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ABSTRACT

In Compressed Sensing, a real-valued sparse vector has to be

reconstructed from an underdetermined system of linear equa-

tions. However, in many applications of digital communica-

tions the elements of the unknown sparse vector are drawn

from a finite set. The standard reconstruction algorithms of

Compressed Sensing do not take this knowledge into account,

hence, enhanced algorithms are required to achieve optimum

performance. In this paper, we propose a new approach for

the reconstruction of discrete-valued sparse signals. On the

one hand, the algorithm is tailored to the discrete nature of the

signal. On the other hand, reliability information is utilized

within the successive reconstruction procedure. Via numer-

ical simulations it is shown that the proposed variant of the

Orthogonal Matching Pursuit clearly outperforms the well-

known standard versions.

1. INTRODUCTION

In a number of communication scenarios the noisy receive

vector y at one time instance is given by1

y = Ax+ n , (1)

where x is the transmit vector of dimension L with symbols

either zero or drawn from the set C
def
= {±1}, A ∈ R

K×L,

K ≪ L, is the measurement matrix which, in a communica-

tion scenario can be identified with the channel, and n is the

i.i.d. zero-mean Gaussian noise vector with variance σ2
N per

component. This setting corresponds to an underdetermined

observation of x through y. However, the transmit vector is

assumed to be sparse, i.e., only s ≪ K of the L elements are

±1 (active), the remaining L− s are zero. We always assume

the sparsity s to be fixed and known.

At the receiver, to recover the vector x given y, the fol-

lowing optimization problem has to be solved (C0
def

= C ∪{0})

x̂ = argmin
x̃∈CL

0

‖Ax̃− y‖22 with ‖x̃‖0 = s . (2)

This work was supported by Deutsche Forschungsgemeinschaft (DFG)

under grant FI 982/8-1.
1Notation: || · ||p denotes the ℓp norm. ak is the kth column vector of

the matrix A, and alm is the element in the lth column and mth row of A.

AS is the matrix composed of the columns of A, whose indices are in the set

S , and xS is the vector with the elements of x, whose indices are in the set

S . S̄ is the complement of the set S w.r.t. {1, . . . , L}. AT and A+ denote

the transpose and the Moore-Penrose (left) pseudoinverse of A, respectively.

QC(·): element-wise quantization to a given alphabet C. Pr{·}: probability;

E{·}: expectation.

Thus, a discrete-valued sparse vector has to be estimated from

an underdetermined set of linear equations.

Such a discrete compressed sensing problem is known in

many fields of digital communications, e.g., in sensor net-

works, where L sensors with low activity transmit data in-

dependently and a fusion center with K antennas has to re-

construct the signals transmitted by the sensors [1]. Other

examples are peak-to-average power reduction in orthogonal

frequency-division multiplexing [2], the detection of pulse-

width-modulated signals in radar applications [3], and source

coding [4].

Due to sparsity and the discrete nature of x, problem (2) is

nonconvex, even if relaxed to ℓ1-minimization. In the litera-

ture, different solutions based on compressed sensing (CS) [5]

are known. First, there are several extensions to the sim-

plex algorithm like the Branch-and-Bound and the Cutting-

Plane algorithm [6] for solving the ℓ1-minimization problem.

Both algorithms require the simplex algorithm to run multiple

times and have a prohibitively high computational complexity

which restricts their use to very small dimensionalities.

Second, the problem can be solved by cascading a stan-

dard CS algorithm (ignoring the discrete nature of the sym-

bols) with a lattice decoder [7], e.g., the sphere decoder (SD)

[8]. While the CS algorithm, e.g., OMP [9] or CoSaMP [10],

is used only for the detection of the support set, the SD re-

constructs the discrete values at the support positions and can

even detect support positions that have been erroneously cho-

sen by the CS algorithm. Although the computational com-

plexity of this approach is much smaller than the one of the

previously mentioned algorithms, the average computational

complexity of the SD grows with increasing noise level.

In this paper, an enhanced reconstruction algorithm for

discrete sparse signals based on the OMP is proposed. On

the one hand, the discrete nature of the symbols is explicitly

taken into account and, on the other hand, reliability informa-

tion is utilized within the successive reconstruction procedure.

In each iteration of the OMP, a soft estimate of x is calcu-

lated based on a suitable error model. Although the results

are shown for OMP, the principle idea can be generalized for

related greedy algorithms such as CoSaMP and DThresh [11].

Compressed Sensing utilizing prior knowledge on the active

symbols is rarely available in the literature, a Bayesian ap-

proach has been presented in [12]. However, in this paper,

we take on a communications perspective and hence apply

tools and measures from digital communications to success-

fully solve the Compressed Sensing recovery task.
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The paper is organized as follows. In Sec. 2, after a short

introduction into the state-of-the-art OMP, we derive an OMP

variant with soft feedback. The adjustment of the required

parameters is discussed in Sec. 3. A comparison of the per-

formance of the proposed algorithm to the standard OMP via

numerical simulations is given in Sec. 4, followed by brief

conclusions in Sec. 5.

2. FINITE-ALPHABET OMP

In this section, after a short introduction into the general prin-

ciple of the OMP algorithm, the new algorithm is derived.

2.1. Straightforward Versions of OMP

First, we discuss the conventional OMP and its straightfor-

ward application to discrete-valued signals. The pseudocode

representation is given in Alg. 1 (Variant A, i.e., only the lines

tagged by an A are active).

Alg. 1 x̂ = OMP(y,A, E, C0)

1ABC: x̂ = 0, r = y, S = {} // init

2ABC: for k = 1 : E {

3ABC: x̃ = ATr, ςbest = argmaxς /∈S |x̃ς |
4ABC: S = S ∪ {ςbest} // extend support

5ABC: z = (AS)
+
y // estimate signal at S

6A : u = z // OMP/Q

6 B : u = v = QC0
(z) // Q-OMP — quantize

6 C: u = w = W (z) // SF-OMP — soft estimate

7ABC: r = y −AS · u // calculate residual

8ABC: }

9ABC: x̂S = QC0
(u) // quantize estimate

In each iteration, a new element is added to the estimated

support set S in a greedy fashion. Then, the signal at the sup-

port positions, x̂S , is estimated via the Moore-Penrose pseu-

doinverse. Based thereon, the residual is updated. The OMP

stops after E ≥ s iterations [7, 13]. Since the elements of

x are known to be drawn from the finite set C0, the elements

of the estimated vector x̂ can simply be quantized to C0 sub-

sequent to the decoding procedure.2 We denote this decoder,

consisting of OMP with successive quantization, by OMP/Q.

In OMP/Q, the knowledge about the discrete nature of the

signal is only used after the decoding, while the actual signal

estimation procedure is still based on real numbers as in con-

ventional OMP. An alternative strategy is to embed the quan-

tization inside the iterative algorithm; we denote this strategy

as Q-OMP [14]. Hence, the signal is immediately quantized

after the estimation step (Line 6 B, Alg. 1). The calculation

of the residual is carried out with respect to the quantized sig-

nal estimate. The pseudocode representation is also given in

Alg. 1, Variant B.

In the language of digital communications, hard decisions

are taken within this decoder, hence hard feedback is em-

ployed. As long as the decisions are correct, an improved

2If the sparsity is known at the decoder, which is assumed throughout the

paper, the quantizer may include this knowledge.

performance can be expected. However, in case of decision

errors, erroneous symbols are fed back leading to error prop-

agation; a wrong residual is obtained which, in turn, is used

as basis for the selection of the next new support element.

Thereby, the performance of the decoder is degraded.

2.2. OMP with Soft Feedback

We now derive a superior strategy, replacing hard quantiza-

tion. Similar problems of soft-value calculation/soft feedback

appear, e.g., in the fields of multiuser detection (successive in-

terference cancellation, a.k.a. decision-feedback equalization

(DFE)) [15–17].

The main idea is to replace the quantized estimates (hard

decisions) inside the OMP by “soft” estimates. These should

take the discrete nature of the symbols and their reliability

into account, i.e., soft feedback is employed. The pseudocode

representation of this strategy (denoted as SF-OMP) is also

given in Alg. 1, Variant C.

Optimally, the soft feedback for a discrete symbol x,

given the observation z and knowing the conditional proba-

bility density function (pdf) fx(x|z), is calculated as [18]

W(z)
def

= E{x|z} =

∫ ∞

−∞
xfx(x|z) dx ; (3)

this calculation (carried out component-wise for a vector) re-

places the hard quantization in the reconstruction algorithm

(cf. Line 6 C, Alg. 1).

Modeling the problem as communication scheme, the

symbol x to be recovered is indirectly observed, variable z,

through a channel. This channel, including the signal estima-

tion step (Line 5), is given by

z = A
+
Sy = A

+
S (Ax+ n)

= A
+
SASxS +A

+
SAS̄xS̄ +A

+
Sn

= xS + (BS,S)
−1

BS,S̄xS̄︸ ︷︷ ︸
Interference

+A
+
Sn︸ ︷︷ ︸

Noise

(4)

≈ xS +BS,S̄xS̄ +A
+
Sn (5)

with the correlation matrix B = [ blm ]
def
= ATA, where the

element blm corresponds to the correlation between al and

am. If A is designed to have small correlation between two

non-identical elements, BS,S is close to the identity matrix

and its inverse is neglected in (5). Please note, throughout the

paper, the column vectors of A are assumed to be normalized

to one, i.e., bll = 1, ∀ l.
The estimate z consists of the already detected transmit-

ted symbols xS , the interference of not yet detected non-zero

symbols on the symbols which have already been added to the

support set (given by the second term in (4), variance σ2
I ), and

filtered channel noise ñ
def
= A+

Sn. Due to the normalization of

A we have σ2
Ñ
≈ σ2

N.

Hence, the error in the estimation of z is caused by two

different noise sources: First, the filtered AWGN generated

by the channel, and second, the interference of still undetected

symbols. In the following, we model the total noise (AWGN
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Fig. 1. Example of the soft-values W(z) for σ2 = 0.01, 0.05, 0.1,

and Pr{x 6= 0} = 0.9 and 0.5.

plus interference) to be Gaussian distributed with variance

σ2 def
= σ2

I + σ2
N, i.e., fz(z|x) =

1√
2πσ2

exp{−(z−x)2/(2σ2)}.

The calculation of the soft values W(z) for m-ary uni-

formly distributed symbols with Gaussian noise is given in

[18]. However, the number of wrongly chosen elements dif-

fers from the number of correct, i.e., non-zero, elements and

thus the soft values have to be calculated with respect to non-

equal a priori probabilities.

Taking fx(x) =
∑

c∈C0
Pr{c}δ(x− c) (δ(·): Dirac delta

function) and fz(z) =
∫∞
−∞ fz(z|x)fx(x) dx into account

and obeying Bayes’ rule [19], we have

fx(x|z) =
e− (z−x)2

2σ2 ·
∑

c∈C0
Pr{c}δ(x − c)

∑
c∈C0

Pr{c}e−
(z−c)2

2σ2

. (6)

Using this pdf in (3), the soft values calculate to

W(z) =
e−

1

2σ2 ·
(
e+

z

σ2 − e−
z

σ2

)

e−
1

2σ2 ·
(
e+

z

σ2 + e−
z

σ2

)
+ Pr{x=0}

Pr{x6=0}/2

. (7)

Examples of this characteristic curve are shown in Fig. 1 for

σ2 = 0.01, 0.05, 0.1, and Pr{x 6= 0} = 0.9 (solid lines)

and Pr{x 6= 0} = 0.5 (dashed lines). The soft values are

very close to hard quantization if the variance is small (blue).

The effect of the a priori probabilities is negligible in this case

(solid vs. dashed). The larger the variance, the “softer” is the

transition between the three states (−1, 0, +1) and the larger

is the influence of the priors. For high variances (red), the

plateau at z = 0 vanishes and very large |z| (≫ 1) are re-

quired to allow reliable decisions, i.e., |W(z)| ≈ 1.

3. ESTIMATION OF THE PARAMETERS

In order to calculate the soft values, the varianceσ2 of the total

noise and the prior probabilities have to be known. Assuming

that the variance σ2
N of the AWGN is known, we still have to

estimate the interference power σ2
I .

3.1. Estimation of σ2
I

The interference il affecting xl depends on the (yet) unknown

values xm and on the corresponding correlation coefficients.

Let S
¯

denote the correct support set and S the current estimate

within the algorithm, we have

il =
∑

m∈S̄\S
blmxm . (8)

Depending on the sign and on the value of the correlation be-

tween still undetected symbols and the ones we currently try

to estimate, the sum interference may vary quite much.

Desired Properties of the Sensing Matrix: Before we analyze

the variance of the interference, we discuss the influence of

the sensing matrix A thereon. Depending on A, the corre-

lation between two vectors al and am can be quite different

for different pairs, which complicates the calculation of σ2
I to

be used for generating the soft values. Hence, a sensing ma-

trix where the off-diagonal correlation coefficients blm are as

similar as possible is desirable.

In the literature, special types of matrices are known, for

which the correlation between two columns is equal for all

pairs, i.e., aT

l am = b, ∀ l 6= m [20], i.e., the Welch-bound

is fulfilled with equality [21]. The vectors contained in these

matrices form an equiangular tight frame (ETF) [22].

Please note that analytical constructions for ETFs are

known only for specific dimensions of A. A well-known con-

struction based on so-called conference matrices is possible

for L = 2K and L = pα + 1, where p > 2 is a prime

and α ∈ N [20, 23]. Numerical approaches for close-to-

optimal solutions are known in the literature, see, e.g., [24]

and references therein.

Interference Variance of ETF Matrices: Since the actual inter-

ference (8) is not known at the decoder, an estimate that works

fine for all possible cases of superposition has to be found.

Numerical experiments (see also Sec. 4) reveal that it is crucial

not to underestimate the interference power; the characteris-

tic curves would be too steep pretending a too high reliability

of the symbols. Consequently, we take the worst-case inter-

ference, i.e., strictly constructive superposition, into account.

After the calculation of the soft estimate w (Line 6 C, Alg. 1)

in the kth iteration, we know that approximately (on average)∑k
j=1 |wj | non-zero elements have already been found. Thus,

q
def
= s−

∑k

j=1
|wj| (9)

non-zero elements (this number may be non-integer) are miss-

ing after this iteration. The worst-case variance can then be

calculated as

σ2
IMax

= b2 · q2 , (10)

where again b = aT

l am, ∀ l 6= m.

For comparison, simulation results will also be given for

the mean variance, which calculates to

σ2
IMean

= b2 · q . (11)

The statistic of the actual interference |il|
2, cf. (8) (aver-

age over a large number of decoding runs and assuming per-

fect knowledge of the true support set), is shown in Fig. 2

over the iteration number k of the OMP for L = 258, K =
129, s = 20, and 1/σ2

N =̂ 16 dB. If no error occurred in

the previous selection steps, the interference il is binomially
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Fig. 2. Probability (color coded, averaged over 100 000 decod-

ing runs) of the actual interference power σ2
I over the iteration k

of the OMP. ETF-based matrix, L = 258, K = 129, s = 20,

1/σ2
N =̂ 16 dB. E = 24. σ2

IMean
(gray lines) and σ2

IMax
(black

lines), assuming perfect knowledge of number of missing non-zero

elements (dashed lines) and estimated number q (cf. (9)) (solid

lines).

distributed, i.e., Pr{il = j} = b · (1/2)s−k
(

s−k
(j+s−k)/2

)
,

j = −(s− k),−(s− k) + 2, . . . , s− k, and the interference

power |il|
2 may take on squared even/odd integer multiples of

b2 if s− k is even/odd.

The mean interference variance (gray) and σ2
IMax

(black)

are also shown for reference. The solid lines show the vari-

ances with estimated number q of missing elements, the

dashed lines show the results assuming (genie-aided) perfect

knowledge of the number of missing symbols. The mean vari-

ance (solid gray) is much too small for a number of symbols

leading to an overestimation of the reliability. Instead, the

worst-case interference (solid black) gives a much more con-

servative estimate and only truly reliable symbols are treated

like hard feedback (cf. Fig. 1).

Interference Variance of General Matrices: In the case of gen-

eral matrices with varying correlation coefficients, σ2
IMean

and

σ2
IMax

depend the symbol zl, l ∈ S, to be estimated. The

mean interference on zl is given by the average over all con-

tributions by the symbols which have not yet been added to

the (estimated) support set, i.e.,

σ2
IMean,l

=
1

|S̄|

∑
j∈S̄

b2jl · q , l ∈ S . (12)

An upper bound on the maximal variance is given by

σ2
IMax,l

=

(
1

⌊q⌋

∑⌊q⌋

j=1
cj

)2

· q2 , l ∈ S , (13)

where the vector c contains the elements b
def
= [Bl ]S̄ of the

correlation matrix sorted according to descending magnitude.

Please note that the difference between the maximal variance

and the mean variance can be much larger than for ETF-based

matrices. Furthermore, the variance is individual for each

symbol.

3.2. Estimation of the A Priori Probabilities

For the calculation of the soft-values as given in (7), not only

the variance of the total noise has to be known, but also the a

priori probabilities of x.

On the one hand, it is known that the vector x has s non-

zero coefficients and L−s zeros. On the other hand, the OMP

algorithm tries to select symbols that are non-zero with high

probability. Hence, the a priori probability of x 6= 0 for the

elements in S is much higher than before the selection into

the support set by the OMP.

However, since no knowledge about the correct priors for

the elements of xS is available, a value has to be found that of-

fers a good compromise for reliable vectors as well as for erro-

neous ones. We resort to the worst-case situation and assume

a uniform distribution, i.e., Pr{−1} = Pr{0} = Pr{+1} =
1/3. Via numerical simulations, this assumption turns out to

be an almost optimum choice.

4. SIMULATION RESULTS

In this section, the performance of the proposed algorithm

is investigated and compared to the one of OMP/Q and Q-

OMP. Two different scenarios are considered. The upper plot

in Fig. 3 shows the symbol error rate (SER) over the noise

level in dB for an ETF-based sensing matrix (i.e., equal cor-

relation for all basis vectors) taken from [23] with L = 258,

K = 129 and s = 20. For comparison, the performance

for random matrices is also shown in Fig. 3 (bottom). In this

case, the sensing matrix is a randomly chosen K × L dimen-

sional part of a random unitary matrix. In both scenarios, the

columns of A are normalized to one.

In order to achieve optimal results, the OMP carries out

E = 24 iterations, although the sparsity is s = 20 [7, 13].

The threshold for the hard quantization inside the Q-OMP is

optimized to 0.6. The quantization threshold at the end of the

algorithms is adjusted such that x̂ has the desired sparsity.

While hard quantization inside the OMP (Q-OMP, green)

has a small gain for high noise levels compared to the con-

ventional OMP with successive quantization (Q/OMP, red),

Q-OMP performs even worse than OMP/Q for low noise lev-

els in both scenarios.

OMP with soft feedback and perfect knowledge of both

the exact actual variance (cf. (4)) and the priors (SF-OMP,

black), however, clearly outperforms both previously men-

tioned algorithms. Since the loss by using the approximated

variances (purple, cf. (5)) is negligible, all further evaluations

are done for these simplified equations. These results with

genie-aided knowledge can be regarded as bounds for the

achievable performance.

While no loss can be observed if σ2
IMax

(turquois) is used

instead of the genie-aided correct interference (purple) in the

case of ETF-based matrices (top), the performance decreases

for random matrices since the worst-case estimation of the in-

terference is degraded by elements with very high correlation.

Please note that the usage of σ2
IMean

(yellow) clearly degrades

the performance such that there is no benefit compared to hard

quantization (green). This is due to the fact that σ2
IMean

is

smaller than the actual variance for some symbols (cf. Fig. 2)

and thus the soft values of these unreliable symbols are effec-

tively equal to the ones of hard quantization.

If—in addition to the variance—also the priors are not per-

fectly known (blue vs. turquois), the performance decreases
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for very small noise levels if σ2
IMax

is employed. In this case,

the selection of new elements by the OMP is very reliable

and hence only very few vectors benefit from the high uncer-

tainty introduced by equal priors, whereas most vectors suffer

from the artificial unreliability. For σ2
IMean

(orange), the per-

formance is again comparable to the one of Q-OMP.

Summing up, SF-OMP (blue) clearly outperforms OMP/Q

(red) and Q-OMP (green) by about 1 dB in the high-SNR

regime. By using σ2
IMax

and Pr{0} = 1/3, there is only a

small loss compared to decoding with perfect knowledge. The

results for σ2
IMean

are not better than for Q-OMP. In general,

random matrices perform worse than ETF-based.
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Fig. 3. SER of the proposed variants of OMP over the noise level

1/σ2
n in dB. L = 258, K = 129, s = 20, C = {−1,+1}. ETF-

based matrix (top), random matrix (bottom). E = s+ 4.

5. CONCLUSION

In this paper, we have proposed a new algorithm for the recon-

struction of discrete-valued sparse signals. The well-known

OMP has been modified to incorporate the knowledge about

the discrete nature of x and the actual noise level. There-

fore, soft-values are calculated in each iteration, followed by

a quantization step at the end of the algorithm.

The performance of the proposed approach clearly outper-

forms the state-of-the-art solutions. When using an optimized

sensing matrix, there is only a very small loss compared to

reconstruction with (genie-aided) perfect knowledge.
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