A hierarchical model for multi-level adaptive systems is built on two basic
levels: a lower behavioural level B accounting for the actual behaviour of the
system and an upper structural level S describing the adaptation dynamics of
the system. The behavioural level is modelled as a state machine and the
structural level as a higher-order system whose states have associated logical
formulas (constraints) over observables of the behavioural level. S is used to
capture the global and stable features of B, by a defining set of allowed
behaviours. The adaptation semantics is such that the upper S level imposes
constraints on the lower B level, which has to adapt whenever it no longer can
satisfy them. In this context, we introduce weak and strong adaptabil- ity,
i.e. the ability of a system to adapt for some evolution paths or for all
possible evolutions, respectively. We provide a relational characterisation for
these two notions and we show that adaptability checking, i.e. deciding if a
system is weak or strong adaptable, can be reduced to a CTL model checking
problem. We apply the model and the theoretical results to the case study of
motion control of autonomous transport vehicles.Comment: 57 page, 10 figures, research papaer, submitte