always written when the protective shell identifies unusual
behaviour or executes interventions. However, the logging can be expanded to also contain
additional scenarios if the storage requirements are met according to the detail level and
the information frequency.

Override Data Through data manipulation, the protective shell has an effective and pur-
poseful capability to address erroneous sensor readings, invalid application signals, or sim-
ilar incorrect data streams traversing through it. Overriding with correct values is especially
effective, since functionalities within the CPS that rely on these data streams are not affected
and can fully serve their purpose. For instance, when a sensor experiences a failure and
delivers erroneous readings to the protective shell, the protective shell might detect such
incorrect values, calculates replacement values through correlations, and finally overrides
them before letting the data pass.

Discard / Block Data Since the protective shell acts as a proxy for communicating with
the CPS, where all data streams have to pass through it, it has the capability to discard or
block traffic that is identified as unusual and could have a negative impact on the system’s
operations. However, this is not always the preferred counteractive measure, since overrid-
ing the data with trusted values would be more efficient and less intrusive during run-time.
Nonetheless, there are scenarios where either the recalculation of data streams is infeasi-
ble or unwanted. For instance, when the Therac-25 sends an erroneous application signal
for starting a treatment with an out-of-range radiation dosage, the protective shell must not
recalculate the appropriate dosage since the chance of forwarding an incorrect value that

134

7.1 Architecture

does not match the doctor’s treatment plan should not be taken. Therefore, in this case,
discarding the application signal is the appropriate protective action since there are no cas-
cading negative effects triggered by these interventions and the doctor can re-initiate the
treatment after reassessing the parameters.

IAM Interventions Identity and access management interventions are applied while mon-
itoring network access to the CPS and outgoing network traffic. It enables the protective
shell to enforce strict access control and aid the identification as well as authorisation pro-
cess. The most typical example for effective IAM is blocking attackers from accessing the
CPS with stolen credentials because of unusual login times or unknown locations. However,
the protective shell also monitors user activity within the CPS, which actions get initiated,
what configurations are adjusted, or which processes are stopped. When unusual or mali-
cious activity is detected, the protective shell can block the user, restrict them from initiating
further actions by temporarily removing permissions, or request additional authorisation
factors to verify the current session, as well as ask a third user to vouch for him.
This is best exemplified by looking at the Ukrainian power grid attack, where a few users initi-
ated a high number of circuit breakers to open in a short amount of time, which would likely
have been identified by the protective shell as unusual activity resulting in access control
counteractive measures.

Packet Filtering / Rate Limiting Packet filtering and rate limiting are intervention tech-
niques employed by the protective shell to typically safeguard the CPS from malicious user
actions. It is similar to data blocking and discarding for operational safety, but with a focus
on preventing security incidents.
The protective shell detects suspicious packets and messages by pattern recognition, util-
ising the established behaviour baseline. Packets that do not follow known patterns can
be quickly identified and filtered. Furthermore, by scanning the payloads of messages for
malware signatures or significant deviations from typical payloads for that message type,
the protective shell can actively block and discard such positively reacting messages before
they can deliver their possibly malicious payload.
Furthermore, by rate limiting message processing, especially from outside sources or mis-
trusted addresses, the protective shell can slow down cyberattacks, for example, by making
brute-force attacks unfeasible.

Control Processes and Tasks With processes and tasks control, the protective shell em-
ploys the capability to rectify unwanted software behaviour and coding flaws. Through soft-
ware/firmware probes and application signalmonitoring, a wide variety of identification tech-
niques can be utilised to detect suspended safety- or security-critical tasks, run-time errors
in processes caused by unexpected events and conditions, or suspicious processes execut-
ing unwanted functionality, such as during security incidents.
For suspended critical tasks, the protective shell can attempt to initiate an isolated restart
affecting only those parts, to prevent a CPS outage while restarting the whole system. Fur-
thermore, when detecting unusual activity by processes hinting at malicious activity, the
whole process can be terminated or automatically placed in quarantine. Nowadays, most
cyberattacksworkwith process injection or process hollowing, where the attackers hide their
malicious code within pre-existing processes to evade detection and persist on the compro-
mised system. Therefore, just scanning for known processes is ineffective, thus their activity
needs to be continuously monitored.

135

7 Generic Protective Shell

Safe State Fallback All previously mentioned intervention actions are specific and pur-
posely aimed at the error-causing source during run-time. However, there are also univer-
sally applicable protective actions that can be executed without knowing the exact cause.
Three of them are subsequently stated.
The fallback to a predefined safe operation state is a viable option when the protective shell
detects impending safety accidents without finding effective specific counteractive mea-
sures. By leading the system back to a safe operational state, the trustworthiness is im-
proved, and the system becomes overall more resilient against single failures.
Such a safe state does not have to be a specific point on the operation scale, but can en-
compass a whole range of operational conditions that are considered safe. An example of
this would be the flight envelope for aircraft with different zones according to their overall
stability, as depicted in figure 7.9. Therefore, the protective shell can initiate a fallback from
a struggling operational state to a more stable, thus more reliable and trustworthy envelope
zone.
Since this safe state definition is very rigid and the universally applicable nature of this inter-
vention, it might not be the most efficient intervention in every scenario and initiates highly
intrusive adaptations to the run-time system.

Figure 7.9: Interventions - Flight Envelope [52]

Hand over to Manual Control Handing over to manual control is also a universally appli-
cable intervention for CPS with operators constantly present, who have the means to take
over control. When the protective shell lacks large parts of information to provide and en-
sure trustworthy operation of the CPS, the operator might be asked to temporarily partly or
fully govern the system.
This intervention relies on the assumption that operators have access to additional informa-
tion sources that the protective shell doesn’t receive, and that experienced operators can
handle hazardous situations better. For example, in vehicle autopilots, it is implemented

136

7.1 Architecture

that when the weather changes from clear to foggy or rainy, which hampers the sensors
from reliable data collection, the autopilot is switched off, and the driver is asked to take
over until the environmental conditions improve.

Degraded Operation Degraded operation refers to the scenario where the CPS is not
functioning as designed or intended due to various factors such as component failures,
unforeseen events or security threats. However, basic functionality is still provided while
suffering from this impairing conditions. The protective shell can initiate, as a protective ac-
tion, going into degraded operations, thereby preventing the execution of complex actions
or processes that expose higher risks during hazardous situations.
The main objective is to minimise the system’s run-time complexity to a minimum, thereby
temporarily reducing failure modes and attack vectors in the CPS. This is one of the most
impactful intervention actions presented in this thesis because it affects a wide range of CPS
components and applications while also reducing its functionality to a minimum. Initiating
degraded operation must be carefully considered and should, in most cases, be approved
by an operator.

Conclusion Engineers and domain experts have to define suitable interventions accessible
to the protective shell. They should provide a wide variety of tools to lead the CPS, exhibiting
abnormal behaviour, back to a desired operational state. Protective and corrective actions
presented in this section interfere and manipulate the embraced CPS on different levels,
from solely passive actions where the CPS remains untouched to very intrusive actions that
seriously could affect the system’s stability. That is why it is important for the protective shell
to take predictions into its decision-making and planning process, considering whether the
interventions ultimately reduce the risk currently affecting the system ormake it even worse.
Therefore, it would not be optimal to try to interfere with a CPS exhibitingminor inconsisten-
cies that don’t pose a great danger to its safe and secure operation with corrective actions
that could disrupt normal operation, potentially leading to instability, unreliability, and over-
all untrustworthiness.
Furthermore, specific, purposeful interventions were discussed that are directly aimed at
the identified error source, trying to remediate it, as well as universally applicable interven-
tions trying to bring the CPS into a safe state or degraded operation, where it would bemore
resilient against threats and failures, whenever an error source with high certainty could not
be identified.
Ultimately, it can be said that providing the protective shell with as many effective intervention
techniques as possible for a wide variety of scenarios greatly increases the options it has to address
arising issues by crafting effective and highly customised plans to counteract them. When engi-
neers and domain experts only provide the most fundamental interventions, the protective
shell becomes very limited during the planning phase in suggesting mitigation mechanisms
to the operator or directly executing those that now might not be as tailored as they could
have been.
The subsequent table 7.2 provides a comprehensive summary of the presented interven-
tions. The first column concerning the protective or corrective nature of each intervention
indicates whether the action tries solely to safeguard the system, or to remedy the identified
issue(s) by providing a more trusted alternative. The specific or universal type characterises
each intervention as either aimed directly at the error cause or as affecting the entire CPS
with predefined steps that can be universally applied without context. For example, overrid-
ing data streams is highly context-sensitive, requiring knowledge of the exact data source
and values for stream overwriting, whereas going into degraded operation does not depend
on specific system states or operational conditions. It follows the same predefined steps to
transition the CPS into a more resilient mode. The metrics for computational complexity

137

7 Generic Protective Shell

and impact on the system are provided as relative measures, which can vary based on the
specific implementation and system requirements.

Name Protective / Corrective Specific / Universal
Computational
Complexity

Impact on
System

Alerting and Logging Protective Both Low None

Override Data Corrective Specific High Low

Discard / Block Data Protective Specific Moderate Moderate to High

IAM Interventions Protective Specific Low to Moderate Low to Moderate

Packet Filtering /
Rate Limiting

Protective Both Moderate Moderate

Control Processes and
Tasks

Corrective Specific Moderate to High Moderate to High

Safe State Fallback Corrective Universal Low Moderate to High

Hand over to Manual
Control

Protective Universal None High

Degraded Operation Protective Universal None High

Table 7.2: Generic Protective Shell - Overview Plugin Catalogue Interventions

7.1.4 Architecture and Design Principles

To establish a constructive and purposefully crafted generic protective shell framework, it
is essential to reinforce it with sound architectural and design principles. These principles are
crucial for creating a robust, secure, and safe foundation within the overarching protective
shell architecture. They serve as fundamental blueprints upon which individual parts of the
system are constructed, defining the structure, organisation, and interactions with other
components. This enables engineers to conceptualise, design, and implement industry best
practices. Furthermore, it allows engineers across different domains to apply this generic
architecture framework containing architecture and design principles that directly address
safety and security challenges in CPS, making themmore trustworthy to operate by offering
a standardised blueprint customisable to specific applications.
In summary, there are threemain advantages to defining architecture and design principles:

• Efficiency: Engineers can expedite the development of effective protective shells by
reusing established architectural and design patterns. This saves time and resources
while benefiting from their reliability, which has been rigorously evaluated across nu-
merous projects.

• Consistency: A generic framework supported by engineering principles ensures a con-
sistent and uniform approach to trustworthiness. This reduces the risk of overlooking
critical vulnerabilities or adopting suboptimal safety or security measures.

• Adaptability: The generic approach allows engineers to configure and design their
protective shell specifically suited for the embraced CPS, improving performance, reli-
ability, and effectiveness in its specific scenario. Furthermore, as the failure and threat
landscape evolves across industries, the framework can be updated and further re-
fined, enabling protective shells to provide resilience against emerging negative be-
haviour in the future.

Subsequently, the architecture and design principles retrieved from the state-of-the-art,
stemming from the learnings of developing specific protective shells, found as the require-
ments towards artificial intelligence, and surfaced during architecture conception will be
presented.

138

7.1 Architecture

Consistently Alert and Log

As previously explained several times before, it is mandatory to always publish meaningful
alerts and record detailed logs, which now gets cast into a design principle. Whenever the
protective shell detects abnormal behaviour or directly intervenes with the CPS’s planned
actions, the operator must be informed, and operations data must be written.
During protective shell development, the alerts and the GUI, where they will be displayed,
should be adjusted by the engineers according to the user’s requirements. Therefore, they
should engage with the operators to define what should be contained within the alerts,
specifically, which information is important to the operators, and how the user wants to in-
teract with the GUI and what it should look like.
Furthermore, the engineers representing the manufacturer have to define how extensive
and detailed the protective shell operation logs should be. While more detailed logs pro-
videmore insights into the inner workings, they requiremore storage and couldmake outlier
detection more challenging since it is hidden within a larger volume of logged data. Addi-
tionally, they should define a process that extracts those log files periodically for continuous
evaluation purposes and after safety accidents or security incidents for forensic analysis.

Required Range Validations

Therefore, a clear definition of measurement ranges for sensors, operation ranges for ac-
tuators, and, where feasible, value ranges for application signals is mandatory. Since any
violation of these ranges directly indicates to the protective shell an abnormal behavior with
high certainty, these limits must be carefully defined, reevaluated, and tested to limit expo-
sure to specification flaws.
Therefore, a clear definition ofmeasurement ranges for sensors, operation ranges for actua-
tors and where feasible value ranges for application signals is mandatory. Since any violation
of such ranges directly indicates the protective shell an abnormal behaviour with high cer-
tainty, such limits have to be defined carefully, reevaluated and tested to limit the exposure
to specification flaws.

Specify Data Correlations

Engineers and domain experts have substantial knowledge about their field of work and
have built up experience regarding which correlations in the embraced CPS exists. There-
fore, the engineering principle must be followed of specifying fundamental truths of the
system directly in functional specifications for the protective shell to continuously evaluate.
Such data correlations might be induced directly by physical laws or coded into the applica-
tion software. The more of such inherent knowledge of the inner CPS workings are provided
to the protective shell, the more accurately it can identify and remediate error causes.
Furthermore, the set of correlations can be extended beyond the manually defined correla-
tions retrieved scientifically, through experience, or coded intrinsically in the software. This
can be achieved by considering the correlations that the trained machine learning model
has identified. Domain experts and engineers must reassess the model, for example, by
examining attention scores, biases, and weight matrices, which directly indicate correlations
between different features. If such found correlations from the operations data hold and
can be proven in practical terms, they can be directly appended to the correlation set, im-
proving their functional specifications and providing domain experts with new knowledge
about their systems.

139

7 Generic Protective Shell

Describe Data Trends and Variations

Similar to the previous principle, the mandatory requirement of describing known data
trends and variations is essential in providing the protective shell with the means to per-
form time-sequential analysis. Therefore, it is listed as one of the design and architecture
principles that engineers should follow during protective shell development and implemen-
tation.
Data sources typically exhibit repetitive trends that can be highly valuable for predicting fu-
ture values. Definitions of such trends tend to have a macro view over a longer time period,
rather than trying to provide explanations for short-term fluctuations. With such main data
trends and variations, domain experts and engineers are already familiar and can manually
craft the corresponding functional specifications. Furthermore, the trained machine learn-
ing model might identify deeply hidden yet unknown trends that the domain expert should
analyse for formal correctness and either append to their functional trend specifications or
discard.
The protective shell’s prediction capabilities experience enhanced accuracy with extensive
knowledge about inherent data trends and variations exhibited by the embraced CPS, mak-
ing this design principle essential in almost all scenarios.

Mandatory System Integrity Checks

The system integrity checks principle combines a set of industry best practices that are
essential in the CPS domain, greatly enhancing trustworthiness and reliability without any
considerable negative drawbacks. The first industry best practice is to apply code signing
techniques to the protective shell’s application code, as well as software and firmware used
in the embraced CPS. This is especially valuable in security-critical domains where the CPS
has interfaces actively communicating with external devices or external entities have direct
physical access to the CPS. Through code signing techniques employing asymmetric cryp-
tography, the protective shell can reliably detectmanipulations to the code base or unofficial
update requests not originating from themanufacturer (or any other trusted party), thereby
preventingmalicious actions aiming to execute non-functional or specifically crafted danger-
ous code.
Furthermore, the system integrity checks encompass processes to guarantee complete, un-
altered, and compatible configuration data and information needed during CPS operation.
This is especially essential in safety-critical domains where missing or corrupted data can
lead to unexpected behaviour, faults, and ultimately safety accidents. Therefore, these in-
tegrity processes confirm the complete and viable installation state of the CPS and its com-
ponents.
Lastly, the system integrity checks employ procedures to verify that all expected sensors are
properly connected and delivering readings, and all actuators are present and responsive
to commands, thereby ensuring CPS operability.
All of these system integrity checks are executed once the CPS is started and every time
there are changes affecting either the code base, the configuration data, or the CPS compo-
nents. It is an important design principle for the protective shell, as its objective contributes
to enhancing the trustworthiness of the system employed. Without system integrity checks,
the CPSmight run with a corrupted, manipulated, or incomplete code base and not compat-
ible configuration data, making run-time errors much more likely, or it can’t access sensors
and actuators from the start, which might limit functionality dramatically.

140

7.1 Architecture

Predefined Safe States and Degraded Operation Mode

The design principle of specifying a set of safe operation states and defining how a degraded
operationmode should look like is essential to equip the protective shell with two universally
applicable interventions beforehand: leading the CPS back to a safe operation state and
falling back into a degraded operationmode to prepare for impending hazardous situations.
During the development process, domain experts and engineers have to assess the most
stable and reliable operation states possible for their CPS to reach from almost all preceding
operation states. Those would be defined as the safe state envelope, the CPS can operate
in most reliably.
Furthermore, engineers have to specify which functionalities to restrict, which processes
to suspend, and which communication channels to close, especially in interfaces reaching
external networks, when going into degraded operation to fortify the CPS against external
threats and failures.
These are both policies that must be embedded in the protective shell prior to operation to
enable timely and effective execution of such interventions.

Artificial Intelligence Principles

The protective shell has formulated several requirements regarding the use of artificial in-
telligence, which are enumerated together subsequently:

Utilise Explainable AI (XAI) One of the key necessities while using AI within the protective
shell is to utilise only variants of AI that are intrinsically explainable to humans. This restricts
the realm of usable ML models to the simpler models, while the more complex ones often
lack explainability on their own and typically need to employ reasoning algorithms to calcu-
late the most likely explanation for their predictions afterwards. This already sheds light on
the whole issue of why complex models are not viable for implementation in a protective
shell.
One of the main objectives of a protective shell is to remediate negative emergent proper-
ties to safeguard the CPS from cascading effects potentially leading to security incidents or
safety accidents. However, when the protective shell employs inherently complex function-
ality that by itself could exhibit such emergent, yet unknown properties, it is not capable of
protecting an embraced CPS against it.
Furthermore, it was shown that in the context of protective shells, the accuracy of the em-
ployed ML model is lower prioritised than the faithfulness and explainable nature of its pre-
dictions. This is of utmost importance during court hearings after safety accidents or security
incidents still occurred despite having the protective shell implemented, to prove that the
protective shell always acted in the best interest of safeguarding the CPS and can, for every
taken action, lay out the exact reasoning behind it without relying on algorithms calculating
the most likely explanation. Additionally, the manufacturers are also interested in receiving
reliable operation data to further improve their CPS.
ML models having intrinsic interpretability are even more suited for safety and security-
critical operation environments since such models can not only provide exact explanations
for their predictions but can also lay out themodels’ behaviour across all scenarios in human
understandable terms. This makes it much more practical to evaluate if the current trained
model is reflecting the desired behaviour to an acceptable extent, or needs to be further
trained.

Employ Supervised and Isolated ML Training Another important point within the AI prin-
ciples is a guideline for reliably training the ML models for later utilisation in the protective

141

7 Generic Protective Shell

shell. Since the training approach is not as crucial as other AI characteristics for the protec-
tive shell, it should be seen more as a suggestion while arguing why such techniques are
seemingly best suited to adapt in CPS scenarios.
First, supervised training techniques are highly suggested, meaning the machine learning
model is fed with labelled data records during training, indicating whether the data is from
an ”operating as intended“ state or if it is displaying a state of ”abnormal behaviour“. This
approach is rational, especially for CPS training data, since the operator or domain experts
can reliably label the individual data records as one of both categories while observing the
system, thereby directly supporting the training process. Semi-supervised training might be
also suitable in scenarios where manually labelling the data records requires an unfeasible
extra work effort. Regardless of which training process is ultimately chosen, the established
model has to be reevaluated by the domain experts and engineers to ensure a precise
boundary between truly normal and abnormal behaviour could be established, which di-
rectly affects the model’s prediction accuracy.
This directly leads to the second guideline for MLmodel training, which is to clearly separate
the training process from the operational use of this model. This is called the isolated train-
ing approach, as opposed to applying continuous reinforced learning. An isolated process
allows aggregating the training data in a more extensive way by applying feature scaling,
outlier elimination, and other procedures aiding during training. Furthermore, it is resilient
against adversarial attacks where attackers feed the ML model with specifically crafted data
during training to cause them to generate inaccurate predictions. By selecting only faithful
data records that best represent the operational conditions the CPS experiences daily, sus-
picious data gets filtered out before providing it to the training phase to protect the model
from such attacks and various other unwanted negative effects. Lastly, the isolated approach
is also preferred, especially in safety- and security-critical CPS because the domain experts
and engineers have dedicated time to test and verify the resulting model if it represents the
desired behaviour as expected.

Minding Performance and Suitability The last crucial point within the AI principles are the
performance requirements and the suitability of the model regarding the embraced CPS.
The ML model’s mechanisms, like regression tasks and classifications, are likely to impose
the highest amount of computational effort upon the protective shell. Therefore, it is essen-
tial to consider the model’s performance in efficiently calculating predictions and classifying
the current operating state.
As presented already in this chapter, some parts of the protective shell’s control loop and
the CPS feedback loop run sequentially. Therefore, it is important that the control loop itera-
tions are at least faster than 1

SamplingFrequency , the inverse of the sampling frequency, whereas

the sampling frequency defines how often the protective shell receives new data records
per second, with the ML model optimisation having the biggest influence in achieving this
objective. This goes hand in hand with the overall suitability of the model to provide accu-
rate predictions for the embraced CPS. The CPS characteristics, like the dimensionality of
the data records, the type of relationships exhibited by the features, or if the training data is
prone to creating overfitting models, define the model that is best at dealing with such data.

Manual Overwrite Necessity

Another architecture and design principle is that for every protective shell implementation,
the CPS operator must have the opportunity to manually overwrite actions conceptualised
by the protective shell or deactivate the protective shell altogether. This is of utmost impor-
tance to prevent a tug-of-war scenario where the protective shell and the operator execute
competing actions, ultimately leaving the CPS paralysed. Therefore, the human must always

142

7.1 Architecture

have the upper hand and can force its actions through to the CPS.
The operator’s overwrite capabilitymust be achieved through effective human-machine team-
ing, as laid out in section 7.1.2. Therefore, a decision-making approval pipeline is required
while keeping the operator up-to-date with the protective shell detections and interventions
through a user-friendly GUI. This GUI also provides the means for the operator to decline
or interrupt current intervention plans, as well as adjust intervention plans by overwriting
critical actions to represent their own goals.
Furthermore, the operator needs to have the power to deactivate the protective shell if it
keeps interfering with the operator’s goals, which risks the trustworthy operation of the CPS.
This also includes the case where the protective shell on its own experiences software errors
during run-time, thus can’t safeguard the CPS effectively and reliably. Once the protective
shell is deactivated, no functionality by it is provided, and the data streams are directly for-
warded to and from the CPS.

Independent CPS Architecture

The protective shell architecturemust not impact the underlying CPS architecture; therefore,
the CPS remains entirely independent of the protective shell, providing its functionality with
or without being embraced by a protective shell.
As a result, the development process of the CPS remains unchangedwhen themanufacturer
decides to implement a protective shell. This is especially advantageous since it does not
add complexity to the design-time process for the engineers, and the two implementation
procedures can proceed independently, allowing them to be carried out in parallel.
While there are no conceptual changes required for the CPS, the sending and receiving of
data streams must be rerouted through the protective shell, which acts as a kind of proxy.
Further details on this will be defined in the following principle.
This architectural principle is crucial for achieving broad industry acceptance, since making
changes to the sophisticated and well-established CPS development process can be difficult
to justify and may be met with scepticism and resistance.

Obligatory Rerouting of Data Streams

This design and architecture principle is essential for the protective shell to be able to pro-
vide its safeguarding functionalities. Through the encompassing architecture embracing the
CPS, the protective shell completely caps any direct incoming or outgoing connection to the
system. However, it provides a rerouting capability by acting like a proxy that receives all
data streams and, depending on its predictions, forwards them accordingly to the suitable
receiver. Those data streams include, but are not limited to:

• Sensor Readings

• Actuator Reports

• Application Signals

• Network Communication

• Update Requests

• Logs / Operation Data written by the CPS

Therefore, every data stream trying to reach or leave the CPS without being proxied through
the protective shell is blocked and discarded. This enables the additional layer of defence
in depth characteristics aimed to provide by the protective shell implementation.

143

7 Generic Protective Shell

Apply Adequate Security Controls

Security controls are immeasurably valuable to the protective shell for being able to safe-
guard itself and the underlying run-time CPS frommalicious threats trying to exploit vulnera-
bilities. This design principle again summarises what security controls are already present in
the protective shell’s architecture and suggests additional ones to be implemented, proven
suitable in various CPS scenarios, categorised in a framework by the National Institute for
Standards and Technology (NIST) [53], especially for CPS and other critical infrastructure.

Fortified Access Control Access control procedures are implemented directly in the CPS,
especially when remote access from external networks is required. However, the protec-
tive shell supports the access controls with stricter rules by implementing strong identity
management for users and devices as well as additional identity and access management
capabilities. This allows the protective shell to more consistently block unauthorised or sus-
picious users by taking additional factors into consideration during authorisation and user
action monitoring.

Robust AssetManagement Robust assetmanagement is an essential security control and
includes the system integrity checks as well as maintaining an inventory of the CPS compo-
nents.
The system integrity checks encompass a software versioning process, compatibility and
completeness validation, verification of full hardware functionality, and the restriction of only
executing trusted, signed code.
Furthermore, by maintaining an inventory of the CPS components that marks critical assets
(for eventual prioritisation purposes), it enables data streammapping and enables conduct-
ing security assessments during the CPS development lifecycle.

Effective Training and Security Awareness Another security control that should be part
of the secure design and architecture principle is effective training of operators handling
incidents and the promotion of security risks exhibited by their CPS.
It’s important to differentiate between casual operators and professional ones, as their train-
ing needs and options can vary significantly. Here, the focus lies on training for professional
operators as the manufacturer has limited influence on training casual operators except
providing handbooks and documentation.
While the professional operators get certainly trained on the CPS they should control and
supervise, this training procedure should be expanded to contain also the protective shell
once implemented. There, the future operators must learn the protective shell’s capabili-
ties, the GUI, their interactions, and how to deactivate it. Furthermore, common guidelines
are suggested on how to react to impending and security incidents in cooperation with the
protective shell while creating awareness that trustworthy operation can be affected all the
time. For that, typical incident responses and procedures are planned beforehand that can
be either fully or semi-automatically executed by the protective shell. Those also include the
development of backup and recovery plans during post-incident procedures.
Furthermore, the operators must be trained and made aware of the relevant security stan-
dards that the CPS needs to be compliant with at all times.

Sophisticated Process and Network Monitoring Run-time monitoring is one of the key
capabilities of the protective shell. Therefore, it proves highly valuable to apply process and
network monitoring techniques known from intrusion prevention systems, both network-
and host-based, as security controls.

144

7.1 Architecture

The protective shell should continuously scan for suspicious packets and messages deviat-
ing from known patterns that get sent either from one internal component to another or
are being sent from an external network to the CPS. Once detected, the protective shell can
filter out such packets or messages, thereby proactively preventing eventual intrusion or
spreading attempts. Additionally, the packets and messages are not only evaluated upon
known patterns but also what payloads they are carrying, for example, by scanning the pay-
load for familiar malware signatures.
There are also process monitoring techniques that should be definitely part of protective
shells because they provide essential security controls for early detecting data breaches or
successful intrusions within the CPS. Therefore, the protective shell closely monitors pro-
cesses if they exhibit unusual activities like action patterns correlated to privilege escalation
techniques or exhaust large parts of the available system resources.

Enforce Zero-Trust Architecture The zero-trust architecture concept is a valuable addition
to the security controls principle since it safeguards the entire communication sent from and
to the protective shell while employing continuous authentication efforts and setting strong
network segmentations.
Zero-trust architecture emphasises the principle of ”never trust, always verify“, including that
only because an entity is already part of the local network or system, it should not be granted
increased trust relative to other outside entities. It operates based on the assumption that
threats may already exist within the system or internal network, thereby trying to prevent
them from spreading any further.
It includes the guideline to always encrypt data in transit and at rest for all communicating
components within the CPS, and that messages being sent must be protected against unde-
tectedmanipulation withmessage authentication codes (MACs) or signatures. Furthermore,
zero-trust requires continuous authentication for components communicating to verify their
identity.
Lastly, strong network segmentation can also be seen as one important capability of zero-
trust architectures, hindering malicious threats from moving freely in the internal networks
and spreading to devices in different network segments.

In summary of the security controls principle for protective shells, it is important to tailor
these controls to the specific requirements and risks of the CPS and its operating environ-
ment, as well as regularly update them to address evolving threats and emerging vulnera-
bilities.

Make use of MAPE-K

Using MAPE-K as the reference architecture for the protective shell is an essential architec-
ture principle presented in this thesis. It suits the concept of the protective shell especially
well by providing its control loop, aiding consistent monitoring, analysing CPS components,
and planning interventions, which ultimately get executed.
Furthermore, the adoptions discussed for employing human-machine teaming during the
MAPE-K loop are highly valuable in the CPS scenario since there are often operators present
that the protective shell has to work with cooperatively to achieve the higher objective of
trustworthy CPS operation. Each MAPE-K phase has to be elaborated and defined in more
detail during the design process of each specific protective shell by adding functionalities like
detection mechanisms or interventions from the plugin catalogue introduced in this chap-
ter. This enables the utilisation of MAPE-K as an architecture foundation that can then be
adjusted and configured in much detail to purposefully and efficiently address the problems
each individual CPS encounters.

145

7 Generic Protective Shell

7.1.5 Conclusion Architecture

This concludes the generic protective shell architecture section. The MAPE-K reference ar-
chitecture got adopted and refined to suit the protective shell concept best. There, each
individual phase got presented and set in context what part of the functionality and logic of
the protective shell is being located there. Furthermore, the whole adjustments that were
made to allow a seamless cooperation of the automatic control loop characteristic of MAPE-
K and the human-machine teaming procedure got presented, and first suggestions were
made on how such teaming could be effectively implemented.
Additionally, a protective shell plugin catalogue got presented, holding recommendations
for detection mechanisms that can be employed in the analyse phase and intervention ac-
tions that can be utilised during the planning phase. This module library providing crucial
advantages like reusability and reliability also enables a very detailed, tailored configuration
of protective shells purposefully aimed at safeguarding specific CPS.
Lastly, a whole range of architecture and design principles got listed, retrieved from previous
chapters and newly identified during the architecture design in this chapter. The principles
provide engineers’ guidelines and best practices for developing and implementing their pro-
tective shells, thereby increasing industry acceptance for the whole protective shell concept.
It transparently lays out blueprints to key characteristics of the protective shell’s architecture
and provide reasoned suggestions for what is required, mandatory, and obligatory necessi-
ties to enable a trustworthy operation.
This marks another pivotal point for the thesis because the second research question can
be addressed: ”Can a generic core for a protective shell be developed which is applicable to
multiple application domains?". By referencing the knowledge base provided by the state-
of-the-art, the results from chapter 5, and the architecture and principles introduced in this
chapter, a straightforward answer to this question can be provided: Yes, a generic core ar-
chitecture for a protective shell could be developed and is applicable to multiple application
domains.
By adjusting the protective shell’s configuration settings according to the CPS specifics, re-
quirements, and engineer preferences, the core architecture forms the basis for develop-
ing and implementing protective shells purposefully aimed at safeguarding specific CPSs.
This also allows protective shells to be designed to reflect specific behaviours, features, and
characteristics of the CPS it safeguards by utilising the plugin catalogue and always mind-
ing the presented engineering principles. The principles introduced in this chapter build
a solid foundation and a common ground for engineers across various domains to design
their protective shells, which can then effectively cooperate with the operators and other
components in the CPS environment to enhance trustworthiness.

7.2 Implementation Details

The implementation process for protective shells varies significantly among manufacturers
and is highly tailored for the specific CPS for which the protective shell is designed and imple-
mented. This section will provide fundamental considerations without delving into excessive
detail about the implementation adjustments.
As mentioned previously, the design, implementation, deployment, and operation of the
protective shell should minimise its impact on the CPS. It is crucial to avoid any actions that
directly interfere with the CPS unless there is a clear and justified purpose. This careful
separation between the protective shell and the CPS offers several advantages beyond just
industry acceptance.
Firstly, manufacturers can parallelise the development processes of both the CPS and the
protective shell. Therefore, the time-to-market plans for the CPS should remain unaffected,

146

7.3 Evaluation

while enhancing the trustworthiness of the overall system. This can be achieved by assign-
ing additional engineers to work on the protective shell development while the core CPS
development team remains focused on its tasks.
Secondly, it is highly advisable to establish an independent team of protective shell experts to
develop these protective shells. This approach is beneficial because when two independent
engineering teams are working toward the same objective, it becomes unlikely that both
teams will implement the same logic flaws, misinterpret requirements, miscalculate risks, or
overlook industry best practices. Consequently, the resulting system will have a stronger
security and safety posture, reducing vulnerabilities that could otherwise slip through to the
final design and architecture. Moreover, the expert team likely already has gathered expe-
rience in successfully implementing protective shells, which the project can profit from and
expect a high quality implementation.
Furthermore, the protective shell expert team should conduct separate testing to validate
their protective shell solution. If vulnerabilities are discovered within the CPS during this
testing, they should promptly inform the other team of engineers about these findings. This
collaborative approach allows for the mitigation of issues within the CPS before product de-
liveries starts. This proactive step is critical to ensure that the responsibility for risk management
does not shift from the CPS engineers to the protective shell team. It ensures that vulnerabilities
identified in the CPS design and architecture are addressed before protective shell deploy-
ment, regardless of whether the CPS operates with or without the protective shell.
Adhering to this implementation advice safeguards against potential risks manifesting dur-
ing disorganised development procedures and enhances the overall trustworthiness and
reliability of the CPS and its protective shell.

7.3 Evaluation

This section undertakes a comprehensive evaluation of the presented generic protective
shell architecture, with a primary focus on assessing the effectiveness of employing a protec-
tive shell in CPS. This evaluation aims to ascertain whether the introduction of a protective
shell introduces new, additional vulnerabilities to the overall system, consequently giving
rise to new failure modes and expanding the attack surface. Additionally, in order to make
a well-founded hypothesis regarding whether the protective shell ultimately enhances the
trustworthiness of CPS operation, it is imperative to examine the extent to which pre-existing
failure modes from the original CPS design-time architecture are rectified and how many of
the existing attack vectors can be mitigated during run-time.
Lastly, a short summary will be provided, acknowledging the inherent limitations of this eval-
uation and suggesting it as a foundation for future research, particularly in the practical im-
plementation of protective shells in existing CPS utilising the presented generic framework.

7.3.1 Additional Vulnerabilities introduced by the Protective Shell

It is evident that the implementation of a protective shell increases the overall complexity
of the deployed system compared to a standalone CPS. This heightened complexity on its
own is one of the driving factors for increasing concerns in recent times regarding the safety
and security of modern CPS by experts, resulting to the research problem addressed in this
thesis in the first place. The increase in complexity results in emergent properties, which
can potentially have negative effects on CPS operation. Furthermore, the introduction of
a protective shell substantially increases the system’s functionality, as indicated by the ex-
panded code base in comparison to the CPS without a protective shell. Consequently, this
expansion provides more opportunities for logic flaws or vulnerabilities to manifest within
the final architecture.

147

7 Generic Protective Shell

Vulnerabilities serve as the root cause of safety accidents and security incidents since they
can be exploited by external malicious actors or induce faults during run-time, often result-
ing in cascading effects across the entire CPS.
One might argue that evaluating the system’s trustworthiness should entail a comprehen-
sive assessment of the total vulnerabilities present in the run-time system. However, this
perspective falls short in the context of a protective shell scenario. When implementing a
protective shell, the total count of vulnerabilities at the very least remains the same, and in
most cases, increases significantly in comparison to the number of vulnerabilities present
prior to the protective shell’s implementation. This occurs because the protective shell does
not employ vulnerability elimination or risk management processes to directly reduce the
vulnerabilities present in the CPS’s design architecture. Consequently, these vulnerabilities
remain unchanged, and if vulnerabilities are nested within the protective shell architecture
(which is highly likely and difficult to prevent), the overall count increases.
The inadequacy of this approach stems from the fact that the protective shell’s primary ob-
jective is to prevent vulnerabilities from being exploited or causing faults during run-time
by addressing identified failure modes and attack vectors. This does not imply that the pro-
tective shell eliminates vulnerabilities entirely; rather, it tries to prevent them from negatively
affecting the CPS during operation.

Run-Time Monitoring Run-Time Monitoring

Protective Shell Implementation

?Q4CPS?Q3CPS

Protective Shell Implementation

Protective Shell Implementation

Protective Shell Implementation

Figure 7.10: Evaluation - Emergence Matrix Protective Shell

This concept can be best visualised by examining the emergence matrix after the protec-
tive shell is implemented, as depicted in figure 7.10. Since the embraced CPS is likely a CPSoS
either from the start or following the implementation of the protective shell, the emergence
matrix is applicable. As indicated by the addition symbols, the implementation of the protec-
tive shell results in outcomes being added to every quadrant. However, the most significant
developments are observed in the two arrows that shift outcomes from Quadrants 3 and 4
to Quadrants 1 and 2, respectively. These outcomes were initially unexpected in the origi-
nal CPS but are now expected due to the run-time monitoring by the protective shell. This
is particularly crucial for outcomes initially located in Quadrant 4, as they are the primary
sources of safety accidents and security incidents.
This transition is possible because the establishment of desired behaviour through func-
tional specifications, rule sets, and, most importantly, behavioural models now defines, and
therefore expects, the previously unexpected nature of a substantial number of outcomes.
This definition is often derived from intrinsic knowledge of logic expressions or within ma-
chine learning models, thereby rendering such outcomes as expected cases. It is essential
to note that engineers don’t need to anticipate these outcomes during the design phase.
Instead, when they occur during CPS operation, the protective shell can anticipate and iden-
tify them based on its predefined desired behaviour specification, thereby making such out-
comes expected.
The set of negative outcomes that were previously unexpected but are now expected due
to these new definitions is denoted as ΔQ4old and shifts to Quadrant 2. This is crucial, as
it is only possible to address expected negative behaviour during the development pro-

148

7.3 Evaluation

cess through risk management and vulnerability elimination, or in the case of the protective
shell, during run-time through various interventions ranging from corrective and protective
actions in real-time, reverting to a safe operation state. Consequently, the first crucial step
in the evaluation if the protective shell provides real added value to the CPS trustworthiness
is to assess the following equations:

Q1 = Q1CPS + Q1PS + ΔQ3CPS

Q2 = Q2CPS + Q2PS + ΔQ4CPS

Q3 = Q3CPS + Q3PS – ΔQ3CPS

Q4 = Q4CPS + Q4PS – ΔQ4CPS

QXCPS - Set of outcomes in QX before PS implementation
QXPS - Set of added outcomes in QX after PS implementation
ΔQXCPS - Set of moved outcomes from QXCPS to Q(X – 2) through run-time monitoring

Since Quadrant 4 is the primary focus, the protective shell demonstrates added value
in emergent negative properties’ identification when it successfully identifies enough unex-
pected negative emergent properties from the original CPS so that the following condition
holds:

|Q4| < |Q4CPS|

which directly implies:
|Q4PS| < |ΔQ4CPS|

Once a portion of the old Quadrant 4 outcomes is successfully identified during run-time
by the protective shell and consequently shifted to Quadrant 2, the protective shell aims to
provide interventions for every negative outcome that it has moved and for every negative
outcome that was already in Quadrant 2 in the original CPS but was either wrongly accepted
by the engineers or lacked sufficient mitigation strategies, often due to ignored industry best
practices.
If the protective shell can remediate enough Quadrant 2 outcomes so that the combined
risks of Quadrants 2 and 4 in the CPS with the protective shell are lower than the combined
risks of Q2CPS and Q4CPS in the CPS without the protective shell, it ultimately has a positive
influence on the trustworthiness of the CPS by reducing its residual risks.
To achieve this, it is crucial to define effective interventions to address a wide range of pos-
sible abnormal behaviours, equipping the protective shell with the tools needed to mitigate
as many Quadrant 2 outcomes as possible.
Concluding, this approach provides a pragmatic means of assessing whether the protec-
tive shell enhances the trustworthiness of the embraced CPS or introduces more risks than
it can mitigate during operation. This evaluation mirrors a practical scenario in which two
identical CPS run side by side, with one has a protective shell implemented while the other
not, and subsequently determining which of the two CPS operatedmore securely and safely.

In the next two sections, potential introduction of specific new failure modes and the
expansion of the attack surface resulting from the implementation of the protective shell will
get analysed. Those are part of the outcomes that get added in Quadrant 2 and 4 depicted
in figure 7.10.

149

7 Generic Protective Shell

New Failure Modes

Some new failure modes may be introduced to the CPS when the protective shell is imple-
mented, as already discussed in chapter 5. While some of these failure modes are specific
to the chosen example, some similarities could have been identified.

Firstly, there is the inherent risk that the protective shell maymisinterpret the current valid
operational state as abnormal behaviour. In such cases, interventions may be planned and
either directly executed, bypassing operator decision, or the operator may be convinced
by the protective shell’s explanation and intent, approving the intervention plan that might
pose a direct risk to the system’s trustworthy operation.
This scenario cannot be entirely eliminated, but two primary strategies can reduce the like-
lihood and impact of incorrectly identifying abnormal behaviour. The first is to define the
desired behaviour as precisely as possible, reducing false positives by reevaluating not only
functional specifications, rule sets, and policies but also validating the behavioural baseline
trained in themachine learningmodel. Careless training of themodel can lead to overfitting,
resulting in a higher likelihood of falsely identifying abnormal behaviour.
The second strategy is to employ a diverse range of protective and corrective actions in the
intervention plan. If the protective shell has a wide variety of options during the planning
phase to counteract abnormal behaviour, it can fine-tune the intervention plan in greater de-
tail, reducing the need for rigid and imprudent plans that could overly interfere with the CPS.

Another risk lies in the protective shell’s control loop taking an extended amount of time to
complete, leading to latency issues in the CPS feedback loop and potentially causing opera-
tional instability. In scenarios where rapid response times are crucial to prevent impending
safety accidents or security incidents, the protective shell may take longer than usual to
complete its control loop iterations. This delay is caused by the reevaluation process dur-
ing the analysis phase, where the protective shell assesses whether the CPS is genuinely
deviating from the desired behaviour, coupled with the computational time required to pre-
pare effective intervention plans. Protective shell engineersmust be cautious not to become
paralysed when timely interventions are essential. Therefore, it is crucial for most CPS not
to overly prioritise achieving the utmost certainty in identifying abnormal behaviour or re-
peatedly adjusting the plan further with the objective to prepare the perfect plan, especially
if it consumes an unreasonable amount of time. Time considerations should be an integral
part of each protective shell phase and factored into the decision of whether to continue
calculating or proceed to the next phase.

Lastly, one potential failure mode concerns run-time errors occurring within the protective
shell itself. If the protective shell consists of flawed software or encounters unexpected oper-
ating environments that lead to failures, it can significantly impact the embraced CPS. Since
these failures cannot be fully addressed as discussed in section 4.1, adherence to industry
best practices in design, engineering, and architecture principles becomes essential to en-
hance the reliability of the protective shell application. In cases of failures, operators must
be trained on how to deactivate the implemented protective shell promptly, in the hopes of
doing so before cascading malfunctions spread throughout the CPS, potentially resulting in
safety accidents.

150

7.3 Evaluation

Enlarged Attack Surface

A few new attack vectors might emerge in the CPS following the implementation of the pro-
tective shell, as discussed in chapter 5. While some of these attack vectors are specific to
the chosen example, similarities have been identified.

Attacker might try to manipulate the protective shell in intervening to their attacks by exe-
cuting harmful interventions at which they aim for. For instance, an attacker may simulate a
brute-force attack by rapidly iterating through username and password combinations mim-
icking to try to gain access to the CPS. The protective shell swiftly identifies this unusual au-
thentication message pattern and initiates intervention plans. One such intervention could
be the rate limiting of login attempts uniformly for all users. While this significantly reduces
the effectiveness of brute-force attacks, it may also unintentionally block legitimate users
from authenticating when the attackers use the rate limited bandwidth completely for them,
leading to a successful denial-of-service attack.

Furthermore, the protective shell presents a significant risk to the CPS once it is compromised
due to its supervisory functionality and elevated permissions. If attackers discover vulner-
abilities to exploit within the protective shell, enabling successful infiltration and control,
a CPS-wide security breach is unlikely to be stopped. Additionally, since protective shells
developed within a single manufacturer may share similarities, a discovered vulnerability
could potentially be applicable to the entire CPS product catalogue of that manufacturer,
resulting in widespread exploitations across multiple CPS instances. The same risk applies
to the manufacturer’s certificate used for signing valid update requests sent to the protec-
tive shells. If this certificate is stolen, as is increasingly common, attackers could potentially
infect all CPS instances with protective shells that trust this certificate by crafting malicious
update requests.

One last attack vector the protective shell exhibits is related to the direct data stream con-
nection to the actuators and sensors. These communication channels are often inadequately
secured with cryptography providing no confidentiality and integrity. However, if encryption
and integrity protection, as recommended in the design principles, were implemented, this
attack vector would bemitigated. Nevertheless, due to performance considerations and the
typically wired nature of these connections, communication protection is often neglected.
As a result, attackers could easily manipulate application signals sent to actuators or sensor
readings reported to the protective shell. This manipulation could be used for reconnais-
sance purposes to understand the inner workings of the CPS or to induce instability in the
CPS, prompting the protective shell to intervene. Similar to the first attack vector mentioned
in this section, attackers could attempt to manipulate the protective shell into initiating pro-
tective shell interventions on their behalf.

7.3.2 Summary

This evaluation has provided a quantitative approach for assessing the effectiveness of pro-
tective shells in CPS. While this remains theoretical within this thesis, it serves as a foun-
dation for future work that would involve the practical implementation of protective shells
using the generic framework presented here, while also adhering to the specified architec-
tural and design principles, to evaluate the architecture in more detail.
While the generic protective shell evaluation lacked a practical approach, the specific protec-
tive shells developed in this thesis have demonstrated effective solutions to the challenges
faced by CPS. Therefore, it is reasonable to suggest that with the adoption of the presented
MAPE-K reference architecture, its configuration through chosen plugins, and adherence to

151

7 Generic Protective Shell

the specified principles as guidelines, the generic protective shell has the potential to im-
prove the trustworthy operation of safety- and security-critical CPS.
Therefore, an outlook has been provided regarding the potential introduction of failure
modes and attack vectors when implementing a protective shell. It’s evident that neither
the count of attack vectors nor the number of failure modes decreases with the mere im-
plementation of a protective shell; rather, they tend to increase due to increased complexity.
Therefore, it’s essential to highlight that the effectiveness of the protective shell becomes appar-
ent only when, during run-time, a greater number of emergent negative behaviours, combined
with pre-existing negative outcomes in Quadrant 2, can be effectively mitigated compared to what
the original CPS design would have experienced.
It is important to note that trustworthiness, while a primary focus of this thesis, is not the
sole criterion manufacturers consider. Profit-oriented companies often assess the imple-
mentation overhead and evaluate it based on a price-to-performance ratio. Performance,
in this context, typically refers to the damage to a brand’s reputation that may result from
safety accidents or security incidents, and the associated legal liabilities and compensation
payments. This assessment varies across different industries; for example, manufacturers
in the aviation industry may face significantly higher brand damage and compensation costs
following a safety accident compared to those in the agriculture industry employing auto-
mated harvesters.

Furthermore, this marks a suitable point to address the third research question: ”Is it
possible to mitigate the risks that emerge when implementing a protective shell to reduce
overall residual risks for safety and security?".
This question cannot be definitively answered within this thesis, as it requires practical case
studies implementing protective shells according to the proposed architecture. These case
studies would yield empirical data necessary for amore precise answer. However, evenwith-
out the benefit of extensive practical data, this thesis provides a partial response by exam-
ining the specific protective shells developed. In these cases, the mitigated failure modes and
attack vectors consistently exceeded the newly introduced vulnerabilities. The evaluation method
presented in this section suggests that, indeed, the residual risks for CPS are reduced after
the implementation of a protective shell compared to before its implementation.
Moreover, this thesis stated the hypothesis that by rigorously following the design and archi-
tecture principles discussed in this chapter, adopting theMAPE-K architecture, and configur-
ing the protective shell with careful consideration of detectionmechanisms and intervention
actions, as well as defining desired behaviour clearly, the protective shell could contribute
to reducing overall risks for safety and security in CPS across various application domains.
Therefore, the answer to the third research question is ”more likely than not“, pending fur-
ther empirical validation through practical implementations and assessments.

152

8 Conclusion

The conclusion begins with a concise summary section, providing a precise recapitulation
of the key points discussed in the previous chapters. Subsequently, the research questions
will be examined in greater depth, offering well-reasoned and substantiated answers, along
with the relevant context and the original sections where these questions were addressed.
Moving forward, an overview of this thesis’ contributions will be presented, spanning from
its role as an introductory tutorial for readers to the refinement of the generic protective
shell concept, thereby contributing to the scientific knowledge base.
Following, open points that require further exploration in future work are highlighted, out-
lining potential directions for ongoing research.
Concluding this study, the two most important recommendations are recapitulated from
the thesis, holding the core insights.

8.1 Summary

The design science researchmethodology outlined in chapter 2 proved highly effective through-
out the thesis. It offered a solid structure, beginning with the identification of the CPS en-
vironment, its application domain, actors, organisation, challenges, and opportunities. The
relevance cycle provided real-world insights into existing infrastructure, processes, capabil-
ities, and expectations towards the design science research.
The research problem was quickly identified and articulated as the increasingly difficult ven-
ture of designing safe and secure complex CPS solely during the development process. The
potential consequences of not finding a solution were articulated: either limiting CPS com-
plexity to ensure the resulting design architecture to be comprehensible by the engineers,
thereby reducing the operational risks to an acceptable level, or pursuing higher complexity
while risking untrustworthy CPS operation, thus increasing the likelihood for catastrophic out-
comes.

As complex CPS offer substantial benefits across various sectors, the pressure on the de-
sign science research to address this research problem is significant. The existing scientific
knowledge base offered concepts, methods, and theories as a foundation. The rigor cycle
described the state-of-the-art about CPS in chapter 3 and the fundamental protective shell
concept in chapter 4.
Within the CPS chapter it was shed light on their safety- and security-critical aspects by directly
interacting with the physical world, the engineering principles defined to guide the develop-
ment process and the modern strive to connect constituent systems together to a system-
of-systems that can achieve higher objectives. This increased complexity by designing CPSoS

153

8 Conclusion

was explored, highlighting emergent properties that might have a negative impact on the
system and the manifested concealed vulnerabilities in the design architecture. Therefore,
the safe and secure operation during all operating conditions can’t be ensured any more, like it
could be for simpler CPS.
In the subsequent chapter, still contributing to the state-of-the-art, the protective shell con-
cept was introduced, offering a promising solution by enhancing the CPS run-time architec-
ture. The run-time monitoring paradigm was presented, suggesting enhanced trustworthy
CPS operation. The expectations and goals for the protective shell were formulated. How-
ever, it is important to note that this concept remained theoretical at this stage, lacking an
in-depth analysis of its viability to address the research problem.

Therefore, chapter 5 took a practical approach with case studies to assess if protective
shells could mitigate undesired behaviour and concealed vulnerabilities. Well-documented
safety accidents and security incidents involving CPS were studied, by retrieving the inherent
vulnerabilities and developing specific protective shells. During the overall evaluation, the
protective shell similarities across the chosen examples were identified, revealing a generic
core and characteristics applicable to all developed protective shells. Furthermore, the evalua-
tion demonstrated for each case study increased operation trustworthiness, even when the
protective shell introduced new vulnerabilities to the overall system.

Nevertheless, the approach from this chapter 5 was a theoretical academic scenario sup-
ported through the underlying deterministic knowledge from the post-incident / accident
reports that helped identify the vulnerabilities through a retrospective view. This would ob-
viously not help to mitigate current vulnerabilities that never surfaced before, like zero-day
exploits. Therefore, with the following chapter 6 about artificial intelligence, there is made
an attempt to bridge from a retrospective view on safeguarding CPS to a present view. This
enables the protective shell tomitigate some of the deeply hidden vulnerabilities or negative
emergent properties when they occur for the first time, that have not yet caused a malfunc-
tion or were not yet exploited with malicious intent.
That is why the protective shell employs advanced anomaly detection that relies on the utilisa-
tion of machine learning models. The benefits of AI were explored, and guidelines for using
explainable and interpretable models were established. Lastly, suitable machine learning
models were presented, demonstrating their potential for accurate anomaly detection and
their more flexible character when comparing to the rather static functional specifications.

With the state-of-the-art basic concepts, the common ground derived from the different
protective shells and the advanced anomaly detection capabilities, the last chapter 7 com-
bines everything to a generic protective shell framework.
The MAPE-K reference architecture was found to be suitable for the protective shell con-
cept and got further refined. First, for better computational efficiency, two asynchronous
jobs were incorporated, one for the analysing regression tasks and the other for prepar-
ing intervention plans for likely abnormal behaviour. Furthermore, addition transitions got
added, together with new decision-making steps, and human-machine teaming capabilities.
Additionally, a plugin catalogue offered a wide variety of detection mechanisms and inter-
vention actions for more detailed customisation.
Furthermore, all design and architecture principles found throughout the thesis got enumer-
ating. They range from necessary security controls to mandatory manual overwriting and
previously mentioned AI guidelines.
Concluding the protective shell architecture, it got shown that a generic framework could be
developed applicable to multiple application domains.

154

8.2 Research Questions Evaluation

The final part of the chapter was dedicated to specifying some implementation details and
a pragmatic evaluation of the presented generic protective shell architecture. It got shown
that when the protective shell does not match the characteristic of the embraced CPS (is not
precisely configured), numerous new failure modes appear and attackers find an enlarged
attack surface. While highlighting those common drawbacks, the individual engineers can
proactively assess if it affects their implementation project and implement counteractive
measures.
Therefore, the chapter emphasised the importance of precise configuration for efficiency,
accuracy and an overall improvement of trustworthy operation.

8.2 Research Questions Evaluation

In this section, the research results regarding the research question are concisely sum-
marised.

Can the trustworthiness of safety and security-critical cyber-physical systemsbe improved
by implementing a protective shell?
The first research question tackled a fundamental exploration revolving around the overall
applicability of the protective shell concept in addressing the research problem. This ques-
tion is not concerned about how suitable or effective the protective shell addresses the
research problem; rather, it questions whether the implementation of protective shells can
enhance the trustworthy operation of individual CPS at all.
This question was answered in chapter 5.8.3, following the development and evaluation of
a representative set of specific protective shells designed to mitigate safety accidents and
security incidents. The answer provided in this chapter was a definitive ”yes“. The argument
put forth was that across all specific protective shell implementations, the overall trustwor-
thiness of the systems was improved by addressing previously existing failure modes and
attack vectors. Furthermore, it was demonstrated that the protective shell concept encom-
passes capabilities that facilitate a wide variety of mitigation mechanisms. For each unique
protective shell, suitable mitigation mechanisms could be identified and employed, thereby
addressing vulnerabilities present in the design-time architecture of the CPS or significantly
reducing the potential damage caused by accidents and incidents.
Given that the research question was specifically formulated to require evidence from just
a single example rather than holding true for all instances, the question can be confidently
answered. With 7 out of 7 case studies demonstrating the enhancement of CPS trustwor-
thiness through protective shell implementation, it can be concluded that there is the pos-
sibility to improve safety and security during run-time.

Can a generic core for a protective shell be developed which is applicable to multiple
application domains?
The second research question aimed to ascertain the universally applicable nature of the
protective shell, which is crucial for achieving widespread industry acceptance. Even if the
first research question is answered with yes, it does not entirely address the research prob-
lem faced by stakeholders in the CPS application domain. This question holds particular
significance in determining whether the protective shell concept can genuinely assist manu-
facturers with a diverse range of CPS in enhancing their trustworthiness on a broader scale.
Early indications toward an answer to this question were provided in chapter 5, where
lessons learned were summarised, and the generic core was retrieved. This core eluci-
dated the primary protective shell characteristics that became evident as early as section

155

8 Conclusion

5.8.3. The specific protective shell similarities got taken over to chapter 7 where the generic
framework got introduced.
The framework’s foundation was rooted in the MAPE-K reference architecture, which was
further adapted to fit the protective shell’s requirements. This adaptation introduced two
asynchronous processes and new transitions to streamline processes of the reference archi-
tecture template. Additionally, the concept of human-machine teaming was implemented,
fostering cooperation between the protective shell and human operators.
Furthermore, the framework incorporated a protective shell plugin catalogue encompassing
diverse detection mechanisms and interventions based on protective or corrective actions.
This modular approach rendered the generic framework highly configurable for various applica-
tion scenarios and supports the concurrent development effort in providing new modules
later on. Lastly, design and architecture principles were enumerated to guide engineers
through the design, implementation, deployment, and maintenance of specific protective
shells. These principles provided standardised processes, highlighted potential challenges,
and helped prevent obvious design flaws.
With these contributions in place, the definitive answer to the research question was pre-
sented during the conclusion of the generic protective shell architecture in section 7.1.5,
confidently answering ”yes“.

Following the development and evaluation of the seven specific protective shells, along
with the identification of their similarities, an initial indication of a generic core applicable
across multiple application domains emerged. Notably, the chosen safety accidents and
security incidents involving CPS were deliberately selected to encompass a wide variety of
industry sectors. Even when analysing systems from sectors such as aviation, healthcare, re-
search, automotive, and critical infrastructure, unmistakable similarities could be retrieved.
Furthermore, the adoption of machine learning models for advanced anomaly detection
further supported the notion of universally applicability. These models can be trained using
operational data and log files from individual CPS, making them highly adaptable for specific
scenarios.
To conclude, the second research question could be answered to a satisfying extent.

Is it possible to mitigate the risks that emerge when implementing a protective shell to
reduce overall residual risks for safety and security?
The third and final research question confronted in this thesis delves into the potential risks
that arise when implementing a protective shell. The question tries to assess whether the
additional vulnerabilities that the protective shell introduces increase the residual risk, or if
the protective shell employed mitigation mechanisms are rectifying enough risks that the
overall residual risk is shrinking when implementing it.
This research question is more sophisticated since it already hints to the fact that the pro-
tective shell does not only contribute towards a more trustworthy operating CPS. As stated
previously, the protective shell is only as effective as it fits the embraced CPS. In a theoretical
scenario when it matches completely, thereby having the perfect desired behaviour defined
and the most effective interventions employed, then the protective shell does not introduce
any additional failure modes or attack vectors. However, such precise configuration is not
achievable on a consistent basis. That is why the question is legitimate, even if it is at first
glance counter-intuitive, that a protective shell can have opposing effects, when the imple-
mentation drawbacks result in higher operation risks.
Again, the specific protective shell chapter 5 gives the first clues, because it was observed
that the remediation of existing failure modes and attack vectors outweighed the introduction
of new vulnerabilities consistently across all case studies. However, since the question is con-
cerned about the general reduction of residual risks after protective shell implementations,

156

8.3 Contribution

a more in-depth exploration is required, focusing on the generic protective shell instead of
the specific protective shells developed.
Therefore, the generic protective shell chapter contained an evaluation section. There a
pragmatic evaluationmethodology got presented hinting to the emergencematrix outcome
changes once the protective shell got implemented. There it became evident that the de-
sired behaviour definition within the protective shell is crucial in transferring the unexpected,
negative outcomes from quadrant 4 to the expected, negative outcomes in quadrant 2. Once
these outcomes got transferred, the second important step in mitigating negative emer-
gent properties, failure modes and malicious threats is to initiate appropriate interventions.
Therefore, it is key to have a wide variety of protective and corrective actions to prepare
suitable and highly adaptive intervention plans.
To conclude, the precise configuration of the specific protective shell is of utmost impor-
tance and decisive if ultimately the protective shell reduces the residual operation risk of
the CPS, or in total adds additional risks.
To support engineers to properly configure their protective shell a multitude of components
aiding this process were presented, like various mitigation mechanism, anomaly detections
(including ML models), interventions, HMT with GUI variances as well as architecture and
design principles. These components either contributed by guiding the engineers through
the protective shell development making care that no obvious weaknesses would be imple-
mented from the base architecture, or they provided options to configure the protective
shell in detail, making it more suitable for the CPS scenario.
Nevertheless, with that in mind but without practical examples implementing the generic
protective shell within an actual CPS, the answer to the third research question was ”more
likely than not“ and was given in chapter 7.3.2 evaluating the generic protective shell. This
answer is sufficient because it considers the whole range trade-offs when implementing
protective shells and compares it with the reasoned benefits of CPS on a theoretical basis.
However, it leaves room for a more profound evaluation addressing this research question.

8.3 Contribution

This thesis has made significant contributions to the protective shell research regarding
safe and secure operation of CPS. While some of the contributions have been discussed in
previous sections, this section shortly summarises and structures them.

Introductory Tutorial
The thesis provided the reader an introductory tutorial on essential topics, enabling a foun-
dational understanding of the research context:

Design Science Research Methodology: A clear explanation of the design science research
methodology was presented. The cycles and pillars of this methodology are introduced,
demonstrating how they collaboratively contribute to a problem-oriented research approach.

Cyber-Physical Systems: An in-depth exploration of CPS is provided, highlighting their tremen-
dous benefits, challenges, and critical aspects related to safety and security due to their
direct interaction with the physical world. Furthermore, the scientific definition of risk is
outlined, along with methods for applying risk mitigation techniques in the CPS context,
emphasising adherence to engineering principles. Lastly, the effects of CPSoS were shown
highlighting their enhanced functionality, but also hinting to their increased complexity and
the according challenges emerging from this.

157

8 Conclusion

Protective Shell Concept: The thesis introduced the reader to the protective shell concept,
outlining its potential as a promising solution for the research problem. Moreover, the pro-
tective shell architecture got presented, showing it employing run-time monitoring and the
resulting capabilities. Additionally, it sets forth expectations for the protective shell that were
previously unfulfilled.

Artificial Intelligence and Machine Learning Models: An informative tutorial in the artificial in-
telligence chapter provides readers with fundamental concepts related to machine learning
models, training approaches, and their inherent characteristics. Various use cases, suitable
for the protective shell context, were explored. The chapter further introduced specific ma-
chine learning models suitable in the protective shell context and delved into their training
processes and advanced anomaly detection capabilities.

These introductory tutorials consolidate crucial knowledge for the reader, which were
based on extensive scientific literature review of the current-state-of-the-art. By synthesising
and delivering condensed insights into these critical aspects, the thesis empowers readers
to grasp the foundations before delving into more complex discussions.

Safety Accidents and Security Incidents Case Studies
This section contains two separate contributions, which are combined for better clarity.
Besides the short introduction of the case studies being similar to an introductory tutorial,
the main contribution was the post-accident or post-incident forensic analysis of the cho-
sen catastrophic examples involving CPS. This was done to retrieve the system’s architecture
vulnerabilities and weaknesses. Importantly, the analysis was conducted only from reports
published by trusted sources to retain scientific meaningfulness. After the vulnerabilities
and weaknesses for seven familiar safety accidents and security incidents from various in-
dustry sectors got retrieved, the second part of this contribution starts.
For each individual example, one specific protective shell got developed, equipped with pur-
posefully employed mitigation mechanisms that, in the best case scenario, remediate iden-
tified failure modes and attack vectors. Once the specialised mitigation mechanisms got
presented, an evaluation per specific protective shell is conducted to assess the effective-
ness in rectifying the hazardous situation.
Lastly, the similarities between the mitigation mechanisms employed across different pro-
tective shells and their evaluation got retrieved and enumerated. This derived common
ground is the most important contribution of the conducted case studies as it hints to
a generic protective shell core, their inherent inner workings and the main characteristic,
which is highly valuable for the subsequent contribution.

Generic Protective Shell Architecture
The generic protective shell architecture is the primary contribution of this research as all
previous efforts are combined and specifically absolved to establish this architecture frame-
work, therefore working towards this higher objective.
There the generic core and characteristics from chapter 5 as well as the experience in de-
veloping and evaluation specific protective shells gets utilised. Furthermore, the state-of-
the-art for CPS, the protective shell concept and machine learning models get employed to
form the new generic protective shell artefact.
Within this contribution, the MAPE-K reference architecture got adopted by adding asyn-
chronous processes for more efficiency and new transitions from phases that were in the
original architecture not possible. Additionally, the human machine teaming paradigm got
implemented to enable cooperation between the CPS operator and the protective shell.
The detection mechanisms and intervention actions as presented in previous chapters are

158

8.4 Future Work

being included into the plugin catalogue, enabling modularity for highly customisable spe-
cific protective shells. Moreover, the design and architecture principles as well as the imple-
mentation details give the engineers guidance in how to develop, implement, maintain and
deploy their protective shell.
Lastly, a fundamental evaluation method is specified to verify if the implemented protective
shell does fulfil its objective in enhancing the embraced CPS’s trustworthy operation.
With the architecture laid out, designed to be universally applicable in various application
domains, the thesis contributes to a possible increase in industry acceptance for run-time
monitoring and real-time intervention systems such as the protective shell, which leads di-
rectly to the next and last contribution.

Enriching the Knowledge Base
Since this thesis utilises the design science researchmethodology, it is essential to contribute
the successful evaluated artefacts back to the scientific knowledge base, allowing subsequent
research efforts. The fundamental artefact that the knowledge base will be enriched with is
the generic protective shell architecture, allowing fellow scientist to adopt, refine and extend
the laid out generic concept. However, since the design cycle was iterated several times
within this thesis, there are many more artefacts that might aid future research within this
field of study.
This thesis could answer the two of the three imposed research question completely and
one partially, thereby effectively filling identified knowledge gaps. Furthermore, the thesis
could successfully help in solving the research problem identified at the beginning. Since
the proposed artefact is not sophisticated and refined enough to impose a solution on its
own, it nonetheless helped in making a step in the right direction towards addressing the
problem.
Fortunately, as this thesis has no restriction in the form of a blocking note, it can be made
public immediately after publishing.

8.4 Future Work

There are several points of interest regarding future work, as previously mentioned. First
and foremost, it would be highly valuable if the generic protective shell architecture would
get empirically validated through practical implementations and assessments on actual CPS. This
would without doubt identify several improvements to be made to this thesis’ suggestions.

Furthermore, the collaboration between theCPS operator and the protective shell emerged
as an important factor during the course of this study. During the development of the spe-
cific protective shell, the necessity for meaningful alerts and extensive log files became evi-
dent. Consequently, the implementation of an interface enabling communication between
the protective shell and the operator appeared necessary. Through the deeper elabora-
tion of human machine teaming it turned out that not only the protective shell must have a
means to communicate with the operator but also vice versa. Therefore, it is indispensable
to address the shortcomings of the proposed GUI in future research, for example through focus
group interviews, as its current usability falls short. This would also encompass the creation
of at least a second GUI template for the casual user, that has entirely different objectives
when working with the protective shell than the professional user.

Additionally, the section discussing artificial intelligence and machine learning models
mostly served as an introductory tutorial, lacking the appropriate depth required for seam-
less integration into the generic protective shell architecture. Therefore, directing research

159

8 Conclusion

efforts towards this domain is essential, as it enables to a large part the advanced anomaly
detection, protecting the CPS against unexpected, negative behaviour. Particularly, enhanc-
ing the explainability of more complex models is a current area of active research, promising
higher model accuracy and efficiency.

Lastly, the interventions presented, including protective and corrective actions, would
benefit from more variety and applicability. Although this thesis formulated an algorithm
to identify error sources and the plugin catalogue contained some effective interventions,
there remains substantial room for improvement. As indicated by the evaluation, a diverse
range of interventions enhances the suitability of the prepared plan in addressing identified
abnormal behaviour.

8.5 Recommendation

To keep this section concise and avoid repetition, almost all recommendations are enumer-
ated in the design and architecture principles for the generic protective shell 7.1.4. The
following two key points offer a summarised overview without delving into too much detail
and should be seen as the most fundamental recommendations, when considering imple-
menting a protective shell.

First and foremost, the protective shell is a concept to safeguard complex CPS during op-
eration. That means that simple CPS, where the engineers have a sound overview about the
overall inherent behaviour and can to a large part rule out significant design flaws, are not rec-
ommended implementing a protective shell. The protective shell introduces certain drawbacks,
as discussed in Section 7.3.1, including latency due to data stream collection, aggregation,
and analysis. When abnormal behaviour gets identified, this latency grows even larger. Sim-
pler CPS often possess the capabilities to effectively address potential operational issues or
changes independently, as they tend to exhibit fewer unexpected and negative emergent
behaviours and normally don’t have highly concealed vulnerabilities.

Conversely, in safety- and security-critical domains involving complex CPS, implementing
a protective shell to mitigate run-time risk is strongly recommended. Manufacturers aiming to
realise the tremendous benefits of the most advanced and complex CPS while struggling to
adequately manage operational risks solely during the development process can find the
protective shell a viable solution. It’s imperative to configure each protective shell meticu-
lously to align with the specific characteristics of the CPS it encompasses, as a mismatch
could lead to adverse effects. Accepting elevated residual risks outside the norm to cap-
italise on the complex CPS benefits is not recommended, as history shows hinting to the
analysed safety accidents and security incidents, operating with unacceptable residual risks
can have catastrophic outcomes.
These primary recommendations encapsulate the essence of this thesis. For a more in-
depth view upon all recommendations made throughout this thesis, delving into the design
and architecture principles in section 7.1.4 is strongly recommended.

With this, the exciting study about addressing emergent safety accidents and security
incidents in CPS with a protective shell concludes. This thesis not only advances the com-
prehension of a generic runtime monitoring and real-time intervention concept to mitigate
negative emergent properties but also establishes a foundation for future research in the
previously mentioned areas. Hopefully, these research efforts contribute to broader indus-
try acceptance of protective shell-like concepts, thereby ensuring the reliable operation of
complex CPS.

160

Appendix

Execute

Analyse
Advanced Anomaly Detection:
- Comparison to Predictions

System State Assessment:
- Verify Functional Specification
- Rule-Sets Validation
- Policy Compliance
- Safety and Security Constrains

Inspect Software Probes:
- Process Monitoring Critical Tasks
- Check Resource Usage
- Inspect Response Times

Code Integrity Checks
- Software / Firmware Signature Validation
- Data Completeness and Compatibility

Plan
Disable Defect Components:
- Hitting-Set-Tree Algorithm
- Cross-Validation & Reevaluation

Active Intrusion Responses:
- Identity and Access Management
- Packet Filtering & Automatic Quarantine

Modify Data Values:
- Override Sensor Readings, Application Signals
- Discard/Block erroneous Values

Degraded Operation Mode:
- Safe Operation Envelope (Return to Safe State)
- Restrict Complex/High Risk Actions
- Restart Failing Tasks/Processes
- Hand over to Manual Control

Monitor

Collect data stream:
- Sensor Readings
- Application Signals
- Network Access
- Update Requests
- Software Probes
- Operational Data Logs

Preprocess & Aggregate Data

Abnormal Behaviour

identified

Publish Intervention

Actions

Provide collected

Information Knowledge Base

Detection Log

Intervention Log

Functional Specifications
Rule-Sets

Policies

ML Models
=> Desired Behaviour

Protective Actions
Corrective Interventions

Degraded Operation
Safe States

Data Stream Mapping
Context Information

Forward

Data Streams

Operating as
intended

Append new

Datapoint

Provide

Predictions
Provide prepared

Intervention Plan

Drift to Failure / Incident

Identified

Meaningful Alert
with Explanation and

Certainty Score

Intervention Plan
with reasonable Intent and

Success Probability

Human

Operator

GUI

Operator
Decision

Proceed
Adjust

Bypass Operator
Decision

Async

Manual Control/

Discard

Execute

Planned
Interventions

Precalculate Expected
Values:
- Regression Tasks
- Data Trends and Variations
- Thresholds
- Predicted Classification
- Pattern Recognition

Data Stream Mapping
Context Information

Intervention

Execute Decision

Intervention Plan

Alert & Wait

Alert Only

Confidence/

Trust
Reliability

Severity
Success

Probability

Prepare Intervention Plan

 for likely occurring

Abnormal Behaviour

+

Async

Appendix - MAPE-K Protective Shell Architecture Overview Detail

161

Statement of authorship

I hereby certify that I have authored this document entitled Mitigating Emergent Safety and
Security Incidents of CPS by a Protective Shell independently and without undue assistance
from third parties. No other than the resources and references indicated in this document
have been used. I have marked both literal and accordingly adopted quotations as such.
During the preparation of this document I was only supported by the following persons:

Prof. Dr. Frank J. Furrer
Dr.-Ing. Sebastian Götz

Additional persons were not involved in the intellectual preparation of the present docu-
ment. I am aware that violations of this declaration may lead to subsequent withdrawal of
the academic degree.

Dresden, 4th September 2023

Leonard Wagner

References

[1] L. Eliot, AI Guardian Angel Bots for Deep AI Trustworthiness: Practical Advances in Artificial
Intelligence (AI) and Machine Learning. LBE Press Publishing, Oct. 24, 2016, ISBN: 978-
0-6928-0061-4.

[2] F. J. Furrer, “Safe and secure system architectures for cyber-physical systems,” Apr.
2023. [Online]. Available: https://link.springer.com/article/10.1007/s00287-
023-01533-z.

[3] A. Hevner and S. Chatterjee,Design Research in Information Systems. Springer New York,
NY, May 14, 2010, ISBN: 978-1-4419-5652-1.

[4] A. B. Brendel, T.-B. Lembcke, J. Muntermann, and L.M. Kolbe, “Toward replication study
types for design science research,” Journal of Information Technology, vol. 36, no. 3,
2021. [Online]. Available: https://doi.org/10.1177/02683962211006429.

[5] A. Romanosky and F. Ishikawa, Trustworthy Cyber-Physical Systems Engineering. FL USA:
CRC Press, 2017, ISBN: 978-1-4987-4245-0.

[6] R. Alur, Principles of Cyber-Physical Systems. MIT Press Ltd, Apr. 10, 2015, ISBN: 978-0-
262-02911-7.

[7] F. J. Furrer, Safety and Security of Cyber-Physical Systems. Springer Fachmedien Wies-
baden, 2022, ISBN: 978-3-658-37181-4.

[8] D. E. Geisberger, D. M. V. Cengarle, P. Keil, J. Niehaus, D. C. Thiel, and H.-J. Thönnißen-
Fries, “Cyber-physical systems - driving force for innovation in mobility, health, energy
and production,” acatech - National Academy of Science and Engineering, Nov. 2011.
[Online]. Available: https://www.acatech.de/wp-content/uploads/2018/03/
acatech_POSITION_CPS_Englisch_WEB-1.pdf.

[9] C. Cheng, J. Fu, H. Su, and L. Ren, “Recent advancements in agriculture robots: Benefits
and challenges,”MDPI - Machines, Jan. 1, 2023. [Online]. Available: https://doi.org/
10.3390/machines11010048.

[10] Tesla, “Tesla vehicle safety report,” Jan. 2023. [Online]. Available: https://www.tesla.
com/VehicleSafetyReport (visited on 06/26/2023).

[11] B. Moye, “Aaa: Fear of self-driving cars on the rise,” Mar. 2, 2023. [Online]. Available:
https://newsroom.aaa.com/2023/03/aaa-fear-of-self-driving-cars-on-

the-rise/ (visited on 06/26/2023).

163

References

[12] A. for Highway & Auto Safety, “Public opinion polls show deep skepticism about au-
tonomous vehicles,” Jul. 22, 2019. [Online]. Available: https://saferoads.org/wp-
content/uploads/2020/01/AV-Public-Opinion-Polls-7-22-19.pdf (visited on
06/26/2023).

[13] G. Kavallieratos, S. Katsikas, and V. Gkioulos, “Cybersecurity and safety co-engineering
of cyberphysical systems - a comprehensive survey,” Future Internet, Apr. 2020. DOI:
10.3390/fi12040065. [Online]. Available: https://www.mdpi.com/1999-5903/12/
4/65.

[14] “Residual risk,”National Institute of Standards and Technology, [Online]. Available: https:
//csrc.nist.gov/glossary/term/residual_risk.

[15] P. A. Networks, “What is a zero trust architecture,” 2023. [Online]. Available: https://
www.paloaltonetworks.com/cyberpedia/what-is-a-zero-trust-architecture

(visited on 07/15/2023).

[16] F. A. Administration, “Summary of the faa’s review of the boeing 737 max,” Nov. 18,
2020. [Online]. Available: https://www.faa.gov/foia/electronic_reading_room/
boeing_reading_room/media/737_RTS_Summary.pdf (visited on 05/23/2023).

[17] [Online]. Available: https://code7700.com/images/aero/climb_gradient_to_
angle.jpg (visited on 08/10/2023).

[18] C. Simon, Deep Learning and XAI Techniques for Anomaly Detection, 1st ed. Packt Pub-
lishing Ltd., Jan. 1, 2023, ISBN: 978-1-80461-775-5.

[19] W. contributors, “Therac-25,” Wikipedia, Ed., Jun. 14, 2023. [Online]. Available: https:
//en.wikipedia.org/wiki/Therac-25 (visited on 06/22/2023).

[20] N. G. Leveson and C. S. Turner, “An investigation of the therac-25 accidents,” I. of Elec-
trical and E. E. (IEEE), Eds., Jul. 1993. [Online]. Available: https://www.cs.columbia.
edu/~junfeng/08fa-e6998/sched/readings/therac25.pdf (visited on 06/22/2023).

[21] S. Baase, A gift of fire : social, legal, and ethical issues for computing and the Internet. Upper
Saddle River, NJ, 1996, Chapter 8.2 Case Study, pages 425ff, ISBN: 978-0-1360-0848-4.

[22] T. Gneuß, “Assessment of risk and danger-potential of stuxnet-like malware on critical
infrastructure,” Hauptseminar (Prof. Dr. Frank J. Furrer), Jul. 1, 2022.

[23] W. contributors, “Stuxnet,” Wikipedia, Ed., Jun. 20, 2023. [Online]. Available: https:
//en.wikipedia.org/wiki/Stuxnet.

[24] P. Mueller and B. Yadegari, “The stuxnet worm,” U. of Arizona, Ed., 2012. [Online]. Avail-
able: https://www2.cs.arizona.edu/~collberg/Teaching/466- 566/2012/
Resources/presentations/topic9-final/report.pdf.

[25] D. of Transportation. “Nasa’s toyota study released by dept. of transportation.” NASA,
Ed. (Feb. 8, 2011), [Online]. Available: https://www.nasa.gov/topics/nasalife/
features/nesc-toyota-study.html.

[26] B. Allen. “Toyota sudden unintended acceleration lawsuit ends in landmark verdict.”
(Nov. 5, 2013), [Online]. Available: https : / / www . beasleyallen . com / article /
toyota-sudden-unintended-acceleration-lawsuit-ends-in-landmark-verdict-

2/.

[27] D. C. Miller and C. Valasek, “Remote exploitation of anunaltered passenger vehicle,”
Aug. 10, 2015. [Online]. Available: https://illmatics.com/Remote%20Car%20Hacking.
pdf (visited on 06/06/2023).

164

References

[28] P. Bock, J.-P. Hauet, R. Foley, and R. Françoise, “Ukrainian power grids cyberattack,” I. S.
of Automation, Ed., Apr. 2017. [Online]. Available: https://www.isa.org/intech-
home/2017/march-april/features/ukrainian-power-grids-cyberattack (vis-
ited on 06/17/2023).

[29] U. H. S. NCCIC, “Cyber-attack against ukrainian critical infrastructure,” Mar. 7, 2016.
[Online]. Available: https://legacy-assets.eenews.net/open_files/assets/
2016/07/19/document_ew_02.pdf (visited on 06/17/2023).

[30] T. Hepher, “Airbus knew of software vulnerability before a400m crash,” Reuters, Ed.,
Nov. 8, 2017. [Online]. Available: https://www.reuters.com/article/us-airbus-
a400m / airbus - knew - of - software - vulnerability - before - a400m - crash -

idUSKBN1D819P (visited on 06/19/2023).

[31] T. Hepher, “Exclusive: A400mprobe focuses on impact of accidental datawipe,” Reuters,
Ed., Jun. 9, 2015. [Online]. Available: https://www.reuters.com/article/us-
airbus-a400m-idUSKBN0OP2AS20150609 (visited on 06/19/2023).

[32] C. P. de Silva, “Judge drops criminal case on a400m crash but points to airbus and
epi,” E. Confidencial, Ed., Apr. 6, 2018. [Online]. Available: https://www.defense-
aerospace.com/judge-drops-criminal-case-on-a400m-crash-but-points-to-

airbus-and-epi/ (visited on 06/19/2023).

[33] V. R. Caivano, “Germany and france delay decision on airbusmilitary transport,” T. N. Y.
Times, Ed., Jun. 11, 2009. [Online]. Available: https://www.nytimes.com/2009/06/
12/business/global/12airbus.html?_r=1&ref=europe (visited on 06/19/2023).

[34] “Artificial intelligence act,” European Parliamentary Research Service, Apr. 2021. [Online].
Available: https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/
698792/EPRS_BRI(2021)698792_EN.pdf.

[35] X. Huang, G. Jin, and W. Ruan, Machine Learning Safety, 1st ed. Springer Nature Singa-
pore, 2023, ISBN: 978-9-811-96814-3.

[36] [Online]. Available: https://people.duke.edu/~rnau/411trend_files/image004.
png (visited on 08/06/2023).

[37] [Online]. Available: https://miro.medium.com/v2/resize:fit:681/0*OYKhBzjmyvnjkgiU.
png (visited on 08/06/2023).

[38] [Online]. Available: https://www.youtube.com/watch?v=ZVR2Way4nwQ (visited on
08/07/2023).

[39] [Online]. Available: https://scikit-learn.org/stable/_images/sphx_glr_plot_
isolation_forest_002.png (visited on 08/07/2023).

[40] [Online]. Available: https://scikit-learn.org/stable/_images/sphx_glr_plot_
isolation_forest_003.png (visited on 08/07/2023).

[41] [Online]. Available: https://img-service.csdnimg.cn/img_convert/369da6030d7e9b29a111c886c7c62e74.
png (visited on 08/06/2023).

[42] J. Cleland-Huang, A. Agrawal, M. Vierhauser, M. Murphy, and M. Prieto, “Extending
MAPE-k to support human-machine teaming,” May 2022. [Online]. Available: https:
//doi.org/10.1145%2F3524844.3528054 (visited on 08/13/2023).

[43] [Online]. Available: https : / / www . dreamachieversacademy . com / wp - content /
uploads/2011/06/plan-ahead-picture.jpg (visited on 08/18/2023).

[44] [Online]. Available: https://assets.datacamp.com/production/tracks/10157/
badges/original/Data_Manipulation_2x.png (visited on 08/18/2023).

165

References

[45] [Online]. Available: https://ctl.s6img.com/society6/img/6r358r9oXMSCMwUPvybtwLrpQus/
w_700/prints/~artwork/s6-original-art-uploads/society6/uploads/misc/

17d0e29f5da4490dba72da7f70a59bcc/~~/enable-disable-switch-prints.jpg

(visited on 08/18/2023).

[46] [Online]. Available: https://datacontroller.io/ (visited on 08/18/2023).

[47] [Online]. Available: https://www.cisco.com/c/dam/assets/swa/img/anchor-
info/what-is-iam-banner-628x353.png (visited on 08/18/2023).

[48] [Online]. Available: https://www.technologyiowa.org/wp- content/uploads/
2021/05/Member_Event_IncidentResponse_F.jpg (visited on 08/18/2023).

[49] [Online]. Available: https://cdn1.iconfinder.com/data/icons/messages-line/
32/block-message-messages-blocked-512.png (visited on 08/18/2023).

[50] [Online]. Available: https://projects.seattletimes.com/2019/boeing-737-max-
12-problems/assets/aoa-sensor-explainer-3.png (visited on 08/18/2023).

[51] S. Borgwardt and P. Koopmann, “Logic-based ontology engineering - ontology main-
tenance - hitting set tree algorithm,” May 2022. [Online]. Available: https://tu-
dresden.de/ing/informatik/thi/lat/ressourcen/dateien/lboe18/Part4_1.

pdf?lang=en (visited on 08/22/2023).

[52] [Online]. Available: https://www.uavnavigation.com/support/sites/default/
files/5-55_edited2.jpg (visited on 08/23/2023).

[53] N. I. of Standards and Technology, “The nist cybersecurity framework 2.0,” Aug. 8, 2023.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.
ipd.pdf (visited on 08/24/2023).

166

	Title page
	Abstract
	Contents
	Introduction
	Background and Context
	Research Problem
	Purpose and Objectives
	Thesis Vision
	Thesis Mission

	Thesis Outline and Structure

	Design Science Research Methodology
	Relevance-, Rigor- and Design Cycle
	Research Questions

	Cyber-Physical Systems
	Explanation
	Safety- and Security-Critical Aspects
	Risk
	Quantitative Risk Assessment
	Qualitative Risk Assessment
	Risk Reduction Mechanisms
	Acceptable Residual Risk

	Engineering Principles
	Safety Principles
	Security Principles

	Cyber-Physical System of Systems (CPSoS)
	Emergence

	Protective Shell
	Explanation
	System Architecture
	Run-Time Monitoring
	Definition
	Expectations / Goals

	Specific Protective Shells
	Boeing 737 Max MCAS
	Introduction
	Vulnerabilities within CPS
	Specific Protective Shell Mitigation Mechanisms
	Protective Shell Evaluation

	Therac-25
	Introduction
	Vulnerabilities within CPS
	Specific Protective Shell Mitigation Mechanisms
	Protective Shell Evaluation

	Stuxnet
	Introduction
	Exploited Vulnerabilities
	Specific Protective Shell Mitigation Mechanisms
	Protective Shell Evaluation

	Toyota "Unintended Acceleration" ETCS
	Introduction
	Vulnerabilities within CPS
	Specific Protective Shell Mitigation Mechanisms
	Protective Shell Evaluation

	Jeep Cherokee Hack
	Introduction
	Vulnerabilities within CPS
	Specific Protective Shell Mitigation Mechanisms
	Protective Shell Evaluation

	Ukrainian Power Grid Cyber-Attack
	Introduction
	Vulnerabilities in the critical Infrastructure
	Specific Protective Shell Mitigation Mechanisms
	Protective Shell Evaluation

	Airbus A400M FADEC
	Introduction
	Vulnerabilities within CPS
	Specific Protective Shell Mitigation Mechanisms
	Protective Shell Evaluation

	Similarities between Specific Protective Shells
	Mitigation Mechanisms Categories
	Explanation
	Conclusion

	AI
	Explainable AI (XAI) for Anomaly Detection
	Anomaly Detection
	Explainable Artificial Intelligence

	Intrinsic Explainable ML Models
	Linear Regression
	Decision Trees
	K-Nearest Neighbours

	Example Use Case - Predictive Maintenance

	Generic Protective Shell
	Architecture
	MAPE-K
	Human Machine Teaming
	Protective Shell Plugin Catalogue
	Architecture and Design Principles
	Conclusion Architecture

	Implementation Details
	Evaluation
	Additional Vulnerabilities introduced by the Protective Shell
	Summary

	Conclusion
	Summary
	Research Questions Evaluation
	Contribution
	Future Work
	Recommendation

