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Abstract

Massive machine-type communication (mMTC) has become one of the most im-
portant requirements for next generation (5G) communication systems with the advent
of the Internet-of-Things (IoT). In the mMTC scenarios, grant-free non-orthogonal
multiple access (NOMA) on the transmission side and compressive sensing-based
multi-user detection (CS-MUD) on the reception side are promising because many
users sporadically transmit small data packets at low rates. In this dissertation, we pro-
pose a novel CS-MUD algorithm for active user and data detection for the mMTC sys-
tems. The proposed scheme consists of a MAP-based active user detector (MAP-AUD)
and a MAP-based data detector (MAP-DD). By exchanging extrinsic information be-
tween MAP-AUD and MAP-DD, the proposed algorithm improves the performance of
the active user detection and the reliability of the data detection. In addition, we extend
the proposed algorithm to exploit group sparsity. By jointly processing the multiple re-
ceived data with common activity, the proposed algorithm demonstrates dramatically
improved performance. We show by numerical experiments that the proposed algo-

rithm achieves a substantial performance gain over existing algorithms.

keywords: massive machine-type communications (mMTC), compressive sensing-

based multi-user detection (CS-MUD), maximum a posteriori probability (MAP),

active user detection (AUD), group sparsity

student number: 2016-30214
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Chapter 1

Introduction

With the advent of the Internet-of-Things (IoT) era, machine-type communications
have received a great deal of attention in recent years. In fact, we are witnessing a trend
that numerous machine-type devices, such as mobile devices, machines, and sensors,
are connected to the internet via wireless links [1]. In accordance with this trend, the
International Telecommunication Union (ITU) defined massive machine-type commu-
nication (mMTC) as one of representative service categories for next generation (5G)
wireless systems [2]. The mMTC focuses on the uplink communication of a large
number of devices that sporadically transmit short-sized packets with low transmis-
sion rates to the base station (BS) [3]. In the mMTC perspective, the conventional
multiple access mechanism in which the BS allocates orthogonal time and frequency
resources to each user through complicated scheduling is not relevant since it will
increase the signaling overhead and latency significantly [4, 5].

To overcome these shortcomings, grant-free non-orthogonal multiple access (NOMA)
approaches have been proposed in recent years [6-9]. In the grant-free multiple access
scheme, since the BS is not aware of the users transmitting information, an operation to
distinguish active users from all possible potential users needs to be performed before
data detection. When the number of active users is small, i.e., user activity is low, com-

pressive sensing based multi-user detection (CS-MUD) is a good choice to solve the



problem at hand since it outperforms the classical MUD based on linear least-square
(LS) and minimum mean square error (MMSE) detection [10]. Overall, CS-MUD can
be classified into two categories: convex optimization based algorithms and greedy al-
gorithms. The former formulates CS-MUD as an LS problem regularized by a sparsity
promoting term, which is solved by convex optimization techniques [11-13]. The lat-
ter iteratively finds an active user and removes its vestige from the received signal in
a greedy fashion [14-16]. Due to the computational benefit and competitive perfor-
mance, greedy algorithms have been popularly used in the mMTC scenarios [17-21].

In finding out active users, most greedy algorithms rely on the correlation be-
tween the modified received vector (called residual) and the column vector (which
corresponds to a user) of the channel matrix! as a decision statistic because the cor-
relation is a simple yet effective statistic to test the user activity [21-24]. In [21], a
group orthogonal matching pursuit (group OMP or GOMP) exploiting common spar-
sity caused by a frame structure has been proposed. It is similar to the simultaneous
OMP (SOMP) [22] in that both enhance the detection performance by accumulating
the correlation for a group of symbols. In [23], an iterative order recursive least square
(IORLS) has been proposed. IORLS enhances GOMP by employing the whole sym-
bols in a frame. In [24], a prior-information aided adaptive compressive sensing (PIA-
ASP) have been proposed. PIA-ASP uses the temporal correlation between activities
of adjacent symbols. Clearly, using the correlation is simple and easy, but the selection
of a user having the maximum correlation may not be the right choice depending on
the distribution of the channel matrix, the transmit data, and the noise. To address this
problem, greedy algorithms called Bayesian pursuit algorithm (BPA) have been pro-
posed [25,26]. Since BPA exploits the a priori distribution of the transmit data and the

user activity, it performs better than the correlation-based greedy algorithms. However,

!'The channel matrix (a.k.a. the sensing matrix and/or the dictionary in the CS literature) is the matrix
which represents the relationship between the received vector and the transmit vector containing the data

of all active and inactive users.



the performance depends heavily on the reliability of the a priori information.

In CS-MUD, the data detection is as important as the active user detection be-
cause the vestige of detected users has to be removed to form a residual signal. The
commonly used data detection schemes are subspace projection methods such as LS
and MMSE detection [21,23-25,27]. Using a finite alphabet constraint of the transmit
data, the detection performance can be further improved [28-32]. In [28-31], sparsity-
aware sphere detection (SA-SD) has been proposed. SA-SD performs close to the max-
imum likelihood (ML) detection but it requires considerable computational complexity
caused by the combinatorial list search and the burdensome preprocessing (e.g., QR-
decomposition). In [32], soft-feedback OMP (SF-OMP) has been proposed. SF-OMP
improves the reliability of the data detection by the subspace projection followed by
the sigmoid-like slicing. However, the performance of SF-OMP highly depends on the
channel matrix structure.

An aim of this dissertation is to propose a greedy algorithm that performs the iden-
tification of active users and the data detection simultaneously based on the maximum
a posteriori probability (MAP) criterion. We exploit the finite alphabet constraint of
the transmit data and the common sparsity inferred from the frame structure. The pro-
posed algorithm is distinct from conventional approaches in that the a posteriori activ-
ity probability is used to detect the active user and the soft symbol information based
on the a posteriori probability is used to detect the data. By exchanging extrinsic in-
formation between a MAP-based active user detector (MAP-AUD) and a MAP-based
data detector (MAP-DD), the proposed algorithm improves the reliability of the a pos-
teriori probabilities. Further, we aggregate the activity information of symbols in a
frame to exploit the common activity. The activity information is derived from the soft
symbol information. Using the aggregated activity information as modified a priori
information, MAP-AUD and MAP-DD can enhance the reliability of the soft symbol
information. In view of this, the overall algorithm can be thought as a message-passing

algorithm [33] which employs the activity information as a message. We show from



numerical experiments that the proposed algorithm outperforms conventional greedy
algorithms and in particular, performs close to an ideal detector with perfect knowledge
on the user activity (which is called the Oracle detector) in the high signal-to-noise ra-
tio (SNR) regime.

The rest of the dissertation is organized as follows?. The proposed MAP-AUD
and MAP-DD are discussed in Chapter 2. The extension of the proposed algorithm to
exploit group sparsity is discussed in Chapter 3. The numerical results are provided in
Chapter 4. Lastly, this dissertation is concluded in Chapter 5.

Notation: Boldface lower and upper-case characters represent column vectors and
matrices, respectively. For a matrix A, A~', AT, AT, A# and Ag are the inverse,
pseudo-inverse, transpose, Hermitian transpose, and the sub-matrix with the columns
in S, respectively. For a vector x, X is the sub-vector with the elements in S, || x/|% =
x"T Ax, and ||x||2 = VxHx. For a complex number, R{-} denotes the real part.
For a set A, A, |A| and A; are the complementary set, cardinality, and j-th ele-
ment, respectively. For a random variable, (-) (or E[-]) denotes the expectation and
Cov(x) = E[xx"] — E[x]E[x]". As operators, ® and * denote the Kronecker prod-

uct and convolution, respectively. Lastly, {zy }x—1.x represents {x1,xo, -+ , Tk }.

The details of this dissertation can be also found in [34, 35].
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Figure 1.1: (a) lllustration of the mMTC uplink transmission.
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Chapter 2

MAP-based Active User and Data Detection

2.1 System Model

We consider the uplink transmission from N machine-type devices (which we call
users in the sequel) to the BS. A user is inactive for most of the time and sporadically
wakes up to monitor the physical or environmental condition and then transmit the
information data to the BS, as illustrated in Fig. 1.1(a). We assume that each user and
BS are synchronized, meaning that users switch activity and transmit the data on an
identical time slot basis, as illustrated in Fig. 1.1(b).

The transmit data of an active user n consists of K symbols (which we call a frame
in the sequel) so that the symbol vector is expressed as d,, = [dy 1, dn 2, - - , dp, K]T €
CK.In particular, d,, = O for the inactive user. Note that all elements of d,, have
common symbol activity. Each symbol is spread by a user-specific spreading sequence
vector s,, € CM which is known at the BS and thus the transmit signal vector m,, in a
frame is given by m,, = d,, ® s,, € CMX, We assume that each symbol is i.i.d. and
uniformly drawn from a finite alphabet .A. We also assume that the user activity follows
the i.i.d. Bernoulli distribution with an activity probability of p,, which is known at
the BS. In many applications of mMTC such as smart metering, factory automation,

surveillance, and health monitoring, the information is generated periodically [1] and



the BS exploits a priori knowledge on p,, estimated by statistics.
In this setup, the received signal vector y;, € CM (1 < k < K) can be expressed

as

N
Yie = Z(hn * Sn)dn,k + Vi

n=1

= Axy + vy, (2.1)

where h,, € C™ is the fading channel between a user n and the BS with a length
of 7, A = [aj,a9, -+ ,an]| € CMXN is the channel matrix capturing the spreading
sequences and the fading channels, x;, = [dk,do g, - ,d va]T is the k-th symbol
vector containing all active and inactive user data, and vy, is the additive white Gaus-
sian noise vector (v, ~ CN(0,2I,;)). Note that the last (7, — 1) samples in y;, after
the convolution in (2.1) are omitted based on the assumption that the inter-symbol
interference (ISI) is negligible. This is because the data rate of mMTC is low [1] so
that the symbol duration M is much longer than the multi-path delay profile 7,, (i.e.,
M > 7,,). We assume that the channels between users and the BS are under the block-
fading, meaning that the channel matrix A is invariant during the frame and the BS
has the perfect knowledge of the channels.

In the mMTC scenarios, the number of users is in general much larger than the
amount of resources being used for the transmission (i.e., N > M) and the data
vector xy, is sparse because only a few users are active at a time. In this sense, the
active user and symbol detection problem can be modeled as a sparse signal recovery
problem using multiple received signal vectors {yx}r—1.x. In this chapter, we first
propose an algorithm based on a single received signal vector y; (1 < k£ < K) and

then, in the next chapter, extend it into an algorithm based on multiple received signal

vectors {yx te=1.x-



2.2 MAP-based Active User and Data Detection

In this section, we propose a MAP-based active user and symbol detection algorithm
using a single received signal vector y (= yy). For notational simplicity, we skip the
subscript k indicating the symbol index in this section. Fig. 2.1 depicts the iterative
structure of the proposed algorithm.

In essence, the proposed algorithm consists of two parts: MAP-AUD and MAP-
DD. First, using the a priori user activity information L4 of all users and the soft
symbol information Lg, of detected users in the previous iterations as input, MAP-
AUD finds the user n* having the largest a posteriori user activity probability and then
computes the soft symbol information Lg, of the user n*. To be specific, L, is used
to compute the soft symbols for the users detected in the previous iterations. These soft
symbols are removed from the received vector y in the soft interference cancellation
block (soft IC). Next, using Lg, delivered from MAP-AUD, MAP-DD refines Lg, of
all detected users. The refined L, is then fed back to MAP-AUD, completing one
cycle of the iteration.

MAP-AUD and MAP-DD improve the quality of the active user and symbol de-
tection by exchanging extrinsic information which serves as the a priori information
to each other. We henceforth use the subscripts *1’ and *2’ to denote MAP-AUD and
MAP-DD, respectively. According to this rule, L4, (L4,) and Lg, (Lg,) represent
a priori soft symbol information input to MAP-AUD (MAP-DD) and extrinsic soft
symbol information generated by MAP-AUD (MAP-DD), respectively.
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2.2.1 Activity Log-Likelihood Ratios

In many iterative algorithms, the log-likelihood ratio (LLR) is used to extract extrinsic
information from a posteriori information. In the proposed method, we use two types
of activity LLRs: user activity LLR and symbol-element activity LLR. The user activity
LLR refers to the level of user activity and the symbol-element activity LLR indicates
the level on what element of the alphabet A is active. Note that the user activity is
equivalent to the symbol activity.

The a posteriori user activity LLR L,, is defined as

L) = B =01y

= LE,n(Y) + LA,n (22)

where x,, is the n-th element of the transmit symbol vector x in (2.1),

_ P lzneA)
Len(y) =In 25 (2.3)
and
. Pz, e A
Lan=In 5 =5 =) (2.4)

In a similar manner, the a posteriori symbol-element activity LLR L, ; is defined as

P(xn:A‘y)
L,iy)=1 J = Lg i Lan 2.5
where
Py |z, €A
Lg, =1 2.6
and
P (z, € Aj)
LA :=Ip—""~=-"9/ 2.
And =P (1, = 0) 2.7)

In (2.2) and (2.5), the subscripts E and A represent extrinsic and a priori, respectively.

11



From (2.2) and (2.5), it is clear that

=In > exp(Ln;(y)). (2.8)

Similarly,
lA|

Lan=1n) exp(Lan;). 2.9)
j=1

In particular, if all elements of an alphabet A are equally probable, we have
Lang=Lan—1n|A|l (2.10)

Noting that P(zn, = 0) + 3_ 4 c 4 P(#n = A;) =1, we have

exp (L Aqy.q
1+ Zj:l exp (Lan,j)
1
P(z,=0)= A . (2.11)
L+ Zj:l exp (Lan,j)
In particular, if P(z, = 0) < 1, we have
exp LA7 J
P (wn = A) ~ 5 (Bang) (2.12)
Zj:l exp (Lan,j)

Note that {Lnj}j—1:.4] and {Lgn j};j—1..4 has one-to-one correspondence with
[P(en = A}y U{P(n = 0)} and {P(yln = A3} UL Pyl = 0)}.
In this sense, { L., }j=1:/.4] a0d { L g n; } j=1.|.4| can be considered as the soft symbol

information.

2.2.2 MAP-based Active User Detection

The goal of MAP-AUD is to find the user having the largest a posteriori user activ-

ity probability among undetected users. Let SU—1) be the support! of the (I — 1)-th

!Support is an index set of non-zero elements which corresponds to detected users.

12



iteration, then the index of the user maximizing a posteriori user activity probability
is
n* = argmax Ly, (y)
neg(l_l)
(@)

= argmax | In Z exp (Le,n; (¥) + Lany)
nes! AjeA

—~
=

= argmax | In Z exp (LE g (¥)) + Lan

nes! =Y AjeA
(é) arg max (max Lgim;(y)+ LA,n) (2.13)
nes!—V J

where (a) is from (2.5) and (2.8), (b) is from (2.10), and (c) is from max-log approx-
imation (i.e., In Zj exp(L;) ~ max; Lj;). From (2.13), it is clear that we need both
Lay,and Lg, , jto find n*.

Using the a priori user activity probability p,,, we have

(2.14)

To exploit the soft symbol information of the previously detected users delivered from
MAP-DD, we modify Lg, » ; in (2.6) as follows:

Py |zn=A))

Exs(H) [P (y | 20 = Ajvxsufw)]

Ex oy [P (¥ |20 =0,x501)]

LEl,n,j (Y) =1In

2
“ Exs(lfl) exp <—Hy — ;x)iai — Aja, o 1)]
a ; -1 ciV-
< 1n ics - (2.15)
E exp | —|ly — > x;ia;
Xg(1-1) [ p( yie§71; 7 Cgf)l)]

where (a) follows from the Gaussian approximation of the interference-plus-noise vec-

tor and

c¥) = Cov > maitv|. (2.16)
i#niest Y

13



Since the direct computation of (2.15) is intractable due to the large number of combi-
nations in X g1y, we instead use the approximation that Exs (4-1) [exp(+)] ~ exp(ExS 1) []).
This approximation is accurate when the user indices chosen in the previous iterations

are perfect and the symbol detection errors are also negligible (see the end of this

2
i€tV cy !

LEl,n,j (y) ~ ln 2
exp (Exs<11) [_ C(l)_1]>

H
= R{ <2Aj <y - szZh) —‘Aj’23n> Cg)_lan} (2.17)

iest—1

section). Under these assumptions, (2.15) can be approximated as

exp (Exs(zn [—Hy — > xia; — Aja,

y =2 ziay
ies(=1

where r(‘~1) is the residual vector from the previous iteration (see Fig. 2.1). By denot-
ing the a priori LLR of z; (i € S(l_l)) as L4, ; ;, the soft symbol Z; in (2.17) can be
expressed as

(@) 2a,ea P (Layig) A

T; = Plr;,=A)A; = (2.18)
AjZeA ( )4 2 a,ea P (Lay i)

where (a) is from (2.12) because z; is highly likely to be active (i.e., P(x; = 0) < 1)
based on the assumption that the user indices chosen in the previous iterations are per-
fect. In (2.18), L4, ; ; consists of L 4 ; ; derived from p; and Lg, ; ; delivered from
MAP-AUD. Since p; is the user activity information, it does not contain any informa-
tion about what alphabet element in A the symbol x; is generated from. Therefore, by

applying the equi-probable alphabet assumption, from (2.10), we have
Lavij=1Laij+ Leyij=Lai—W|Al+ Lpg,;. (2.19)

Combining (2.18) and (2.19), we have
o aea® P (Lai — AL+ Liyi) Ay
v > aeaexp(La; —In|Al + Lp, ;)
2 a;eaXP (Liyjig) A
a ZAjeA exp (Lg,,ij)

14



where i € S~ Note that T; depends only on the extrinsic LLR L, ; ; delivered
from MAP-DD.

In (2.14) and (2.17), we obtained the statistics L4, and Lg, , ; to identify the
active user index n* in (2.13). Once the active user index n* is found, the support set
is updated as S® = SU=D U {n*} and the extrinsic LLR {LEy njtn=n*j=1:4] 19
delivered to MAP-DD.

Proof of the Approximation Ey _, [exp(+)] ~ exp(ExS a_n D

Recall the assumption that the identified user indices of the previous iterations are per-
fect and the symbol detection errors are also negligible. Hence, for all user indices n €
SU=1, P (x,, = 0) < 1 and there exists an alphabet element A;« which has the dom-
inant probability; P (z, = Aj«) ~ 1and P (z, = A;j) < 1forall j € A— {j*}. We
take such j* for each user. Subsequently, because 0 < exp (—||f (xgu-1) I5-1) <1

(>i.e., lower/upper-bounded), we have

Ex__yy [exp (—IIf (xs0-0) [-1)]
= Y exp (= (xsa-1) Ig-1) P (xsa-1)

XS(l_l) [SY)
~exp (—IIf (Xsa-1) I&-1) (2.21)

where f(xgu-1)) is an arbitrary affine function of xgu-1) (see (2.17)), 2 is the set of
T
all possible combinations of X gu-1), and X5,y = |:./4j’1“, e ,Ajl*_l:| . Similarly, we

have

exp (Exs(l,l) [—IIf (xsa-1) ||2c—1D

~ exp (—||f (X5a-1) ||%,1) . (2.22)

Combining (2.21) and (2.22), we have the desired approximation as

Exs(l_l) [exp (—”f (Xsa-1) H%}*l)]

~ exp (Exs(l_l) =11 (xsa-1) Hé,l]) . (2.23)

15



2.2.3 MAP-based Data Detection

The goal of MAP-DD is to obtain the extrinsic LLR Lg, ,, ; of all user indices in
SW®_ This information will be fed back to MAP-AUD for the next iteration and will
also be used for the symbol detection when the iterative processing is completed. In
a nutshell, MAP-DD consists of two processes: update and augmentation. The update
process refines L, 5, ; of all user indices detected in the previous iterations and the
augmentation process then adds Lg, .+ ; of the newly detected user index into the
updated L EQ,mjz. After MAP-AUD, the received signal vector y can be decomposed

as

y = Z T;a; + Tpxans + Z T;a; +v (2.24)
ieSt=1) )

where z,,+a,* +Eie§(l) x;a; is the interference in the previous iteration. Since L g, + j,
which corresponds to the soft symbol information on z,, is available thanks to MAP-
AUD, we can refine Lg, ,, j by excluding x,,+a,« in (2.24) from the interference.

In MAP-DD, we exploit the soft symbol information on x,,, which is Lg, , ; ob-
tained in the previous iteration and Lg, ,+ ; delivered from MAP-AUD. Similar to
MAP-AUD, we modify Lg, 5, ; in (2.6) as follows:

Py a0 = A)
P(y[zn=0)
EXTTEZ) [P(y[wn =Aj, X7’,£”>:|

EXT#){P(}’M% = O,Xﬁl))}

LEQ,n,j (Y) =1In

2

Ex_, |exp Hy — > zia; — Ajay,
@ " ieT) Lo
< In (2.25)

16



where 7, = S0 — {n} and (a) is from the Gaussian approximation of the interference-

plus-noise, and

I =cov| > ma+v|. (2.26)

ies?
Note that the newly detected component x,,»a,« is removed from the received signal
vector y and hence does not contribute to the interference-plus-noise covariance matrix
'V, Similar to MAP-AUD, we assume that the identified user indices are perfect and
the symbol detection errors are also negligible. In this setting, (2.25) can be rewritten

as

LEQ,n,j (Y)

2

exp E"T(D —Hy - > xa; — Aja,

iE'TTSl) F(l)—l
~ In
2
exp | Ex_, —Hy—Zmiai
Tn i67’1£l) -1
H
=R 245 [y~ Y i | - |4 8, | TO a, & . 2.27)

ieT,V
By denoting the a priori soft symbol information on x; as L 4, ; j, the soft symbol x;

in (2.27) can be expressed as

Yoneaexp (Layij) Aj
Ti=» Plwi=A)A~ Al 2 (2.28)
AeA > a,e XD (Layij)
J

where L4, ; ; = Lg, n+ ; (delivered from MAP-AUD) if i = n* and L4, ; ; = LE, ; ;
(obtained in the previous iteration) otherwise. This update process is applied to all
user indices n € SU—Y_ After finishing the update process, L E1,n+*,; 18 added into the
updated LLR set.

The augmented {L g, nj},es0) j1.).4) i then fed back to MAP-AUD for the next

iteration. The iteration lasts until all active users are detected. Specifically, an iteration
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stops when the magnitude of the residual vector ||r(!)||5 is smaller than the predefined
threshold. After the final (L-th) iteration, symbol detection is performed by finding the
alphabet index j* maximizing L, , ; for each user index n € S (L), In Table 2.1, we

summarize the proposed algorithm.
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Table 2.1: Summary of the proposed algorithm

Input: A (channel matrix), y (received vector),

o2 (AWGN variance), {p,} (user activity probability)

Output: X (estimated symbol vector), S (support set)

Subscript: n (user index), j (alphabet element index)

Step 1: (Initialization)
S(O) =, {LEg,n,j} =@, l=1.

Step 2: (MAP-AUD) Find n* and deliver {Lg, - ;} to MAP-DD.

LA,n = lnpn/ (1 _pn)-

H
LEing =R (2Aj (y - Exz-az) - ‘Aj|23n> cV1a,

iest=1
ZAjeA eXP(LEz,i,j)Aj
2ajea exp(Limy,ij)

where T; =

n* = arg max -1 (maxj L, nj+ Lan).
Step 3: (MAP-DD) Refine {LE, 5 j}pes0-1)-

/* At the first iteration, skip this step. */

T = SN U {n*} — {n}.

H
B — 2 -1
Lg,nj =R 245 |y — X mai | — ‘Aj’ an | T an
eV
ZAieA eXp(LElﬂ'vj)‘Aj e *
: if 1 = n*,
h _ ZAjeAeXP(LEM»J')
where T; = I A
EAjeAexp( E2,i,j) J .
otherwise.

E.Aj €A eXp(LE2’i=j)

Step 4: (Augmentation) Add n* into S¢—1).

S® = sty {n*}.

{LE%n,j}nes(l) = {LE%nvj}nes(lfl) U {LElvnvj}n:n*'
Step 5: (Iteration) Repeat until stopping criteria are met.

! =1+ 1 and then go to step 2.
Step 6: (Final results)
Aj: where j = argmax; Lg, ,; ifn¢€ S,

Tp =
0, otherwise.
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2.2.4 Inversion of Covariance Matrices

In the computation of Lg,  ; in (2.17) and Lg, , ; in (2.27), we need to compute
the inverse covariance matrices C,(f)_l and T'()=1, This operation is computationally
burdensome because Cg)fl and TW=1 should be computed for every user in every
iteration. To reduce the computational complexity associated with the covariance ma-
trix inversion, we exploit a recursion-based approach in this work. The key idea of
this approach is to compute Cg)flan and T'®~la, instead of Cg)fl and T (see
(2.17) and (2.27)).
First, it is clear from (2.16) and (2.26) that

Cg) = Cov Z ria; +v

i#n,ieg(lil)

= Cov Z T;a; — Tpay, +V
ies =Y
=10 _ g,a,al (2.29)
where B, = |n|? = (1/|A]) 32 4,e4PnlAj|? It is also clear from (2.26) that r®

satisfies a recursive equation as

) = Cov Z ria; +v
ies"

= Cov g T;Q; — Tprx@px + V

ies=Y
=1 — g .a,-all. (2.30)
and
r® =21, + ABAY (2.31)

where B = diag([f1, B2, --- , Bn]T). Applying the matrix inversion lemma? to (2.29)

(X +raa) b =X"b- (Z23%E ) X 'a

1+raH Xa
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and (2.30), we have

1
-1, _ I-1)—1
CVla, = (1 G AT T an> ri-H-la, (2.32)

and

Hp(-1)-1
-1, _ pl-1)-1 Brray T an (1-1)—1
T an, = T an (1 _ Bn*al{*r(l_l)_lan* r Ap*. (233)

Clearly, matrix inversion is unnecessary in the computation of C,(f ) _1an and (O 1a,

except for the first iteration. This recursion-based covariance update approach is de-

picted in Fig. 2.2 where (a) and (b) mean (2.32) and (2.33), respectively.
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Figure 2.2: Recursion-based covariance update.
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In case that the user-specific spreading sequence s,, is randomly generated and
independent from each other, the covariance matrix I'® can be approximated as

rO = 3 Baall + o2y
ies
~ diag Z Bia;all | + 021y,
ies®
= ) B diag (asaf’) + 0oLy (2.34)
ies®
We can explain the validity of the approximation in (2.34) with an example. First,
recall that a; = h; * s; (see (2.1)) and let h; be [hz‘,o, hivl]T as an example, then
ai,ja;jﬂ = |hi,1|25i,j—13f,j + hi70hf,1’5i,j’2 + hf,ohi,lsi,j—lsf,jﬂ + |hi,0‘25i,j3;j+1
where a; ;, h; ;, and s; ; denote the j-th element of a;, h;, and s;, respectively. Since
the channels {h, },—1.n are independent from each other, the summation (Zieg(z))
of the second and third terms (h; 0h} |sij|* and R} ghi18i 5157 ;) will vanish if the
number of the summed items is large enough. The other terms will also vanish after
the summation under the assumption that s,, is randomly generated and independent
from each other. In this way, we can easily show that I'") can be approximated as a
diagonal matrix.
Using this diagonal approximation, we have
N
r® = o1, + Z B;diag (aiaiH) ,
i=1
Cg) —ri-D _ B, diag (anaf) ,

r® =cl. (2.35)

Since Cg) and T'") are diagonal, we can easily compute Cg)fl and T(O-1,

2.2.5 Comments on Complexity

In this section, we analyze the computational complexity of the proposed algorithm.

We use the well-known OMP algorithm as a reference [14]. In analyzing the com-
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plexity, we count the complex floating point operation (FLOP) such as addition and
multiplication.

First, we analyze the complexity of OMP. OMP finds an active user by choosing a
user having maximum correlation between the residual vector r(‘~1) and each column
vectors of the channel matrix A in the [-th iteration, i.e., {r(l_l)H an}neg<l,1>. Since

r(=Y e CM | the complexity of this identification step is
L
G = Z OM(N —1+1)~2LMN (2.36)
=1

where L is the total number of iterations. After the identification step, OMP esti-
mates the data of all detected users, Xg), by projecting the received vector y to
the subspace spanned by the column vectors corresponding to the detected users, i.e.,
X = A;U)y = (Agl)AS(l))*lAgl)y. We approximate the complexity of the in-
version of a matrix X € C*! as 13/3 [36]. Since Agn) € CM*!, the complexity of

this projection step is

L

I3 1 1

=% {Ml(l P14 2MI4 252} ~SDM Ll @A)
=1

Lastly, the residual vector r(=1 js updated to r) = Y — Agsw x5 . The complexity

of this update step is

L
Cy = Z {2M1+ M} ~ L*>M. (2.38)
=1

Combining (2.36), (2.37), and (2.38), the total complexity of OMP is

1 1
Comp ~ 2LMN + gL3M + L2M + EL4. (2.39)

Now, we analyze the complexity of the proposed algorithm. First, we count FLOPs

for {T©1a,},_.n. Using T® = 21, + ABAH = 521, + (ABz)(AB2)H
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(see (2.31)), the complexity of {T'O~1a,}, .y is

1
Cpret = M(M +1)N + MN + M + §M3 + 2M?N

~—~— ——
r© r@-1 (r-1a 1

1
~ 3M?N + gM3. (2.40)

From (2.32) and (2.33), the complexity of {Cg)_lan}negm and {I‘(l)*lan}neg(z) is

L
Cprez = Y _(TM + 6)(N — 1) = TLMN. (2.41)
=1
In the proposed algorithm, the (modified) correlation is Fg;l)HCg )_lan where Fﬁf;l) =

24,1 — | A;]%a, (see (2.17)). The complexity of {Fi{ng)*lan}neg(zq) =LAl
is
L
Crniap-aup ~ Y 2lA[M(N — 1) ~ 2| A|ILMN (2.42)
=1

where we ignore the complexity of r,, ; for simplicity since it is not a main factor.
Since the operation of MAP-DD is similar to that of MAP-AUD (see (2.27)), we can
easily show that

L
Cyapop = Y _ 2/ AIMI ~ |A|IL*M. (2.43)
=1

Lastly, the complexity of the conversion from a LLR to a soft symbol (see (2.20) and
(2.28)) is

L
3
Cur = Y _3lAll~ 5|,4|L2. (2.44)
=1

Combining the complexity from (2.40) to (2.44), the total complexity of the proposed

algorithm is

1 3
Cprop & 3M?N + (7 + 2| A|) LM N + §M3 + |A|L2M + 5\A\L? (2.45)
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Finally, we analyze the complexity when the diagonal approximation is applied to
the covariance matrices. In this case, the complexity of {Cg)}negm and T is (see

(2.35))

L
Ciagprel = 2MN + M + Z M(N —1) ~ LMN. (2.46)
=1

T(0)
Using the diagonal property of the covariance matrices, Cpap-aup in (2.42) and Cvap.pp

in (2.43) are

Cdiag-MaP-AUD ~ (2|A| +1)LM N

1
Cdiag-MAP-DD ~ 5(2|A| +1)L2M. (2.47)
Combining (2.46), (2.47), and (2.44), we have
1 3
Cdiag-prop ~ (2| A| + 2)LM N + 5(2\/1\ +1)LAM + 5yAyLQ. (2.48)

From (2.39), (2.45), and (2.47), we can observe that the complexity of the proposed
algorithm is higher than OMP mainly because it depends on the alphabet size |.A|.
However, since the low order modulation schemes (e.g., BPSK, QPSK) are used in the
typical mMTC systems, the complexity of the proposed algorithm does not increase
significantly compared to OMP. In Table 2.2, we summarize the complexity of OMP
and proposed algorithms for various parameter settings (N, M, L, and modulation

order) under the assumption that the user activity is about 10%.
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Table 2.2: Comparison of computational complexity

Mod. (N, M, L) Comp Cprop Cdiag-prop
BPSK (64,16,8) 2.05 x 10* 1.42 x 10° 5.19 x 10*
BPSK (64,32,8) 4.06 x 10* 3.92 x 10° 1.04 x 10°
QPSK (64,16,8) 2.05 x 10* 1.78 x 10° 8.69 x 10*
QPSK (64,32,8) 4.06 x 10*  4.62 x 10° 1.73 x 10°
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Chapter 3

Group Sparsity-Aware Active User and Data Detection

In this chapter, we describe an active user and symbol detection algorithm operating
on multiple received vectors. Since the user activity does not change in a frame, all
symbols in the frame have common activity such that the estimated user activity infor-
mation in an arbitrary received vector can be used as a priori activity information in
the remaining received vectors. For each received vector, the user activity information
of the detected users can be obtained from the symbol-element activity LLR Lg, , ;
computed by MAP-DD. Employing the message-passing framework, we can deliver
the activity information to the remaining received vectors. To improve the quality of
the activity information, we need to obtain the activity information of undetected users
as well. We first explain how to extract the activity information of all detected and
undetected users and then move on to the discussion of the extended MAP-AUD/DD

exploiting the common activity.

3.1 Extraction of Extrinsic User Activity Information

First, after processing the received symbol vector y, we obtain the extrinsic symbol-
element activity LLR Lg, , ; for the detected users (n € S). Since the extrinsic LLR

serves as the a priori LLR of the remaining vectors, similar to (2.9), the extrinsic user
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activity LLR L ,, is calculated as

Al

Lpn=1m) exp(Lpyn;). (3.1)
j=1

Next, noting that MAP-AUD computes the extrinsic symbol-element activity LLR
LEg, n,; for all user indices in S (see (2.13)), we can obtain the activity information
of undetected users by performing an additional iteration (except for MAP-DD). From
(2.17), we have

H

Leng (v) =R 24; [ vy =D _7ai | — |A4;%a,|CEDa, (3.2)
ieS)

where L denotes the last iteration index. Similar to (3.1), L 5, for the undetected users
(nedS)is

Al

Lgn=1) exp(Lp,n;). (3.3)
j=1

From (3.1) and (3.3), L, for all detected and undetected users can be obtained.
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Figure 3.2: Example of the evolution of activity LLR L A,n for two active users ({2,4})

out of the total N(= 6) users and K (= 4) symbols in a frame.
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3.2 Modified Active User and Data Detection

In this section, we extend the proposed algorithm in a way to exploit group sparsity. We

use an additional superscript [k] to indicate the symbol index of activity LLRs. The ex-

(]

trinsic user activity LLR L g ., 1s aggregated through the message-passing framework

as illustrated by a factor graph in Fig. 3.1. In this factor graph, circle and square nodes
represent variable and function nodes, respectively. The user activity LLR is used as
a message and MAP-AUD/DD is performed in the function nodes. Accordingly, the
modified a priori user activity LLR of a symbol k. is expressed as

L =w ST L 4+ Lan (3.4)

ktke

where w is a weighting factor of L%]n learned from the group sparsity against L 4 ,,
obtained from the a priori user activity probability p,, (see (2.14)). In this work, we set

w to 1/(K — 1), meaning that the weight of the average of L%]n is identical to that of
]

,n

L 4. The extended algorithm employs EEZ;: instead of L 4 ;. Note that E[:C}L evolves

through a frame.

Fig. 3.2 illustrates the evolution of E[f]n

to K. The extrinsic user activity LLR L%]n and a priori user activity LLR L 4 ,, are

when the symbol index k varies from 1

initialized with 0 and In p,, /(1 —p,, ), respectively. First, when the received vector y is
used as an input to MAP-AUD/DD, only L 4 , is used as the a priori LLR (E%n). Next,
when ys is used as the input, the output of MAP-AUD/DD, L%]’n, after processing y1,
as well as L 4 ,, are used as the a priori LLR (Efln). In general, when yy,, is used as the
input, {L@n}k:h(;ﬁc_l) as well as L 4 ,, are used as the a priori information (f[jj]l).
As the number of received vectors k increases, Ef]n becomes more reliable because
more extrinsic information serves as the a priori information and, more importantly,
because only extrinsic information is aggregated. Moreover, noting that we can fully
exploit the group sparsity only after receiving the entire frame (because {sz]n} is
partially filled), we can further improve the performance by the frame iteration. In the

frame iteration, MAP-AUD/DD is performed for the whole frame once again using the
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updated {L[Ek]n} k—1:k as a priori information. In Table 3.1, the extended algorithm is

summarized.

A&t 8t
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Table 3.1: Summary of the extended algorithm

Input: {p,} (user activity probability)

Output: {X;} (estimated symbol vector)

Subscript: n (user index), j (alphabet element index),

k(kc) ((current) symbol index)

Step 1: (Initialization)
ke=1LW =0 1<n<N,1<k<K)
Step 2: (Symbol reception) /* Receive the symbol vector yy, . */

Step 3: (Modified a priori activity LLR)

T ke k "

LE4,1]1 =Lan+ (K£1)’ > ktke Lyn /% (3.4) %/
Step 4: (MAP-AUD/DD) /* Perform MAP-AUD/DD using L} #/

Obtain L[E i (Vn € S,.) from MAP-DD. /*Q.27) */

Obtain Xy, from MAP-DD.
Obtain Lyye) . (¥n € Sy,) from additional MAP-AUD.  /* (3.2) */
Step 5: (Extrinsic activity LLR) /* Obtain L}y, . %/
lnzj L €Xp ( %jn» , forne S,
In Z‘ ‘1 exp (L[E1}nj> forn € Sk,
Step 6: (Iteration) /* Perform MAP-AUD/DD if k. < K. */

Lo =

/* In the frame iteration, skip step 2. */
ke = k. + 1 and then go to step 2 or 3.
Step 7: (Frame iteration) /* Repeat until stopping conditions are met. */

ke = 1 and then go to step 3.
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Chapter 4

Numerical Results

4.1 Simulation Setup

We simulate the uplink of an underdetermined mMTC system in which the number
of users N is much larger than the spreading factor M (N > M). We generate each
spreading sequence vector s, by an i.i.d. complex Gaussian random vector (s, ~
CN(0,1,/)) and then scale it as ||s,||2 = 1. We consider the frequency-flat Rayleigh
fading channels between users and the BS generated by an i.i.d. complex Gaussian
variable CN(0, 1). Thus, the average symbol SNR is set to 1/c2. In this work, we
terminate the iteration when ||r(!)||; < 1073, In Table 4.1, the simulation parameters

are summarized.
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Table 4.1: Simulation Parameters

Parameter Parameter Value
N: User number 32

M Spreading factor 8

K: Frame length 64

A: Symbol alphabet

{-1,1} (BPSK)

Simulation iteration

> 10000
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As a reference, we use OMP [14] and SOMP [22] which is the group version of
OMP. As a conventional technique exploiting the a priori information on user activ-
ities, we use the fast Bayesian pursuit algorithm (FBPA) (with searching parameter
D = 5) [25] and SF-OMP [32]. In particular, we use the genie-aided SF-OMP (GA-
SF-OMP), which has perfect knowledge of the variance of interferences (correspond-
ing to undetected user signals). Note that GA-SF-OMP is actually unrealistic and rep-
resents the performance upper-bound of SF-OMP. In addition, we use GA-SF-SOMP
which is a combination of SOMP and GA-SF-OMP as a reference for exploiting the
group sparsity. Lastly, we use MMSE and Oracle MMSE/ML to represent the lower
and upper bound of the performance, respectively. Since the references (except for
MMSE/ML) need a normalized channel matrix, we slightly modify the system model

as
y=Ax+n=ADx+n=AX+n (4.1)

where A is the column-normalized channel matrix, D is the diagonal matrix having the
l2-norms of the column vectors as diagonal elements, and X = Dx. In the simulation
of the references, X is initially estimated and then scaled to x. Note that our algorithm
does not require this modification at all.

As a performance measure, we use the successful AUD probability and the net

SER as well. The net SER is the symbol error rate of active users and is defined as
Net SER = 1 — P (AUD success N symbol detection success) .

We set the activities of all users to be equal (i.e., p, = p for all users) for simplicity.
Note that the proposed algorithm can also be applied to scenarios having different user

activities.
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4.2 Simulation Results

Fig. 4.1 shows the AUD success probability and the net SER when the group sparsity
is not exploited. In this figure, the dashed and solid lines indicate the performance
when p = 0.1 and p = 0.05, respectively. We clearly observe that the proposed al-
gorithm performs best among all algorithms under test and MMSE shows very poor
performance since the system is underdetermined. Overall, algorithms exploiting the
a priori distribution outperform algorithms without exploiting it. FBPA shows quite a
good performance. However, since FBPA assumes that the transmit symbol vector x is
a Bernoulli-Gaussian mixture which is not necessarily correct, there is substantial per-
formance gap from the proposed algorithm. Though the proposed algorithm performs
best, the net SER gap between Oracle MMSE/ML and the proposed algorithm is quite
large even in the high SNR regime. This is because the AUD is still not perfect. We
can deduce from this observation that the gap can be bridged if we enhance the AUD
performance by exploiting the group sparsity.

Fig. 4.2 shows the AUD and net SER performance when p is set to 0.1 and the
group sparsity is exploited, where IT denotes the number of the frame iterations. Note
that we do not include the results of FBPA and MMSE since they do not exploit the
group sparsity. We observe that as the SNR increases, the AUD success probability of
the proposed algorithm becomes close to one and the net SER approaches the Oracle
ML performance. We see that two frame iterations are sufficient in achieving near
optimal performance. In the low SNR regime, GA-SF-SOMP performs slightly better
than the proposed algorithm. Note that GA-SF-SOMP has the perfect knowledge of
the variance of interferences in each iteration, which is not possible in practice.

Fig. 4.3 shows the influence of the diagonal approximation to the computation
of the covariance matrices (see Section 2.2.4). In this simulation, p is set to 0.1. We
observe that the approximation does not degrade the performance in the low SNR
regime. This is because the noise dominates the distortion caused by the approximation

in this regime. In the high SNR regime, we see a high net SER floor caused by the
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approximation. However, this performance loss is significantly reduced after two frame
iterations.

Fig. 4.4 shows the tolerance of the proposed algorithm for the accuracy of p. In
this simulation, p is 0.1, and each user is active with the activity probability of p on the
transmission side but p, distributed between p—0.05 and p+0.05 uniformly at random
is used as the a priori activity probability on the reception side. Therefore, p, can be
different for each user. We observe that the performance loss caused by the inaccurate
a priori information is reduced as the number of frame iterations increases. This is
because the effect of the extrinsic activity information L learned from the group
sparsity on the performance is higher than the a priori activity information L 4 derived
from the (erroneous) p, after the frame iteration. Recall that the modified a priori L A
(composed of Lr and L 4) is used when the group sparsity is exploited.

Fig. 4.5 shows the performance for various frame lengths, where the dashed and
solid lines indicate the performance at 5 dB and 20 dB SNR, respectively. In this simu-
lation, we set p to 0.1 and then investigate the performance at the transition SNR (5 dB)
and the AUD-saturated SNR (20 dB). We observe that the performance improves with
the frame length. However, the AUD performance of SOMP is not perfect even at the
20 dB SNR. The AUD performance of GA-SF-SOMP also saturates at 0.98. This is
because SOMP and GA-SF-SOMP use the correlation between the received vector and
the column vectors of the channel matrix as an activity decision statistic. This statis-
tic is not a good choice when the column vectors are highly correlated. At the 5 dB
SNR, as the frame length increases, the AUD performance of GA-SF-SOMP becomes
slightly better than that of the proposed algorithm. However, the net SER performance
of GA-SF-SOMP is still worse.

Fig. 4.6 shows the performance when the user activity probability p varies from
0.05 to 0.3, where the dashed and solid lines indicate the performance at 5 dB and
20 dB SNR, respectively and the net SER of the oracle ML in case that p > 0.2 is not

shown due to infeasible simulation time. We observe that as p increases, the perfor-
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mance of SOMP and GA-SF-SOMP is degraded but the performance of the proposed
algorithm is not affected much. When p is higher than 0.2, the diagonal approxima-
tion and the erroneous p, deteriorate the net SER at the 20 dB SNR. This is because
the interference becomes the dominant factor as more users are active. However, the
performance is still much better than SOMP, GA-SF-SOMP, and even Oracle MMSE.
We also observe that the performance of the proposed algorithm is close to that of the
Oracle ML performance at the 20 dB SNR.

Fig. 4.7 shows the performance for the various spreading factors, where the dashed
and solid lines indicate the performance at 5 dB and 20 dB SNR, respectively. In this
simulation, p is set to 0.1, the number of users N is set to 64, and the spreading factor
M varies from 8 to 32. We observe that the performance is improved with M because
the system becomes less underdetermined. To accommodate the massive connectivity
of mMTC, the performance of small M /N is important. In this case, the proposed
algorithm outperforms SOMP and GA-SF-SOMP by a large margin.
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Chapter 5

Conclusion

In this dissertation, we proposed a MAP-based active user and symbol detection algo-
rithm and the extended version exploiting group sparsity, and demonstrated its perfor-
mance in the mMTC scenarios. Our work is motivated by the observation that most
greedy algorithms use the correlation between the modified received vector and the
column vectors of the channel matrix to determine the user activity, but this correla-
tion may not be a good decision statistic because it does not reflect the distributions of
such factors as users, channels, and noise. In this work, we instead used the a posteriori
activity probability as a decision statistic. By exploiting the finite alphabet constraint,
we jointly detected the active user and its soft symbol. The soft symbol information
is refined and then used as the a priori information for the detection of the other ac-
tive users. After completing the iterations, the soft symbol information is converted
into the activity information. By aggregating the activity information of the multiple
received signal vectors having the common activity, we could achieve the substantial
improvement in the AUD performance. In this sense, our scheme is distinct from the
conventional approaches that employs the accumulated correlation of the multiple vec-
tors to enhance the AUD performance. From numerical experiments, we demonstrated
that the proposed algorithm achieves significant gain in terms of the AUD success

probability and the net SER over conventional greedy algorithms.
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