22,525 research outputs found

    An architecture-based dependability modeling framework using AADL

    Full text link
    For efficiency reasons, the software system designers' will is to use an integrated set of methods and tools to describe specifications and designs, and also to perform analyses such as dependability, schedulability and performance. AADL (Architecture Analysis and Design Language) has proved to be efficient for software architecture modeling. In addition, AADL was designed to accommodate several types of analyses. This paper presents an iterative dependency-driven approach for dependability modeling using AADL. It is illustrated on a small example. This approach is part of a complete framework that allows the generation of dependability analysis and evaluation models from AADL models to support the analysis of software and system architectures, in critical application domains

    Reliability Analysis of Concurrent Systems using LTSA

    Get PDF
    The analysis for software dependability is considered an important task within the software engineering life cycle. However, it is often impossible to carry out this task due to the complexity of available tools, lack of expert personnel and time-to-market pressures. As a result, released software versions may present unverified dependability properties subjecting customers to blind software reliability assessment. In particular, concurrent systems present certain behaviour that require a more complex system analysis not easily grasped at system design and architecture level

    Software dependability modeling using an industry-standard architecture description language

    Full text link
    Performing dependability evaluation along with other analyses at architectural level allows both making architectural tradeoffs and predicting the effects of architectural decisions on the dependability of an application. This paper gives guidelines for building architectural dependability models for software systems using the AADL (Architecture Analysis and Design Language). It presents reusable modeling patterns for fault-tolerant applications and shows how the presented patterns can be used in the context of a subsystem of a real-life application

    A Reasoning Framework for Dependability in Software Architectures

    Get PDF
    The degree to which a software system possesses specified levels of software quality attributes, such as performance and modifiability, often have more influence on the success and failure of those systems than the functional requirements. One method of improving the level of a software quality that a product possesses is to reason about the structure of the software architecture in terms of how well the structure supports the quality. This is accomplished by reasoning through software quality attribute scenarios while designing the software architecture of the system. As society relies more heavily on software systems, the dependability of those systems becomes critical. In this study, a framework for reasoning about the dependability of a software system is presented. Dependability is a multi-faceted software quality attribute that encompasses reliability, availability, confidentiality, integrity, maintainability and safety. This makes dependability more complex to reason about than other quality attributes. The goal of this reasoning framework is to help software architects build dependable software systems by using quantitative and qualitative techniques to reason about dependability in software architectures

    Software Architecture and Dependability

    Get PDF
    International audienceDependable systems are characterized by a number of attributes including: reliability, availability, safety and security. For some attributes (namely for reliability, availability, safety), there exist probability- based theoretic foundations, enabling the application of dependability analysis techniques. The goal of dependability analysis is to forecast the values of dependability attributes, based on certain properties (e.g. failure rate, MTBF, etc.) that characterize the system's constituent elements. Nowadays, architects, designers and developers build systems based on an architecture-driven approach. They specify the system's software architecture using Architecture Description Languages or other standard modeling notations like UML. Given the previous, we examine what we need to specify at the architectural level to enable the automated generation of models for dependability analysis. In this paper, we further present a prototype implementation of the proposed approach, which relies on UML specifications of dependable systems' software architectures. Moreover, we exemplify our approach using a case study system

    SIMULATION-BASED PERFORMABILITY ANALYSIS OF MULTIPROCESSOR SYSTEMS

    Get PDF
    The primary focus in the analysis of multiprocessor systems has traditionally been on their performance. However, their large number of components, their complex network topologies, and sophisticated system software can make them very unreliable. The dependability of a computing system ought to be considered in an early stage of its development in order to take influence on the system architecture and to achieve best performance with high dependability. In this paper a simulation-based method for the combined performance and dependability analysis of fault tolerant multiprocessor systems are presented which provide meaningful results already during the design phase

    Statistical Reliability Estimation of Microprocessor-Based Systems

    Get PDF
    What is the probability that the execution state of a given microprocessor running a given application is correct, in a certain working environment with a given soft-error rate? Trying to answer this question using fault injection can be very expensive and time consuming. This paper proposes the baseline for a new methodology, based on microprocessor error probability profiling, that aims at estimating fault injection results without the need of a typical fault injection setup. The proposed methodology is based on two main ideas: a one-time fault-injection analysis of the microprocessor architecture to characterize the probability of successful execution of each of its instructions in presence of a soft-error, and a static and very fast analysis of the control and data flow of the target software application to compute its probability of success. The presented work goes beyond the dependability evaluation problem; it also has the potential to become the backbone for new tools able to help engineers to choose the best hardware and software architecture to structurally maximize the probability of a correct execution of the target softwar

    Context Oriented Software Middleware

    Get PDF
    Our middleware approach, Context-Oriented Software Middleware (COSM), supports context-dependent software with self-adaptability and dependability in a mobile computing environment. The COSM-middleware is a generic and platform-independent adaptation engine, which performs a runtime composition of the software's context-dependent behaviours based on the execution contexts. Our middleware distinguishes between the context-dependent and context-independent functionality of software systems. This enables the COSM-middleware to adapt the application behaviour by composing a set of context-oriented components, that implement the context-dependent functionality of the software. Accordingly, the software dependability is achieved by considering the functionality of the COSM-middleware and the adaptation impact/costs. The COSM-middleware uses a dynamic policy-based engine to evaluate the adaptation outputs and verify the fitness of the adaptation output with the application's objectives, goals and the architecture quality attributes. These capabilities are demonstrated through an empirical evaluation of a case study implementation

    An Operating System Architecture for Future Information Appliances

    Get PDF
    Abstract. A software platform for developing future information appliances requires to satisfy various diverse requirements. The operating system architecture presented in this paper enhances the flexibility and dependability through virtualization techniques. The architecture allows a system to use multiple operating systems simultaneously, and to use multi-core processors in a flexible way. Also, dependability mechanisms in our architecture will avoid crashing or hanging a system as much as possible in order to improve the user experience when defects in the software are exposed. We present a brief overview of each component in the operating system architecture and some sample scenarios that illustrate the effectiveness of the architecture
    corecore