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Abstract. A software platform for developing future information ap-
pliances requires to satisfy various diverse requirements. The operating
system architecture presented in this paper enhances the flexibility and
dependability through virtualization techniques. The architecture allows
a system to use multiple operating systems simultaneously, and to use
multi-core processors in a flexible way. Also, dependability mechanisms
in our architecture will avoid crashing or hanging a system as much as
possible in order to improve the user experience when defects in the soft-
ware are exposed. We present a brief overview of each component in the
operating system architecture and some sample scenarios that illustrate
the effectiveness of the architecture.

1 Introduction

Information appliances become more and more complex for supporting a large
number of new functionalities. For example, current Japanese mobile phones
contain about ten million lines of source code and support a variety of function-
alities such as an electronic wallet, a media player, an Internet browser/e-mail,
and a photo camera. Other information appliances like televisions and car navi-
gation systems contain almost the same size of software. Moreover, information
appliances will need to satisfy diverse requirements for supporting various future
services. Also, different types of information appliances will need to take into ac-
count diverse hardware platforms. In the near future, multi-core processors will
become common although current operating systems for information appliances
still have many issues to support the processors.

This paper proposes an operating system architecture to satisfy the diverse
requirements for building attractive future information appliances. The unique-
ness of the architecture is as follows:

— The architecture accommodates multiple operating systems on a multi-core
processor simultaneously. This enables us to reuse a large amount of software
on existing operating systems. Also, the number of CPU cores to execute an
operating system will be changed dynamically due to energy consumption
requirements.



— The architecture virtualizes crashing or hanging of an operating system as
much as possible. The information appliance that adopts the architecture
tries to postpone the crash until the user does not interact with the appliance
anymore. Thus, the user is not aware of crashing or hanging of the appliance,
and the user experience will be improved significantly.

In Section 2, we present some examples of future information appliances, and
the requirements for the operating system architecture for building the appli-
ances. In Section 3, we show the structure and components of the architecture.
Section 4 shows some example scenarios that illustrate the effectiveness of our
architecture. Section 5 concludes the paper.

2 Future Information Appliances and Their Requirements

In the near future, a variety of daily objects near us will become information
appliances. These artifacts are connected to the Internet and enhance our daily
activities. In our research group, we have enhanced various daily objects such
as chairs [1], tables [3], toothbrushes [6], and mirrors [2]. These future infor-
mation appliances will spontaneously collaborate with each other to compose
more complex services from existing services [5] [6]. A variety of middleware
infrastructures is necessary to develop various application services rapidly [4].

There are two characteristics to develop future information appliances. The
first is to offer a huge amount of functionalities that need to satisfy diverse re-
quirements to offer various attractive services. These diverse requirements cannot
be implemented on any one operating system. Current information appliances
adopt various types of operating systems to satisfy different requirements. For
example, appliances controlling a variety of devices have used small operating
systems that include only a real-time thread scheduler and some device drivers.
The operating systems usually do not support memory protection domains, but
are suitable for highly responsive services with tight timing constraints. The fu-
ture operating systems architecture should support multiple operating systems
running on a multi-core processor simultaneously, without violating real-time
requirements of application services.

The second characteristic is diverse hardware platforms. Especially, future in-
formation appliances will need to use a multi-core processor dynamically to save
energy consumption. As described in the previous paragraph, multiple operating
systems should be executed on a multi-core processor. Each operating system
allocates a suitable number of CPU cores according to the current workload. Let
us assume a mobile phone that uses a multi-core processor. While a user does not
use the mobile phone, only one CPU core is used to execute several background
application services on multiple operating systems simultaneously. In this case,
there are a few activities on these operating systems, and it is easy to satisfy all
real-time requirements of these activities on a single CPU core. However, when
a user starts watching a TV program, multiple CPU cores become active and
most of them are used to process the TV program.



Dependability is one of the most important requirements in future informa-
tion appliances. Crashing or hanging of a service on an appliance will degrade
user experience significantly. For example, if the service is hung, a user needs to
find a reset switch and push the switch to restart the appliance. Usually, a user
interacts with information appliances for a short time. Although some errors
inside a kernel may damage the kernel, usually the appliance can be avoided to
crash while a user is interacting with it by repairing the damaged kernel data
structure. The kernel will be restarted for a complete repair after a user finishes
to use the application service.

3 Operating System Architecture

This section presents an operating system architecture for future information
appliances. We describe the structure of the proposed architecture and show why
the architecture satisfies the requirements described in the previous section.

3.1 Overview of Architecture

Figure 1 shows the structure of our operating system architecture. The architec-
ture consists of six components. The first component is the SPUMONE hardware
abstraction layer. The second is the L4 micro-kernel [10]. The third is the ArcOS
dependable real-time operating system. The fourth is the monitoring service, and
the fifth one is the anomaly detection service. The last one is the Linux kernel.

The SPUMONE hardware abstraction layer runs on a multi-core processor,
and it is an infrastructure to satisfy the diverse requirements described in the
previous section. SPUMONE takes into account the diversity of application ser-
vices and hardware platforms.

The L4 micro-kernel is a small real-time kernel. The kernel offers only basic
functionalities such as process and memory management. Most of operating
system services such as a file service and device drivers are implemented in
independently schedulable protection domains. Also, L4 offers a powerful IPC
mechanism that makes it is easy to develop application services decomposed into
multiple protection domains.

The ArcOS dependable real-time operating system runs on the L4 micro-
kernel. Its purpose is to increase the dependability of control processing services
running on ArcOS. The most important concept in ArcOS is self-healing. The
integrity of a system is maintained without help of a system administrator, and
is recovered automatically when the inconsistency inside the application service
is exposed.

The monitoring service is running on ArcOS. It maintains the integrity of
the Linux kernel to enhance its dependability, and recovers the integrity au-
tomatically by observing critical data structures inside the Linux kernel. The
monitoring service is isolated from the Linux kernel to avoid the effect of the
inconsistency in the Linux kernel.
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Fig. 1. An Overview of Our Operating System Architecture

The anomaly detection service is implemented in the Linux kernel. It en-
hances the dependability of the Linux application services. The service uses the
monitoring and tracing facilities offered by the Linux kernel to detect anomalies
in application services.

The architecture also improves user experience when an anomaly in a sys-
tem occurs. ArcOS increases the robustness of the monitoring service, and the
monitoring service repairs the anomaly in the Linux kernel. When SPUMONE
detects crashing or hanging in Linux, it converts them to recoverable errors that
can be handled in applications services. However, we do not assume that the
monitoring service repairs the damage of the kernel completely. Thus, the mon-
itoring service will restart the Linux kernel while a user does not interact with
an appliance. The anomaly detection service detects the anomaly in application
services on Linux, and restarts the abnormal services to maintain the integrity
of the services.

3.2 SPUMONE: Hardware Abstraction Layer

SPUMONE offers the abstraction called virtual processors to satisfy the diverse
requirements by using multiple operating systems as described in the previous
section. One or multiple virtual processors are assigned to each guest OS. If a
guest OS is configured as an SMP operating system, multiple virtual processors
may be multiplexed on a single CPU core or be executed on different CPU cores.



An instance of SPUMONE is created on each CPU core and may schedule multi-
ple virtual processors. For reducing the overhead of switching virtual processors,
both guest operating systems and SPUMONE are located in the same privileged
address space. Thus, each guest OS can invoke privileged instructions without
virtualizing them.

A guest OS uses its own process scheduler. When the OS becomes idle,
SPUMONE changes the status of the virtual processor executing the OS to
passive, and the virtual processor will not be selected to be executed until an
interrupt will change its status to active. The physical memory in a processor
is divided into multiple memory areas, and each area is assigned to a different
guest OS. The memory area used by the guest OS can be protected by other
guest OSes for avoiding malicious memory access.

Each virtual processor is assigned a different priority, and SPUMONE chooses
an active virtual processor that has the highest priority to be executed on a
CPU core. The number of virtual processors used by each guest OS is statically
determined when the system is booted. Also, the number of virtual processors
on each CPU core is statically determined. For reducing the power consumption,
SPUMONE can be stopped and resumed independently on each CPU core, so
the number of CPU cores can be dynamically changed according to the system’s
power consumption policy. Also, a guest OS may change the status of its virtual
processor to idle dynamically according to the current condition of the processor
for satisfying real-time constraints of application services on multiple operating
systems.

An interrupt or exception from a hardware device is interposed by SPUMONE.
The mapping between interrupt sources and virtual processors is statically spec-
ified in SPUMONE. In traditional OSes, an interrupt processing is scheduled
before the execution of all processes. However, in SPUMONE, low priority inter-
rupt processing can be delayed while executing a virtual processor with a high
priority. This means that the priority of interrupt processing is integrated with
the priorities of virtual processors. Thus, an interrupt with a low priority does
not affect the execution of a virtual processor with a high priority.

SPUMONE has three mechanisms to increase its flexibility. The first mech-
anism is the priority integrity mechanism. To guarantee different guest OS’s
timing constraint requirements, each guest OS changes the priority of its virtual
processor dynamically according to the priority of the executing process. When
a CPU core multiplexes several virtual processors, the priority of the executing
process is mapped to its virtual processor. Thus, the virtual processor on which
a guest OS runs to schedule a process with highest priority is selected to be
executed on a CPU core. The second mechanism is a CPU accounting mecha-
nism to limit the CPU capacity used by each virtual processor. This is useful to
protect the capacity of a CPU core from the monopolization by a specific guest
OS. The third mechanism is a mechanism to virtualize errors occurring on each
CPU core. When SPUMONE detects hanging or crashing on the CPU core, it
changes the current program counter and stack pointer to the initially specified
value to convert the errors to easily recoverable errors. For example, when hang-



ing or crashing is detected during the execution of a system call, the system call
raises an exception to an application process, and the process will recover from
the exception by re-executing the system call or executing an alternative system
call.

Currently SPUMONE runs on a single core SH4A architecture processor.
Linux, L4 and TOPPERS are running on SPUMONE and can be run concur-
rently on a single CPU core. We are working on supporting a multi-core processor
that contains four SH4A CPU cores.

3.3 ArcOS: Dependable Real-Time OS

ArcOS is an operating system that has an ability of automatic self-healing.
In ArcOS, each software component is implemented in an isolated protection
domain that can be independently restarted when hanging or crashing occurs
in these components. ArcOS is a multi-server operating system built on top of
the L4 micro-kernel. System components such as a file system and device drivers
run in independently isolated protection domains, and are also restarted in case
these system components violate their integrity and the violation is exposed by
some errors.

The most fundamental functionalities of ArcOS are involved in the root
servers that we assume to be highly reliable. P3, which is one of the root servers,
is a dedicated memory manager of each software component. An error detector
and a persistent storage mechanism described below are implemented in P3, so
that each component can use the mechanism as an infrastructure service.

A component implemented on ArcOS tries to recover an error caused by the
anomaly through various exception handling strategies. Also, ArcOS tries to vir-
tualize the error to convert the unrecoverable error to the recoverable error if
possible. Since the aggressive recovery strategies used in ArcOS may not resolve
the inconsistency in the component, the inconsistency should be completely re-
moved by scheduling the restart of the component when the effect of the restart
becomes minimal. In case the exposed error cannot be recovered with any ag-
gressive recovering strategies, ArcOS will restart the component immediately.

Since each service is decomposed into multiple software components in Ar-
cOS, the integrity of a system is maintained by restarting respective components
using the micro-rebooting technique [8]. The most important issue when using
the micro-rebooting technique is to quickly restart a software component to re-
construct internal data structures. Candea et. al.[8] have proposed crash-only
software to make is easy to build highly reliable Internet services. However,
for building information appliances, it takes a long time to reconstruct data
structures in a restarted component if it is implemented as crash-only software.
ArcOS assumes that each component stores some critical data in a persistent
storage. Also, the component defines a recovery procedure, which is invoked when
the component is restarted. The procedure reconstructs internal data structures
quickly by retrieving data from the persistent storage. The persistent storage
stores critical data structures that may take a long time to recover. Also, session



data maintained by system services are stored in persistent storage. For exam-
ple, a file service keeps data about currently opened files for reconstructing the
data when it is restarted. Some errors caused by the anomaly in a component
may make the data in the persistent storage inconsistent. Since transactional
updates are not suitable to implementing various services on information ap-
pliances, ArcOS virtualizes the errors to prevent data in the persistent storage
from becoming inconsistent. A component continues to execute even when errors
are exposed after the completion to access data structures and the consistency
is maintained.

ArcOS offers three mechanisms to maintain the system’s integrity. The first
mechanism is to invoke a recovery procedure before a software component is
restarted. As described in the previous paragraph, the mechanism enables the
component to be recovered very quickly. The second mechanism is a persistent
storage that is used to store critical data for supporting quick restarting. The
last mechanism is a failure detection service that detects a crash or hang in a
component and restarts it. ArcOS also offers a programming framework that
hides details to use the persistent storage to develop self-healing application
services in an easy way.

In the current implementation, we have developed a couple of device drivers
on ArcOS to show the effectiveness. The device driver is a source of the fragileness
of the current operating systems. As described in previous research [11], it is
not easy to develop self-healing device drivers even when using micro-kernel-
based operating systems. ArcOS enables various device drivers to be recovered
quickly and makes it possible to use the micro-rebooting technique in information
appliances.

3.4 Monitoring Service

The motivation for our monitoring service is driven by handling system anomaly
and security attacks. When information appliances will become more compli-
cated, they may behave in a strange or unexpected way due to undisclosed bugs
or faults that are not handled correctly, which is known as system anomaly.
Currently once the anomaly of information appliances occurs, it is difficult to
perform either anomaly analysis or further recovery. In a similar way, information
appliances suffer from security attacks. Virus programs might inject malicious
codes into the target host OS through the Internet and then compromise it.
Because most of the end users lack enough technical knowledge, they usually
cannot solve such security problems themselves and even cannot notice that the
system has been compromised. The monitoring service is designed for satisfying
the above requirements by providing both the inconsistency detection inside the
OS kernel and the automatic recovery mechanism.

Conventional solutions usually suffer from the high memory overhead. In
prior researches, the backward-recovery technique takes snapshots at checkpoints
to perform a recovery from some fatal errors. On every checkpoint, the system
will make a memory snapshot of some specific processes, which introduces the
overhead of memory resources. In signature-based intrusion detection systems,



a large mount of persistent memory has been used to track suspicious activi-
ties. Moreover, there will be more overhead when the monitored object behaves
more complicated and nondeterministically, e.g. in the Linux kernel. Current
information appliances are still limited by system resources to reduce its costs.
Obviously, the above solutions are neither suitable for developing information
appliances, nor for the detection and recovery of the anomaly in the Linux kernel.
Moreover, our monitoring service is more light-weight.

The monitoring service observes the integrity in the Linux kernel by moni-
toring the consistency of its critical data structures. When the service detects an
inconsistency, a repair function is invoked. A similar technique described in [7]
is used for repairing consistent data structures. In the repair function, we do not
assume that the consistency is completely recovered. There is always the possi-
bility that inconsistencies like memory-leakage remains. The consistency will be
recovered completely after the entire Linux kernel is restarted while a user does
not interact with an appliance.

Since the monitoring service is implemented as quickly restart-able com-
ponents by using the ArcOS framework, each component of the service can
be efficiently restarted automatically when a component crashes or hangs. The
monitoring service is developed as several Linux kernel modules and a single in-
dependent inconsistency detection module running on the L4 micro-kernel and
ArcOS. The kernel modules are in charge of the kernel data structure repair. The
inconsistency detection module can access the memory of the Linux kernel at
runtime through shared memory between the Linux kernel and the inconsistency
detection module. The Linux kernel’s internal critical data structures are period-
ically checked for consistency against the built-in anomaly detection database.
Once inconsistency in some data structures has been detected, the corresponding
repair functions will be invoked. Since the inconsistency detection module runs
outside the Linux kernel, and it is completely isolated and hidden from Linux,
the faults or bugs inside the Linux kernel does not affect the detection process
running on ArcOS.

Currently, several case studies have been carried out to show the effectiveness
of the monitoring service, such as the kernel-level hidden process detection and
memory leak recovery.

3.5 Anomaly Detection Service

The role of the anomaly detection service is to detect anomalies in a Linux
application service before the inconsistency caused by the anomaly is exposed.
The user level application services implemented on the Linux kernel becomes
more and more complex in future information appliances. These application
services may misbehave temporally or can be attacked by malicious programs.
For making the behavior of the services more stable, detecting the anomaly of
the services is very important.

The service records the fine-grained CPU resource usage of each process and
a variety of detailed events traced inside the Linux kernel such as invoking system
calls or occurring interrupts and exceptions. The information allows the anomaly



detection service to analyze the behavior of applications services without modi-
fying them. For example, the communication patters among user processes can
be extracted by analyzing the kernel events traced in the network protocol mod-
ule transparently. The approach is similar to Magpie [13], but our approach also
uses the fine-grained resource usage to make it easy to reduce the overhead to
analyze a large amount of kernel events.

The anomaly detection service can be used to detect abnormal behavior in
application services, and increase the dependability of a system significantly by
restarting abnormal services before the violation of the integrity becomes serious.
It learns the normal pattern of the behavior of a target application service by
using a variety of machine learning techniques. When it detects the abnormal
pattern, the target service is restarted to recover its integrity. For example, the
fine-grained CPU resource usage of each process may be used to detect intrusion
inside an information appliance. Also, by using a similar approach described
n [12], the service detects the anomaly caused by software bugs in application
services. The approach may enable us to detect unknown anomaly by classifying
abnormal behavior from normal behavior.

The anomaly detection service consists of four modules. The first module is
a kernel tracing module that traces a variety of events inside the Linux kernel.
Currently, LLTng [14] is used as the kernel event tracing module. The second
module is an accounting system that calculates the fine-grained CPU resource
usage for each process [15]. Of course, the information can be extracted from
the information generated by the kernel event tracing module, but our approach
can reduce the overhead caused by analyzing a large amount of kernel events,
and it is more suitable for developing information appliances. The third mod-
ule is a logging module that records the information generated in the first and
second modules. The fourth module is an analysis module that is a set of user
processes retrieving a model from the logs stored in the logging module. A differ-
ent process is implemented to retrieve a different model from the logs. When the
analysis module detects abnormal behavior, the causing process will be restarted
to recover the integrity of an information appliance.

4 Sample Scenarios

The section presents several sample scenarios showing the effectiveness of the
proposed operating system architecture.

Robust Control Processing Service: ArcOS enables us to develop robust control
processing services. The services can be decomposed into multiple components
and each component can be restarted independently. By using the framework
offered by ArcOS, a service recovers its integrity by restarting it when an incon-
sistency is detected.

The execution of Linux is isolated from the execution of a control processing
service by SPUMONE. SPUMONE configures the execution in Linux to be post-
poned when the execution of control processing services is active. The approach



makes it possible that the temporal effect of Linux does not affect the execution
of control processing services. Also, restarting Linux does not affect the execution
of the control processing services. For example, the execution of a continuous
media processing service on ArcOS does not violate its timing constraints even
when Linux is restarted.

Virtual Dependability: If a user is not aware of the restart of an appliance, the
appliance becomes virtually dependent on the user. The monitoring service and
SPUMONE repair the Linux kernel’s internal integrity to continue the execution
even when a crash or hang in the Linux kernel occurs. However, since our repair
takes an optimistic approach, the inconsistency that does not affect the execution
of the kernel for a short time will remain in the kernel. The inconsistency can be
removed completely by restarting the kernel. SPUMONE schedules the reboot
of the kernel when a user does not interact with an appliance.

SMP Emulation on SPUMONE: Interrupt processing time can be very long in
the current Linux kernel when burst network traffic is received while a single CPU
core is used. This violates the timing constraints of real-time applications. Our
approach to solve the problem is that SPUMONE creates two virtual processors
on a single CPU core, and switches the contexts of the virtual processors in a
fine-grained way.

In this approach, one virtual processor executes all interrupt processing, and
another virtual processor executes all other activities. Thus, when a virtual pro-
cessor starts to execute a long processing interrupt in a high priority, the process-
ing is blocked when the interrupt processing time exceeds the specific threshold.
The CPU accounting mechanism in SPUMONE makes the configuration easy.

Using a Multi-core Processor: SPUMONE enables each CPU core to be turned
on or off dynamically according to the current workload in Linux and the policy
of the power management. For example, when the workload of an appliance is
very low, one CPU core is active to execute both Linux and L4. On the other
hand, if the workload is high, all CPU cores will be used to process the workload.

When several application services on multiple operating systems need to
ensure their timing constraints, the integrity of priorities should be maintained.
SPUMONE supports two approaches to maintain the priority integrity. The
first approach is to coordinate all priorities in multiple operating systems by
mapping them in global priorities. The approach requires taking into account
all real-time activities on the multiple operating systems to ensure their timing
constraints. The second approach uses different CPU cores for executing multiple
operating systems. When Linux starts a real-time application, Linux and L4 use
different CPU cores to schedule their applications independently. In this case,
since different operating systems use different CPU cores, each operating system
can schedule real-time activities without considering the real-time activities in
other operating systems.
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5 Conclusion and Future Directions

This paper presents an operating system architecture for future information
appliances. Currently, we are implementing the operating system architecture
on several hardware platforms that use Hitachi SH4 processors. One of them
contains a multi-core processor with four SH4 processors.

There are a couple of future directions in our research. Of course, one of
the most important directions is to build an actual information appliance using
the proposed architecture. We are planning to build a simple audio player on
ArcOS in such a way that Linux can be rebooted anytime without disturbing
the execution of the audio player.

The second future direction is to use the monitoring service to monitor the
hardware devices. This is very useful to detect various abnormal conditions of
the appliance. For example, if the source of the anomaly is correctly localized, it
may be possible to replace the damaged hardware easily. This makes the model-
based diagnosis[9] possible. Also, if the damage is serious and has the potential
to cause serious a accident in the near future, the appliance disables to avoid
the risk of an accident. This is very useful to preserve sustain-ability.

The last future direction is to implement ArcOS on Linux. It makes it easy to
decompose an application service into multiple processes. When the anomaly de-
tection service detects abnormal processes, the processes are restarted to recover
the integrity of the service. However, current Linux does not support sufficient
functionalities to implement ArcOS. Thus, we will add some system calls for
solving the problem.
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