4,957 research outputs found

    Intelligent Computing in Medical Ultrasonic System

    Get PDF
    兵庫県立大学大学院201

    Ancient and historical systems

    Get PDF

    An artificial-vision- and statistical-learning-based method for studying the biodegradation of type I collagen scaffolds in bone regeneration systems

    Get PDF
    [Abstract] This work proposes a method based on image analysis and machine and statistical learning to model and estimate osteocyte growth (in type I collagen scaffolds for bone regeneration systems) and the collagen degradation degree due to cellular growth. To achieve these aims, the mass of collagen -subjected to the action of osteocyte growth and differentiation from stem cells- was measured on 3 days during each of 2 months, under conditions simulating a tissue in the human body. In addition, optical microscopy was applied to obtain information about cellular growth, cellular differentiation, and collagen degradation. Our first contribution consists of the application of a supervised classification random forest algorithm to image texture features (the structure tensor and entropy) for estimating the different regions of interest in an image obtained by optical microscopy: the extracellular matrix, collagen, and image background, and nuclei. Then, extracellular-matrix and collagen regions of interest were determined by the extraction of features related to the progression of the cellular growth and collagen degradation (e.g., mean area of objects and the mode of an intensity histogram). Finally, these critical features were statistically modeled depending on time via nonparametric and parametric linear and nonlinear models such as those based on logistic functions. Namely, the parametric logistic mixture models provided a way to identify and model the degradation due to biological activity by estimating the corresponding proportion of mass loss. The relation between osteocyte growth and differentiation from stem cells, on the one hand, and collagen degradation, on the other hand, was determined too and modeled through analysis of image objects’ circularity and area, in addition to collagen mass loss. This set of imaging techniques, machine learning procedures, and statistical tools allowed us to characterize and parameterize type I collagen biodegradation when collagen acts as a scaffold in bone regeneration tasks. Namely, the parametric logistic mixture models provided a way to identify and model the degradation due to biological activity and thus to estimate the corresponding proportion of mass loss. Moreover, the proposed methodology can help to estimate the degradation degree of scaffolds from the information obtained by optical microscopy.Ministerio de Asuntos Económicos y Transformación Digital; MTM2014-52876-RMinisterio de Asuntos Económicos y Transformación Digital; MTM2017-82724-RXunta de Galicia; ED431C-2016-015Xunta de Galicia; ED431G/0

    Doctor of Philosophy

    Get PDF
    dissertationMilitary personnel with amputations face unique challenges due to their short residual limbs and high incidences of multiple limb loss sustained after blast injuries. However, transcutaneous osseointegrated implant (TOI) technology may provide an alternative for individuals with poor socket tolerance by allowing a structural and functional connection between living bone and the surface of a load bearing implant. While TOI has improved activity levels in European patients with limb loss, a lengthy rehabilitation period has limited the expansion of this technology, and may be accelerated with electrical stimulation. The unique advantage of electrically induced TOI is that the exposed exoprosthetic attachment may function as a cathode for regulating electrical current while also serving as the means of prosthetic limb attachment to the host bone. Using this design principle, the goal of this dissertation was to investigate the potential of electrical stimulation for enhancing the rate and magnitude of skeletal fixation at the periprosthetic interface using the implant as a cathode. Although previous studies have examined electrical stimulation for healing atrophic nonunions, inconsistent results have required new predictive measures. Therefore, finite element analysis (FEA) was used as a prerequisite for estimating electric field and current density magnitudes prior to in vivo experimentation. Retrospective computed tomography scans from 11 service members (28.3 ± 5.0 years) demonstrated the feasibility of electrically induced TOI, but variability in residual limb anatomy and the presence of heterotopic ossification confirmed the necessity for patient-specific modeling. Electrically induced osseointegration was also evaluated in vivo in skeletally mature rabbits after establishing design principles based on in vitro cell culturing and FEA. Data from the animal experiment indicated that there were no statistical differences for the appositional bone index (ABI), mineral apposition rate and porosity between the electrically stimulated implants and the unstimulated control implants (UCI). Higher mechanical push-out forces were observed for the UCI group at 6 weeks (p=0.034). In some cases, qualitative backscattered electron images and ABI did indicate that direct current may hold promise for improving suboptimal implant "fit and fill," as bone ongrowth around the cathode was observed despite not having direct contact with the endosteum

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    The Boston University Photonics Center annual report 2016-2017

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2016-2017 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has undoubtedly been the Photonics Center’s best year since I became Director 10 years ago. In the following pages, you will see highlights of the Center’s activities in the past year, including more than 100 notable scholarly publications in the leading journals in our field, and the attraction of more than 22 million dollars in new research grants/contracts. Last year I had the honor to lead an international search for the first recipient of the Moustakas Endowed Professorship in Optics and Photonics, in collaboration with ECE Department Chair Clem Karl. This professorship honors the Center’s most impactful scholar and one of the Center’s founding visionaries, Professor Theodore Moustakas. We are delighted to haveawarded this professorship to Professor Ji-Xin Cheng, who joined our faculty this year.The past year also marked the launch of Boston University’s Neurophotonics Center, which will be allied closely with the Photonics Center. Leading that Center will be a distinguished new faculty member, Professor David Boas. David and I are together leading a new Neurophotonics NSF Research Traineeship Program that will provide $3M to promote graduate traineeships in this emerging new field. We had a busy summer hosting NSF Sites for Research Experiences for Undergraduates, Research Experiences for Teachers, and the BU Student Satellite Program. As a community, we emphasized the theme of “Optics of Cancer Imaging” at our annual symposium, hosted by Darren Roblyer. We entered a five-year second phase of NSF funding in our Industry/University Collaborative Research Center on Biophotonic Sensors and Systems, which has become the centerpiece of our translational biophotonics program. That I/UCRC continues to focus on advancing the health care and medical device industries

    Computational methods for biofabrication in tissue engineering and regenerative medicine - a literature review

    Get PDF
    This literature review rigorously examines the growing scientific interest in computational methods for Tissue Engineering and Regenerative Medicine biofabrication, a leading-edge area in biomedical innovation, emphasizing the need for accurate, multi-stage, and multi-component biofabrication process models. The paper presents a comprehensive bibliometric and contextual analysis, followed by a literature review, to shed light on the vast potential of computational methods in this domain. It reveals that most existing methods focus on single biofabrication process stages and components, and there is a significant gap in approaches that utilize accurate models encompassing both biological and technological aspects. This analysis underscores the indispensable role of these methods in understanding and effectively manipulating complex biological systems and the necessity for developing computational methods that span multiple stages and components. The review concludes that such comprehensive computational methods are essential for developing innovative and efficient Tissue Engineering and Regenerative Medicine biofabrication solutions, driving forward advancements in this dynamic and evolving field
    corecore