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Abstract

Massive machine-type communication (mMTC) has become one of the most im-

portant requirements for next generation (5G) communication systems with the advent

of the Internet-of-Things (IoT). In the mMTC scenarios, grant-free non-orthogonal

multiple access (NOMA) on the transmission side and compressive sensing-based

multi-user detection (CS-MUD) on the reception side are promising because many

users sporadically transmit small data packets at low rates. In this dissertation, we pro-

pose a novel CS-MUD algorithm for active user and data detection for the mMTC sys-

tems. The proposed scheme consists of a MAP-based active user detector (MAP-AUD)

and a MAP-based data detector (MAP-DD). By exchanging extrinsic information be-

tween MAP-AUD and MAP-DD, the proposed algorithm improves the performance of

the active user detection and the reliability of the data detection. In addition, we extend

the proposed algorithm to exploit group sparsity. By jointly processing the multiple re-

ceived data with common activity, the proposed algorithm demonstrates dramatically

improved performance. We show by numerical experiments that the proposed algo-

rithm achieves a substantial performance gain over existing algorithms.

keywords: massive machine-type communications (mMTC), compressive sensing-

based multi-user detection (CS-MUD), maximum a posteriori probability (MAP),

active user detection (AUD), group sparsity

student number: 2016-30214
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Chapter 1

Introduction

With the advent of the Internet-of-Things (IoT) era, machine-type communications

have received a great deal of attention in recent years. In fact, we are witnessing a trend

that numerous machine-type devices, such as mobile devices, machines, and sensors,

are connected to the internet via wireless links [1]. In accordance with this trend, the

International Telecommunication Union (ITU) defined massive machine-type commu-

nication (mMTC) as one of representative service categories for next generation (5G)

wireless systems [2]. The mMTC focuses on the uplink communication of a large

number of devices that sporadically transmit short-sized packets with low transmis-

sion rates to the base station (BS) [3]. In the mMTC perspective, the conventional

multiple access mechanism in which the BS allocates orthogonal time and frequency

resources to each user through complicated scheduling is not relevant since it will

increase the signaling overhead and latency significantly [4, 5].

To overcome these shortcomings, grant-free non-orthogonal multiple access (NOMA)

approaches have been proposed in recent years [6–9]. In the grant-free multiple access

scheme, since the BS is not aware of the users transmitting information, an operation to

distinguish active users from all possible potential users needs to be performed before

data detection. When the number of active users is small, i.e., user activity is low, com-

pressive sensing based multi-user detection (CS-MUD) is a good choice to solve the
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problem at hand since it outperforms the classical MUD based on linear least-square

(LS) and minimum mean square error (MMSE) detection [10]. Overall, CS-MUD can

be classified into two categories: convex optimization based algorithms and greedy al-

gorithms. The former formulates CS-MUD as an LS problem regularized by a sparsity

promoting term, which is solved by convex optimization techniques [11–13]. The lat-

ter iteratively finds an active user and removes its vestige from the received signal in

a greedy fashion [14–16]. Due to the computational benefit and competitive perfor-

mance, greedy algorithms have been popularly used in the mMTC scenarios [17–21].

In finding out active users, most greedy algorithms rely on the correlation be-

tween the modified received vector (called residual) and the column vector (which

corresponds to a user) of the channel matrix1 as a decision statistic because the cor-

relation is a simple yet effective statistic to test the user activity [21–24]. In [21], a

group orthogonal matching pursuit (group OMP or GOMP) exploiting common spar-

sity caused by a frame structure has been proposed. It is similar to the simultaneous

OMP (SOMP) [22] in that both enhance the detection performance by accumulating

the correlation for a group of symbols. In [23], an iterative order recursive least square

(IORLS) has been proposed. IORLS enhances GOMP by employing the whole sym-

bols in a frame. In [24], a prior-information aided adaptive compressive sensing (PIA-

ASP) have been proposed. PIA-ASP uses the temporal correlation between activities

of adjacent symbols. Clearly, using the correlation is simple and easy, but the selection

of a user having the maximum correlation may not be the right choice depending on

the distribution of the channel matrix, the transmit data, and the noise. To address this

problem, greedy algorithms called Bayesian pursuit algorithm (BPA) have been pro-

posed [25,26]. Since BPA exploits the a priori distribution of the transmit data and the

user activity, it performs better than the correlation-based greedy algorithms. However,
1The channel matrix (a.k.a. the sensing matrix and/or the dictionary in the CS literature) is the matrix

which represents the relationship between the received vector and the transmit vector containing the data

of all active and inactive users.
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the performance depends heavily on the reliability of the a priori information.

In CS-MUD, the data detection is as important as the active user detection be-

cause the vestige of detected users has to be removed to form a residual signal. The

commonly used data detection schemes are subspace projection methods such as LS

and MMSE detection [21,23–25,27]. Using a finite alphabet constraint of the transmit

data, the detection performance can be further improved [28–32]. In [28–31], sparsity-

aware sphere detection (SA-SD) has been proposed. SA-SD performs close to the max-

imum likelihood (ML) detection but it requires considerable computational complexity

caused by the combinatorial list search and the burdensome preprocessing (e.g., QR-

decomposition). In [32], soft-feedback OMP (SF-OMP) has been proposed. SF-OMP

improves the reliability of the data detection by the subspace projection followed by

the sigmoid-like slicing. However, the performance of SF-OMP highly depends on the

channel matrix structure.

An aim of this dissertation is to propose a greedy algorithm that performs the iden-

tification of active users and the data detection simultaneously based on the maximum

a posteriori probability (MAP) criterion. We exploit the finite alphabet constraint of

the transmit data and the common sparsity inferred from the frame structure. The pro-

posed algorithm is distinct from conventional approaches in that the a posteriori activ-

ity probability is used to detect the active user and the soft symbol information based

on the a posteriori probability is used to detect the data. By exchanging extrinsic in-

formation between a MAP-based active user detector (MAP-AUD) and a MAP-based

data detector (MAP-DD), the proposed algorithm improves the reliability of the a pos-

teriori probabilities. Further, we aggregate the activity information of symbols in a

frame to exploit the common activity. The activity information is derived from the soft

symbol information. Using the aggregated activity information as modified a priori

information, MAP-AUD and MAP-DD can enhance the reliability of the soft symbol

information. In view of this, the overall algorithm can be thought as a message-passing

algorithm [33] which employs the activity information as a message. We show from
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numerical experiments that the proposed algorithm outperforms conventional greedy

algorithms and in particular, performs close to an ideal detector with perfect knowledge

on the user activity (which is called the Oracle detector) in the high signal-to-noise ra-

tio (SNR) regime.

The rest of the dissertation is organized as follows2. The proposed MAP-AUD

and MAP-DD are discussed in Chapter 2. The extension of the proposed algorithm to

exploit group sparsity is discussed in Chapter 3. The numerical results are provided in

Chapter 4. Lastly, this dissertation is concluded in Chapter 5.

Notation: Boldface lower and upper-case characters represent column vectors and

matrices, respectively. For a matrix A, A−1, A†, AT , AH , and AS are the inverse,

pseudo-inverse, transpose, Hermitian transpose, and the sub-matrix with the columns

in S, respectively. For a vector x, xS is the sub-vector with the elements in S, ‖x‖2A =

xHAx, and ‖x‖2 =
√

xHx. For a complex number, R{·} denotes the real part.

For a set A, A, |A| and Aj are the complementary set, cardinality, and j-th ele-

ment, respectively. For a random variable, (·) (or E[·]) denotes the expectation and

Cov(x) = E[xxH ]− E[x]E[x]H . As operators, ⊗ and ∗ denote the Kronecker prod-

uct and convolution, respectively. Lastly, {xk}k=1:K represents {x1, x2, · · · , xK}.

2The details of this dissertation can be also found in [34, 35].
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(a)

Figure 1.1: (a) Illustration of the mMTC uplink transmission.
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(b)

Figure 1.1: (b) Time diagram of the nMTC uplink transmission.
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Chapter 2

MAP-based Active User and Data Detection

2.1 System Model

We consider the uplink transmission from N machine-type devices (which we call

users in the sequel) to the BS. A user is inactive for most of the time and sporadically

wakes up to monitor the physical or environmental condition and then transmit the

information data to the BS, as illustrated in Fig. 1.1(a). We assume that each user and

BS are synchronized, meaning that users switch activity and transmit the data on an

identical time slot basis, as illustrated in Fig. 1.1(b).

The transmit data of an active user n consists ofK symbols (which we call a frame

in the sequel) so that the symbol vector is expressed as dn = [dn,1, dn,2, · · · , dn,K ]T ∈

CK . In particular, dn = 0 for the inactive user. Note that all elements of dn have

common symbol activity. Each symbol is spread by a user-specific spreading sequence

vector sn ∈ CM which is known at the BS and thus the transmit signal vector mn in a

frame is given by mn = dn ⊗ sn ∈ CMK . We assume that each symbol is i.i.d. and

uniformly drawn from a finite alphabetA. We also assume that the user activity follows

the i.i.d. Bernoulli distribution with an activity probability of pn which is known at

the BS. In many applications of mMTC such as smart metering, factory automation,

surveillance, and health monitoring, the information is generated periodically [1] and
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the BS exploits a priori knowledge on pn estimated by statistics.

In this setup, the received signal vector yk ∈ CM (1 ≤ k ≤ K) can be expressed

as

yk =

N∑
n=1

(hn ∗ sn)dn,k + vk

= Axk + vk, (2.1)

where hn ∈ Cτn is the fading channel between a user n and the BS with a length

of τn, A = [a1,a2, · · · ,aN ] ∈ CM×N is the channel matrix capturing the spreading

sequences and the fading channels, xk = [d1,k, d2,k, · · · , dN,k]T is the k-th symbol

vector containing all active and inactive user data, and vk is the additive white Gaus-

sian noise vector (vk ∼ CN (0, σ2
vIM )). Note that the last (τn− 1) samples in yk after

the convolution in (2.1) are omitted based on the assumption that the inter-symbol

interference (ISI) is negligible. This is because the data rate of mMTC is low [1] so

that the symbol duration M is much longer than the multi-path delay profile τn (i.e.,

M � τn). We assume that the channels between users and the BS are under the block-

fading, meaning that the channel matrix A is invariant during the frame and the BS

has the perfect knowledge of the channels.

In the mMTC scenarios, the number of users is in general much larger than the

amount of resources being used for the transmission (i.e., N � M ) and the data

vector xk is sparse because only a few users are active at a time. In this sense, the

active user and symbol detection problem can be modeled as a sparse signal recovery

problem using multiple received signal vectors {yk}k=1:K . In this chapter, we first

propose an algorithm based on a single received signal vector yk (1 ≤ k ≤ K) and

then, in the next chapter, extend it into an algorithm based on multiple received signal

vectors {yk}k=1:K .
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2.2 MAP-based Active User and Data Detection

In this section, we propose a MAP-based active user and symbol detection algorithm

using a single received signal vector y (= yk). For notational simplicity, we skip the

subscript k indicating the symbol index in this section. Fig. 2.1 depicts the iterative

structure of the proposed algorithm.

In essence, the proposed algorithm consists of two parts: MAP-AUD and MAP-

DD. First, using the a priori user activity information LA of all users and the soft

symbol information LE2 of detected users in the previous iterations as input, MAP-

AUD finds the user n∗ having the largest a posteriori user activity probability and then

computes the soft symbol information LE1 of the user n∗. To be specific, LE2 is used

to compute the soft symbols for the users detected in the previous iterations. These soft

symbols are removed from the received vector y in the soft interference cancellation

block (soft IC). Next, using LE1 delivered from MAP-AUD, MAP-DD refines LE2 of

all detected users. The refined LE2 is then fed back to MAP-AUD, completing one

cycle of the iteration.

MAP-AUD and MAP-DD improve the quality of the active user and symbol de-

tection by exchanging extrinsic information which serves as the a priori information

to each other. We henceforth use the subscripts ’1’ and ’2’ to denote MAP-AUD and

MAP-DD, respectively. According to this rule, LA1 (LA2) and LE1 (LE2) represent

a priori soft symbol information input to MAP-AUD (MAP-DD) and extrinsic soft

symbol information generated by MAP-AUD (MAP-DD), respectively.
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2.2.1 Activity Log-Likelihood Ratios

In many iterative algorithms, the log-likelihood ratio (LLR) is used to extract extrinsic

information from a posteriori information. In the proposed method, we use two types

of activity LLRs: user activity LLR and symbol-element activity LLR. The user activity

LLR refers to the level of user activity and the symbol-element activity LLR indicates

the level on what element of the alphabet A is active. Note that the user activity is

equivalent to the symbol activity.

The a posteriori user activity LLR Ln is defined as

Ln(y) = ln
P (xn ∈ A | y)

P (xn = 0 | y)
= LE,n(y) + LA,n (2.2)

where xn is the n-th element of the transmit symbol vector x in (2.1),

LE,n(y) = ln
P (y | xn ∈ A)

P (y | xn = 0)
, (2.3)

and

LA,n = ln
P (xn ∈ A)

P (xn = 0)
. (2.4)

In a similar manner, the a posteriori symbol-element activity LLR Ln,j is defined as

Ln,j(y) = ln
P (xn = Aj | y)

P (xn = 0 | y)
= LE,n,j(y) + LA,n,j (2.5)

where

LE,n,j(y) = ln
P (y | xn ∈ Aj)
P (y | xn = 0)

(2.6)

and

LA,n,j = ln
P (xn ∈ Aj)
P (xn = 0)

. (2.7)

In (2.2) and (2.5), the subscripts E andA represent extrinsic and a priori, respectively.
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From (2.2) and (2.5), it is clear that

Ln(y) = ln
P (xn ∈ A | y)

P (xn = 0 | y)

= ln
∑
Aj∈A

P (xn ∈ Aj | y)

P (xn = 0 | y)

= ln
∑
Aj∈A

exp (Ln,j(y)) . (2.8)

Similarly,

LA,n = ln

|A|∑
j=1

exp (LA,n,j) . (2.9)

In particular, if all elements of an alphabet A are equally probable, we have

LA,n,j = LA,n − ln |A|. (2.10)

Noting that P (xn = 0) +
∑
Aj∈A P (xn = Aj) = 1, we have

P (xn = Aj) =
exp (LA,n,j)

1 +
∑|A|

j=1 exp (LA,n,j)

P (xn = 0) =
1

1 +
∑|A|

j=1 exp (LA,n,j)
. (2.11)

In particular, if P (xn = 0)� 1, we have

P (xn = Aj) ≈
exp (LA,n,j)∑|A|
j=1 exp (LA,n,j)

. (2.12)

Note that {LA,n,j}j=1:|A| and {LE,n,j}j=1:|A| has one-to-one correspondence with

{P (xn = Aj)}j=1:|A|∪{P (xn = 0)} and {P (y|xn = Aj)}j=1:|A|∪{P (y|xn = 0)}.

In this sense, {LA,n,j}j=1:|A| and {LE,n,j}j=1:|A| can be considered as the soft symbol

information.

2.2.2 MAP-based Active User Detection

The goal of MAP-AUD is to find the user having the largest a posteriori user activ-

ity probability among undetected users. Let S(l−1) be the support1 of the (l − 1)-th
1Support is an index set of non-zero elements which corresponds to detected users.
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iteration, then the index of the user maximizing a posteriori user activity probability

is

n∗ = arg max
n∈S(l−1)

Ln (y)

(a)
= arg max

n∈S(l−1)

ln
∑
Aj∈A

exp (LE1,n,j (y) + LA,n,j)


(b)
= arg max

n∈S(l−1)

ln
∑
Aj∈A

exp (LE1,n,j (y)) + LA,n


(c)
≈ arg max

n∈S(l−1)

(
max
j
LE1,n,j (y) + LA,n

)
(2.13)

where (a) is from (2.5) and (2.8), (b) is from (2.10), and (c) is from max-log approx-

imation (i.e., ln
∑

j exp(Lj) ≈ maxj Lj). From (2.13), it is clear that we need both

LA,n and LE1,n,j to find n∗.

Using the a priori user activity probability pn, we have

LA,n = ln
pn

1− pn
. (2.14)

To exploit the soft symbol information of the previously detected users delivered from

MAP-DD, we modify LE1,n,j in (2.6) as follows:

LE1,n,j (y) = ln
P (y | xn = Aj)
P (y | xn = 0)

= ln
ExS(l−1)

[
P (y | xn = Aj ,xS(l−1))

]
ExS(l−1)

[
P (y | xn = 0,xS(l−1))

]
(a)
≈ ln

ExS(l−1)

[
exp

(
−
∥∥∥∥y −∑

i∈S(l−1)

xiai −Ajan
∥∥∥∥2

C
(l)−1
n

)]

ExS(l−1)

[
exp

(
−
∥∥∥∥y −∑

i∈S(l−1)

xiai

∥∥∥∥2

C
(l)−1
n

)] (2.15)

where (a) follows from the Gaussian approximation of the interference-plus-noise vec-

tor and

C(l)
n = Cov

 ∑
i 6=n,i∈S(l−1)

xiai + v

 . (2.16)

13



Since the direct computation of (2.15) is intractable due to the large number of combi-

nations in xS(l−1) , we instead use the approximation thatExS(l−1)
[exp(·)] ≈ exp(ExS(l−1)

[·]).

This approximation is accurate when the user indices chosen in the previous iterations

are perfect and the symbol detection errors are also negligible (see the end of this

section). Under these assumptions, (2.15) can be approximated as

LE1,n,j (y) ≈ ln

exp

(
ExS(l−1)

[
−
∥∥∥∥y −∑

i∈S(l−1)

xiai −Ajan
∥∥∥∥2

C
(l)−1
n

])

exp

(
ExS(l−1)

[
−
∥∥∥∥y −∑

i∈S(l−1)

xiai

∥∥∥∥2

C
(l)−1
n

])

= R

{(
2Aj

(
y −

∑
i∈S(l−1)

xiai

)
︸ ︷︷ ︸

= r(l−1)

−|Aj |2an

)H
C(l)−1
n an

}
(2.17)

where r(l−1) is the residual vector from the previous iteration (see Fig. 2.1). By denot-

ing the a priori LLR of xi (i ∈ S(l−1)) as LA1,i,j , the soft symbol xi in (2.17) can be

expressed as

xi =
∑
Aj∈A

P (xi = Aj)Aj
(a)
≈
∑
Aj∈A exp (LA1,i,j)Aj∑
Aj∈A exp (LA1,i,j)

(2.18)

where (a) is from (2.12) because xi is highly likely to be active (i.e., P (xi = 0)� 1)

based on the assumption that the user indices chosen in the previous iterations are per-

fect. In (2.18), LA1,i,j consists of LA,i,j derived from pi and LE2,i,j delivered from

MAP-AUD. Since pi is the user activity information, it does not contain any informa-

tion about what alphabet element in A the symbol xi is generated from. Therefore, by

applying the equi-probable alphabet assumption, from (2.10), we have

LA1,i,j = LA,i,j + LE2,i,j = LA,i − ln |A|+ LE2,i,j . (2.19)

Combining (2.18) and (2.19), we have

xi ≈
∑
Aj∈A exp (LA,i − ln |A|+ LE2,i,j)Aj∑
Aj∈A exp (LA,i − ln |A|+ LE2,i,j)

=

∑
Aj∈A exp (LE2,i,j)Aj∑
Aj∈A exp (LE2,i,j)

(2.20)
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where i ∈ S(l−1). Note that xi depends only on the extrinsic LLR LE2,i,j delivered

from MAP-DD.

In (2.14) and (2.17), we obtained the statistics LA,n and LE1,n,j to identify the

active user index n∗ in (2.13). Once the active user index n∗ is found, the support set

is updated as S(l) = S(l−1) ∪ {n∗} and the extrinsic LLR {LE1,n,j}n=n∗,j=1:|A| is

delivered to MAP-DD.

Proof of the Approximation ExS(l−1)
[exp(·)] ≈ exp(ExS(l−1)

[·])

Recall the assumption that the identified user indices of the previous iterations are per-

fect and the symbol detection errors are also negligible. Hence, for all user indices n ∈

S(l−1), P (xn = 0)� 1 and there exists an alphabet elementAj∗ which has the dom-

inant probability; P (xn = Aj∗) ≈ 1 and P (xn = Aj)� 1 for all j ∈ A− {j∗}. We

take such j∗ for each user. Subsequently, because 0 ≤ exp
(
−‖f (xS(l−1)) ‖2C−1

)
≤ 1

(i.e., lower/upper-bounded), we have

ExS(l−1)

[
exp

(
−‖f (xS(l−1)) ‖2C−1

)]
=
∑

xS(l−1)∈Ω

exp
(
−‖f (xS(l−1)) ‖2C−1

)
P (xS(l−1))

≈ exp
(
−‖f

(
x∗S(l−1)

)
‖2C−1

)
(2.21)

where f(xS(l−1)) is an arbitrary affine function of xS(l−1) (see (2.17)), Ω is the set of

all possible combinations of xS(l−1) , and x∗S(l−1) =
[
Aj∗1 , · · · ,Aj∗l−1

]T
. Similarly, we

have

exp
(
ExS(l−1)

[
−‖f (xS(l−1)) ‖2C−1

])
≈ exp

(
−‖f

(
x∗S(l−1)

)
‖2C−1

)
. (2.22)

Combining (2.21) and (2.22), we have the desired approximation as

ExS(l−1)

[
exp

(
−‖f (xS(l−1)) ‖2C−1

)]
≈ exp

(
ExS(l−1)

[
−‖f (xS(l−1)) ‖2C−1

])
. (2.23)
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2.2.3 MAP-based Data Detection

The goal of MAP-DD is to obtain the extrinsic LLR LE2,n,j of all user indices in

S(l). This information will be fed back to MAP-AUD for the next iteration and will

also be used for the symbol detection when the iterative processing is completed. In

a nutshell, MAP-DD consists of two processes: update and augmentation. The update

process refines LE2,n,j of all user indices detected in the previous iterations and the

augmentation process then adds LE1,n∗,j of the newly detected user index into the

updated LE2,n,j
2. After MAP-AUD, the received signal vector y can be decomposed

as

y =
∑

i∈S(l−1)

xiai + xn∗an∗ +
∑
i∈S(l)

xiai + v (2.24)

where xn∗an∗+
∑

i∈S(l)
xiai is the interference in the previous iteration. SinceLE1,n∗,j ,

which corresponds to the soft symbol information on xn∗ , is available thanks to MAP-

AUD, we can refine LE2,n,j by excluding xn∗an∗ in (2.24) from the interference.

In MAP-DD, we exploit the soft symbol information on xn, which is LE2,n,j ob-

tained in the previous iteration and LE1,n∗,j delivered from MAP-AUD. Similar to

MAP-AUD, we modify LE2,n,j in (2.6) as follows:

LE2,n,j (y) = ln
P (y | xn = Aj)
P (y | xn = 0)

= ln
Ex
T (l)
n

[
P
(
y|xn = Aj ,xT (l)

n

)]
Ex
T (l)
n

[
P
(
y|xn = 0,xT (l)

n

)]

(a)
≈ ln

Ex
T (l)
n

exp

−∥∥∥∥y −∑
i∈T (l)

n

xiai −Ajan
∥∥∥∥2

Γ(l)−1


Ex
T (l)
n

exp

−∥∥∥∥y −∑
i∈T (l)

n

xiai

∥∥∥∥2

Γ(l)−1

 (2.25)

2In the first iteration, the update process is skipped because S(0) is empty.
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where T (l)
n = S(l)−{n} and (a) is from the Gaussian approximation of the interference-

plus-noise, and

Γ(l) = Cov

∑
i∈S(l)

xiai + v

 . (2.26)

Note that the newly detected component xn∗an∗ is removed from the received signal

vector y and hence does not contribute to the interference-plus-noise covariance matrix

Γ(l). Similar to MAP-AUD, we assume that the identified user indices are perfect and

the symbol detection errors are also negligible. In this setting, (2.25) can be rewritten

as

LE2,n,j (y)

≈ ln

exp

Ex
T (l)
n

−∥∥∥∥y −∑
i∈T (l)

n

xiai −Ajan
∥∥∥∥2

Γ(l)−1


exp

Ex
T (l)
n

−∥∥∥∥y −∑
i∈T (l)

n

xiai

∥∥∥∥2

Γ(l)−1


= R


2Aj

y −
∑
i∈T (l)

n

xiai

− ∣∣Aj∣∣2an
HΓ(l)−1an

 . (2.27)

By denoting the a priori soft symbol information on xi as LA2,i,j , the soft symbol xi

in (2.27) can be expressed as

xi =
∑
Aj∈A

P (xi = Aj)Aj ≈
∑
Aj∈A exp (LA2,i,j)Aj∑
Aj∈A exp (LA2,i,j)

(2.28)

where LA2,i,j = LE1,n∗,j (delivered from MAP-AUD) if i = n∗ and LA2,i,j = LE2,i,j

(obtained in the previous iteration) otherwise. This update process is applied to all

user indices n ∈ S(l−1). After finishing the update process, LE1,n∗,j is added into the

updated LLR set.

The augmented {LE2,n,j}n∈S(l),j=1:|A| is then fed back to MAP-AUD for the next

iteration. The iteration lasts until all active users are detected. Specifically, an iteration

17



stops when the magnitude of the residual vector ‖r(l)‖2 is smaller than the predefined

threshold. After the final (L-th) iteration, symbol detection is performed by finding the

alphabet index j∗ maximizing LE2,n,j for each user index n ∈ S(L). In Table 2.1, we

summarize the proposed algorithm.
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Table 2.1: Summary of the proposed algorithm

Input: A (channel matrix), y (received vector),

σ2
v (AWGN variance), {pn} (user activity probability)

Output: x̂ (estimated symbol vector), S (support set)

Subscript: n (user index), j (alphabet element index)

Step 1: (Initialization)

S(0) = ∅, {LE2,n,j} = ∅, l = 1.

Step 2: (MAP-AUD) Find n∗ and deliver {LE1,n∗,j} to MAP-DD.

LA,n = ln pn/ (1− pn).

LE1,n,j = R


(

2Aj

(
y −

∑
i∈S(l−1)

xiai

)
− |Aj |2an

)H
C

(l)−1
n an


where xi =

∑
Aj∈A

exp(LE2,i,j)Aj∑
Aj∈A

exp(LE2,i,j)
.

n∗ = arg max
n∈S(l−1) (maxj LE1,n,j + LA,n).

Step 3: (MAP-DD) Refine {LE2,n,j}n∈S(l−1) .

/* At the first iteration, skip this step. */

T (l)
n = S(l−1) ∪

{
n∗
}
−
{
n
}

.

LE2,n,j = R


2Aj

y −
∑

i∈T (l)
n

xiai

− ∣∣Aj∣∣2an
HΓ(l)−1an


where xi =


∑
Aj∈A

exp(LE1,i,j)Aj∑
Aj∈A

exp(LE1,i,j)
if i = n∗,∑

Aj∈A
exp(LE2,i,j)Aj∑

Aj∈A
exp(LE2,i,j)

otherwise.

Step 4: (Augmentation) Add n∗ into S(l−1).

S(l) = S(l−1) ∪ {n∗}.{
LE2,n,j

}
n∈S(l) =

{
LE2,n,j

}
n∈S(l−1) ∪

{
LE1,n,j

}
n=n∗

.

Step 5: (Iteration) Repeat until stopping criteria are met.

l = l + 1 and then go to step 2.

Step 6: (Final results)

x̂n =

 Aj∗n where j∗n = arg maxj LE2,n,j if n ∈ S(L),

0, otherwise.
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2.2.4 Inversion of Covariance Matrices

In the computation of LE1,n,j in (2.17) and LE2,n,j in (2.27), we need to compute

the inverse covariance matrices C
(l)−1
n and Γ(l)−1. This operation is computationally

burdensome because C
(l)−1
n and Γ(l)−1 should be computed for every user in every

iteration. To reduce the computational complexity associated with the covariance ma-

trix inversion, we exploit a recursion-based approach in this work. The key idea of

this approach is to compute C
(l)−1
n an and Γ(l)−1an instead of C

(l)−1
n and Γ(l)−1 (see

(2.17) and (2.27)).

First, it is clear from (2.16) and (2.26) that

C(l)
n = Cov

 ∑
i 6=n,i∈S(l−1)

xiai + v


= Cov

 ∑
i∈S(l−1)

xiai − xnan + v


= Γ(l−1) − βnanaHn (2.29)

where βn = |xn|2 = (1/|A|)
∑
Aj∈A pn|Aj |

2. It is also clear from (2.26) that Γ(l)

satisfies a recursive equation as

Γ(l) = Cov

∑
i∈S(l)

xiai + v


= Cov

 ∑
i∈S(l−1)

xiai − xn∗an∗ + v


= Γ(l−1) − βn∗an∗aHn∗ . (2.30)

and

Γ(0) = σ2
vIM + ABAH (2.31)

where B = diag([β1, β2, · · · , βN ]T ). Applying the matrix inversion lemma3 to (2.29)

3(X+ τaaH
)−1

b = X−1b−
(

τaHXb
1+τaHXa

)
X−1a.
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and (2.30), we have

C(l)−1
n an =

(
1

1− βn aHn Γ(l−1)−1 an

)
Γ(l−1)−1an (2.32)

and

Γ(l)−1an = Γ(l−1)−1an +

(
βn∗a

H
n∗Γ

(l−1)−1an

1− βn∗aHn∗Γ(l−1)−1an∗

)
Γ(l−1)−1an∗ . (2.33)

Clearly, matrix inversion is unnecessary in the computation of C
(l)−1
n an and Γ(l)−1an

except for the first iteration. This recursion-based covariance update approach is de-

picted in Fig. 2.2 where (a) and (b) mean (2.32) and (2.33), respectively.
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Figure 2.2: Recursion-based covariance update.
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In case that the user-specific spreading sequence sn is randomly generated and

independent from each other, the covariance matrix Γ(l) can be approximated as

Γ(l) =
∑
i∈S(l)

βiaia
H
i + σ2

vIM

≈ diag

∑
i∈S(l)

βiaia
H
i

+ σ2
vIM

=
∑
i∈S(l)

βi diag
(
aia

H
i

)
+ σ2

vIM . (2.34)

We can explain the validity of the approximation in (2.34) with an example. First,

recall that ai = hi ∗ si (see (2.1)) and let hi be [hi,0, hi,1]T as an example, then

ai,ja
∗
i,j+1 = |hi,1|2si,j−1s

∗
i,j + hi,0h

∗
i,1|si,j |2 + h∗i,0hi,1si,j−1s

∗
i,j+1 + |hi,0|2si,js∗i,j+1

where ai,j , hi,j , and si,j denote the j-th element of ai, hi, and si, respectively. Since

the channels {hn}n=1:N are independent from each other, the summation (
∑

i∈S(l)
)

of the second and third terms (hi,0h∗i,1|si,j |2 and h∗i,0hi,1si,j−1s
∗
i,j+1) will vanish if the

number of the summed items is large enough. The other terms will also vanish after

the summation under the assumption that sn is randomly generated and independent

from each other. In this way, we can easily show that Γ(l) can be approximated as a

diagonal matrix.

Using this diagonal approximation, we have

Γ(0) = σ2
vIM +

N∑
i=1

βidiag
(
aia

H
i

)
,

C(l)
n = Γ(l−1) − βn diag

(
ana

H
n

)
,

Γ(l) = C
(l)
n∗ . (2.35)

Since C
(l)
n and Γ(l) are diagonal, we can easily compute C

(l)−1
n and Γ(l)−1.

2.2.5 Comments on Complexity

In this section, we analyze the computational complexity of the proposed algorithm.

We use the well-known OMP algorithm as a reference [14]. In analyzing the com-
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plexity, we count the complex floating point operation (FLOP) such as addition and

multiplication.

First, we analyze the complexity of OMP. OMP finds an active user by choosing a

user having maximum correlation between the residual vector r(l−1) and each column

vectors of the channel matrix A in the l-th iteration, i.e., {r(l−1)Han}n∈S(l−1) . Since

r(l−1) ∈ CM , the complexity of this identification step is

CI =

L∑
l=1

2M(N − l + 1) ≈ 2LMN (2.36)

where L is the total number of iterations. After the identification step, OMP esti-

mates the data of all detected users, x̂S(l) , by projecting the received vector y to

the subspace spanned by the column vectors corresponding to the detected users, i.e.,

x̂S(l) = A†S(l)y = (AH
S(l)AS(l))

−1AH
S(l)y. We approximate the complexity of the in-

version of a matrix X ∈ Cl×l as l3/3 [36]. Since AS(l) ∈ CM×l, the complexity of

this projection step is

CP =

L∑
l=1

{
Ml(l + 1) +

l3

3
+ 2Ml + 2l2

}
≈ 1

3
L3M +

1

12
L4. (2.37)

Lastly, the residual vector r(l−1) is updated to r(l) = y −AS(l)xS(l) . The complexity

of this update step is

CU =

L∑
l=1

{2Ml +M} ≈ L2M. (2.38)

Combining (2.36), (2.37), and (2.38), the total complexity of OMP is

COMP ≈ 2LMN +
1

3
L3M + L2M +

1

12
L4. (2.39)

Now, we analyze the complexity of the proposed algorithm. First, we count FLOPs

for {Γ(0)−1an}n=1:N . Using Γ(0) = σ2
vIM + ABAH = σ2

vIM + (AB
1
2 )(AB

1
2 )H
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(see (2.31)), the complexity of {Γ(0)−1an}n=1:N is

Cpre1 = M(M + 1)N +MN +M︸ ︷︷ ︸
Γ(0)

+
1

3
M3︸ ︷︷ ︸

Γ(0)−1

+ 2M2N︸ ︷︷ ︸
{Γ(0)−1an}

≈ 3M2N +
1

3
M3. (2.40)

From (2.32) and (2.33), the complexity of {C(l)−1
n an}n∈S(l) and {Γ(l)−1an}n∈S(l) is

Cpre2 =
L∑
l=1

(7M + 6)(N − l) ≈ 7LMN. (2.41)

In the proposed algorithm, the (modified) correlation is r̃
(l−1)H
n,j C

(l)−1
n an where r̃

(l−1)
n,j =

2Ajr(l−1) − |Aj |2an (see (2.17)). The complexity of {r̃Hn,jC
(l)−1
n an}n∈S(l−1)

,j=1:|A|

is

CMAP-AUD ≈
L∑
l=1

2|A|M(N − l) ≈ 2|A|LMN (2.42)

where we ignore the complexity of r̃n,j for simplicity since it is not a main factor.

Since the operation of MAP-DD is similar to that of MAP-AUD (see (2.27)), we can

easily show that

CMAP-DD =
L∑
l=1

2|A|Ml ≈ |A|L2M. (2.43)

Lastly, the complexity of the conversion from a LLR to a soft symbol (see (2.20) and

(2.28)) is

CLLR =

L∑
l=1

3|A|l ≈ 3

2
|A|L2. (2.44)

Combining the complexity from (2.40) to (2.44), the total complexity of the proposed

algorithm is

Cprop ≈ 3M2N + (7 + 2|A|)LMN +
1

3
M3 + |A|L2M +

3

2
|A|L2. (2.45)
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Finally, we analyze the complexity when the diagonal approximation is applied to

the covariance matrices. In this case, the complexity of {C(l)
n }

n∈S(l)
and Γ(l) is (see

(2.35))

Cdiag-pre1 = 2MN +M︸ ︷︷ ︸
Γ(0)

+

L∑
l=1

M(N − l) ≈ LMN. (2.46)

Using the diagonal property of the covariance matrices, CMAP-AUD in (2.42) and CMAP-DD

in (2.43) are

Cdiag-MAP-AUD ≈ (2|A|+ 1)LMN

Cdiag-MAP-DD ≈
1

2
(2|A|+ 1)L2M. (2.47)

Combining (2.46), (2.47), and (2.44), we have

Cdiag-prop ≈ (2|A|+ 2)LMN +
1

2
(2|A|+ 1)L2M +

3

2
|A|L2. (2.48)

From (2.39), (2.45), and (2.47), we can observe that the complexity of the proposed

algorithm is higher than OMP mainly because it depends on the alphabet size |A|.

However, since the low order modulation schemes (e.g., BPSK, QPSK) are used in the

typical mMTC systems, the complexity of the proposed algorithm does not increase

significantly compared to OMP. In Table 2.2, we summarize the complexity of OMP

and proposed algorithms for various parameter settings (N , M , L, and modulation

order) under the assumption that the user activity is about 10%.
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Table 2.2: Comparison of computational complexity

Mod. (N,M,L) COMP Cprop Cdiag-prop

BPSK (64, 16, 8) 2.05× 104 1.42× 105 5.19× 104

BPSK (64, 32, 8) 4.06× 104 3.92× 105 1.04× 105

QPSK (64, 16, 8) 2.05× 104 1.78× 105 8.69× 104

QPSK (64, 32, 8) 4.06× 104 4.62× 105 1.73× 105
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Chapter 3

Group Sparsity-Aware Active User and Data Detection

In this chapter, we describe an active user and symbol detection algorithm operating

on multiple received vectors. Since the user activity does not change in a frame, all

symbols in the frame have common activity such that the estimated user activity infor-

mation in an arbitrary received vector can be used as a priori activity information in

the remaining received vectors. For each received vector, the user activity information

of the detected users can be obtained from the symbol-element activity LLR LE2,n,j

computed by MAP-DD. Employing the message-passing framework, we can deliver

the activity information to the remaining received vectors. To improve the quality of

the activity information, we need to obtain the activity information of undetected users

as well. We first explain how to extract the activity information of all detected and

undetected users and then move on to the discussion of the extended MAP-AUD/DD

exploiting the common activity.

3.1 Extraction of Extrinsic User Activity Information

First, after processing the received symbol vector y, we obtain the extrinsic symbol-

element activity LLR LE2,n,j for the detected users (n ∈ S). Since the extrinsic LLR

serves as the a priori LLR of the remaining vectors, similar to (2.9), the extrinsic user
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activity LLR LE,n is calculated as

LE,n = ln

|A|∑
j=1

exp (LE2,n,j) . (3.1)

Next, noting that MAP-AUD computes the extrinsic symbol-element activity LLR

LE1,n,j for all user indices in S (see (2.13)), we can obtain the activity information

of undetected users by performing an additional iteration (except for MAP-DD). From

(2.17), we have

LE1,n,j (y) = R


2Aj

y −
∑
i∈S(L)

xiai

− |Aj |2an
HC(L+1)−1

n an

 (3.2)

where L denotes the last iteration index. Similar to (3.1), LE,n for the undetected users

(n ∈ S) is

LE,n = ln

|A|∑
j=1

exp (LE1,n,j) . (3.3)

From (3.1) and (3.3), LE,n for all detected and undetected users can be obtained.
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Figure 3.1: Factor graph of the extended algorithm exploiting the group sparsity.
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out of the total N(= 6) users and K(= 4) symbols in a frame.
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3.2 Modified Active User and Data Detection

In this section, we extend the proposed algorithm in a way to exploit group sparsity. We

use an additional superscript [k] to indicate the symbol index of activity LLRs. The ex-

trinsic user activity LLR L
[k]
E,n is aggregated through the message-passing framework

as illustrated by a factor graph in Fig. 3.1. In this factor graph, circle and square nodes

represent variable and function nodes, respectively. The user activity LLR is used as

a message and MAP-AUD/DD is performed in the function nodes. Accordingly, the

modified a priori user activity LLR of a symbol kc is expressed as

L̃
[kc]
A,n = w

∑
k 6=kc

L
[k]
E,n + LA,n (3.4)

where w is a weighting factor of L[k]
E,n learned from the group sparsity against LA,n

obtained from the a priori user activity probability pn (see (2.14)). In this work, we set

w to 1/(K − 1), meaning that the weight of the average of L[k]
E,n is identical to that of

LA,n. The extended algorithm employs L̃[kc]
A,n instead of LA,n. Note that L̃[kc]

A,n evolves

through a frame.

Fig. 3.2 illustrates the evolution of L̃[k]
A,n when the symbol index k varies from 1

to K. The extrinsic user activity LLR L
[k]
E,n and a priori user activity LLR LA,n are

initialized with 0 and ln pn/(1−pn), respectively. First, when the received vector y1 is

used as an input to MAP-AUD/DD, onlyLA,n is used as the a priori LLR (L̃[1]
A,n). Next,

when y2 is used as the input, the output of MAP-AUD/DD, L[1]
E,n, after processing y1,

as well as LA,n are used as the a priori LLR (L̃[2]
A,n). In general, when ykc is used as the

input, {L[k]
E,n}k=1:(kc−1) as well as LA,n are used as the a priori information (L̃[kc]

A,n).

As the number of received vectors k increases, L̃[k]
A,n becomes more reliable because

more extrinsic information serves as the a priori information and, more importantly,

because only extrinsic information is aggregated. Moreover, noting that we can fully

exploit the group sparsity only after receiving the entire frame (because {L[k]
E,n} is

partially filled), we can further improve the performance by the frame iteration. In the

frame iteration, MAP-AUD/DD is performed for the whole frame once again using the
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updated {L[k]
E,n}k=1:K as a priori information. In Table 3.1, the extended algorithm is

summarized.
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Table 3.1: Summary of the extended algorithm

Input: {pn} (user activity probability)

Output: {x̂k} (estimated symbol vector)

Subscript: n (user index), j (alphabet element index),

k(kc) ((current) symbol index)

Step 1: (Initialization)

kc = 1, L[k]
E,n = 0 (1 ≤ n ≤ N, 1 ≤ k ≤ K)

Step 2: (Symbol reception) /* Receive the symbol vector ykc . */

Step 3: (Modified a priori activity LLR)

L̃
[kc]
A,n = LA,n + 1

(K−1)

∑
k 6=kc L

[k]
E,n /* (3.4) */

Step 4: (MAP-AUD/DD) /* Perform MAP-AUD/DD using L̃[kc]
A,n. */

Obtain L[kc]
E2,n,j

(∀n ∈ Skc) from MAP-DD. /* (2.27) */

Obtain x̂kc from MAP-DD.

Obtain L[kc]
E1,n,j

(∀n ∈ Skc) from additional MAP-AUD. /* (3.2) */

Step 5: (Extrinsic activity LLR) /* Obtain L[kc]
E,n. */

L
[kc]
E,n =

 ln
∑|A|

j=1 exp
(
L

[kc]
E2,n,j

)
, for n ∈ Skc

ln
∑|A|

j=1 exp
(
L

[kc]
E1,n,j

)
for n ∈ Skc

Step 6: (Iteration) /* Perform MAP-AUD/DD if kc ≤ K. */

/* In the frame iteration, skip step 2. */

kc = kc + 1 and then go to step 2 or 3.

Step 7: (Frame iteration) /* Repeat until stopping conditions are met. */

kc = 1 and then go to step 3.
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Chapter 4

Numerical Results

4.1 Simulation Setup

We simulate the uplink of an underdetermined mMTC system in which the number

of users N is much larger than the spreading factor M (N � M ). We generate each

spreading sequence vector sn by an i.i.d. complex Gaussian random vector (sn ∼

CN (0, IM )) and then scale it as ‖sn‖2 = 1. We consider the frequency-flat Rayleigh

fading channels between users and the BS generated by an i.i.d. complex Gaussian

variable CN (0, 1). Thus, the average symbol SNR is set to 1/σ2
v . In this work, we

terminate the iteration when ‖r(l)‖2 ≤ 10−3. In Table 4.1, the simulation parameters

are summarized.
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Table 4.1: Simulation Parameters
Parameter Parameter Value

N : User number 32

M : Spreading factor 8

K: Frame length 64

A: Symbol alphabet {−1, 1} (BPSK)

Simulation iteration ≥ 10000
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As a reference, we use OMP [14] and SOMP [22] which is the group version of

OMP. As a conventional technique exploiting the a priori information on user activ-

ities, we use the fast Bayesian pursuit algorithm (FBPA) (with searching parameter

D = 5) [25] and SF-OMP [32]. In particular, we use the genie-aided SF-OMP (GA-

SF-OMP), which has perfect knowledge of the variance of interferences (correspond-

ing to undetected user signals). Note that GA-SF-OMP is actually unrealistic and rep-

resents the performance upper-bound of SF-OMP. In addition, we use GA-SF-SOMP

which is a combination of SOMP and GA-SF-OMP as a reference for exploiting the

group sparsity. Lastly, we use MMSE and Oracle MMSE/ML to represent the lower

and upper bound of the performance, respectively. Since the references (except for

MMSE/ML) need a normalized channel matrix, we slightly modify the system model

as

y = Ax + n = ÃDx + n = Ãx̃ + n (4.1)

where Ã is the column-normalized channel matrix, D is the diagonal matrix having the

l2-norms of the column vectors as diagonal elements, and x̃ = Dx. In the simulation

of the references, x̃ is initially estimated and then scaled to x. Note that our algorithm

does not require this modification at all.

As a performance measure, we use the successful AUD probability and the net

SER as well. The net SER is the symbol error rate of active users and is defined as

Net SER = 1− P (AUD success ∩ symbol detection success) .

We set the activities of all users to be equal (i.e., pn = p for all users) for simplicity.

Note that the proposed algorithm can also be applied to scenarios having different user

activities.
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Figure 4.1: (a) AUD success probability as a function of the average SNR.
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Figure 4.1: (b) Net SER as a function of the average SNR.
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Figure 4.2: (a) AUD success probability when the group sparsity is exploited.
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Figure 4.2: (b) Net SER when the group sparsity is exploited.
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Figure 4.3: (a) AUD success probability when the interference covariance matrix is

approximated to be diagonal.
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Figure 4.3: (b) Net SER when the interference covariance matrix is approximated to

be diagonal.
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Figure 4.4: (a) AUD success probability when a priori user activities are incorrect.
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Figure 4.4: (b) Net SER when a priori user activities are incorrect.
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Figure 4.5: (a) AUD success probability for the various frame lengths.
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Figure 4.5: (b) Net SER for the various frame lengths.
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Figure 4.6: (a) AUD success probability for the various user activities.
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Figure 4.6: (b) Net SER for the various user activities.
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Figure 4.7: (a) AUD success probability for the various spreading factors.
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Figure 4.7: (b) Net SER for the various spreading factors.
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4.2 Simulation Results

Fig. 4.1 shows the AUD success probability and the net SER when the group sparsity

is not exploited. In this figure, the dashed and solid lines indicate the performance

when p = 0.1 and p = 0.05, respectively. We clearly observe that the proposed al-

gorithm performs best among all algorithms under test and MMSE shows very poor

performance since the system is underdetermined. Overall, algorithms exploiting the

a priori distribution outperform algorithms without exploiting it. FBPA shows quite a

good performance. However, since FBPA assumes that the transmit symbol vector x is

a Bernoulli-Gaussian mixture which is not necessarily correct, there is substantial per-

formance gap from the proposed algorithm. Though the proposed algorithm performs

best, the net SER gap between Oracle MMSE/ML and the proposed algorithm is quite

large even in the high SNR regime. This is because the AUD is still not perfect. We

can deduce from this observation that the gap can be bridged if we enhance the AUD

performance by exploiting the group sparsity.

Fig. 4.2 shows the AUD and net SER performance when p is set to 0.1 and the

group sparsity is exploited, where IT denotes the number of the frame iterations. Note

that we do not include the results of FBPA and MMSE since they do not exploit the

group sparsity. We observe that as the SNR increases, the AUD success probability of

the proposed algorithm becomes close to one and the net SER approaches the Oracle

ML performance. We see that two frame iterations are sufficient in achieving near

optimal performance. In the low SNR regime, GA-SF-SOMP performs slightly better

than the proposed algorithm. Note that GA-SF-SOMP has the perfect knowledge of

the variance of interferences in each iteration, which is not possible in practice.

Fig. 4.3 shows the influence of the diagonal approximation to the computation

of the covariance matrices (see Section 2.2.4). In this simulation, p is set to 0.1. We

observe that the approximation does not degrade the performance in the low SNR

regime. This is because the noise dominates the distortion caused by the approximation

in this regime. In the high SNR regime, we see a high net SER floor caused by the
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approximation. However, this performance loss is significantly reduced after two frame

iterations.

Fig. 4.4 shows the tolerance of the proposed algorithm for the accuracy of p. In

this simulation, p is 0.1, and each user is active with the activity probability of p on the

transmission side but pr distributed between p−0.05 and p+0.05 uniformly at random

is used as the a priori activity probability on the reception side. Therefore, pr can be

different for each user. We observe that the performance loss caused by the inaccurate

a priori information is reduced as the number of frame iterations increases. This is

because the effect of the extrinsic activity information LE learned from the group

sparsity on the performance is higher than the a priori activity information LA derived

from the (erroneous) pr after the frame iteration. Recall that the modified a priori L̃A

(composed of LE and LA) is used when the group sparsity is exploited.

Fig. 4.5 shows the performance for various frame lengths, where the dashed and

solid lines indicate the performance at 5 dB and 20 dB SNR, respectively. In this simu-

lation, we set p to 0.1 and then investigate the performance at the transition SNR (5 dB)

and the AUD-saturated SNR (20 dB). We observe that the performance improves with

the frame length. However, the AUD performance of SOMP is not perfect even at the

20 dB SNR. The AUD performance of GA-SF-SOMP also saturates at 0.98. This is

because SOMP and GA-SF-SOMP use the correlation between the received vector and

the column vectors of the channel matrix as an activity decision statistic. This statis-

tic is not a good choice when the column vectors are highly correlated. At the 5 dB

SNR, as the frame length increases, the AUD performance of GA-SF-SOMP becomes

slightly better than that of the proposed algorithm. However, the net SER performance

of GA-SF-SOMP is still worse.

Fig. 4.6 shows the performance when the user activity probability p varies from

0.05 to 0.3, where the dashed and solid lines indicate the performance at 5 dB and

20 dB SNR, respectively and the net SER of the oracle ML in case that p > 0.2 is not

shown due to infeasible simulation time. We observe that as p increases, the perfor-
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mance of SOMP and GA-SF-SOMP is degraded but the performance of the proposed

algorithm is not affected much. When p is higher than 0.2, the diagonal approxima-

tion and the erroneous pr deteriorate the net SER at the 20 dB SNR. This is because

the interference becomes the dominant factor as more users are active. However, the

performance is still much better than SOMP, GA-SF-SOMP, and even Oracle MMSE.

We also observe that the performance of the proposed algorithm is close to that of the

Oracle ML performance at the 20 dB SNR.

Fig. 4.7 shows the performance for the various spreading factors, where the dashed

and solid lines indicate the performance at 5 dB and 20 dB SNR, respectively. In this

simulation, p is set to 0.1, the number of users N is set to 64, and the spreading factor

M varies from 8 to 32. We observe that the performance is improved with M because

the system becomes less underdetermined. To accommodate the massive connectivity

of mMTC, the performance of small M/N is important. In this case, the proposed

algorithm outperforms SOMP and GA-SF-SOMP by a large margin.
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Chapter 5

Conclusion

In this dissertation, we proposed a MAP-based active user and symbol detection algo-

rithm and the extended version exploiting group sparsity, and demonstrated its perfor-

mance in the mMTC scenarios. Our work is motivated by the observation that most

greedy algorithms use the correlation between the modified received vector and the

column vectors of the channel matrix to determine the user activity, but this correla-

tion may not be a good decision statistic because it does not reflect the distributions of

such factors as users, channels, and noise. In this work, we instead used the a posteriori

activity probability as a decision statistic. By exploiting the finite alphabet constraint,

we jointly detected the active user and its soft symbol. The soft symbol information

is refined and then used as the a priori information for the detection of the other ac-

tive users. After completing the iterations, the soft symbol information is converted

into the activity information. By aggregating the activity information of the multiple

received signal vectors having the common activity, we could achieve the substantial

improvement in the AUD performance. In this sense, our scheme is distinct from the

conventional approaches that employs the accumulated correlation of the multiple vec-

tors to enhance the AUD performance. From numerical experiments, we demonstrated

that the proposed algorithm achieves significant gain in terms of the AUD success

probability and the net SER over conventional greedy algorithms.
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초록

사물 인터넷 (Internet of Things, IoT) 시대의 도래와 함께, 대규모 사물 통신

(massive machine-type communications, mMTC)은 차세대 무선 통신 표준의 주요

요구 사항들 중의 하나가 되었다. 대규모 사물 통신 환경에서는 많은 수의 사물

기기(machine-type device)들이 대부분 비활성 상태로 데이터를 전송하지 않다가

가끔씩 활성 상태로 전환되어 작은 크기의 데이터를 전송한다. 그러므로, 기지국

(base station, BS)으로부터의 스케쥴링을 기반으로 직교(orthogonal) 시간/주파수

자원을 할당받은 후 데이터 송수신이 이루어지는 기존의 통신 방식은, 실제 전송

하려는데이터대비많은부가적인제어정보를필요로하고또한데이터의지연을

유발시키므로대규모사물통신에적합하지않다.대신,전송단에서는스케쥴링없

이,즉기지국으로부터의승인없이(grant-free),비직교자원에다중접속하고(non-

orthogonal multiple access, NOMA),수신단에서는다중사용자검출(multi-user de-

tection, MUD)을이용하여데이터의충돌을복조해내는방식이대규모사물통신에

적합하다. 이 때, 사물 기기들이 전송하는 데이터의 희소 특성을 감안하면, 압축 센

싱 기반의 다중 사용자 검출 방법(compressive sensing-based multi-user detection,

CS-MUD)이일반적인다중사용자검출방법보다더좋은성능을발휘할수있다.

본 논문에서는, 기존 방식보다 더 좋은 성능을 가진 새로운 압축 센싱 기반의

다중사용자검출방법을제안한다.부연설명하면,가장큰사후활성확률을가진

사용자를 찾고(maximum a posteriori probability-based active user detection, MAP-

AUD), 역시 사후 확률 관점에서 가장 확률이 높은 데이터를 추정한다(maximum

a posteriori probability-based data detection, MAP-DD).이때, MAP-AUD와 MAP-
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DD 블록은 서로 외재적 정보(extrinsic information)만을 주고 받는데, 이 외재적 정

보는상대방의사전정보가되고,이사전정보를이용하여다시사후확률관점에서

최적의 해를 구한다. 이러한 반복 수행을 통해 각 블록은 검출의 정확도와 성능을

높여나간다.

이방법은패킷단위로확장될수있다.각각의사물기기들이전송하려는데이터

는여러개의심볼로구성된패킷이며,한패킷내의각각의심볼은공통된활성도를

가지게 된다. 여기서, 이 공통된 활성도를 이용하면, 활성 사물 기기와 이들의 전송

데이터추정의정확도를높일수있다.하지만,이는공동최적화(joint optimization)

문제로 매우 복잡한 연산을 필요로 한다. 본 논문에서는, 패킷 내의 임의의 하나

의 심볼에서 추정된 사물 기기의 활성도는 다른 심볼의 활성도를 추정하는데 사전

정보(a priori information)로 이용될 수 있다는 점에 착안하여, 복잡한 공동 최적화

문제를비교적연산량이적은부분최적화(subproblem optimization)문제로단순화

시키고, 이들 간에 메시지 전달 (massage-passing) 기법을 통해 공동 최적화의 해에

근접한해를구하는방법을제안한다.이때,부분최적화문제의해법이바로앞에

설명한MAP-AUD/MAP-DD방법이다.

마지막으로, 모의 실험을 통해 제안하는 방법이 기존 방법과 비교했을 때 매우

크게성능이향상됨을보였다.특히,제안하는방법은전체사용자수대비이용가능

한자원이적을때일수록더큰성능향상이있는데,이는차세대무선통신에서사물

통신이고려하는단위면적당사물기기의수(106개/km2)를고려했을때,제안하는

방법이대규모사물통신에아주효용성이큼을보여준다.

주요어:대규모사물통신,압축센싱,비직교다중접속,다중사용자검출

학번: 2016-30214
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