32,156 research outputs found

    Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments

    Get PDF
    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment

    Practopoiesis: Or how life fosters a mind

    Get PDF
    The mind is a biological phenomenon. Thus, biological principles of organization should also be the principles underlying mental operations. Practopoiesis states that the key for achieving intelligence through adaptation is an arrangement in which mechanisms laying a lower level of organization, by their operations and interaction with the environment, enable creation of mechanisms lying at a higher level of organization. When such an organizational advance of a system occurs, it is called a traverse. A case of traverse is when plasticity mechanisms (at a lower level of organization), by their operations, create a neural network anatomy (at a higher level of organization). Another case is the actual production of behavior by that network, whereby the mechanisms of neuronal activity operate to create motor actions. Practopoietic theory explains why the adaptability of a system increases with each increase in the number of traverses. With a larger number of traverses, a system can be relatively small and yet, produce a higher degree of adaptive/intelligent behavior than a system with a lower number of traverses. The present analyses indicate that the two well-known traverses-neural plasticity and neural activity-are not sufficient to explain human mental capabilities. At least one additional traverse is needed, which is named anapoiesis for its contribution in reconstructing knowledge e.g., from long-term memory into working memory. The conclusions bear implications for brain theory, the mind-body explanatory gap, and developments of artificial intelligence technologies.Comment: Revised version in response to reviewer comment

    Complex Dynamics of Autonomous Communication Networks and the Intelligent Communication Paradigm

    Get PDF
    Dynamics of arbitrary communication system is analysed as unreduced interaction process. The applied generalised, universally nonperturbative method of effective potential reveals the phenomenon of dynamic multivaluedness of competing system configurations forced to permanently replace each other in a causally random order, which leads to universally defined dynamical chaos, complexity, fractality, self-organisation, and adaptability. We demonstrate the origin of huge, exponentially high efficiency of the unreduced, complex network dynamics and specify the universal symmetry of complexity as the fundamental guiding principle for creation and control of such qualitatively new kind of networks and devices. The emerging intelligent communication paradigm and its practical realisation in the form of knowledge-based networks involve the properties of true, unreduced intelligence and consciousness (http://cogprints.ecs.soton.ac.uk/archive/00003857/) appearing in the complex (multivalued) network dynamics and results

    Towards a Holistic CAD Platform for Nanotechnologies

    Get PDF
    Silicon-based CMOS technologies are predicted to reach their ultimate limits by the middle of the next decade. Research on nanotechnologies is actively conducted, in a world-wide effort to develop new technologies able to maintain the Moore's law. They promise revolutionizing the computing systems by integrating tremendous numbers of devices at low cost. These trends will have a profound impact on the architectures of computing systems and will require a new paradigm of CAD. The paper presents a work in progress on this direction. It is aimed at fitting requirements and constraints of nanotechnologies, in an effort to achieve efficient use of the huge computing power promised by them. To achieve this goal we are developing CAD tools able to exploit efficiently these huge computing capabilities promised by nanotechnologies in the domain of simulation of complex systems composed by huge numbers of relatively simple elements.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Adaptability Checking in Multi-Level Complex Systems

    Full text link
    A hierarchical model for multi-level adaptive systems is built on two basic levels: a lower behavioural level B accounting for the actual behaviour of the system and an upper structural level S describing the adaptation dynamics of the system. The behavioural level is modelled as a state machine and the structural level as a higher-order system whose states have associated logical formulas (constraints) over observables of the behavioural level. S is used to capture the global and stable features of B, by a defining set of allowed behaviours. The adaptation semantics is such that the upper S level imposes constraints on the lower B level, which has to adapt whenever it no longer can satisfy them. In this context, we introduce weak and strong adaptabil- ity, i.e. the ability of a system to adapt for some evolution paths or for all possible evolutions, respectively. We provide a relational characterisation for these two notions and we show that adaptability checking, i.e. deciding if a system is weak or strong adaptable, can be reduced to a CTL model checking problem. We apply the model and the theoretical results to the case study of motion control of autonomous transport vehicles.Comment: 57 page, 10 figures, research papaer, submitte
    • …
    corecore