
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles School of Computing

2019-01-06

Context Oriented Software Middleware Context Oriented Software Middleware

Basel Magableh
Technological University Dublin, 453543@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart

 Part of the Computational Engineering Commons

Recommended Citation Recommended Citation
Magableh, B. (2019). Context Oriented Software Middleware. International Journal of Computer Science
and Information Technology, 1(1). doi.org/10.21427/yndh-x108

This Article is brought to you for free and open access by
the School of Computing at ARROW@TU Dublin. It has
been accepted for inclusion in Articles by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/301304736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=arrow.tudublin.ie%2Fscschcomart%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Context Oriented Software Middleware

Basel Magableh
School of Computer Science,

Dublin Institute of Technology,
Technological University,

Dublin, Ireland

Abstract

This article proposes a new paradigm for building an adaptive middleware that supports software systems with
self-adaptability and dependability. In this article, we wish to explore how far we can support the engineering of self-
adaptive applications using a generic and platform-independent middleware architecture provided by non-specialised
programming languages such as Context-Oriented Programming (COP), and Aspect-Oriented Programming (AOP),
and not limited to a specific platform or framework. This gives the software developers the flexibility to construct a
self-adaptive application using a generic and reusable middleware components that employ popular design patterns,
instead of forcing the software developers to use a specific programming language or framework to implement self-
adaptive software in mobile computing environment, which are heterogeneous and resource-constrained.

Our middleware approach, Context-Oriented Software Middleware (COSM), supports context-dependent soft-
ware with self-adaptability and dependability in a mobile computing environment. The COSM-middleware is a
generic and platform-independent adaptation engine, which performs a runtime composition of the software’s context-
dependent behaviours based on the execution contexts. Our middleware distinguishes between the context-dependent
and context-independent functionality of software systems. This enables the COSM-middleware to adapt the appli-
cation behaviour by composing a set of context-oriented components, that implement the context-dependent func-
tionality of the software. Accordingly, the software dependability is achieved by considering the functionality of the
COSM-middleware and the adaptation impact/costs. The COSM-middleware uses a dynamic policy-based engine to
evaluate the adaptation outputs, and verify the fitness of the adaptation output with the application’s objectives, goals
and the architecture quality attributes. These capabilities are demonstrated through an empirical evaluation of a case
study implementation.

Keywords: mobile middleware, context oriented programming, component composition, self-adaptive application,
context oriented software development

1. Introduction

Mobile computing infrastructures make it possible for mobile users to run software systems in heterogeneous and
resource-constrained platforms. Mobility, heterogeneity, and device limitations create a challenge for the develop-
ment and deployment of mobile software. Mobility induces context changes to the computational environment and
therefore changes to the availability of resources and services. This requires software systems to be able to adapt their
functionality/behaviour to the context changes (Inverardi and Tivoli, 2009). This class of software systems are called
Context-dependent/self-adaptive applications, which have the ability to modify their own structure and behaviour in
response to context changes in the environment where they operate (Oreizy et al., 1999). Such level of self-adaptability
presents the challenge of tailoring behavioural variations dynamically to both a specific user needs and adapt to the
context changes. Moreover, because of the software pervasiveness, and in order to make adaptation e↵ective and
successful, adaptation processes must be considered in conjunction with software dependability and reliability by

Email address: basel.magableh@dit.ie (Basel Magableh)

Preprint submitted to International Journal of Computer Science and Information Technology January 5, 2019

providing dynamic verification and validation mechanism, which validates the adaptation output with the adaptation
goals, objectives, and architecture quality attributes (Cheng et al., 2008; de Lemos et al., 2011). Software dependabil-
ity refers to the degree to which a software system or component is operational and accessible when required for use
(Barbacci, 2004).

We believe that software self-adaptability and dependability can be achieved by dynamically composing software
from context-oriented modules based on the context changes rather than composing the software from functional-
oriented modules. Such composition requires the design of software modules to be more oriented towards the context
information rather than being oriented towards the functionality. The principle of context orientation of software mod-
ules was proposed in the Context Oriented Software Development (COSD) (Magableh and Barrett, 2012a). COSD
proposes a decomposition mechanism of software based on the separation between context-dependent and context-
independent functionality. Context-independent functionality refers to software functionality whose implementation
is una↵ected by the context changes. For example, the map view and user login forms in mobile map application
are context-free functionality (i.e. context changes would not change their functionality). The context-dependent
functionality refers to software functionality, which exhibits volatile behaviour when the context changes. Separating
the context-dependent functionality from the context-independent functionality enables software systems with adapt-
ability and dependability with the aid of middleware technology. The middleware can adapt the software behaviour
dynamically by composing that interchangeable context-dependent modules based on context changes. We argue that
software self-adaptability is achieved by having both an adaptive middleware architecture and a suitable decomposi-
tion strategy, which separates the context-dependent functionality from the context-independent functionality of the
software systems.

The objective of this research is to explore how far it is possible to support the development of self-adaptive
applications using generic and platform independent middleware architecture provided by a non-specialised program-
ming language such as Context-Oriented Programming (COP), and Aspect-Oriented Programming (AOP), and not
limited to a specific platform or adaptation mechanism. This gives the software developers the flexibility to construct
a self-adaptive application using generic reusable middleware components that employ popular design patterns and to
implement their applications in several mobile computing platforms.

Our COSM-middleware is a generic and platform-independent adaptation engine, which performs a runtime be-
havioural composition of the context-dependent functionality of the software based on the operational context. The
software dependability is achieved through evaluating the middleware functionality and the adaptation impact/costs.
The COSM-middleware uses a dynamic policy-based engine to evaluate and verify the fitness of the adaptation output
among the application’s objectives, goals and the architecture quality attributes. These capabilities are demonstrated
through an empirical evaluation of a case study implementation. The implementation targets the construction of a
self-adaptive map personalisation application, called eCampus. The objective of this evaluation is to measure the
impact of the COSM-middleware implementation over the allocated resources of a mobile device. The evaluation
comes in two folds. The first experiment compares the performance and self-adaptability of the case study application
implemented using COSM-middleware and Dynamic Aspect Oriented Programming (DAOP) engine. The second
experiment compares the performance of the COSM-middleware implementation with several frameworks and mid-
dleware architectures, including Java Context-Oriented Programming (JCOP) (Schuster et al., 2011), Java COntext
Oriented Language (JCOOL)(Sindico and Grassi, 2009), Mobile USers In Ubiquitous Computing (MUSIC)(Geihs
et al., 2011), and Mobility and ADaptation enAbling Middleware (MADAM)(Mikalsen et al., 2006).

This article is organised as follows: Section 2 illustrates a case study implemented by COSM-middleware. Section
3 provides an overall description of the COSM-middleware internal components. A detailed description of the COSM
implementation is provided in Section 4. The Context-Oriented Software Middleware is evaluated in terms of energy
utilisation and adaptation time as discussed in Section 5. Section 6 provides an overview of the related work.

2. Case study: Self-adaptive Map Application

eCampus is a self-adaptive map application, which helps students, lecturers, sta↵ members and visitors to explore
the campus of the National University of Ireland, Maynooth (NUIM). In order for context-awareness capabilities to
be made available, di↵erent aspects of spatial data need to be exploited including location, semantics, and time. The
context-aware functionality o↵ered in this application can be very useful to sta↵, students, visitors and the general
public alike when navigating and otherwise interacting within our eCampus environment, specifically but also within

2

any local environment generally while at home or on-site through web-based or smartphone connections. There
are two types of users envisioned for this application: registered and non-registered users. A registered user would
include anyone who wishes to log on (e.g. using their student/sta↵ ID) and a non-registered user would include
visitors to the campus (e.g. general public) who are not required to log on. As such, both user types are presented
with di↵erent levels of functionality. The registered users profiles are recorded so that their personal timetables and
interests can be displayed. This can be displayed with a grid/table of all activities for the user on the current day
(course, lectures during the day/week) associated with the venue. The other option is that the schedule is directly
displayed on the personalised map where an overlaid vector layer identifies the geometry coordinates of the venue
and detailed information about that activity. The recommendation of events is suited to each user profile (ie. based
on their interests). The application selects the most related events to the user based on his profile. The features on the
map refer to point-of-interest classified according to their score attribute (calculated based on user’s interests).

In our case study, eCampus is required to adapt its behaviour and o↵er di↵erent levels of personalisation to the
users depending on the available resources. For example, eCampus is required to adapt to the condition of low battery.
This can be achieved by using a location service that consumes less power. The “Battery level” requirement needs a
Decision PoLicy (DPL) to manage its context changes and display less geospatial data to suit the battery level. In other
words, the map application monitors the battery level and the bandwidth connectivity. If the battery level is high and
healthy, eCampus uses the GPS service with more accurate location’s update, displays more features to the user, and
animates the features’ appearance on the map when they are recommended. If the battery level is less than a specific
limit, a WIFI-based location is used to save the battery energy and obtain less geospatial data. Finally, if the battery
level is low, the eCampus application switches o↵ the GPS or WIFI location services and uses the cell-tower location
services. Using a cell-tower location reduces the accuracy of the location but saves battery energy. In addition, the
application may reduce the number of features it displays on the map based on di↵erent interest score levels (values).

3. Context-Oriented Middleware

Before demonstrating the design of the context-oriented middleware, this section provides a general overview
of the COSD methodology. According to the COSD methodology, context-oriented software is built from a set of
components that follows the context-oriented component model (Magableh and Barrett, 2012a). Figure 1 shows a
conceptual diagram of context-oriented component. A context-oriented component consists of three major parts:
static and dynamic parts, and a delegate object. The static part implements a context-independent code fragment
responsible for implementing the application core functionality. The dynamic part implements the context-dependent
functionality and participates in the context-driven adaptation. The dynamic part consists of multiple layers. Each
component layer implements a specific context-dependent functionality, which implements a decision policy to be
used for adapting specific application behaviour. A layer is executed only if the associated context condition is found
in the environment at runtime. For example, small display, low memory, and low battery are contextual conditions
that need to be considered in the adaptation.

The COSM-middleware invokes a specific layer in the execution that suits only the current condition of execu-
tion context. For example, the COSM-middleware needs to reduce the amount of geospatial data to consider low
battery condition in a mobile map application. A decision-policy is implemented inside a specific layer method. The
method is associated with the low battery condition. This method will be executed whenever the COSM-middleware
receives the notification BatteryLevelWillChange. In this case, the COSM-middleware executes the layer method,
which implements a decision-policy that displays less amount of geospatial data for the user (for example, displaying
the features that have interest score between ”0.7” and ”1”). This approach can personalise the map content based on
the availability of computational resources.

The context-oriented component is given an opportunity to do dynamic context-driven adaptation by executing dif-
ferent layers, which implement di↵erent decision policies and methods implementation. Each layer must implement
two or more methods that encapsulate decision-policies and associate them with context conditions. For example, the
two methods inside the layer class of the context-oriented component, could have the names ContextConditionDid-
Change and ContextConditionWillChange. This allows the context-oriented component to perform adaptation action
about a specific context condition in active or proactive mode. Active adaptation refers to the ability of the COSM-
middleware to execute a layer when the condition is currently found in the execution context. Proactive adaptation
refers to the ability of the COSM-middleware to execute a decision-policy that will handle a condition that can happen

3

after a certain amount of time. An example of active adaptation is when the user’s location changes. The associated
layer will execute a piece of code, that displays the user’s location and nearly point-of-interests. On the other hand, an
example of proactive adaptation is when the user’s mobile is capturing high speed and acceleration. Our middleware
can decrease the frequency of location-updates from the web mapping service until the speed of the mobile device is
decreased to save allocated resources. More frequent updates of geospatial data is a power consuming process that
needs more bandwidth and CPU throughput, consumes the allocated resources and decreases the battery life.

The fourth part of the context-oriented component is the delegate object see (Figure 1). The idea of using a
delegate object is that two components coordinate to solve a problem. A context-oriented component is general and
intended for reuse in a wide variety of contextual situations. The base-component is the digital map object, which
stores a reference to that context-oriented component (i.e. its delegate) and sends messages to inform the delegate
(context-oriented component) that some context condition was changed. This gives the delegate an opportunity to
de/activate a layer implementation (i.e. rule implementation) dynamically (Buck and Yacktman, 2010).

Our map application case study is designed from a set of base-components (the context-independent components)
and context-oriented components. Whenever the map application notifies the COSM-middleware about changes on
context, the middleware activates a layer implementation that adapts to the changes by specifying an adaptation action
that suits the context condition and considers the allocated resources. The following describes the structure of context-
oriented software and the internal components of the COSM-middleware.

Figure 1: Context-Oriented Component Model

In this article, we explore the design practices that can be used to implement the middleware architecture with-
out relying on a specific framework for performing dynamic adaptation in context-dependent software systems. To
address this issues, this section focuses on describing the COSM-middleware architecture. The result of COSD
methodology is a component-based architecture described by a Context-Oriented Component-based Applications Ar-
chitecture Description Language (COCA-ADL). The final step of the COSD is to generate the application code and
the COCA-ADL XML file. The COCA-ADL provides a description of the components, connectors, and the archi-
tecture’s configuration, COCA-ADL is a platform-independent model that can be transformed by a model-to-model
transformation tool into the desired platform-specific model. This provides code mobility for the same application
into various deployment platforms and provides a runtime model of the self-adaptive application. However, the use of

4

Figure 2: Context-Oriented Software Architecture.

COSD for building self-adaptive applications for indoor wayfinding for individuals with cognitive impairments was
proposed in (Magableh and Barrett, 2011). Evaluating the COSD productivity among the development cost and e↵ort
using Constructive Cost Model II (COCOMO II) (Boehm et al., 2000) was demonstrated in (Magableh and Barrett,
2012b). This article focuses on demonstrating the design principles and implementation of the COSM-middleware,
supported by an empirical evaluation of its performance and adaptability.

The COSM-middleware o↵ers a self-adaptive application a runtime support for adjusting the application’s be-
haviour dynamically. Figure 2 shows the context-oriented software architecture. The platform is layered into four
major layers. Each layer provides an abstraction of the underlying technology. Each layer is platform independent
of any given technology. The first layer represents the context-aware application. It provides the user with GUI,
functional properties, and non-functional properties (i.e. the map view). The second layer in the platform represents
the COSM-middleware. The COSM-middleware subcomponents are shown in Figure 2. The OS sensor retrieves in-
formation about the operating systems. Function calls are used to retrieve information about CPU, memory, and disk
space (Magableh and Barrett, 2009). The third layer represents the resources and services available in the execution
platform, and the core services layer found in the O.S kernel.

3.1. Context Manager
The first component of the COSM-middleware is the context manager, as shown in Figure 2. The context manager

gathers and detects context information from the sensors. If the context is changed, the context manager notifies
the adaptation manager and the observers (i.e. the context-oriented components) about the changes. Each context-
oriented component is designed to be an observer for one or more context entities. This type of interaction is called
context binding.

The observer pattern reduces the tight coupling between the context provider (e.g. battery and memory) and
the context consumer, (e.g. the context-oriented component). In addition, it enables the middleware to identify
which context-oriented component has to be manipulated in response to context changes. Figure 3 demonstrates the

5

Figure 3: Observer Design Pattern

observer design pattern with one context entity and two observers. At runtime, both context-oriented components
register themselves as observers for the context entity (e.g. BatteryLevelDidChange) by sending a registration request
to the notification centre. The context-change event is sent to the notification centre queue instead of the context-
oriented component, then the notification centre broadcasts the context changes, and only the registered component
receives the notification. The context-oriented components 1 and 2 have registered as an observer for the context
entity. Whenever the context changes, both components 1 and 2 are notified by the notification centre and execute
their embedded layer that may implements the methods (e.g. BatteryLevelDidChange). In this way, the adaptation
manager can identify both components 1 and 2 to be included in the adaptation action, which embeds a subdivision
of their implementation by de/activating the associated sub-layer. For example, the adaptation manager can activate
layer 1 and executes the method (BatteryLeveldidChange()) implemented in the first component, and deactivate layer
2 in the second component, which kills the execution of the method (BatteryLeveldidChange()) as shown in the Figure
3.

Supporting context-binding mechanisms with observer pattern provides a clear separation between the context
provider and consumer. In addition, it classifies the components implementation based on the execution context
conditions. This makes identifying which component must respond to a specific context condition an easy task in the
design phase and runtime. However, to achieve this integration, the developers have to consider the following two
aspects in the application design: how to notify the adaptation manager about context changes by identifying which
components need to observe a specific context condition, and how the adaptation manager can identify the internal
parts of the component that need to respond to these changes by clearly stating which method implements the needed
behaviour for a specific condition.

3.2. Component Manager
The component manager performs three major functions in the middleware: it searches for a context-oriented com-

ponent in the component repository, adds components from the repository, and provides context-oriented component
instantiation. The component manager achieves the intercession operation by adding a component, or a component
sub-layer, to the application structure. To add a component, the adaptation manager asks the component manager to
instantiate a specific component. The component manager performs several inspections of the application components
through the operation time of the software. Further details about the implementation of the component manager are
provided in Section 3.2.

3.3. Policy Manager
The COSD provides the developers with the ability to specify the adaptation goals, actions, and causes associated

with several context conditions using a policy-based framework. For each context-oriented component, the developers
can embed one or more Decision PoLicys (DPLs) that specify the architecture properties including (quality attributes,

6

constraints and resources limits). At the design phase, the software developers use a state-machine model to describe
the DPL by specifying a set of internal and external variables and conditional rules. The rules determine the true action
or else an action based on the variable values. The action part of the state diagrams usually involves invoking one or
more of the component’s layers. A single layer is activated if a specific context condition is found, or deactivated if the
condition is not found (Anthony et al., 2009). The policy manager uses the DPL objects to store policies in the policy
repository. The DPL is stored in the policy repository, which conforms to the Associative Storage design pattern (Buck
and Yacktman, 2010). This pattern organises the policies into data and keys; this reduces the computation overhead
from processing them at runtime.

3.4. Decomposition Manager
The decomposition manager operates as an XML parser for the COCA-ADL, and a constructor that constructs

the application’s components graph. At development time, the application’s models are transformed into a COCA-
ADL XML file. At runtime, the decomposition manager reads the COCA-ADL XML file, and adds the architecture
instances, including the components, connectors, and configuration, to the application graph. In other words, the
decomposition managers constructs a runtime model of the software architecture as it is described by the COCA-ADL.
This runtime model is manipulated by the adaptation manager during the adaptation process and It will describe the
new adapted architecture of the software.

3.5. Adaptation Manager
The adaptation manager starts the adaptation process after receiving the notifications that identified the context

changes and the context-oriented components that observed the notification. The first function of the adaptation
manager is to produce the composition plan. The composition plan recursively describes the composite components
and the connections between them by describing several connectors and interfaces. To construct a composition plan
for the new adapted software architecture, the following information is needed by the adaptation manager. 1) A
component graph: The decomposition manager generates the component graph after parsing the COCA-ADL XML
file. 2) Decision PoLicy (DPL): The DPL rules determine the true action or the else action based on the values of its
variables. 3) Runtime structure style: When several context conditions are found at the same time, the DPL proposes
a runtime instance of a design pattern, which may imply combination of multiple components or their internal parts to
fulfil the execution context. The structure style describes a structure modification combining a set of the component’s
layers.

The adaptation process starts the adaptation action, including two types of composition mechanism: internal
composition and external composition. In internal composition, the adaptation manager switches a component’s
layers on or o↵, based on the composition plan, using the delegation and decorator patterns. The decorator pattern
can be used to extend, decorate, the functionality of a certain object at run-time, independently of other instances of
the same component. The decorator pattern is an alternative to subclassing. Subclassing adds behaviour at compile
time, and the change a↵ects all instances of the original class; decorating can provide new behaviour at run-time for
individual objects. In internal composition, the adaptation manager introspects the application’s graph and achieves
the self-tuning attribute of the self-adaptive software, self-tuning is achieved by redirecting the execution into the
delegate object, which activates the desired sub-layer implementation.

In external composition, the adaptation manger adds or replaces components from the application structure, based
on the composition plan. The decomposition manager builds the application graph by reading the COCA-ADL.
In external composition, a context-oriented component is loaded into the application. This requires the adaptation
manager to conform to the bundle pattern (Buck and Yacktman, 2010). The bundle pattern achieves the following
goals: 1) Keep executable code and related resources together even when there are multiple versions and multiple
files involved in the underlying storage. 2) Implement a flexible plug-in mechanism that enables dynamic loading
of executable code and resources. In addition, the invocation design pattern is used to provide a means of capturing
runtime messages so that they can be stored, rerouted, or treated and manipulated according to the context state, and
allows new messages to be constructed and sent at runtime without requiring code recompilation process (Buck and
Yacktman, 2010). For example, when a component receives a message, a method implementation is usually invoked
to handle the message. However, this is not always the case. As an illustration, if a component does not implement a
particular method, then there is no method, which can be invoked and a runtime exception is raised instead. Because

7

of the invocation design pattern, it is possible for a message to be delayed, rerouted to other components, or even
ignored at runtime without re-compiling the application’s code.

In addition, the adaptor design pattern lets components work together, even if they have incompatible interfaces
(Buck and Yacktman, 2010). Assume a base-component needs to communicate with a context-oriented component,
but its interfaces make that unachievable. To solve this problem, the context-oriented component applies to the
delegate pattern by defining a protocol, which is essentially a series of method declarations unassociated with the
component. The base-component then adapts the protocol and confirms this by implementing one or more of the
protocol’s methods. The protocol may have mandatory or optional methods. The base-component can then send
a message to the protocol interface, which redirects the message to the context-oriented component. At this stage,
the adaptation manager can verify whether the context-oriented component can respond to the message call, before
invoking the message call by adapting the chain of responsibility pattern. This pattern verifies whether the component
can respond to the method call using the responder pattern, which avoids coupling between the sender of a request
and its receiver by giving more than one context-oriented component sub-layers a chance to handle the request.

3.6. Verification Manager
As long as the COSM-middleware is aware of the architecture configuration, which is supported by the COCA-

ADL configuration element. The COSM-middleware can anticipate the associated configuration with specific context
changes. In each Decision Point (DP), the COSM-middleware transforms the software from statei into statei+1, con-
sidering the properties of the self-adaptive software. These properties include the following: 1) The set of DPLs
attached to the context-oriented components that participate in the adaptation; 2) the architecture configuration el-
ements in the COCA-ADL, which includes the description of the DPLs and the architecture properties, the DPLs
specify the external and internal variables that are evolving through the adaptation process; and 3) the adaptation
goals, actions, and rules specified by the DPLs.

4. The Context-Oriented Software Middleware Runtime Platform

The final step of the COSD is to generate the code and the COCA-ADL XML file. The runtime functions start
once these two inputs are in place. The major component in the COSM-middleware is the adaptation manager. On a
broader scale, the adaptation manager defers as many decisions as it can from compile time and link time to runtime.
Whenever possible, it performs actions dynamically and executes the compiled code. Handling the context-oriented
component framework, the composition plan, the application singleton, and the way in which several components
interact with the runtime system is the focus of the following sections. Figure 4 shows a class diagram for the COSM-
middleware. Both the map application and COSM-middleware were implemented in IOS mobile operating system
for IPhone devices (Apple IPhone Operating System IOS, 2011). For this reason, Objective-C is used to describe the
method implementation of the COSM-middleware components.

The runtime platform is a dynamic shared library with a public interface, consisting of a set of functions and a
data structure in the header file, located within the context-oriented framework. Many of these functions allow the
application to perform the adaptation actions through the adaptation manager. The following sections describe the
implementation of the COSM-middleware components, each components is described in terms of the main design
principles we used to implement it.

The context-oriented runtime platform starts once it has the compiled code for the application base-components
and the context-oriented components plus the COCA-ADL XML file. When the application is launched, the COSM-
middleware components are executed first. The adaptation manager then calls the decomposition manager to build the
application composition graph and the inheritance tree. The decomposition manager parses the COCA-ADL XML
file for the component elements. The decomposition manager adds the components to the graph and the component
repository. Each graph node has a component dispatch table. This table has entries that associate method selectors with
the component-specific addresses of the methods they identify. In the same way, the decision policies are attached
to the associated context-oriented component and added to the policy repository. Figure 5 shows a decomposition
mechanism. Each component and its subdivisions are added to a graph in the bu↵er.

8

Figure 4: The Context-Oriented Middleware Design

4.1. Adaptation Manager Runtime Functions
Once the decomposition is finished, the adaptation manager asks the context manager for the context state. At the

same time, the adaptation manager runs the component instance for the base-component type. The adaptation manager
checks each class by parsing the graph. In each node, the adaptation manager performs the following operations: 1)
create the application singleton, 2) add the base-components to the singleton, and 3) construct the primary composition
plan.

Afterwards, the context manager notifies the adaptation manager about the context state. Based on the context
state, the adaptation manager reads the description of the component from the dispatch table. It confirms whether the
component has the right objects, and methods which suit the context state. This is accomplished by asking the object
to identify its class using isKindOfClass and isMemberOfClass. This verifies an object’s position in the inheritance
tree. The COSM-middleware design conforms to the delegation design pattern. This requires each context-oriented
component to define a protocol or a formal interface. During the composition, the adaptation manager identifies
whether a specific component does conform to a protocol by calling the method (conformsToProtocol:), which in-
dicates whether an object claims to implement the methods in a specific protocol, then the operation (RespondToSe-
lector:) is performed, which indicates whether an object can accept a particular message. After that, the adaptation
performs (methodForSelector:), which provides the address of a method’s implementation. These methods enable the

9

Architecture instance

Verification ManagerDecomposition Manager Component ManagerPolicy Manager

COCA-Component

Adaptation
Manager

Context Manager

11.1.1: Instance
started

11.1: Instance verified

11: Architecture instance

8: PolicyAction

10: Component started

9: Get Component ()

6: External Compostion
7: Get Policy()

4.3.2: Internal Compostion

5: Generate Composition Plan

4.3.1.3: Component Graph

4.3.1.2: Policy

4.3.1.1: Component found

4.3.1: Parse COCA-ADL
XML file

4.3: COCA-Comp invoked

4.2.1: Running

4.2: COCA-Component OnStart()

4.1: Instantiate COCA-Component4: Find COCA-component

3.1.1: Policy Action

3.1: Verify Policy

3: Decision Points

1.1: [RespondToSelector:ContextDidChanges]

2.1: [Post Notification: ContextWillChanged]

1: [Post Notification: ContextDidChanged]2: Context changes

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 5: The Context-Oriented Middleware Adaptation Runtime Model

adaptation manager to introspect the application structure. The class diagram in Figure 4 shows the relation between
the adaptation manager class and the other COSM-middleware components.

Parsing the COCA-ADL XML file by the adaptation manager to construct the graph has some drawbacks with re-
spect to device performance. A reasonable approach to parsing the XML file with less impact on the quality attributes
is the use of the Flyweight design pattern (Buck and Yacktman, 2010). The Flyweight pattern minimises the amount
of memory and/or processor overheads required to use objects (Buck and Yacktman, 2010). The Flyweight pattern
enables instance sharing, to reduce the number of instances needed, while preserving the advantages of using objects.
Classes that implement the Flyweight pattern are called ‘flyweights’. Flyweights encapsulate non-object data so that
the data can be used in contexts where objects are required. Flyweights reduce storage requirements when a large
number of instances are needed. Flyweights act as stand-ins for other objects (Buck and Yacktman, 2010).

In addition to Flyweight, another pattern that can be used during implementation is the Associative Storage pattern.
The most important feature of this pattern is the e�cient storage of arbitrary data associated with objects; this promotes
flexibility by delaying the selection of which data to access until runtime.

The MutableDictionary data structure is used to implement the composition plan and the decision policies (Apple
IPhone Operating System IOS, 2011). The use of XMLParser implements an event-driven approach with a delegate

10

object implementing methods for handling each of the ‘events’ the parser encounters during its single pass over the
XML data (Apple IPhone Operating System IOS, 2011). Events most commonly of interest are the beginning and
ending of ADL elements and attribute data within elements. The XMLParser reads the XML elements, then uses
MutableDictionary to store them in the dictionary. The setObject:ForKey: method is used to create new associations
in the dictionary. When keys and values are added and removed from a mutable dictonary, the memory allocated for
storing objects grows and shrinks automatically. If setObject:ForKey: is called with a key which is already in the
dictionary, the object associated with that key is replaced by the new object. Each key is stored at most once (Apple
IPhone Operating System IOS, 2011).

After completing the composition plan, the adaptation manager implements the dynamic creation pattern to load
and execute the application’s components. Once the composition plan is completed, the adaptation manager intro-
spects the application’s structure. Redirecting the context-oriented component delegate to the desired layer activates
the component sub-layers. In some cases, a context-oriented component is loaded into the application. This requires
the adaptation manager to employ the Bundle and Invocation design patterns (Buck and Yacktman, 2010). The for-
wardInvocation: method is used to give a default response to the message, or to avoid the error in some other way. For
example, suppose that the adaptation manager receives a message call for a method memoryLevelDidChange. First the
verification manager verifies whether the receiver object can respond to this message using respondToSelector (Apple
IPhone Operating System IOS, 2011). When the object cannot respond to the message because it does not have a
method matching the selector message, the runtime system informs the object by sending it a (forward Invocation:)
message. Every object inherits the method (forward Invocation:) from the super-class context-oriented component.

However, the object version of the method simply invokes doesNotRecogniseSelector. In this case, the adaptation
manager forwards to other objects. First, the adaptation manager determines where the message should go and sends
the message with its original arguments. The message can be sent with the invokeWithTarget: method. If the invoca-
tion has failed in the desired sub-layer, the method forwards the invocation to the context-oriented component, which
forwards it into its sub-layers until one of the sub-layers responds to it. If the sub-layers do not respond to it, the
adaptation manager introspects the component graph and reconstructs the composition plan. Once an object found in
the distributed environment in a remote component.

The adaptation manager performs ”invocation” by obtaining the method signature and the selector (Apple IPhone
Operating System IOS, 2011). When a message is sent to an object that does not implement it, the actual imple-
mentation assumes that the stack frame for the arguments of the method already exists. All further changes to the
method’s arguments using Invocation’s methods are performed on that stack frame. After the method invocation re-
turns, the adaptation manager can access the returned value and possibly change it, using the (getReturnValue:) and
(setReturnValue:) methods.

4.2. Policy Manager Implementation
As illustrated in Figure 4, the policy manager uses the decision policy objects to store policies in the policy

repository. The policy dictionary stores each policy in loosely coupled objects, which are accessed through the method
getObjectForKey. Once the object is retrieved, the policy manager obtains the policy actions, attributes, rules, external
variables, and internal variables. Then it passes them back into the verification manager. The verification manager
evaluates the current value for the variables among the predefined values in the policy syntax.

Whenever the application execution reaches decision points and/or the context manager has notified the adaptation
manager of a context change, the decision points must be executed to advise the application of pre- or post-actions
among specific notifications. The manager implements the necessary methods to manipulate the decision policy
syntax. The policies are stored in an array of objects. Each object is accessed through the method getPolicyForKey.
The key refers to the policy ID that is attached to every context-oriented component. In the same way, the policy
manager is used to upgrade the policy by calling the methods setObjectForKey, SetPolicySuit, SetRule, setAction, and
setElseAction.

The decision policy is stored in the policy repository, which conforms to the Associative Storage design pattern.
A binary representation for each policy is stored in the MutableDictionary data structure, where the key value is used
to access the desired policy. The method addPolicy is used to add a new policy to the repository. In the same way,
policies can be removed using the method RemovePolicy. Once the policy manager updates the policy, the method
setPolicy is used to update the policy syntax in the repository. The policy syntax is retrieved through the method

11

getPolicyForKey. This implementation of the Associative Storage design pattern reduces the computation overhead
for retrieving the policies and evaluating them.

4.3. Verification Manager Implementation
A context-aware application is self-configurable if it is able to adapt autonomously to changing environmen-

tal conditions or internal status by altering its structures, behaviours, and data to meet its functionality and quality
requirements. From a middleware perspective, such a feature relies on the following key characteristics: A) The mid-
dleware’s ability to monitor and define its internal status and external conditions (e.g. application modes, CPU and
memory use, and attachment of external devices); B) its built-in knowledge of configuration variability and related
policies/rules for deciding and planning changes; and C) its ability to perform dynamic configuration changes without
violating the constraints relating to overall system functionality, performance, and dependability.

The Flyweight pattern is used to guarantee that the verification process does not a↵ect the quality attributes. This
is accomplished by adapting the feature of instantiation in the Flyweight. Moreover, if there are many external and
internal variables in the decision policy, all these variables will be instantiated once and share this instance to multiple
values. In addition, the Flyweight acts as a temporary place holder for other more heavyweight objects.

Adaptation Manager Verification Manager Policy Manager Policy Repository

Component Manager

14.1.3: Execute Application instance

2: VerifyPolicy

4: LoadComponent()

10: VerifyComponent

17: LoadBundl

14: ActivateLayer

18: ConstructCompositionPlane
14.1: InstantiateApplicationSinglton

14.1.1: VerifyAdaptationOutPut

14.1.4: Destroy instance

3: PolicyVerified, Action

9.1: Component Instantiated

15: Component was verified.

14.1.2: Verified

1: EvaluatePolicy(PolicyID)

4: GetAction(PolicyID)

11: RespondToSelector

12: ConfirmToProtocol

13: MethodForSelector

16: BundleForClass

1.3: SetRule(),
SetActio(),

SetPolicySuit()

1.1: GetPolicyForKey:Policy

1.2: PolicyObject

6: InstantiateComponent

9: ActivateLayer

7: GetName

5: getSuperCiomponent

8: getMethodImplementation

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6: Adaptation self-assurance verification

12

Figure 6 shows a sequence diagram of the self-assurance verification. The verification manager evaluates the
policies by calling the verifyPolicy:(NSInteger) PolicyID method. This method asks the policy manager to retrieve the
stored policy by its key. The policy manager searches the array of objects for the specific policy ID. The evaluation
result, which contains the proposed action to be performed, is passed back to the adaptation manager. Afterwards,
the adaptation manager locates the desired component and/or sub-layers which need to be executed. Then it asks the
verification manager to verify them using the methods methodForSelector, confirmToProtocol, RespondToSelector.
Once the verification has been accomplished, the verification manager sets the boolean variable PolicyVerified to be
true.

The motivation behind the use of selectors is to postpone specifying the message that will be sent to an ob-
ject until runtime. This reduces coupling between objects by limiting the information that message senders need
about the message sent. In the same way, whenever the adaptation manager needs to verify the implementation of a
context-oriented component or a subdivision, the selector will be used to determine whether the object has the pro-
posed method. The verification manager can load bundles/components by executing the method bundle = [NSBundle
bundleWithPath:theBundlePath]. However, after loading the bundle that contains a context-oriented component, the
verification manager testifies its ability to respond to the desired method call using bundleForClass and respondToS-
elector methods.

5. Context-Oriented Software Evaluation

This section focuses on evaluating the performance and modifiability quality attributes of context-oriented soft-
ware, including the COSM-middleware and the case study implementation. Before evaluating the performance of
the COSM-middleware it is desirable to evaluate the modularisation strategy of context-oriented component to find
out if there is any impact of such modular structure over the software self-adaptability and dependability. We do not
know the impact of modularisation technique over software performance. The general belief is that using di↵erent de-
composition mechanisms will not a↵ect runtime properties of software. However, this may not apply to self-adaptive
software systems. For this reason, the case study application was implemented using Aspect Oriented Software De-
velopment (AOSD) (Filman et al., 2004) and COSD, as they adapt di↵erent decomposition techniques for supporting
software with adaptability. Their ultimate goal is to support the adaptability and variability of software systems, and
to be able to reduce development cost and e↵ort, while improving the software modularity and complexity. This moti-
vates us to evaluate these technologies with respect to their ability to support software adaptability (modifiability) and
the performance gain from using these technologies to implement the case study application in a mobile computing
environment. This article claims that COSD and the COSM-middleware are better suited to build self-adaptive soft-
ware in the mobile computing domain. To this end, an evaluation of the two major paradigms (AOSD and COSD) is
required to find out which one is better suited for building self-adaptive applications.

5.1. Metrics
In the first experiment, the case study application eCampus was implemented as a real iPhone application using

the COSD and AOSD paradigms. The second experiments compared the performance of the COSM-middleware im-
plementation with several frameworks and middleware architectures including JCOP (Schuster et al., 2011), JCOOL
(Sindico and Grassi, 2009), MUSIC (Geihs et al., 2011), and MADAM (Mikalsen et al., 2006). Then the following
questions were analysed. First, how expensive is it to perform context monitoring? Secondly, what is the e↵ect on
the allocated resources after the software has performed context detection, particularly when multiple heterogeneous
events are detected? Thirdly, what is the performance gain of activating and executing multiple and collaborated
aspects in comparison with context-oriented components composition, in response to multiple context events arriving
at the same time. The following experiments focus on evaluating each paradigm implementation of the eCampus
application to support adaptability and dependability, based on the following criteria.

1. Battery Usage. This criterion evaluates the device’s battery durability while running the eCampus application
and performing the adaptation processes, including context monitoring, detecting, decision-making, and adap-
tation. The IPhone Energy Diagnostic tool provides a relative energy usage on a scale of 0 to 20. These values
explain how expensive it is with respect to the battery life to run a specific process over the execution time.

13

2. CPU Activity. This criterion analyses the CPU activities and CPU time required for performing the adaptation
processes, including context monitoring, detecting, decision-making, and adaptation. This includes the time
required for components/aspects composition in response to multiple and heterogeneous context change events.

3. Real Memory Allocation. This criterion measures the amount of memory allocated by the application during
the execution of particular functionalities, including context monitoring, context detection, and adaptation.

4. Sleep/Wake. This parameter captures the eCampus application’s ability to adjust its activity while the device is
running in sleep mode. Normally, if the application keeps running in the background and performs some kind of
operation, for example, updating the current location while the device is in sleep mode, the allocated resources
are intensively degraded. This feature evaluates the architecture’s ability to adjust the application behaviour,
while considering the interoperability between the middleware functionality and the allocated resources.

5. Adaptation/reconfiguration time. This criterion captures the required time for the application to adapt its
structure and behaviour by adding, removing, or updating components/services. The adaptation time was mea-
sured from the start to the end of the adaptation action. The reconfiguration time measures the time required by
the middleware to load and execute the plug-in (bundle) implementation.

5.2. Hardware and Software Configuration
The CPU activity, CPU time, real memory allocation, and energy usage are measured for performing each adap-

tation process separately. These values were measured using the energy diagnostics and activity-monitoring tools,
which analyses the running application on the iPhone device (Apple IPhone Operating System IOS, 2011). The En-
ergy Diagnostic tool was used to measure the battery while the device was not connected to an external power supply;
after the experiment was finished, the data were imported from the iPhone and then analysed. For measuring the CPU
activity, CPU time and the real allocated memory, the eCampus application was executed on the same IPhone devices
for each paradigm/framework implementation separately. The instrument tool was executed on Macbook pro, which
traces the data from the IPhone device using the activity-monitoring tool. The IPhone was connected wirelessly with
the activity-monitoring tool. This allows the tool to capture more accurate data for the energy usage and the CPU
activity with respect to each process under evaluation. To testify variation in the application behaviour, a simulator
was included with each eCampus implementation. The simulator is used to allow the user to simulate specific context
changes, which are used to test the application’s ability to adapt the desired behaviour. For each adaptation process,
the experiment was established as follows:

Context monitoring. The CPU activity, CPU time, real memory allocation, and energy usage are measured for
performing context monitoring at two di↵erent time intervals. First, when the application ”did Finish Launching With
Options” and the UI views did loaded. Second, the simulator interface was used to trigger the context monitoring
process, this operation excluded any events related to the application load time. In addition, it allowed us to estimate
the time required to process 10 contextual events enqueued at the same time. The simulator generates these events
generally in First In First Out (FIFO) order. This experiment was executed 200 times, then the variance and standard
deviation were calculated for the above criteria.

Context detection. The CPU activity, CPU time, real memory allocation, and energy usage are measured for
performing context detection with the aid of the simulator. When the context detection button is pressed, the sim-
ulator generates and en-queue multiple events, which are executed in First In First Out (FIFO) order. This allows
the experiments to evaluate the required time to process these context events, and the time required to perform the
reasoning action (i.e. decision-making) by the application. This experiment was executed 200 times, then the variance
and standard deviation were calculated for the above criteria.

Adaptation time/re-configuration time. The CPU activity, CPU time, real memory allocation, and energy
usage are measured for performing the adaptation/re-configuration in two modes. In the first mode, the application
was executed for the same period of time (five hours). Then, the adaptation time was measured once the adaptation
action was started until finished, the CPU time was taken from the activity-monitoring tool. In the second mood, the
simulator was used to generate multiple context events, that measures the application response with regrade to low
battery context. This experiment was executed 200 times, then the variance and standard deviation for each value
were calculated. This allows us to identify the positive error as described in the following sections.

14

5.3. COSD Vs. AOSD Experiments
The assumption made by the AOSD community is that dynamic aspect weaving can be used to adjust the software

behaviour dynamically, regardless of the complexity involved in implementing Aspect-Oriented Programming (AOP)
applications. Existing Dynamic AOP techniques tend to add a substantial overhead in both execution time and code
size (Hundt et al., 2010). The eCampus implementation was re-engineered to be integrated with the Objective-C
AOP framework, called AspectCOCA proposed in (AspectCOCA, 2011). The AspectCOCA framework o↵ers many
benefits to the AOP implementation, as it provides dynamic code weaving without any need to implement special
AOP engine like PROSE 2 (Popovici et al., 2002). In addition, AspectCOCA implementation excluded the impact of
Java virtual machine from the overall performance of the self-adaptive application, as AspectCOCA does not need a
virtual machine to perform dynamic runtime operations including behavioural Intercession and Introspection. This
o↵er great benefits for the application and reduces the development cost. We believe it is appropriate to implement the
DAOP-eCampus using this technology, which excludes the impact of aspect engine over the performance and device
resources. As a result, we implemented several aspects for handling the context monitoring and detecting processes.
In addition, the context-dependent behaviours for the location service, battery level, and the camera flashes were
implemented. However, for the location service, there are three nested aspects implemented to provide behavioural
variation of the battery level. These aspects are the GPS-based, WiFi-based, and IP-based location services. In COSD,
these aspects are implemented using three context-oriented components.

5.3.1. Experiment 1: Context Monitoring and Sensing
This experiment evaluates the processes of context monitoring and environment sensing, based on the above crite-

ria. Specifically, it evaluates how the software uses the allocated resources such as battery, CPU, and memory. In the
DAOP approach, context monitoring is handled using separate aspects which span the application’s main execution.
In COSD, this is handled using the context manager.

Designing aspects that become active when particular contexts are verified requires the possibility of referring
to a context definition in a pointcut construction. This means that joinpoints such as BeInContext(Context Battery-
LowCTX) should be provided by the framework. In addition, the aspects composition needs to keep track of past
context conditions and their associated states, which require more CPU activity and memory allocation to perform
this functionality. This adds much overhead to the advice execution, because the AOP framework must perform con-
text snapshots through the monitoring and sensing process. The problem behind this is that the context snapshot is
made every time the context is changed. This makes the platform storing and processing the context history for mul-
tiple events at multiple times. In addition, the AOP framework must transform the context changes into basic entities
like joinpoint request. The joinpoints are activated by registering them to the execution monitor. When the execution
reaches one of the activated joinpoints, the execution monitor notifies the DAOP engine, which executes the advice
method. This implies, that the AOP will evaluate each joinpoint with regard to the passive and active context through
the context detection and decision-making processes as shown in the next experiment.

As a result, battery energy is consumed faster in comparison to the implementation based on COSM-middleware,
which includes a dedicated context manager supported by a context repository (used to store and process the past
context information). In addition, each context-oriented component registers its interest on a specific context change.
This makes the context manager sense the environment for a particular set of context information.

The results of the experiment on battery usage is shown in Figure 7. This shows that the context-oriented com-
ponent uses less battery energy than the DOAP implementation. The COSM-middleware optimises the context-
monitoring process by storing and processing the context information that was considered by the context-oriented
component registration. Such enhancement of the context monitoring preserves the battery energy by 11.5% of the
total energy usage. This value is supported by the evaluation results of the CPU activity shown in Figure 8. For con-
text monitoring, the DOAP-eCampus requires more activity to be executed in comparison to COSD-eCampus; this
consumes more battery energy. With regard to memory allocation, the DOAP-eCampus allocated more real memory
to execute and perform the context snapshot (i.e. storing and processing the past context) than is needed by COSD-
eCampus, as shown in Figure 9. This figure shows how expensive it is to allocate and process the context snapshot in
the DOAP-eCampus application.

15

CONTEXT
MONITORIN

G

DAOP-
eCampus

COCA-
eCampus

ENERGY
USAGE
STDV
CONT

ERROR
CPU ACTIVITY

STDV
ERROR

REAL MEMORY
ALLOCATION

(MB)
STDV

ERROR

79.20 67.70

0.03 0.08
3.605551275464 3.605551275464

0.01 0.02
40% 21%
0.21 0.24

0.059359998884 0.065406501732
20.067 13.509

7.43 3.76
2.060029872823 1.043316200235

0

25

50

75

100

Energy usage

67.70
79.20

P
o

w
e

r
co

n
su

m
p

ti
o

n
 %

DAOP-eCampus COSM-eCampus

0%

25%

50%

75%

100%

CPU activity

21%
40%

M
il

li
se

co
n

d

DAOP-eCampus COSM-eCampus

0

5.25

10.5

15.75

21

Real Memory Allocation (MB)

13.509

20.067

M
e

ga
b

y
te

DAOP-eCampus COSM-eCampus

Figure 7: Context Monitoring battery usage

CONTEXT
MONITORIN

G

DAOP-
eCampus

COCA-
eCampus

ENERGY
USAGE
STDV
CONT

ERROR
CPU ACTIVITY

STDV
ERROR

REAL MEMORY
ALLOCATION

(MB)
STDV

ERROR

79.20 67.70

0.03 0.08
3.605551275464 3.605551275464

0.01 0.02
40% 21%
0.21 0.24

0.059359998884 0.065406501732
20.067 13.509

7.43 3.76
2.060029872823 1.043316200235

0

25

50

75

100

Energy usage

67.70
79.20

P
o

w
e

r
co

n
su

m
p

ti
o

n
 %

DAOP-eCampus COSM-eCampus

0%

25%

50%

75%

100%

CPU activity

21%
40%

M
il

li
se

co
n

d

DAOP-eCampus COSM-eCampus

0

5.25

10.5

15.75

21

Real Memory Allocation (MB)

13.509

20.067

M
e

ga
b

y
te

DAOP-eCampus COSM-eCampus

Figure 8: Context Monitoring CPU Activity

CONTEXT
MONITORIN

G

DAOP-
eCampus

COCA-
eCampus

ENERGY
USAGE
STDV
CONT

ERROR
CPU ACTIVITY

STDV
ERROR

REAL MEMORY
ALLOCATION

(MB)
STDV

ERROR

79.20 67.70

0.03 0.08
3.605551275464 3.605551275464

0.01 0.02
40% 21%
0.21 0.24

0.059359998884 0.065406501732
20.067 13.509

7.43 3.76
2.060029872823 1.043316200235

0

25

50

75

100

Energy usage

67.70
79.20

P
o

w
e

r
co

n
su

m
p

ti
o

n
 %

DAOP-eCampus COSM-eCampus

0%

25%

50%

75%

100%

CPU activity

21%
40%

M
il

li
se

co
n

d

DAOP-eCampus COSM-eCampus

0

5.5

11

16.5

22

Real Memory Allocation (MB)

13.509

20.067

M
e

ga
b

y
te

DAOP-eCampus COSM-eCampus

Figure 9: Real Memory Allocation (MB)

5.3.2. Experiment 2: Context Detection
For the context detection process, both implementations were evaluated based on the above criteria. The evaluation

results for energy usage are shown in Figure 10. The evaluation results show that DOAP-eCampus consumes more
energy to notify the application components about multiple context changes which were detected in short frequency.
This requires more CPU activity to process the context changes and evaluate them with the passive context values
stored in the joinpoints. The CPU activity for both applications is demonstrated in Figure 11. In addition, the DOAP
application requires more memory for allocating the aspect contexts and notifying them because each aspect must be
allocated and executed. The AOP framework then notifies the aspects about the context changes. Later, the decision
is left to the aspect methods implementation to decide whether to adapt or not. Such implementation of the context
detection process using DOAP intensively consumes the allocated resources to notify multiple aspects about multiple
events. In some cases, the aspect implementation was independent of the execution context, but it was executed and
notified. The real memory allocation for the context detection process is shown in Figure 12.

16

DOAPITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

85.00% 0.984 2.480 15.57
85.00% 0.194 2.750 18.68
80.00% 0.427 2.570 16.61
85.00% 0.183 3.760 19.39
85.00% 0.423 5.590 25.55
85.00% 0.293 7.630 26.97
85.00% 0.210 8.470 27.66
80.00% 0.319 7.090 26.18
80.00% 0.417 9.220 44.27
79.00% 0.253 7.310 24.21
80.00% 0.537 13.080 27.69
85.00% 0.300 3.040 21.06
85.00% 0.236 2.480 19.07

Average
STANDARD DEVIATION

83.00% 0.37 5.81 24.07
0.03 0.21 3.33 7.43

COCA-ITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9

10
11
12
13

55.00% 0.130 1.91 13.34
75.00% 0.135 1.96 13.42
80.00% 0.960 2.01 13.51
75.00% 0.126 3.03 13.95
80.00% 0.067 2.06 13.50
75.00% 0.113 1.08 12.01
75.00% 0.073 1.95 13.89
85.00% 0.293 2.08 14.29
75.00% 0.083 1.85 14.42
75.00% 0.087 3.24 17.00
85.00% 0.411 4.63 19.58
80.00% 0.188 6.02 22.16
60.00% 0.093 7.41 24.74

Average
Standard Deviation

75.00% 0.21 3.02 15.83
0.08 0.24 1.81 3.76

DOAP-
ECAMPUS

COCA-
ECAMPUS

ENERGY
USAGE
STDV
CONT

ERROR
CPU ACTIVITY

STDV
ERROR

REAL MEMORY
ALLOCATION

(MB)
STDV

ERROR

83.00% 75.00%

0.03 0.08
3.605551275464 3.605551275464

0.01 0.02
36.74% 21.22%

0.21 0.24
0.059359998884 0.065406501732

24.07 15.83

7.43 3.76
2.060029872823 1.043316200235

50%

62.5%

75%

87.5%

100%

Energy usage

75%
83%

CONTEXT DETECTION

P
o

w
e

r
co

n
su

m
p

ti
o

n

DAOP-eCampus COSM-eCampus

1.00%

25.75%

50.50%

75.25%

100.00%

CPU activity

21.22%
36.74%

M
il

li
se

co
n

d

DAOP-eCampus COSM-eCampus

0

12.5

25

37.5

50

Real Memory Allocation (MB)

15.832
24.07

M
e

ga
b

y
te

DAOP-eCampus COSM-eCampus

eCampus

Figure 10: Context Detection Battery Usage

DOAPITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

85.00% 0.984 2.480 15.57
85.00% 0.194 2.750 18.68
80.00% 0.427 2.570 16.61
85.00% 0.183 3.760 19.39
85.00% 0.423 5.590 25.55
85.00% 0.293 7.630 26.97
85.00% 0.210 8.470 27.66
80.00% 0.319 7.090 26.18
80.00% 0.417 9.220 44.27
79.00% 0.253 7.310 24.21
80.00% 0.537 13.080 27.69
85.00% 0.300 3.040 21.06
85.00% 0.236 2.480 19.07

Average
STANDARD DEVIATION

83.00% 0.37 5.81 24.07
0.03 0.21 3.33 7.43

COCA-ITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

55.00% 0.130 1.91 13.34
75.00% 0.135 1.96 13.42
80.00% 0.960 2.01 13.51
75.00% 0.126 3.03 13.95
80.00% 0.067 2.06 13.50
75.00% 0.113 1.08 12.01
75.00% 0.073 1.95 13.89
85.00% 0.293 2.08 14.29
75.00% 0.083 1.85 14.42
75.00% 0.087 3.24 17.00
85.00% 0.411 4.63 19.58
80.00% 0.188 6.02 22.16
60.00% 0.093 7.41 24.74

Average
Standard Deviation

75.00% 0.21 3.02 15.83
0.08 0.24 1.81 3.76

DOAP-
ECAMPUS

COCA-
ECAMPUS

ENERGY
USAGE
STDV
CONT

ERROR
CPU ACTIVITY

STDV
ERROR

REAL MEMORY
ALLOCATION

(MB)
STDV

ERROR

83.00% 75.00%

0.03 0.08
3.605551275464 3.605551275464

0.01 0.02
36.74% 21.22%

0.21 0.24
0.059359998884 0.065406501732

24.07 15.83

7.43 3.76
2.060029872823 1.043316200235

50%

62.5%

75%

87.5%

100%

Energy usage

75%
83%

CONTEXT DETECTION

P
o

w
e

r
co

n
su

m
p

ti
o

n

DAOP-eCampus COSM-eCampus

1.00%

25.75%

50.50%

75.25%

100.00%

CPU activity

21.22%
36.74%

M
il

li
se

co
n

d

DAOP-eCampus COSM-eCampus

0

12.5

25

37.5

50

Real Memory Allocation (MB)

15.832
24.07

M
e

ga
b

y
te

DAOP-eCampus COSM-eCampus

eCampus

Figure 11: Context Detection CPU Activity

DOAPITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

85.00% 0.984 2.480 15.57
85.00% 0.194 2.750 18.68
80.00% 0.427 2.570 16.61
85.00% 0.183 3.760 19.39
85.00% 0.423 5.590 25.55
85.00% 0.293 7.630 26.97
85.00% 0.210 8.470 27.66
80.00% 0.319 7.090 26.18
80.00% 0.417 9.220 44.27
79.00% 0.253 7.310 24.21
80.00% 0.537 13.080 27.69
85.00% 0.300 3.040 21.06
85.00% 0.236 2.480 19.07

Average
STANDARD DEVIATION

83.00% 0.37 5.81 24.07
0.03 0.21 3.33 7.43

COCA-ITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

55.00% 0.130 1.91 13.34
75.00% 0.135 1.96 13.42
80.00% 0.960 2.01 13.51
75.00% 0.126 3.03 13.95
80.00% 0.067 2.06 13.50
75.00% 0.113 1.08 12.01
75.00% 0.073 1.95 13.89
85.00% 0.293 2.08 14.29
75.00% 0.083 1.85 14.42
75.00% 0.087 3.24 17.00
85.00% 0.411 4.63 19.58
80.00% 0.188 6.02 22.16
60.00% 0.093 7.41 24.74

Average
Standard Deviation

75.00% 0.21 3.02 15.83
0.08 0.24 1.81 3.76

DOAP-
ECAMPUS

COCA-
ECAMPUS

ENERGY
USAGE
STDV
CONT

ERROR
CPU ACTIVITY

STDV
ERROR

REAL MEMORY
ALLOCATION

(MB)
STDV

ERROR

83.00% 75.00%

0.03 0.08
3.605551275464 3.605551275464

0.01 0.02
36.74% 21.22%

0.21 0.24
0.059359998884 0.065406501732

24.07 15.83

7.43 3.76
2.060029872823 1.043316200235

50%

62.5%

75%

87.5%

100%

Energy usage

75%
83%

CONTEXT DETECTION

P
o

w
e

r
co

n
su

m
p

ti
o

n

DAOP-eCampus COSM-eCampus

1.00%

25.75%

50.50%

75.25%

100.00%

CPU activity

21.22%
36.74%

M
il

li
se

co
n

d

DAOP-eCampus COSM-eCampus

0

12.5

25

37.5

50

Real Memory Allocation (MB)

15.832
24.07

M
e

ga
b

y
te

DAOP-eCampus COSM-eCampus

eCampus

Figure 12: Context Detection Real Memory Allocation (MB)

5.3.3. Experiment 3: Activating Collaborative Aspects
It is claimed that in AOSD, dynamic aspect weaving can inject tangle-free code in the program execution; as ex-

plained before, context-dependent behaviours are collaborated aspects entangled with each other. It is claimed that in
COSD, context-oriented components can be activated dynamically to adjust the application behaviour, with a↵ordable
costs, during the adaptation. Designing context-dependent behaviour using an aspect-oriented programming paradigm
requires platform support for activating aspects driven by the context state; such an implementation requires the AOP
platform to evaluate each joinpoint in conjunction with the associated context state and the passive context values. In
addition, once the decision has been made, the AOP platform must search for the associated method implementation
that implements the required context-dependent behaviour. Moreover, from our own experience, it is very complex
to decide which aspect should be woven first, because of the implicit dependence among the aspect implementations.
For example, the platform should decide when the battery level is low, and which aspects must be activated. On the

17

other hand, when activating the location aspect, the platform must consider the battery level before deciding which
location service to use; such processes provide cyclic dependence among the aspects implementations and lead to
unguaranteed adaptation outputs.

Figure 13 shows the battery usage when multiple contextual aspects are activated and executed compared to the
composition of multiple context-oriented components. The figure shows that the DAOP-eCampus consumes more
energy to perform the adaptation, as it requires more energy to process the context state in each joinpoint. In addition,
it requires the AOP framework to resolve the dependence between several aspects before and after the advice methods
execution. The CPU activity is shown in Figure 14 and the real memory allocation for performing the activation and
execution is shown in Figure 15.

DOAPITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

65.00% 0.000 0.000
65.00% 0.748 1.840 11.57
85.00% 0.194 4.390 13.46
85.00% 0.427 6.350 15.73
85.00% 0.087 3.760 19.39
80.00% 0.523 5.990 27.28
80.00% 0.293 7.630 26.97
85.00% 0.828 7.870 48.75
80.00% 0.183 7.090 26.18
80.00% 0.884 9.220 44.27
85.00% 0.551 7.310 24.21
80.00% 0.837 6.070 27.69
80.00% 0.813 5.240 21.06
80.00% 0.260 9.110 47.41

Average
STANDARD DEVIATION

79.64% 0.47 5.85 27.23
0.07 0.31 2.64 12.38

COCA-ITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

55.00% 0.000 0.00
55.00% 0.500 1.91 13.34
75.00% 0.135 1.96 13.42
80.00% 0.360 2.01 13.51
75.00% 0.126 3.03 13.95
75.00% 0.067 2.06 13.50
65.00% 0.113 1.08 12.01
70.00% 0.073 1.95 13.89
65.00% 0.293 2.08 14.29
70.00% 0.083 1.85 14.42
70.00% 0.087 3.24 17.00
80.00% 0.411 4.63 19.58
80.00% 0.188 6.02 22.16
55.00% 0.093 7.41 24.74

Average
Standard Deviation

69.29% 0.18 2.80 15.83
0.09 0.14 1.91 3.76

DAOP-
ECAMPUS

COSM-
ECAMPUS

ENERGY
USAGE
STDV

COUNT
ERROR

CPU ACTIVITY
STDV

ERROR
REAL MEMORY
ALLOCATION

(MB)
STDV

ERROR

79.64% 69.29%

0.07 0.09
3.741657386774 3.741657386774
0.017746912527 0.023613135644

47.34% 18.06%
0.31 0.14

0.082601899393 0.038647483832
27.23 15.83

12.38 3.76
3.307496867895 1.005364646632

50%

62.5%

75%

87.5%

100%

Energy Usage

69.286%
79.643%

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

DAOP-eCampus COSM-eCampus

1%

25.75%

50.5%

75.25%

100%

CPU Activity

18.06%

47.34%

M
il

li
se

co
n

d

DAOP-eCampus COSM-eCampus

10

17.5

25

32.5

40

Real Memory Allocation (MB)

15.832

27.228

M
e

ga
b

y
te

DAOP-eCampus COSM-eCampus

DOAP COCA

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

AVG
STDV
CONT

ERROR

1 1
40.65217391304 26.1780104712

26.17 6.887755102041
26.90 17.91044776119
27.63 4.158415841584
28.36 3.252427184466
29.09 10.46296296296
29.82 3.74358974359
30.55 24.08653846154
31.28 4.486486486486
32.01 2.685185185185
32.74 8.876889848812
33.47 3.12292358804

34.2 1.248313090418
34.93 6.445322457303
35.66 7.58930259228

29.65388586957 8.258410673569
8.50689128183 7.794873001349

4 4
2.126722820458 1.948718250337

0.5

6.45

12.4

18.35

24.3

30.25

36.2

42.15

48.1

54.05

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A
d

a
p

ta
ti

o
n

/r
e

-c
o

n
fi

gu
ra

ti
o

n
 t

im
e

 (
m

il
li

se
co

n
d

)

Trails
DAOP COSM

COLLABORATED ASPECTS/COCA-COMPONENT ACTIVATION

Figure 13: Activating Collaborated Aspects/context-oriented components Battery Usage

DOAPITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

65.00% 0.000 0.000
65.00% 0.748 1.840 11.57
85.00% 0.194 4.390 13.46
85.00% 0.427 6.350 15.73
85.00% 0.087 3.760 19.39
80.00% 0.523 5.990 27.28
80.00% 0.293 7.630 26.97
85.00% 0.828 7.870 48.75
80.00% 0.183 7.090 26.18
80.00% 0.884 9.220 44.27
85.00% 0.551 7.310 24.21
80.00% 0.837 6.070 27.69
80.00% 0.813 5.240 21.06
80.00% 0.260 9.110 47.41

Average
STANDARD DEVIATION

79.64% 0.47 5.85 27.23
0.07 0.31 2.64 12.38

COCA-ITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

55.00% 0.000 0.00
55.00% 0.500 1.91 13.34
75.00% 0.135 1.96 13.42
80.00% 0.360 2.01 13.51
75.00% 0.126 3.03 13.95
75.00% 0.067 2.06 13.50
65.00% 0.113 1.08 12.01
70.00% 0.073 1.95 13.89
65.00% 0.293 2.08 14.29
70.00% 0.083 1.85 14.42
70.00% 0.087 3.24 17.00
80.00% 0.411 4.63 19.58
80.00% 0.188 6.02 22.16
55.00% 0.093 7.41 24.74

Average
Standard Deviation

69.29% 0.18 2.80 15.83
0.09 0.14 1.91 3.76

DAOP-
ECAMPUS

COSM-
ECAMPUS

ENERGY
USAGE
STDV

COUNT
ERROR

CPU ACTIVITY
STDV

ERROR
REAL MEMORY
ALLOCATION

(MB)
STDV

ERROR

79.64% 69.29%

0.07 0.09
3.741657386774 3.741657386774
0.017746912527 0.023613135644

47.34% 18.06%
0.31 0.14

0.082601899393 0.038647483832
27.23 15.83

12.38 3.76
3.307496867895 1.005364646632

50%

62.5%

75%

87.5%

100%

Energy Usage

69.286%
79.643%

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

DAOP-eCampus COSM-eCampus

1%

25.75%

50.5%

75.25%

100%

CPU Activity

18.06%

47.34%

M
il

li
se

co
n

d

DAOP-eCampus COSM-eCampus

10

17.5

25

32.5

40

Real Memory Allocation (MB)

15.832

27.228

M
e

ga
b

y
te

DAOP-eCampus COSM-eCampus

DOAP COCA

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

AVG
STDV
CONT

ERROR

1 1
40.65217391304 26.1780104712

26.17 6.887755102041
26.90 17.91044776119
27.63 4.158415841584
28.36 3.252427184466
29.09 10.46296296296
29.82 3.74358974359
30.55 24.08653846154
31.28 4.486486486486
32.01 2.685185185185
32.74 8.876889848812
33.47 3.12292358804

34.2 1.248313090418
34.93 6.445322457303
35.66 7.58930259228

29.65388586957 8.258410673569
8.50689128183 7.794873001349

4 4
2.126722820458 1.948718250337

0.5

6.45

12.4

18.35

24.3

30.25

36.2

42.15

48.1

54.05

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A
d

a
p

ta
ti

o
n

/r
e

-c
o

n
fi

gu
ra

ti
o

n
 t

im
e

 (
m

il
li

se
co

n
d

)

Trails
DAOP COSM

COLLABORATED ASPECTS/COCA-COMPONENT ACTIVATION

Figure 14: Activating Collaborated Aspects/context-oriented components CPU Activity

DOAPITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

65.00% 0.000 0.000
65.00% 0.748 1.840 11.57
85.00% 0.194 4.390 13.46
85.00% 0.427 6.350 15.73
85.00% 0.087 3.760 19.39
80.00% 0.523 5.990 27.28
80.00% 0.293 7.630 26.97
85.00% 0.828 7.870 48.75
80.00% 0.183 7.090 26.18
80.00% 0.884 9.220 44.27
85.00% 0.551 7.310 24.21
80.00% 0.837 6.070 27.69
80.00% 0.813 5.240 21.06
80.00% 0.260 9.110 47.41

Average
STANDARD DEVIATION

79.64% 0.47 5.85 27.23
0.07 0.31 2.64 12.38

COCA-ITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9

10
11
12
13

55.00% 0.000 0.00
55.00% 0.500 1.91 13.34
75.00% 0.135 1.96 13.42
80.00% 0.360 2.01 13.51
75.00% 0.126 3.03 13.95
75.00% 0.067 2.06 13.50
65.00% 0.113 1.08 12.01
70.00% 0.073 1.95 13.89
65.00% 0.293 2.08 14.29
70.00% 0.083 1.85 14.42
70.00% 0.087 3.24 17.00
80.00% 0.411 4.63 19.58
80.00% 0.188 6.02 22.16
55.00% 0.093 7.41 24.74

Average
Standard Deviation

69.29% 0.18 2.80 15.83
0.09 0.14 1.91 3.76

DAOP-
ECAMPUS

COSM-
ECAMPUS

ENERGY
USAGE
STDV

COUNT
ERROR

CPU ACTIVITY
STDV

ERROR
REAL MEMORY
ALLOCATION

(MB)
STDV

ERROR

79.64% 69.29%

0.07 0.09
3.741657386774 3.741657386774
0.017746912527 0.023613135644

47.34% 18.06%
0.31 0.14

0.082601899393 0.038647483832
27.23 15.83

12.38 3.76
3.307496867895 1.005364646632

50%

62.5%

75%

87.5%

100%

Energy Usage

69.286%
79.643%

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

DAOP-eCampus COSM-eCampus

1%

25.75%

50.5%

75.25%

100%

CPU Activity

18.06%

47.34%

M
il

li
se

co
n

d

DAOP-eCampus COSM-eCampus

10

17.5

25

32.5

40

Real Memory Allocation (MB)

15.832

27.228

M
e

ga
b

y
te

DAOP-eCampus COSM-eCampus

DOAP COCA

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

AVG
STDV
CONT

ERROR

1 1
40.65217391304 26.1780104712

26.17 6.887755102041
26.90 17.91044776119
27.63 4.158415841584
28.36 3.252427184466
29.09 10.46296296296
29.82 3.74358974359
30.55 24.08653846154
31.28 4.486486486486
32.01 2.685185185185
32.74 8.876889848812
33.47 3.12292358804

34.2 1.248313090418
34.93 6.445322457303
35.66 7.58930259228

29.65388586957 8.258410673569
8.50689128183 7.794873001349

4 4
2.126722820458 1.948718250337

0.5

6.45

12.4

18.35

24.3

30.25

36.2

42.15

48.1

54.05

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A
d

a
p

ta
ti

o
n

/r
e

-c
o

n
fi

gu
ra

ti
o

n
 t

im
e

 (
m

il
li

se
co

n
d

)

Trails
DAOP COSM

COLLABORATED ASPECTS/COCA-COMPONENT ACTIVATION

Figure 15: Activating Collaborated Aspects/context-oriented components Real Memory Allocation (MB)

The aspects composition needs to keep track of past context conditions and their associated states; more CPU ac-
tivity and memory allocation are needed to perform this functionality. This experiment describes how each platform
responds to multiple events (i.e. context conditions) detected at the same time. The adaptation/reconfiguration time

18

for composing aspects/components is shown in Figure 16. The values were taken every 2 min from the Apple In-
struments tool while executing the application for 30 min continuously. As shown in Figure 16, the COCA-eCampus
requires less CPU time for composing the components, but DOAP requires more time for activating and executing the
contextual aspects. The evaluation of aspects activation and execution shows an increased adaptation time because
each aspect requires more memory allocation and CPU time to resolve the execution context with the context snapshot
(i.e. context history). On the other hand, the COSM-middleware requires more adaptation time for loading and ex-
ecuting the bundle implementation, but it can switch between weak/strong adaptation actions based on the execution
context and the allocated resources. As shown in the figure, context-oriented components composition requires less
adaptation/reconfiguration, based on the adaptation mechanism. Such variations in the adaptation time provided by
COSM-middleware can make use of the adaptation process and increase the device durability. The adaptation time
in DAOP, as shown in the figure, may increase over the execution time, which leads to poor performance and lower
e�ciency.

DOAPITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

65.00% 0.000 0.000
65.00% 0.748 1.840 11.57
85.00% 0.194 4.390 13.46
85.00% 0.427 6.350 15.73
85.00% 0.087 3.760 19.39
80.00% 0.523 5.990 27.28
80.00% 0.293 7.630 26.97
85.00% 0.828 7.870 48.75
80.00% 0.183 7.090 26.18
80.00% 0.884 9.220 44.27
85.00% 0.551 7.310 24.21
80.00% 0.837 6.070 27.69
80.00% 0.813 5.240 21.06
80.00% 0.260 9.110 47.41

Average
STANDARD DEVIATION

79.64% 0.47 5.85 27.23
0.07 0.31 2.64 12.38

COCA-ITRINITY

EX. ENERGY
USAGE

CPU
ACTIVITY

CPU TIME REAL
MEMORY
USAGE

1
2
3
4
5
6
7
8
9
10
11
12
13

55.00% 0.000 0.00
55.00% 0.500 1.91 13.34
75.00% 0.135 1.96 13.42
80.00% 0.360 2.01 13.51
75.00% 0.126 3.03 13.95
75.00% 0.067 2.06 13.50
65.00% 0.113 1.08 12.01
70.00% 0.073 1.95 13.89
65.00% 0.293 2.08 14.29
70.00% 0.083 1.85 14.42
70.00% 0.087 3.24 17.00
80.00% 0.411 4.63 19.58
80.00% 0.188 6.02 22.16
55.00% 0.093 7.41 24.74

Average
Standard Deviation

69.29% 0.18 2.80 15.83
0.09 0.14 1.91 3.76

DAOP-
ECAMPUS

COSM-
ECAMPUS

ENERGY
USAGE
STDV

COUNT
ERROR

CPU ACTIVITY
STDV

ERROR
REAL MEMORY
ALLOCATION

(MB)
STDV

ERROR

79.64% 69.29%

0.07 0.09
3.741657386774 3.741657386774
0.017746912527 0.023613135644

47.34% 18.06%
0.31 0.14

0.082601899393 0.038647483832
27.23 15.83

12.38 3.76
3.307496867895 1.005364646632

50%

62.5%

75%

87.5%

100%

Energy Usage

69.286%
79.643%

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

DAOP-eCampus COSM-eCampus

1%

25.75%

50.5%

75.25%

100%

CPU Activity

18.06%

47.34%

M
il

li
se

co
n

d

DAOP-eCampus COSM-eCampus

10

17.5

25

32.5

40

Real Memory Allocation (MB)

15.832

27.228

M
e

ga
b

y
te

DAOP-eCampus COSM-eCampus

DOAP COCA

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

AVG
STDV
CONT

ERROR

1 1
40.65217391304 26.1780104712

26.17 6.887755102041
26.90 17.91044776119
27.63 4.158415841584
28.36 3.252427184466
29.09 10.46296296296
29.82 3.74358974359
30.55 24.08653846154
31.28 4.486486486486
32.01 2.685185185185
32.74 8.876889848812
33.47 3.12292358804

34.2 1.248313090418
34.93 6.445322457303
35.66 7.58930259228

29.65388586957 8.258410673569
8.50689128183 7.794873001349

4 4
2.126722820458 1.948718250337

0.5

6.45

12.4

18.35

24.3

30.25

36.2

42.15

48.1

54.05

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A
d

a
p

ta
ti

o
n

/r
e

-c
o

n
fi

gu
ra

ti
o

n
 t

im
e

 (
m

il
li

se
co

n
d

)

Trails
DAOP COSM

COLLABORATED ASPECTS/COCA-COMPONENT ACTIVATION

Figure 16: Aspects/context-oriented components Composition

5.4. Context-Oriented Middleware Evaluation
The case study was implemented with COSM-middleware and other approaches proposed in the literature. These

approaches include the context-oriented programming paradigm targeting mobile devices, called JCOP(Schuster et al.,
2011), JCOOL, supported by CAMEL methodology, which used aspect-oriented programming and middleware for
context-dependent behaviours de/activation (Sindico and Grassi, 2009), MUSIC-middleware (Geihs et al., 2011), and
MADAM-middleware (Mikalsen et al., 2006), which was fully implemented by Paspallis (Paspallis, 2009). The
implementation of the eCampus in JCOP followed the COP approach (Schuster et al., 2011). The implementation
in JCOOL was accomplished with the aid of the aspect-oriented programming framework for Objective-C (Aspect-
COCA, 2011) and CAMEL framework. Both MUSIC-middleware and MADAM-middleware functionalities were
implemented using the MUSIC development paradigm proposed by Rouvoy et al.(Rouvoy et al., 2008).

JCOP JCOOL MUSIC-
Middleware

MADAM-
middleware

COSM-
middleware

Self-tuning
Self-reconfiguring

Figure 17: Autonomic Properties Support

The objective of this experiment is to evaluate the ability of our COSM-middleware in supporting the autonomic
properties, self-tuning and self-configuring, of the self-adaptive eCampus application. The support of these properties
in the above-mentioned solutions can be summarised as shown in Table 17. JCOP and JCOOL support only fine-
grained adaptations using ad-hoc programming-level techniques; this is not able to change the application structure.

19

MUSIC-middleware supports both autonomic properties using parametric tuning and plug-in architecture. The im-
plementation of plug-in architecture (i.e. building a software architecture from multiple plug-ins) used for adding
or removing services/components at runtime. MADAM-middleware supports only self-configuring property of self-
adaptive system, as it models a separate plug-in architecture for each context provider.

5.5. Experiment 4: Self-tuning Evaluation

 JCop JCOOL MUSIC-
middleware

 MADAM-
middleware

COCA-Middleware

Battery consuming

1

2

3

4

5

6

7

8

9

10

AVG

STDV

Coun

Error

60% 89% 57% 70% 45%

54% 93% 59% 74% 45%

48% 97% 51% 78% 50%

42% 92% 53% 82% 40%

50% 87% 55% 86% 45%

58% 82% 67% 80% 40%

66% 77% 59% 74% 60%

74% 82% 66% 68% 40%

66% 87% 63% 62% 45%

60% 92% 50% 56% 40%

68% 87.80% 57% 50% 45%

58.73% 87.80% 57.91% 70.91% 45.00%

9.60% 5.78% 5.66% 11.18% 5.92%

331.66% 331.66% 331.66% 331.66% 331.66%

2.90% 1.74% 1.71% 3.37% 1.78%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

45.00%

70.91%
57.91%

87.80%

58.73%

En
er

gy
 u

sa
ge

JCOP JCOOL MUSIC-middleware MADAM-middleware COSM-Middleware

Figure 18: Energy Usage for eCampus Application

Figure 18 shows the experimental results for energy usage analysis for the eCampus running on the five platforms:
JCOP, JCOOL, MUSIC-middleware, MADAM-middleware, and COSM-middleware. The experiment shows that the
COSD-eCampus implementation of the eCampus application used 15% less battery energy than the MUSIC imple-
mentation used. The eCampus implementation with JCOOL consumes more energy during the adaptation processes
because it does not consider the battery level or status during the adaptation action. In JCOOL, the context values
are only considered for evaluating the context-dependence in each joinpoint implementation. In the same way, the
MADAM-middleware drained the battery faster because each location service was implemented in a distinct plug-in
(bundle) architecture, which requires more processing time for loading the bundle implementation. In contrast, when
the same application was adapted by the COSM-middleware, the application was able to adapt its behaviour and use
less energy because the COSM-middleware adapts to the location service by redirecting the delegate object to acti-
vate the required service implementation. In JCOP, the application was able to adjust its behaviour and adapt the
required location service; unfortunately, the context monitoring was relying on the mobile device operating system
to deliver and detect the context information; this leads to faster consumption of the battery resource as a result of
trying to process too many context events at the same time. The MUSIC-middleware performs better with respect
to battery consumption because MUSIC-middleware uses a fine-tuning mechanism for manipulating components im-
plementation. However, the application implemented using MUSIC-middleware consumes more energy than that
using COSM-middleware because MUSIC-middleware calculates the fitness of the application variant using a utility
function every time the context state changes. Such verification at runtime requires more CPU time and memory
allocation, which, as a result, consumes more energy.

Figure 19 shows the experimental results for CPU activities analysed for the eCampus application in the five plat-
forms previously mentioned. The evaluation considered adaptation processes including context monitoring, detecting,
decision-making, and adaptation. As shown in Figure 19, context monitoring requires much more CPU activity in the
JCOP and JCOOL platforms as they have no dedicated context-monitoring process, and they rely on the infrastructure
to deliver the context information. The MUSIC and MADAM architectures come second with regard to context moni-
toring as they both implement a dedicated context manager which is able to process and filter the context information.
Unfortunately, JCOP, JCOOL, MUSIC, and MADAM do not consider the e↵ect of a contentious and unbalanced
monitoring process for the context environment. This implies notifying the application several times about multiple
context events, which requires more of the CPU time to process and handle these events. On the other hand, adapt-
ing the observer pattern allows the context manager in the COSM-middleware to notify the interested components
about the context changes when needed, so that the context-monitoring time drops from 57 ms in MUSIC-middleware

20

to 33 ms in COSM-middleware. For the same reason, the context detection process drops from 72 ms to 46 ms in
COSM-middleware.

The decision-making in JCOP and JCOOL require less CPU activity as both platforms use static decision-making.
The JCOP and JCOOL approaches assume that the developers can predict when and where the context-dependent
behaviour is needed in the application source code. For the same reason, the MADAM-middleware requires less
time for decision-making as it uses predefined rules supported by a rule engine to control the adaptation action. In
the MUSIC-middleware, the decision-making process is performed at runtime with the aid of a utility function; this
requires more computation activities for analysing the architecture’s constraints, adaptation goals, predefined rules,
and the quality of services, plus the user’s preferences. Afterwards, the application’s variations model (adaptation
plan) is selected based on the utility function results. In COSM-middleware, the decision-making process is performed
at runtime with the aid of the policy and verification manager, which both consider the decision policies in conjunction
with the available resources and the quality-of-services (QOS). In general, the dynamic decision-making process
requires more e↵ort from the CPU than the static approach does, as shown in Figure 19.CPU Activity Context monitoring Context detecting Decision-making Adaptation

JCOP
JCOOL
MUSIC-middleware
MADAM-middleware
COCA-Middleware

77 77 20 30
89 89 30 57
57 62 80 70
67 72 30 85
33 46 77 30

0

25

50

75

100

JCOP JCOOL MUSIC-middleware MADAM-middleware COSM-Middleware

30

85
70

57

30

77

30

80

30
20

46

72
62

89
77

33

67
57

89
77

C
PU

 A
ct

iv
ity

 p
er

ce
nt

ag
e

Context monitoring Context detecting Decision-making Adaptation

Figure 19: Energy Usage for eCampus Application

Battery life JCOP JCOOL MUSIC-
middleware

 MADAM-middleware COSM-Middleware
Sleep

Wake

90% 90% 35% 80% 10%

90% 90% 80% 80% 70%

0%

17%

33%

50%

67%

83%

100%

JCOP JCOOL MUSIC-middleware MADAM-middleware COSM-Middleware

70%
80%80%

90%90%

10%

80%

35%

90%90%

En
er

gy
 u

sa
ge

Sleep Wake

Figure 20: Using the Allocated Resources in Sleep/Wake Mode

Figure 20 shows how the five platforms use the allocated resources while the device is in Sleep/Wake mode. Such
an evaluation reflects the middleware’s ability to adjust its own functionality as long as the application is running in
the background. At the same time, it shows how the COSM-middleware wakens the application to notify the user
about events in the monitored region. The other approaches have not considered the trade-o↵ between the adaptation
process and the allocated resources. The result of this is that the eCampus implementations on JCOP, JCOOL, and
MADAM were consuming battery life even when the application was in sleep mode or running in the background. The
applications keep updating the current location of the device. Such an action was unnecessary, as the device was in
sleep mode, so they consumed 90% of the battery life after executing the application for 5 h. With the context-oriented
midldeware and MUSIC-middleware, the application was executed for the same period of time, and consumed less
battery energy.

5.6. Experiment 5: Self-reconfiguring Evaluation
As mentioned before, self-reconfiguring is the capability of the software to adapt and behave autonomously in

response to context changes. To evaluate this attribute, we considered the three versions: the MUSIC-middleware,
MADAM-middleware, and COSM-middleware. The JCOP and JCOOL platforms were excluded from this experiment
as they did not support architecture reconfiguration.

The adaptation/configuration time for adapting the eCampus application as mentioned before. The scenarios
include adding a suitable location service according to the battery level, adding a location service component, and

21

adapting to a web mapping service. Figure 21 shows the evaluation results for the three architectures. The MADAM-
middleware requires more time to perform the adaptation because three bundles are loaded and executed. The total
adaptation time was 210 ms. The MUSIC-middleware required less time for reconfiguring the software as it adapted
the location service using parametric tuning rather than loading a complete bundle for it. The COSM-middleware
comes first in the analysis, as it can switch autonomously between several location services by de/activating the
associated layers. In addition, it verifies whether the plug-in can provide the necessary services before physically
executing its implementation. In addition to this, according to the context state, the COSM-middleware performs
a runtime composition of the software components so that only the needed components are executed. In MUSIC,
the adaptation takes longer as it evaluates multiple application variations, then one variant is selected and executed.
Loading a precompiled code from the component repository after instantiation (as done in the COSM-middleware
implementation) is accomplished in a shorter time than it takes to load the whole bundle implementation at once in
the MUSIC-middleware. This is illustrated in Figure 22, which shows the memory allocations for the three platforms.
It is worth mentioning here that when the battery level is low, the COSM-middleware allocates less memory because
of the size of the context-oriented component, which is small compared to the bundle implementation in the MUSIC-
and MADAM-middlewares.

 MUSIC-middleware MADAM-middleware COSM-Middleware
Re-configuration time

Adaptation time

97 130 29

167 210 67

0

50

100

150

200

250

 MUSIC-middleware MADAM-middleware COSM-Middleware

67

210
167

29

130
97C

PU
 ti

m
e

M
illi

se
co

nd

Re-configuration time Adaptation time

Figure 21: Adaptation/Reconfiguration Time (ms)

 MUSIC-middleware MADAM-middleware COSM-Middleware

Memory allocation (KB)
10306 20306 9917

0

7500

15000

22500

30000

Real Memory allocation (KB)

9917

20306

10306

M
eg

ab
yt

e

 MUSIC-middleware MADAM-middleware COSM-Middleware

Figure 22: Memory Allocation for eCampus

6. Related Work

Supporting the development and execution of self-adaptive software systems raises numerous challenges. These
challenges include the development processes for building them, the design space, which describes the design patterns
and the best practices of designing their building blocks, (i.e. component model or code fragments), and the adaptation
mechanism, which describes the best adaptation action that can be used under the limited resources of the execution
environment. The proposed approaches in the literature can be classified into model-centric, middleware-centric,
and programming-level techniques. The ultimate goal of these approaches is to support adaptability, variability and

22

increase the software quality by managing the context-dependent functionality at the programming level, middleware
layer, or architecture model. In addition to that, they try to provide an adaptation mechanism, that have less impact on
the allocated resources under the mobility constrains of the execution environments.

In self-adaptive applications, the selection of a particular component or code block at runtime is presumably made
based on the active or passive context information plus the context state and its dependency (Lincke et al., 2011), and
the possible composition of the context-dependent parts (Hirschfeld et al., 2008), which will exhibit volatile behaviour
in the face of context changes. One could ask whether the current software domain techniques have su�cient support
or suitable mechanism for performing such dynamic selection and composition of a software component based on its
context-dependent functionality. Behavioural composition and re-configuration concerns require the software mod-
ules to be loosely coupled, and their behaviour variations can be combined and activated autonomously, according to
the context changes. Such a challenge has been tackled by a composition strategy performed through the develop-
ment process and depending totally on a static view of the self-adaptive software design. Such a view implies that
the developers have to explicitly predict the final composition of the software and possible variations of the applica-
tion using a programming-level technique such as Context-Oriented Programming (COP) (Schuster et al., 2011) and
Aspect-Oriented Programming (AOP) (Filman et al., 2004).

COP enables context-dependent adaptation and dynamic behaviour variations (Gassanenko, 1998; Hirschfeld
et al., 2008). In COP, context can be handled directly at the code level by enriching the business logic of an ap-
plication with code fragments responsible for performing context manipulation, thus providing the application code
with the required adaptive behaviour (Salehie and Tahvildari, 2009). Costanza et al. (Costanza et al., 2006) proposed
the design of context-aware systems following a layered approach. The term ” layer ” refers to a specific context-
dependent functionality, which might include a partial implementation of a class or a set of methods (Costanza et al.,
2006). Alternatively, the whole class is encapsulated inside a layer (Hirschfeld et al., 2008). Hirschfeld et al. ar-
gued that the class-in-layer approach is more e↵ective than the layer-in-class approach for encapsulating the context-
dependent functionality, starting from the claim that context-dependent behavioural variations occur separately or in
any combination, and in most cases they are collaborating and entangled with each other. A layer can be dynami-
cally activated and composed with other layers, allowing fine-grained control of an application’s runtime behaviour
(Hirschfeld et al., 2008). An example for using COP for implementing context-aware applications was proposed by
Schuster et al. (Schuster et al., 2011). Schuster et al. proposed Java Context-Oriented Programming (JCOP), which
uses a layered approach for achieving behavioural de-/activation for a prototype mobile application. The application
was implemented based on a simple context model, which was implicitly encoded with the application code. Such
approach shows the feasibility to use COP for implementing self-tuning context-aware application for mobile com-
puting environments. However, mobility induces context changes to the computational environment and therefore,
changes to the availability of resources, and continuously evolving requirements would need software systems to be
able to adapt to context changes. In most cases the developers on the provisional software design did not anticipate
such context changes. Moreover, because of the software pervasiveness, and in order to make adaptation e↵ective and
successful, adaptation processes must be considered in conjunction with dependability and reliability by providing
dynamic verification and validation mechanism, which validates the adaptation output with the adaptation goals, ob-
jectives, and architecture quality attributes (Inverardi and Tivoli, 2009). This requires the adaptation logic to be totally
separated from the business code of the application. In addition, it needs a dynamic decision-making mechanism that
maintains the architecture quality attributes during the adaptation.

For a more complex context-aware system, the same context information would be triggered in di↵erent parts of
an application and would trigger the invocation of additional behaviours. In this way, context handling becomes a
concern that spans several application units, essentially crosscutting into the main application execution. A program-
ming paradigm aiming at handling such crosscutting concerns (referred to as aspects) is AOP (Kiczales et al., 1997).
Dynamic Aspect Oriented Programming (DAOP) has emerged to enforce separation of concerns and support runtime
adaptations through weaving code blocks in the application execution (Popovici et al., 2002). The assumptions made
by the COP and AOP approaches, i.e. that the developer knows all the possible software adaptations in advance and
designs the application accordingly, is not su�cient to fulfil this need. In addition, in COP and AOP (Tanter et al.,
2006), the context model and the adaptation logic are explicitly hard-coded in the application’s business code (Lincke
et al., 2011); this often leads to poor scalability and maintainability (Kapitsaki et al., 2009). In contrast, Context
Oriented Software Development (COSD) separates the context model and the adaptation logic from the application
code, which provides the software with the ability to adapt di↵erent context models at runtime without maintaining or

23

modifying the application’s business code (Magableh and Barrett, 2012a).
Dynamic weaving of aspects can be used for adjusting the software behaviour at runtime. However, existing DAOP

techniques tend to add a substantial overhead in both execution time and code size, which restricts their practicality for
small devices with limited resources (Hundt et al., 2010). The major reason for this poor performance is that the DAOP
architectures like PROSE 2 (Popovici et al., 2002) provide an AOP engine running at the Virtual Machine Layer. This
engine accepts aspects at runtime, then transforms them into basic entities like joinpoint requests. Joinpoint refers to a
point in the control flow of a program. In aspect-oriented programming a set of join points is described as a pointcut.
A join point is a specification of when, in the corresponding main program, the aspect code should be executed. The
joinpoints are activated by registering them to the execution monitor. When the execution reaches one of the activated
joinpoint, the execution monitor notifies the DAOP engine, which executes the advice method after evaluating the
actual and past activated contexts in each joinpoint.

The actual current solution in AOP frameworks is to take snapshots of context conditions only if necessary as
stated in the Reflex framework (Tanter et al., 2006), or having a context repository to store the historical context
information. However, context repository would not solve this problem because at each joinpoint the framework has
to evaluate the actual (active) context with the passive (historical) context stored in the repository. This requires the
framework to store and process the context history for multiple events at multiple times, which adds a substantial
overhead to the allocated resources. In contrast, Context-Oriented Software Middleware (COSM)-middleware main-
tains and evaluates the architecture evolution by tuning the adaptation process. More specifically it adapts its own
functionality and verifies the adaptation results dynamically by means of dynamic decision making. Moreover, the
COSM-middleware reduce the tight coupling between the context providers and context consumers, it notifies the
interested components about a specific context condition without any need to compare the current context condition
with previous context values.

Context Awareness ModEling Language (CAMEL) is an MDD-based approach proposed by Sindico and Grassi
(Sindico and Grassi, 2009). The approach uses a domain-specific language called Java COntext Oriented Language
(JCOOL), which provides a metamodel for context sensing with the supports of the context model designed using
the JCOOL meta model. However, Sindico and Grassi implemented the context binding as the associate relationship
between context value and context entity. On the other hand, context-driven adaptation refers to structure or behaviour
elements, which are able to modify the behaviour based on context values. The structural or behavioural insertion is
accomplished whenever a context value changes; it uses AOP inter-type deceleration, where the behavioural insertion
is accomplished by means of an AOP advice method to inject a specific code into a specific joinpoint. The authors used
their former domain-specific language to support the COP approach proposed by Hirschfeld et al. (Hirschfeld et al.,
2008). Irrespective of this, JCOOL is specific to an AOP framework called the Simple Middleware Independent LayEr
(SMILE) (Bartolomeo et al., 2008). SMILE platform was used for distributed mobile applications (Bartolomeo et al.,
2008). The model approach in JCOOL supports only ContextJ, which is an extension of the Java language proposed
by Appeltauer et al. (Appeltauer et al., 2009). The CAMEL methodology requires the software to be re-engineered
whenever a new context provider is introduced into the context model. The developers must build a complete context
model for the new values and maintain the underlying JCOOL Domain Specific Language (DSL) and the Unified
Modelling Language (UML) model. The CAMEL methodology has adapted AOP and the Eclipse Modelling Frame-
work (EMF) to produce a context-oriented software similar to the layered approach proposed by Hirschfeld et al.
(Hirschfeld et al., 2008). This makes CAMEL limited to the EMF tool support and the ContextJ language (Appeltauer
et al., 2011). From our point of view CAMEL tightly couples the software with modelling language, tool and the tar-
get deployment platform. In contrast, COSM-middleware is a generic adaptation engine provided by non-specialized
language frameworks, and not being limited to a specific platform or mechanism. This gives the software developers
the flexibility to construct a self-adaptive application using any object-oriented programming language and deploy it
on several platforms (Magableh and Barrett, 2012a).

A context-driven adaptation requires the self-adaptive software to anticipate its context-dependent variations
among its operational environment. The use of middleware in adapting the suitable adaptation approach provides a
lead to achieving the adaptation results with less cost and several levels of granularity (Salehie and Tahvildari, 2009).
Mobility and ADaptation enAbling Middleware (MADAM) aims to build adaptive applications for mobile devices
using architecture models (Floch et al., 2006). The middleware is responsible for constructing and analysing several
variability models at runtime, which adds an intensive overhead over the mobile device. Mobile USers In Ubiquitous
Computing (MUSIC) middleware (Rouvoy et al., 2008) is an extension of the MADAM component-based planning

24

framework that optimises the overall utility of applications when context-related conditions occur. The planning-based
adaptation of MADAM employs dynamic configuration of component frameworks. In MUSIC, the planning extends
further, to support seamless configuration of component frameworks based on both local and remote components and
services. Thus, both components and services are plugged in interchangeably to provide functionalities defined by the
component framework. In MADAM and MUSIC the dynamic decision-making is supported by a utility function. A
utility function is defined as the weighted sum of the di↵erent objectives based on user preferences and QoS. How-
ever, this approach su↵ers from a number of drawbacks. First, it is well known that correct identification of the weight
of each goal is a major di�culty. Second, the approach hides conflicts among multiple goals in a single, aggregate
objective function, rather than exposing the conflicts and reasoning about them. At runtime, a utility function is used
to select the best application variant; this is the so-called ’adaptation plan’.

7. Conclusions

In practice, performance and modifiability trade-o↵ with each other as showed in the middleware evaluation. The
COSM-middleware achieves self-tuning and self-configuring without degrading the allocated resources. With regards
to the adaptation processes including context monitoring, detecting, decision-making and adaptation, the COSM-
middleware shows better performance compared to other approaches proposed in the literature.

The evaluation of the COSD paradigm in comparison to Aspect Oriented Software Development (AOSD) shows
that using di↵erent decomposition mechanisms can a↵ect the performance of aspects/components composition at
runtime. The performance and energy usage in context-oriented applications are better than in DAOP-applications.
There is no doubt that Aspect-oriented frameworks can be used for developing and implementing self-adaptive ap-
plications, but their adaptability performance is poor in comparison to that of COSM-middleware. The evaluation
results show that implementing self-adaptive applications with the aid of COSM-middleware can support software
adaptability and variability with a↵ordable adaptation costs and less impact on the allocated resources. Programming-
level approaches like JCOP and JCOOL tend to support self-tuning of software systems with an acceptable level of
performance, but the overall support for adaptability and variability is very limited in comparison with architecture
evolution approaches such as MUSIC, MADAM, and COSM-middleware. However, the programming techniques
are better suited to small-scale context-dependent applications, and they require intensive modification for supporting
context monitoring, context detection, and dynamic decision-making.

References

Anthony, R., Chen, D., Pelc, M., Perssonn, M., Torngren, M., 2009. Context-aware adaptation in dyscas. Electronic Communications of the EASST
19, 15.

Appeltauer, M., Hirschfeld, R., Haupt, M., Masuhara, H., 2011. Contextj: Context-oriented programming with java. Information and Media
Technologies 6 (2), 399–419.

Appeltauer, M., Hirschfeld, R., Masuhara, H., 2009. Improving the development of context-dependent java applications with contextj. In: Proceed-
ings of the International Workshop on Context-Oriented Programming. (COP ’09). Genova, Italy, pp. 5:1–5:5.

Apple IPhone Operating System IOS, 2011. Ios 4.0 apple developer library. http://developer.apple.com/library/ios/navigation/,
”[Online; accessed 1-April-2011]”.

AspectCOCA, May 2011. Aspect oriented programming framework for cocoa and objective-c. http://www.cocoadev.com/index.pl?AspectCocoa,
”[Online; accessed 1-June-2011]”.

Barbacci, M., 2004. Software quality attributes: Modifiability and usability. Software Engineering Institute, Carnegie Mellon University, Pittsburgh
PA 15213.

Bartolomeo, G., Salsano, S., Melazzi, N., Trubiani, C., 31 2008-april 3 2008. Smile- simple middleware independent layer for distributed mobile
applications. In: Proceedings of the Wireless Communications and Networking Conference. (WCNC 2008). Las Vegas, USA, pp. 3039–3044.

Boehm, B. W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R., Steece, B., 2000. Software Cost Estimation with Cocomo II, 1st Edition.
Prentice Hall PTR.

Buck, E., Yacktman, D., 2010. Cocoa design patterns, 2nd Edition. Developer’s Library.
Cheng, B. H., Giese, H., Inverardi, P., Magee, J., de Lemos, R., Andersson, J., Becker, B., Bencomo, N., Brun, Y., Cukic, B., Serugendo, G. D. M.,

Dustdar, S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H., Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller,
H., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J., 2008. Software engineering for self-adaptive systems: A research road
map. In: Proceedings of Dagstuhl Seminar, Software Engineering for Self-Adaptive Systems. (Dagstuhl Seminar ’08). Dagstuhl, Germany, pp.
1–26.

Costanza, P., Hirschfeld, R., Meuter, W. D., 2006. E�cient layer activation for switching context-dependent behavior. In: Proceedings of the 7th
Joint Modular Languages Conference. (JMLC ’06). Oxford, UK, pp. 84–103.

25

de Lemos, R., Giese, H., Müller, H., Shaw, M., Andersson, J., Baresi, L., Becker, B., Bencomo, N., Brun, Y., Cikic, B., Desmarais, R., Dustdar,
S., Engels, G., Geihs, K., Goeschka, K. M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J., Litoiu, M., Lopes, A., Magee, J., Malek,
S., Mankovskii, S., Mirandola, R., Mylopoulos, J., Nierstrasz, O., Pezzè, M., Prehofer, C., Schäfer, W., Schlichting, W., Schmerl, B., Smith,
D. B., Sousa, J. P., Tamura, G., Tahvildari, L., Villegas, N. M., Vogel, T., Weyns, D., Wong, K., Wuttke, J., 2011. Software engineering for
self-adpaptive systems: A second research roadmap. In: Proceedings of Dagstuhl Seminar, Software Engineering for Self-Adaptive Systems.
(Dagstuhl Seminar ’11). Dagstuhl, Germany, pp. 1–26.

Filman, R. E., Elrad, T., Clarke, S., Akşit, M. (Eds.), 2004. Aspect-Oriented Software Development. Addison-Wesley.
Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E., 2006. Using architecture models for runtime adaptability. IEEE software

23 (2), 62–70.
Gassanenko, M., 15-18 October 1998. Context-oriented programming. In: Proceedings of the European Forth Conference. (EuroFORTH ’93).

Marianske Lazne (Marienbad), Czech Republic, pp. 1–14.
Geihs, K., Evers, C., Reichle, R., Wagner, M., Khan, M. U., 2011. Development support for qos-aware service-adaptation in ubiquitous computing

applications. In: Proceedings of ACM Symposium on Applied Computing. (SAC ’11). TaiChung, Taiwan, pp. 197–202.
Hirschfeld, R., Costanza, P., Nierstrasz, O., March 2008. Context-oriented programming. Journal of Object Technology 7 (3), 125–151.
Hundt, C., Stöhr, D., Glesner, S., 2010. Optimizing aspect-oriented mechanisms for embedded applications. In: Proceedings of the 48th interna-

tional conference on Objects, models, components, patterns. (TOOLS’10). Malaga, Spain, pp. 137–153.
Inverardi, P., Tivoli, M., 2009. The future of software: Adaptation and dependability. In: Lucia, A., Ferrucci, F. (Eds.), Software Engineering. pp.

1–31.
Kapitsaki, G., Prezerakos, G., Tselikas, N., Venieris, I., 2009. Context-aware service engineering: A survey. Journal of Systems and Software

82 (8), 1285–1297.
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin, J., 1997. Aspect-oriented programming. In: Proceedings

of the European Conference of Object-Oriented Programming, (ECOOP ’01). Vol. 1241 of LNCS. Budapest, Hungary, pp. 220–242.
Lincke, J., Appeltauer, M., Steinert, B., Hirschfeld, R., December 2011. An open implementation for context-oriented layer composition in con-

textjs. Science of Computer Programming 76, 1194–1209.
Magableh, B., Barrett, S., 2009. Pcoms: A component model for building context-dependent applications. In: Proceedings of the First International

Conference on Adaptive and Self-adaptive Systems and Applications. (Adaptive ’09). Athens, Greece, pp. 44–48.
Magableh, B., Barrett, S., june 2011. Self-adaptive application for indoor wayfinding for individuals with cognitive impairments. In: Proceedings

of the 24th International Symposium on Computer-Based Medical Systems. No. 1 in (CBMS ’11). Bristol, United Kingdom, pp. 1 –6.
Magableh, B., Barrett, S., June 2012a. Context oriented software development. Journal of Emerging Technologies in Web Intelligence (JETWI)

3 (4), 206–216.
Magableh, B., Barrett, S., 2012b. Productivity evaluation of self-adaptive software model driven architecture. International Journal of Information

Technology and Web Engineering (IJITWE) 6 (4), 1–19.
Mikalsen, M., Paspallis, N., Floch, J., Stav, E., Papadopoulos, G., Chimaris, A., 2006. Distributed context management in a mobility and adaptation

enabling middleware (madam). In: Proceedings of the 2006 ACM symposium on Applied computing. (SAC ’06). Dijon, France, pp. 733–734.
Oreizy, P., Gorlick, M., Taylor, R., Heimhigner, D., Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D., Wolf, A., 1999. An architecture-based

approach to self-adaptive software. Intelligent Systems and Their Applications 14 (3), 54–62.
Paspallis, N., Nov 2009. Middleware-based development of context-aware applications with reusable components. Ph.D. thesis, University of

Cyprus, Department of Computer Science.
Popovici, A., Gross, T., Alonso, G., 2002. Dynamic weaving for aspect-oriented programming. In: Proceedings of the 1st international conference

on Aspect-oriented software development. (AOSD ’02). Enschede, The Netherlands, pp. 141–147.
Rouvoy, R., Beauvois, M., Lozano, L., Lorenzo, J., Eliassen, F., 2008. Music: an autonomous platform supporting self-adaptive mobile applications.

In: Proceedings of the 1st workshop on Mobile middleware: embracing the personal communication device. (MobMid ’08). Leuven, Belgium,
pp. 6:1–6:6.

Salehie, M., Tahvildari, L., May 2009. Self-adaptive software: Landscape and research challenges. ACM Transactions on Autonomous and Adap-
tive Systems (TAAS) 4, 14:1–14:42.

Schuster, K., Appeltaue, M., Hirschfeld, R., July 2011. Context-oriented programming for mobile devices: Jcop on android. In: Proceedings of the
Workshop on Context-oriented Programming (COP) 2011, co-located with ECOOP 2011. Lancaster, UK,, pp. 180–195.

Sindico, A., Grassi, V., 2009. Model driven development of context aware software systems. In: Proceedings of International Workshop on Context-
Oriented Programming. (COP ’09). Genova, Italy, pp. 7:1–7:5.

Tanter, É., Gybels, K., Denker, M., Bergel, A., 2006. Context-aware aspects. In: Proceedings of the 5th International Symposium on Software
Composition. (SC 2006). Vienna, Autriche, pp. 227–242.

26

	Context Oriented Software Middleware
	Recommended Citation

	tmp.1546804339.pdf.C9aOq

