9 research outputs found

    Soft-Feedback OMP for the Recovery of Discrete-Valued Sparse Signals

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Nice, France, 201

    Advances in the recovery of binary sparse signals

    Get PDF
    Recently, the recovery of binary sparse signals from compressed linear systems has received attention due to its several applications. In this contribution, we review the latest results in this framework, that are based on a suitable non-convex polynomial formulation of the problem. Moreover, we propose novel theoretical results. Then, we show numerical results that highlight the enhancement obtained through the non-convex approach with respect to the state-of-the-art methods

    Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach

    Get PDF
    Motivated by applications in wireless communications, in this paper we propose a reconstruction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated maximum likelihood detection problem in order to find candidate solutions with a low computational complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of achieving very competitive recovery error rates when compared with other existing suboptimal approaches.info:eu-repo/semantics/publishedVersio

    사물 ν†΅μ‹ μ—μ„œ μ••μΆ• 센싱을 μ΄μš©ν•œ λŒ€κ·œλͺ¨ 연결방법에 λŒ€ν•œ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·정보곡학뢀, 2019. 2. 이광볡.Massive machine-type communication (mMTC) has become one of the most important requirements for next generation (5G) communication systems with the advent of the Internet-of-Things (IoT). In the mMTC scenarios, grant-free non-orthogonal multiple access (NOMA) on the transmission side and compressive sensing-based multi-user detection (CS-MUD) on the reception side are promising because many users sporadically transmit small data packets at low rates. In this dissertation, we propose a novel CS-MUD algorithm for active user and data detection for the mMTC systems. The proposed scheme consists of a MAP-based active user detector (MAP-AUD) and a MAP-based data detector (MAP-DD). By exchanging extrinsic information between MAP-AUD and MAP-DD, the proposed algorithm improves the performance of the active user detection and the reliability of the data detection. In addition, we extend the proposed algorithm to exploit group sparsity. By jointly processing the multiple received data with common activity, the proposed algorithm demonstrates dramatically improved performance. We show by numerical experiments that the proposed algorithm achieves a substantial performance gain over existing algorithms.사물 인터넷 (Internet of Things, IoT) μ‹œλŒ€μ˜ λ„λž˜μ™€ ν•¨κ»˜, λŒ€κ·œλͺ¨ 사물 톡신(massive machine-type communications, mMTC)은 μ°¨μ„ΈλŒ€ 무선 톡신 ν‘œμ€€μ˜ μ£Όμš” μš”κ΅¬ 사항듀 μ€‘μ˜ ν•˜λ‚˜κ°€ λ˜μ—ˆλ‹€. λŒ€κ·œλͺ¨ 사물 톡신 ν™˜κ²½μ—μ„œλŠ” λ§Žμ€ 수의 사물 κΈ°κΈ°(machine-type device)듀이 λŒ€λΆ€λΆ„ λΉ„ν™œμ„± μƒνƒœλ‘œ 데이터λ₯Ό μ „μ†‘ν•˜μ§€ μ•Šλ‹€κ°€ 가끔씩 ν™œμ„± μƒνƒœλ‘œ μ „ν™˜λ˜μ–΄ μž‘μ€ 크기의 데이터λ₯Ό μ „μ†‘ν•œλ‹€. κ·ΈλŸ¬λ―€λ‘œ, 기지ꡭ(base station, BS)μœΌλ‘œλΆ€ν„°μ˜ μŠ€μΌ€μ₯΄λ§μ„ 기반으둜 직ꡐ(orthogonal) μ‹œκ°„/주파수 μžμ›μ„ 할당받은 ν›„ 데이터 μ†‘μˆ˜μ‹ μ΄ μ΄λ£¨μ–΄μ§€λŠ” 기쑴의 톡신 방식은, μ‹€μ œ μ „μ†‘ν•˜λ €λŠ” 데이터 λŒ€λΉ„ λ§Žμ€ 뢀가적인 μ œμ–΄ 정보λ₯Ό ν•„μš”λ‘œ ν•˜κ³  λ˜ν•œ λ°μ΄ν„°μ˜ 지연을 μœ λ°œμ‹œν‚€λ―€λ‘œ λŒ€κ·œλͺ¨ 사물 톡신에 μ ν•©ν•˜μ§€ μ•Šλ‹€. λŒ€μ‹ , μ „μ†‘λ‹¨μ—μ„œλŠ” μŠ€μΌ€μ₯΄λ§ 없이, 즉 κΈ°μ§€κ΅­μœΌλ‘œ λΆ€ν„°μ˜ 승인 없이(grant-free), 비직ꡐ μžμ›μ— 닀쀑 μ ‘μ†ν•˜κ³ (non-orthogonal multiple access, NOMA), μˆ˜μ‹ λ‹¨μ—μ„œλŠ” 닀쀑 μ‚¬μš©μž κ²€μΆœ(multi-user detection, MUD)을 μ΄μš©ν•˜μ—¬ λ°μ΄ν„°μ˜ μΆ©λŒμ„ 볡쑰해 λ‚΄λŠ” 방식이 λŒ€κ·œλͺ¨ 사물 톡신에 μ ν•©ν•˜λ‹€. 이 λ•Œ, 사물 기기듀이 μ „μ†‘ν•˜λŠ” λ°μ΄ν„°μ˜ ν¬μ†Œ νŠΉμ„±μ„ κ°μ•ˆν•˜λ©΄, μ••μΆ• μ„Όμ‹± 기반의 닀쀑 μ‚¬μš©μž κ²€μΆœ 방법(compressive sensing-based multi-user detection, CS-MUD)이 일반적인 닀쀑 μ‚¬μš©μž κ²€μΆœ 방법보닀 더 쒋은 μ„±λŠ₯을 λ°œνœ˜ν•  수 μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ”, κΈ°μ‘΄ 방식보닀 더 쒋은 μ„±λŠ₯을 가진 μƒˆλ‘œμš΄ μ••μΆ• μ„Όμ‹± 기반의 닀쀑 μ‚¬μš©μž κ²€μΆœ 방법을 μ œμ•ˆν•œλ‹€. λΆ€μ—° μ„€λͺ…ν•˜λ©΄, κ°€μž₯ 큰 사후 ν™œμ„± ν™•λ₯ μ„ 가진 μ‚¬μš©μžλ₯Ό μ°Ύκ³ (maximum a posteriori probability-based active user detection, MAP-AUD), μ—­μ‹œ 사후 ν™•λ₯  κ΄€μ μ—μ„œ κ°€μž₯ ν™•λ₯ μ΄ 높은 데이터λ₯Ό μΆ”μ •ν•œλ‹€(maximum a posteriori probability-based data detection, MAP-DD). 이 λ•Œ, MAP-AUD와 MAP-DD 블둝은 μ„œλ‘œ μ™Έμž¬μ  정보(extrinsic information)λ§Œμ„ μ£Όκ³  λ°›λŠ”λ°, 이 μ™Έμž¬μ  μ •λ³΄λŠ” μƒλŒ€λ°©μ˜ 사전 정보가 되고, 이 사전 정보λ₯Ό μ΄μš©ν•˜μ—¬ λ‹€μ‹œ 사후 ν™•λ₯  κ΄€μ μ—μ„œ 졜적의 ν•΄λ₯Ό κ΅¬ν•œλ‹€. μ΄λŸ¬ν•œ 반볡 μˆ˜ν–‰μ„ 톡해 각 블둝은 κ²€μΆœμ˜ 정확도와 μ„±λŠ₯을 λ†’μ—¬ λ‚˜κ°„λ‹€. 이 방법은 νŒ¨ν‚· λ‹¨μœ„λ‘œ ν™•μž₯될 수 μžˆλ‹€. 각각의 사물 기기듀이 μ „μ†‘ν•˜λ €λŠ” λ°μ΄ν„°λŠ” μ—¬λŸ¬κ°œμ˜ μ‹¬λ³Όλ‘œ κ΅¬μ„±λœ νŒ¨ν‚·μ΄λ©°, ν•œ νŒ¨ν‚· λ‚΄μ˜ 각각의 심볼은 κ³΅ν†΅λœ ν™œμ„±λ„λ₯Ό κ°€μ§€κ²Œ λœλ‹€. μ—¬κΈ°μ„œ, 이 κ³΅ν†΅λœ ν™œμ„±λ„λ₯Ό μ΄μš©ν•˜λ©΄, ν™œμ„± 사물 기기와 μ΄λ“€μ˜ 전솑 데이터 μΆ”μ •μ˜ 정확도λ₯Ό 높일 수 μžˆλ‹€. ν•˜μ§€λ§Œ, μ΄λŠ” 곡동 μ΅œμ ν™”(joint optimization) 문제둜 맀우 λ³΅μž‘ν•œ 연산을 ν•„μš”λ‘œ ν•œλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ”, νŒ¨ν‚· λ‚΄μ˜ μž„μ˜μ˜ ν•˜λ‚˜μ˜ μ‹¬λ³Όμ—μ„œ μΆ”μ •λœ 사물 기기의 ν™œμ„±λ„λŠ” λ‹€λ₯Έ μ‹¬λ³Όμ˜ ν™œμ„±λ„λ₯Ό μΆ”μ •ν•˜λŠ”λ° 사전 정보(a priori information)둜 이용될 수 μžˆλ‹€λŠ” 점에 μ°©μ•ˆν•˜μ—¬, λ³΅μž‘ν•œ 곡동 μ΅œμ ν™” 문제λ₯Ό 비ꡐ적 μ—°μ‚°λŸ‰μ΄ 적은 λΆ€λΆ„ μ΅œμ ν™”(subproblem optimization) 문제둜 λ‹¨μˆœν™” μ‹œν‚€κ³ , 이듀 간에 λ©”μ‹œμ§€ 전달 (massage-passing) 기법을 톡해 곡동 μ΅œμ ν™”μ˜ 해에 κ·Όμ ‘ν•œ ν•΄λ₯Ό κ΅¬ν•˜λŠ” 방법을 μ œμ•ˆν•œλ‹€. 이 λ•Œ, λΆ€λΆ„ μ΅œμ ν™” 문제의 해법이 λ°”λ‘œ μ•žμ— μ„€λͺ…ν•œ MAP-AUD/MAP-DD 방법이닀. λ§ˆμ§€λ§‰μœΌλ‘œ, λͺ¨μ˜ μ‹€ν—˜μ„ 톡해 μ œμ•ˆν•˜λŠ” 방법이 κΈ°μ‘΄ 방법과 λΉ„κ΅ν–ˆμ„ λ•Œ 맀우 크게 μ„±λŠ₯이 ν–₯상됨을 λ³΄μ˜€λ‹€. 특히, μ œμ•ˆν•˜λŠ” 방법은 전체 μ‚¬μš©μž 수 λŒ€λΉ„ 이용 κ°€λŠ₯ν•œ μžμ›μ΄ 적을 λ•ŒμΌμˆ˜λ‘ 더 큰 μ„±λŠ₯ ν–₯상이 μžˆλŠ”λ°, μ΄λŠ” μ°¨μ„ΈλŒ€ 무선 ν†΅μ‹ μ—μ„œ 사물 톡신이 κ³ λ €ν•˜λŠ” λ‹¨μœ„ 면적당 사물 기기의 수(10^6개/km^2)λ₯Ό κ³ λ €ν–ˆμ„ λ•Œ, μ œμ•ˆν•˜λŠ” 방법이 λŒ€κ·œλͺ¨ 사물 톡신에 μ•„μ£Ό νš¨μš©μ„±μ΄ 큼을 보여쀀닀.Contents Abstract i Contents ii List of Tables iv List of Figures v 1 Introduction 1 2 MAP-based Active User and Data Detection 7 2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 MAP-based Active User and Data Detection . . . . . . . . . . . . . . 9 2.2.1 Activity Log-Likelihood Ratios . . . . . . . . . . . . . . . . 11 2.2.2 MAP-based Active User Detection . . . . . . . . . . . . . . . 12 2.2.3 MAP-based Data Detection . . . . . . . . . . . . . . . . . . 16 2.2.4 Inversion of Covariance Matrices . . . . . . . . . . . . . . . 20 2.2.5 Comments on Complexity . . . . . . . . . . . . . . . . . . . 23 3 Group Sparsity-Aware Active User and Data Detection 28 3.1 Extraction of Extrinsic User Activity Information . . . . . . . . . . . 28 3.2 Modified Active User and Data Detection . . . . . . . . . . . . . . . 32 4 Numerical Results 35 4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5 Conclusion 55 Abstract (In Korean) 61 Acknowlegement 63Docto
    corecore