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ABSTRACT Motivated by applications in wireless communications, in this paper we propose a recon-
struction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of
noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates
knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through
the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated
maximum likelihood detection problem in order to find candidate solutions with a low computational
complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of
achieving very competitive recovery error rates when compared with other existing suboptimal approaches.

INDEX TERMS Sparse signal recovery, discrete signal reconstruction, compressed sensing, generalized
spatial modulations (GSM), large scale MIMO (LS-MIMO).

I. INTRODUCTION
In the last decade, the problem of reconstructing sparse
signals from a reduced observation set and the associated
compressed sensing (CS) paradigm [1] have attracted con-
siderable research interest. Several techniques which take
into account the sparsity property have been proposed for
signal reconstruction [2], [3]. Amongst the different classes of
algorithmic approaches, the twomost popular ones are greedy
pursuit methods and convex relaxation methods. In greedy
pursuit approaches such as the orthogonal matching pur-
suit (OMP) algorithm [4], the set of nonzero elements of the
signal is found iteratively using a greedy strategy. In con-
vex relaxation methods the nonconvex sparsity objective
(or constraint) is relaxed into a convex one, often based
on the λ1-norm, and the resulting convex problem is solved
using an efficient convex optimization solver. A well-known
example of this type of approach is the basis pursuit denois-
ing (BPDN) formulation [5]. Although these different tech-
niques can work well in multiple applications, there are
circumstances where additional information about the sig-
nal exists, which can be exploited in order to improve the
reconstruction method. This is the case of sparse signal vec-
tors whose elements are taken from a discrete set. These
signals are common in several wireless communications sce-
narios such as generalized spatial modulation multiple input

multiple output (SM-MIMO) schemes [6], machine-type
communications [7] and spectrum sensing for cognitive
radios [8].

While one can apply a conventional CS algorithm and
project the solution found onto the discrete set, the perfor-
mance will be far from optimal unless knowledge of the
discrete nature of the signal is directly taken into account
inside the reconstruction method [9], [10]. A few algorithms
that follow this approach have been proposed recently by
several authors. In [11] the reconstruction problem is for-
mulated both as a sphere decoding and as a semidefinite
relaxation problem for which standard algorithms can be
applied. However, depending on the problem size and noise
level the decoding complexity can become high and the
approach is limited to binary signals, i.e., with symbols taken
from {0,1}. Relying on the adaptation of CS algorithms to
discrete signals, Sparrer et al. [12] proposed the concatena-
tion of a greedy algorithm like OMP to detect the support
set and a sphere decoder (SD) to estimate the discrete sym-
bols. In [13], the OMP was modified with the inclusion
of an inner step where ‘‘soft’’ estimates for the symbols
are computed taking into account the discrete nature and
noise levels. However the authors assume the transmission of
binary polar signals only. Sparrer and Fischer [14] propose an
OMP algorithm modified with the inclusion of an estimation
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step based on the minimum mean squared error (MMSE)
criterion. In [9] the OMP algorithm was modified in order to
include a warm starting procedure where the discrete nature
of the symbols is taken into account. The authors show that
some performance improvements over the OMP algorithm
can be achieved, depending on the noise level and number of
measurements. In [15], a greedy algorithm named multipath
matching pursuit with slicing (sMMP) was proposed where
multiple promising candidates forminimizing the residual are
evaluated and which includes an inner integer slicing step.
The algorithm has a performance that depends on the number
of child candidates per node expanded at each level of the
tree search procedure and has a worst case complexity that
grows exponentially with the sparsity of the signal. In [16],
an adapted basis pursuit formulation was studied where box
constraints are included in order to relax the nonconvex dis-
crete valued signal restrictions. In [10], mixed integer linear
programming solvers were applied for the recovery of integer
signals but it was shown that the computational complexity of
the approach is limited in practice to relatively small prob-
lems, concluding that further heuristics and approximation
schemes are required.

In this paper we follow a different approach and propose
an algorithm comprising a sequence of three different sub-
problems with simple solutions, namely an unconstrained
quadratic problem, a projection onto a discrete set and a pro-
jection over the set of vectors with a predefined cardinality.
This allows us to incorporate the knowledge of the discrete
valued nature of the signal directly into the detection process.
In order to split the main problem we apply the alternating
direction method of the multipliers (ADMM) which is a well-
known operator splitting method often adopted for convex
optimization problems [17], [18]. Despite the lack of theoreti-
cal convergence guarantees (with a few exceptions addressed
in recent studies [19], [20]), ADMM has also been used as
a powerful heuristic for several nonconvex problems often
achieving excellent performance [19]–[23]. While the ability
of ADMM to decompose complex problems into simpler sub-
problems makes it particularly appealing for discrete valued
sparse signal recovery, it does not seem to have been applied
to this context. Due to the nonconvex nature of the problem,
ADMM is applied as a heuristic in the sense that it is able to
provide a solution faster than an exact method but it is not
guaranteed to be an optimal point. As the solutions found
may not be the exact ones we also propose two refinement
steps for improving the solution candidates produced by the
main algorithm. Numerical results in different wireless com-
munications scenarios show that the proposed reconstruction
approach can attain very competitive performance against
other existing methods. It is important to note that while in
this paper we address directly the maximum likelihood detec-
tion (MLD) formulation, which results in a splitting where
the problem of dealing with a specific discrete set is confined
to a projection step, there is a very different approach often
employed to cope with discrete variables. It is based on
the idea of binarization, i.e., mapping discrete variables to

binary vectors and relaxing them to constrained continuous
ones, as suggested in [24] and [25] within the scope of
ADMM. While binarization allows the application of binary
tailored methods to non-binary sets (as done in [26] regarding
MIMO detection using semidefinite relaxation) the cost is an
often higher decoding complexity due to the larger working
matrices and optimization variables which result from the
binary mapping. Furthermore binarization also restricts the
formulation to finite sets. In this paper we address a more
general formulation in the sense that it can be posed over
finite or infinite discrete sets, such as an infinite lattice.

The paper is organized as follows. Section II presents the
system model and formulates the discrete valued sparse sig-
nal reconstruction problem. Section III derives the proposed
signal recovery algorithm while section IV discusses effi-
cient implementations of the algorithm which explore special
characteristics of the system matrix, focusing in a particular
problem of interest in wireless communication. Section V
presents simulation results of the proposed approach followed
by the conclusions in Section VI.
Notation: Matrices and vectors are denoted by upper-

case and lowercase boldface letters, respectively. The super-
script (·)H denotes the conjugate transpose of a matrix/vector,
‖·‖2 is the 2-norm of a vector, ‖·‖0 is its cardinality,
sup p (x) returns the set of indices of nonzero elements in x
(i.e., the support of x), diag(·) represents the vector containing
the diagonal elements of a matrix and In is the n× n identity
matrix.

II. SYSTEM MODEL AND PROBLEM STATEMENT
Let us consider a noisy observation process modelled as

y = Hs+ n (1)

where y ∈ CL×1 is the L-sized observation (received) vector,
H ∈ CL×N is the system (channel) matrix and n ∈ CL×1 is
the vector containing independent zero-mean circularly sym-
metric Gaussian noise samples with covariance 2σ 2IN . The
N×1 vector s represents the original sparse signal comprising
K � N nonzero elements drawn from a complex valued
discrete set A, which may be finite or not. Assuming an
underdetermined scenario whereK ≤ L < N , the objective is
then to reconstruct s exploiting its sparsity and discrete valued
nature. The MLD for the original signal can be formulated as

min
s

f (s) , ‖y−Hs‖22 (2)

subject to s ∈ AN
0 (3)

‖s‖0 = K . (4)

whereA0
def
= A∪{0}. Note that constraints (3) and (4), which

restrict the estimated signal to be discrete and restrict its car-
dinality, clearly make the optimization problem nonconvex.

III. DISCRETE SPARSE DETECTOR ALGORITHM
A. ALGORITHM DESCRIPTION
In the following we apply ADMM as a heuristic to solve the
MLD formulation and estimate the original signal. First we
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rewrite problem (2)-(4) as

min
s,x,z
‖y−Hs‖22 + IC(x)+ IAN

0
(z) (5)

subject to s = x (6)

s = z. (7)

where C = {x : ‖x‖0 = K } and ID(v) is the indicator function
which returns 0 if v ∈ D and +∞ otherwise. We can then
write the augmented Lagrangian as

Lρx ,ρz (s, x, z, ν,λ) = ‖y−Hs‖22 + IC(x)+ IAN
0
(z)

+ 2Re
{
νH (s− x)+ λH (s− z)

}
+ ρx ‖s− x‖22 + ρz ‖s− z‖22 (8)

where ν,λ ∈ CN×1 are the dual variables and ρx , ρz are the
penalty parameters for constraints (6) and (7). We can use
scaled variables, u = ν/ρx and w = λ/ρz, and rewrite (8) as

Lρx ,ρz (s, x, z, ν,λ) = ‖y−Hs‖22 + IC(x)+ IAN
0
(z)

+ ρx

(
‖s+ u− x‖22 − ‖u‖

2
2

)
+ ρz

(
‖s+ w− z‖22 − ‖w‖

2
2

)
. (9)

The application of gradient ascent to the dual problem
results in a series of iterative steps involving the independent
minimization of the augmented Lagrangian over primal vari-
ables s, x and z followed by the updates of the scaled dual
variables u and w:

st+1 = min
s
Lρx ,ρz (s, x

t , zt ,ut ,wt ) (10)

xt+1 = min
x
Lρx ,ρz (s

t+1, x, zt ,ut ,wt ) (11)

zt+1 = min
z
Lρx ,ρz (s

t+1, xt+1, z,ut ,wt ) (12)

ut+1 = ut + st+1 − xt+1. (13)

wt+1
= wt

+ st+1 − zt+1. (14)

Therefore, the original problem has been decomposed into a
sequence of smaller subproblems which are easier to solve.
Concerning step (10), using ∇sHLρx ,ρz (s, x

t , zt , νt ,λt ) = 0,
st+1 can be found as the solution of(
HHH+ (ρx + ρz) IN

)
st+1

=

(
HHy +ρx

(
xt − ut

)
+ ρz

(
zt − wt)). (15)

The x and z update steps are obtained as ([17], ch. 9)

xt+1 =
∏

C

(
st+1 + ut

)
(16)

zt+1 =
∏

AN
0

(
st+1 + wt

)
(17)

where
∏

D (·) denotes the projection onto set D. While (17)
can be computed by rounding each entry to the clos-
est element in A0, (16) can be performed by zeroing
the N − K smallest magnitude elements. Note that the lat-
ter approach does not implement an exact projection over
C but over the set of vectors with bounded cardinality

TABLE 1. Discrete valued sparse ADMM algorithm.

(C′ = {x : ‖x‖0 ≤ K }). However the difference arises only
in the extreme cases where the argument has less than K
nonzero elements, which are difficult to handle with an exact
projection.

Table 1 summarizes the steps of the proposed discrete val-
ued sparse ADMM (DVS-ADMM) based algorithm, where ŝ
is the estimate of the transmitted symbols, Q is the number
of iterations, I = sup p

(
xt+1

)
, Ī = {1, . . . ,N } \I , HI is the

L × K reduced system matrix containing the columns of H
indexed by I and ŝcandidateI is the reduced K × 1 vector whose
components are the nonzero elements of ŝcandidate.

B. SOLUTION IMPROVEMENT
Due to the nonconvex nature of the feasible set, ADMM is
applied as an heuristic and, thus, there are no guarantees
that the derived algorithm converges to the global minimum.
In order to improve the generated solution candidates we pro-
pose the use of two additional heuristic solution refinement
steps.

First, we can explore points which differ only in two
nonzero positions from xt+1 (with all the nonzero elements
obtained from st+1 + ut ), i.e., points belonging to the set

Cneigh
(
xt+1

)
=

{
y : ‖y‖0 = K ,

∥∥∥xt+1 − y
∥∥∥
0
= 2,

y_
I
= st+1_

I
+ ut_

I
,
_

I = supp (y)
}
, (18)

and check if they result in a smaller objective value (2)
after projection over A0. Points in (18) are close neighbors
in the sense that the respective support sets differ in two
elements (the minimum possible for a fixed cardinality).
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Secondly, we can solve the minimization problem (2) over
a restricted convex relaxation where the support set fixed and
constraints (3) and (4) removed. Note that since the restricted
problem is basically equivalent to a MIMO detection prob-
lem, instead of solving the resulting unconstrained quadratic
problem (2) we can apply conventional MIMO detection
methods such as a projected MMSE estimate which can be
written as

ŝcandidateI =

∏
AK

((
HH
I HI + 2σ 2IK

)−1
HH
I y
)
. (19)

The objective function is then evaluated using the generated
solution in order to verify if an improved candidate point
was obtained. Both refinement steps can be applied in every
iteration or in the last iterations only.

C. INITIALIZATION AND PENALTY PARAMETERS
The operation of the DVS-ADMM algorithm entails the
selection of initial points x0, z0, u0 and w0 as well as of the
penalty parameters ρx and ρz. Due to the nonconvex nature of
the problem being solved, both features can have an important
impact on the quality of the approximate solution found as
there are no guarantees that ADMM converges to the optimal
points [17]. These parameters are still active areas of research
not only for nonconvex problems [23], [27] but also for
convex ones [28]. In the proposed algorithm, ρx and ρz, which
balance the weight between squared error minimization and
higher penalization on constraint violations in (8), are used
as tuning parameters and can be selected through numerical
evaluation for the specific problem at hand.

Concerning the initialization, we propose the use of either
a warm or a random start. In the warm initialization procedure
the idea is to start with a good candidate vector. We adopt a
metric ordering criterion similar to the one proposed in [29]
where the received vector is correlated against each measure-
ment matrix column, normalized and sorted according to the
resulting squared norm. In our case we only retain the first
candidate combination of nonzero positions. The procedure
starts with the computation of the support set

I = supp
(∏

C

(
yHH

(
diag

(
HHH

))−2
HHy

))
, (20)

followed by x0 = z0 = ŝcandidate, where ŝcandidateI is
obtained using (19) and ŝcandidate

Ī
= 0. The dual variables

are initialized as In the case of random start, we simply adopt
for the initial vector, ŝcandidate, a randomly selected one with
elements constrained to the interval defined by the constella-
tion limits, i.e., ŝcandidatei ∈ [min {A0} ,max {A0}]. The initial
values of the required variables are then obtained from x0 =∏

C
(
ŝcandidate

)
, z0 =

∏
AN

0

(
ŝcandidate

)
, u0 = ŝcandidate − x0

and w0
= ŝcandidate − z0. Note that instead of running the

algorithm only once with a large number of iterations we
can apply it multiple times with different initializations and a
lower number of iterations.

The cardinality restriction combined with the discrete-
valued nature of the feasible set makes it difficult to find

theoretical convergence conditions and guarantees to
the global minimum or even to stationary points for
DVS-ADMM. Therefore, while a stopping criterion based on
the primal and dual residuals (as explained in [17]) could be
applied, there are no guarantees that both converge to 0 and,
thus, a maximum number of iterations Q has to be adopted
to ensure the termination of the algorithm. Still, if stagnation
is detected in the progress of the algorithm, such as variables
with negligible change after several iterations or arriving at
previous values, then this can be used for earlier termination.

D. COMPLEXITY
As stated in the previous subsection, due to the noncon-
vex nature of the specific problem being addressed there
are no theoretical convergence guaranties that the proposed
DVS-ADMM algorithm will converge. Therefore, the overall
computational complexity depends directly on the maximum
number of iterations Q. Regarding the contribution of the
individual steps, the s-update (15) is the step with the highest
complexity as it involves an N × N matrix inversion with
a cost of O

(
N 3
)
. However, since the inverse remains the

same after the first iteration, it only needs to be computed
once for each matrix H instance and only vector sums and
matrix-vector multiplications with a cost of O

(
N 2
)
have

to be performed in the remaining iterations. There is also
one matrix-vector multiplication in step (15) (the term HHy)
which only needs to be computed in the first iteration and
has a cost of O (NL). As for the other steps of the algorithm,
they consist mostly of vector sums or simple element wise
operations over vectors. Only the update of the objective
function in step 9 involves a matrix-vector multiplication
with a complexity of O (QLK ). As such, keeping only the
dominant terms, the total complexity order of the algorithm
is O

(
N 3
+ NL + QN 2

+ QLK
)
. For comparison, the com-

plexity order of MLD is O
((N
K

)
MK

)
, where

(N
K

)
denotes

number of combinations of N symbols taken K at a time.
OMP/SD [12] is a suboptimal alternative iterative method,
which consists in the conventional OMP, where a new ele-
ment is added to the support set in every iteration, followed
by a final application of an SD to estimate the discrete
symbols at the positions of the support set. The complexity
order is O

(
NL + K 2L + K 3

+MγK
)
where γ ∈ (0, 1] is a

factor depending on the signal-to-noise ratio [30]. Q-OMP
(from [12]) is an iterative method also based on the con-
ventional OMP but with an additional quantization step in
every iteration to select a discrete symbol for the added sup-
port position. Its complexity order is O

(
NL + K 2L + K 3

)
.

sMMP [15] extends the approach of Q-OMP but, in each
iteration, explores multiple promising candidate elements for
the support set, choosing in the end the best overall candidate
in terms of residual minimization. In this case the complexity
is O

(
NLPK−1 +

(
K 2L + K 3

)
PK
)
, where P is the number of

child candidates expanded at each iteration. As another alter-
native, BPDN [5] solves a convex relaxation of the problem
based on λ1 minimization which can be written as a quadratic
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program and solved using an iterative interior point method.
In the end the solution is projected over the discrete set.
Its complexity is O

(
N 3.5

)
.

IV. EFFICIENT IMPLEMENTATIONS
As stated in section III-D, the step of the proposed algo-
rithm with the highest complexity is the s-update (15) and,
thus, it is the one whose simplification can have a larger
impact on the complexity cost. There are several applica-
tions where particular characteristics of matrix H can be
exploited so as to allow an efficient computation of the inverse
required in (15). A discussion about efficient computations
of a similar inverse was provided in [31]. In fact, if we
rewrite (15) as

st+1 =
(
HHH+ (ρx + ρz) IN

)−1
rt (21)

where

rt = HHy+ ρx
(
xt − ut

)
+ ρz

(
zt − wt), (22)

it becomes clear that the s-update has the same form of equa-
tion (35) from [31]. Therefore all the efficient computation
methods described in that paper for solving equation (35)
for different matrix types can be directly applied to the
s-update step of our algorithm. Those methods can lower the
complexity order of the inverse computation from O

(
N 3
)

to O (N logN ) or even O (N ), depending on the particular
structure of H.

Besides the cases addressed in [31], there are problems of
interest fromwireless communications, namely in the context
of cyclic prefixed MIMO single carrier transmissions in time
dispersive channels [32], whose formulations can fit (2)-(4)
and allow a simplification of the proposed algorithm. In these
cases, matrix H has a block circulant structure with P non
circulant blocks (which is different from the cases addressed
in [31]) and can be written as

H =


H0 HP−1 · · · H1
H1 H0 · · · H2
...

...
. . .

...

HP−1 HP−2 · · · H0

, (23)

where Hn, n = 0, . . . ,P − 1, are T × W submatrices, with
T = L/P andW = N/P. Due to its block circulant structure,
H can be factorized as

H =
(
FH ⊗ IT

)
3 (F⊗ IW ), (24)

whereF is the unitaryN×N discrete Fourier transform (DFT)
matrix and 3 is block diagonal, i.e., it can be written as

3 =


30 0 · · · 0

0 31
. . .

...
...

. . .
. . . 0

0 · · · 0 3P−1

 (25)

Submatrices 3l , with l = 0, . . . ,P− 1, are defined as

3l =



P−1∑
n=0

hn1,1ω
ln
· · ·

P−1∑
n=0

hn1,Wω
ln

...
. . .

...
P−1∑
n=0

hnT ,1ω
ln
· · ·

P−1∑
n=0

hnT ,Wω
ln


, (26)

where ω is a Pth primitive root of unity (ω = exp (−j2π/P))
and hni,w is the element in position (i,w) of submatrix Hn.
Note that all the elements of submatrices 3l are obtained
from T · WP-sized DFTs applied to the first block
column of H. Therefore, using a fast Fourier trans-
form (FFT) algorithm, factorization (24) has a complexity
cost of O (TWP logP). This factorization can be introduced
into (21)-(22) leading to the following s-update
expression

st+1 =
(
FH ⊗ IW

) (
3H3+ (ρx + ρz) IN

)−1
Rt (27)

where

Rt
= 3H (F⊗ IT ) y

+ (F⊗ IW )
(
ρx
(
xt − ut

)
+ ρz

(
zt − wt)). (28)

This form can reduce the complexity cost by taking into
account the block diagonal structure of 3 which allows the
products 3H3 and 3HY (with Y = (F⊗ IT ) y) to be com-
puted with a cost ofO (NWT ) andO (NT ). The inverse in (27)
also benefits from the block diagonal structure and can be
obtained using (29), as shown at the bottom of this page. This
means that instead of inverting a large N ×N matrix it is only
required to perform P smallerW ×W matrix inversions with
a total cost ofO

(
PW 3

)
. Regarding thematrix-vector products

involving F and FH , these can be computed with an FFT
algorithm with a cost of O (P logP). The complexity order
of the s-update step can thus be lowered fromO

(
N 3
+ QN 2

)
to O

(
N 3/P2 + QN 2/P+ N (L/P+ Q) logP

)
.

(
3H3+ (ρx + ρz) IN

)−1
=


(
3H

0 30 + (ρx + ρz) IW
)−1

0
. . .

0
(
3H
P−13P−1 + (ρx + ρz) IW

)−1
 (29)
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FIGURE 1. DVS-ADMM performance for N = 32, L = 12, K = 3 and
64-QAM.

V. NUMERICAL RESULTS
In this section we evaluate the performance of the proposed
DVS-ADMM algorithm in terms of signal vector recovery
error rate, defined as RER = Pr ob

{
ŝ 6= s

}
, using Monte

Carlo simulations We consider a wireless communications
scenario with K random concurrent transmissions, where H
corresponds to the channel matrix whose elements are inde-
pendently drawn according to a complex Gaussian distri-
bution CN (0, 1). The nonzero elements in s are randomly
selected from a 64-QAM constellation with E

[
|si|2

]
= 1.

The simulations were run using Matlab Release 2016a on a
3.60 GHz Intel i7 machine with 8 threads. Each RER point
was computed after running 600000 trials (6000 for RERs
above 1%).

Fig. 1 shows the RER results for different configurations
of DVS-ADMM as a function of the noise level for N = 32,
L = 12 and K = 3. The values applied for the penalty
parameters were ρx = ρz = 2.5 as these were found
(through numerical evaluations) to result in good recovery
performances for small problem sizes. In the legend n1 × n2
means that n1 initializations were employed with Q = n2
iterations. As a reference we also include the MLD curve
(obtained using a ‘‘brute-force’’ approach where each pos-
sible support set for the target sparsity is tested with a SD
from [33]). Looking at the results it can be observed that
running the algorithmwithmultiple initializations and amod-
erate number of iterations instead of a single initialization
and a large number of iterations clearly benefits the recovery
rate, especially when polishing is also applied. Furthermore,
the performance clearly improves if one of the initializations
is based on the warm procedure described in section III-C.

Regarding the use of polishing, its impact is more visible
in the region of low noise levels where it is able to lower the
irreducible RER floor. Even when only one of the polishing
steps is applied, namely the restricted MMSE candidate (19)
in the last iteration, evident performance improvements can
be obtained. These gains become larger when both polishing

FIGURE 2. RER versus K , for N = 32, 64-QAM and
10 log10

(
1/2σ2

)
= 20 dB.

steps are applied to more than one iteration. It is important to
highlight that, even though Fig. 1 corresponds to a difficult
scenario where the size of the observation set is considerably
smaller than the signal vector (37.5%), the proposed algo-
rithm is still able to achieve RERs below 0.1% and perform
close to the MLD for high noise levels.

Considering a noise level of 10 log10
(
1/2σ 2

)
= 20 dB,

Fig. 2 illustrates the impact of sparsity on the performance
of the DVS-ADMM algorithm in a 10×20 configuration, for
different sizes of the observation vector. The only polishing
applied relied on the computation and check of the restricted
MMSE candidate (19) in the last iteration. It is visible that
the detector is able to achieve very low error rates for sparse
signals even when the number of available measurements is
low. For example, it can reach a RER below 0.01% when
K = 1 and L = 8. We can also observe that the detector
is very flexible as it can cope with a wide range of sparsity
levels when the number of measurements increases, achiev-
ing excellent performances also for non-sparse signals.

Fig. 3 and Fig. 4 present the performance of DVS-ADMM
(with 5 initializations, Q = 20 and a simple final polish-
ing step relying on the restricted MMSE candidate (19)) in
two different scenarios and compare it against other existing
algorithms, namely MLD, BPDN (using box constraints as
in [16] and with projection of the solution over the discrete
set), sMMP with 4 child candidates per node, Q-OMP and
OMP/SD (both from [12]). All the tested algorithms (includ-
ing ours) were directly implemented without any special
speedup optimizations. Note that for the larger scenario we
applied ρx = ρz = 75 as it was observed that higher penalties
allow better results in large problems. No MLD or sMMP
results are included in Fig. 4 due to excessive runtimes in
large problem settings. In this case, we included an alternative
‘‘Oracle SD’’ curvewhich corresponds to an SDwhich knows
the support set, thus acting as a lower bound. In both scenarios
it can be observed that the proposed DVS-ADMM clearly
achieves the best results, performing close to the MLD in
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FIGURE 3. RER performance comparison for 64-QAM with N = 32, L = 16,
K = 3.

FIGURE 4. RER performance comparison for 64-QAM with N = 256,
L = 128, K = 20.

TABLE 2. Average Running times per recovered vector (miliseconds).

Fig. 3 and showing an almost constant gap around 1.2 dB to
the ideal Oracle SD in Fig. 4.

As a final comparison between the different methods,
Table 2 presents the program running times per recovered
vector measured in the simulations of Fig. 3 and Fig. 4.
The times shown in the table include all the steps, itera-
tions and initializations applied in each method. While OMP

based algorithms were always the fastest, the performances
obtained were clearly worse than DVS-ADMM. The alter-
native method achieving results closer to DVS-ADMM was
sMMP for the small scenario but besides having a greater
runtime, in the large problem setting it was excessively slow
making it unviable to obtain RER results.

VI. CONCLUSIONS
In this paper a new approach has been described for a
common problem in wireless communications which con-
cerns the recovery of discrete valued sparse signals from
a limited set of noise corrupted observations. By applying
ADMM to the recovery problem, we derived an algorithm
where the different tasks of unconstrained squared error min-
imization problem, cardinality matching and discrete symbol
decisions can be independently applied and naturally con-
catenated. Numerical results in several scenarios showed that
the proposed algorithm can outperform other existing sub-
optimal approaches with a very competitive computational
complexity.
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